This image shows Oliver Röhrle

Oliver Röhrle

Prof.

Director
Institute for Modelling and Simulation of Biomechanical Systems
Professor for Continuum Biomechanics and Mechanobiology

Contact

Pfaffenwaldring 5a
70569 Stuttgart
Deutschland
Room: 02.013

Publications:
  1. 2024

    1. Ates, F., & Röhrle, O. (2024). Experiments meet simulations: Understanding skeletal muscle mechanics to address clinical problems. GAMM-Mitteilungen, e202370012.
    2. Villota-Narvaez, Y., Bleiler, C., & Röhrle, O. (2024). Data sharing in modeling and simulation of biomechanical systems in interdisciplinary environments. GAMM-Mitteilungen, e202370006. https://doi.org/10.1002/gamm.202370006
    3. Homs-Pons, C., Lautenschlager, R., Schmid, L., Ernst, J., Göddeke, D., Röhrle, O., & Schulte, M. (2024). Coupled simulations and parameter inversion for neural system and electrophysiological muscle models. GAMM-Mitteilungen, e202370009. https://doi.org/10.1002/gamm.202370009
    4. Schmid, L., Klotz, T., Röhrle, O., Powers, R. K., Negro, F., & Yavuz, U. Ş. (2024). Postinhibitory excitation in motoneurons can be facilitated by hyperpolarization-activated inward currents: A simulation study. PLOS Computational Biology, 20(1), Article 1. https://doi.org/10.1371/journal.pcbi.1011487
    5. Sahrmann, A. S., Vosse, L., Siebert, T., Handsfield, G. G., & Röhrle, O. (2024). 3D ultrasound-based determination of skeletal muscle fascicle orientations. Biomechanics and Modeling in Mechanobiology. https://doi.org/10.1007/s10237-024-01837-3
    6. Sahrmann, A. S., Handsfield, G. G., Gizzi, L., Gerlach, J., Verl, A., Besier, T. F., & Röhrle, O. (2024). A System for Reproducible 3D Ultrasound Measurements of Skeletal Muscles. IEEE Transactions on Biomedical Engineering, 1–12. https://doi.org/10.1109/TBME.2024.3359854
  2. 2023

    1. Klotz, T., Lehmann, L., Negro, F., & Röhrle, O. (2023). High-density magnetomyography is superior to high-density surface electromyography for motor unit decomposition: a simulation study. Journal of Neural Engineering. https://doi.org/10.1088/1741-2552/ace7f7
    2. Ramakrishnan, A. N., Röhrle, O., Ludtka, C., Koehler, J., Kiesow, A., & Schwan, S. (2023). Mapping the role of oral cavity physiological factors into the viscoelastic model of denture adhesives for numerical implementation. Journal of Applied Biomaterials & Functional Materials, 21. https://doi.org/10.1177/22808000231201460
    3. Saini, H., Klotz, T., & Röhrle, O. (2023). Modelling motor units in 3D: Influence on muscle contraction and joint force via a proof of concept simulation. Biomechanics and Modeling in Mechanobiology, 22(2), Article 2. https://doi.org/10.1007/s10237-022-01666-2
    4. Trivedi, Z., Gehweiler, D., Wychowaniec, J. K., Ricken, T., Gueorguiev, B., Wagner, A., & Röhrle, O. (2023). A continuum mechanical porous media model for vertebroplasty: Numerical simulations and experimental validation. Biomechanics and Modeling in Mechanobiology. https://doi.org/10.1007/s10237-023-01715-4
    5. Kneifl, J., Rosin, D., Röhrle, O., & Fehr, J. C. (2023). Low-dimensional data-based surrogate model of a continuum-mechanical musculoskeletal system based on non-intrusive model order reduction. Archive of Applied Mechanics, 1–27. https://doi.org/10.1007/s00419-023-02458-5
    6. Saini, H., & Röhrle, O. (2023). Simulation Study to Investigate the Accuracy of in Vivo Motor-Unit Twitch Force Measurements. In J. M. R. S. Tavares, C. Bourauel, L. Geris, & J. Vander Slote (Eds.), International Symposium on Computer Methods in Biomechanics and Biomedical Engineering (pp. 234--243). Springer International Publishing. https://doi.org/10.1007/978-3-031-10015-4_20
    7. Haggie, L., Schmid, L., Röhrle, O., Besier, T., McMorland, A., & Saini, H. (2023). Linking cortex and contraction—Integrating models along the corticomuscular pathway. Frontiers in Physiology, 14. https://doi.org/10.3389/fphys.2023.1095260
    8. Zhang, C., Zhang, J., Widmann, M., Benke, M., Kübler, M., Dasari, D., Klotz, T., Gizzi, L., Röhrle, O., Brenner, P., & Wrachtrup, J. (2023). Optimizing NV magnetometry for Magnetoneurography and Magnetomyography applications. Frontiers in Neuroscience, 16. https://doi.org/10.3389/fnins.2022.1034391
  3. 2022

    1. Ramakrishnan, A. N., Röhrle, O., Ludtka, C., Köhler, J., Kiesow, A., & Schwan, S. (2022). The Role of Denture Adhesives on the Oral Health of Partial Denture Wearers: A Numerical Study. Macromolecular Symposia, 403(1), Article 1. https://doi.org/10.1002/masy.202100422
    2. Kässinger, J., Rosin, D., Dürr, F., Hornischer, N., Rothermel, K., & Röhrle, O. (2022). Persival: Simulating Complex 3D Meshes on Resource-Constrained Mobile AR Devices Using Interpolation. Proceedings of the 2022 IEEE International Conference on Distributed Computing Systems (ICDCS), 961--971. https://doi.org/10.1109/ICDCS54860.2022.00097
    3. Hessenthaler, A., Falgout, R. D., Schroder, J. B., de Vecchi, A., Nordsletten, D., & Röhrle, O. (2022). Time-periodic steady-state solution of fluid-structure interaction and cardiac flow problems through multigrid-reduction-in-time. Computer Methods in Applied Mechanics and Engineering, 389, 114368. https://doi.org/10.1016/j.cma.2021.114368
    4. Ramakrishnan, A. N., Roehrle, O., Ludtka, C., Varghese, R., Koehler, J., Kiesow, A., & Schwan, S. (2022). FINITE ELEMENT EVALUATION OF THE EFFECT OF ADHESIVE CREAMS ON THE STRESS STATE OF DENTURES AND ABUTMENT TEETH. Journal of Mechanics in Medicine and Biology, 22(05), Article 05. https://doi.org/10.1142/S0219519422500270
    5. Bleiler, C., & Röhrle, O. (2022). Strain Measures and Energies for Crimped Fibres and Novel Analytical Expressions for Fibre Populations: Ingredients for Structural Fibre Network Models. Journal of Elasticity, 150, 401–448. https://doi.org/10.1007/s10659-022-09920-5
    6. Bleiler, C., & Röhrle, O. (2022). Classification of Biomechanical Models: The Wrong Battle Between Phenomenological and Structural Approaches, the Partly Underestimated Strength of Phenomenology and Challenges for Future (Clinical) Applications. In Solid (Bio) mechanics: Challenges of the Next Decade (pp. 335--352). Springer. https://doi.org/10.1007/978-3-030-92339-6_14
    7. Ramakrishnan, A. N., Röhrle, O., Ludtka, C., Varghese, R., Koehler, J., Kiesow, A., & Schwan, S. (2022). Numerical study of the stress state on the oral mucosa and abutment tooth upon insertion of partial dentures in the mandible. International Journal for Numerical Methods in Biomedical Engineering, e3604. https://doi.org/10.1002/cnm.3604
    8. Schmid, L., Klotz, T., Yavuz, U. Ş., Maltenfort, M., & Röhrle, O. (2022). Spindle Model Responsive to Mixed Fusimotor Inputs: an updated version of the Maltenfort and Burke (2003) model. Physiome. https://doi.org/10.36903/physiome.19070171.v2
    9. Saini, H., & Röhrle, O. (2022). A Biophysically Guided Constitutive Law of the Musculotendon-Complex: Modelling and Numerical Implementation in Abaqus. Available at SSRN 4102677, 226, 107152. https://doi.org/10.1016/j.cmpb.2022.107152
    10. Sahrmann, A. S., Gizzi, L., Zanker, A., Handsfield, G. G., & Röhrle, O. (2022). Dynamic 3D Ultrasound Imaging of the Tibialis Anterior Muscle. 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 3899–3902. https://doi.org/10.1109/EMBC48229.2022.9871352
    11. Ali, H., Umander, J., Rohlén, R., Röhrle, O., & Grönlund, C. (2022). Modelling intra-muscular contraction dynamics using in silico to in vivo domain translation. Biomedical Engineering Online, 21(1), Article 1. https://doi.org/10.1186/s12938-022-01016-4
    12. Klotz, T., Gizzi, L., & Röhrle, O. (2022). Investigating the spatial resolution of EMG and MMG based on a systemic  multi-scale model. Biomechanics and Modeling in Mechanobiology, 21, 983–997. https://doi.org/10.1007/s10237-022-01572-7
    13. Villota-Narvaez, Y., Garzón-Alvarado, D. A., Röhrle, O., & Ramírez-Martínez, A. M. (2022). Multi-scale mechanobiological model for skeletal muscle hypertrophy. Frontiers in Physiology, 1924. https://doi.org/10.3389/fphys.2022.899784
  4. 2021

    1. Bleiler, C., Ponte Castañeda, P., & Röhrle, O. (2021). Tangent second-order homogenisation estimates for incompressible hyperelastic composites with fibrous microstructures and anisotropic phases. Journal of the Mechanics and Physics of Solids, 147, 104251. https://doi.org/10.1016/j.jmps.2020.104251
    2. Gizzi, L., Yavuz, U. S., Hillerkuss, D., Geri, T., Gneiting, E., Domeier, F., Schmitt, S., & Röhrle, O. (2021). Variations in Muscle Activity and Exerted Torque During  Temporary Blood Flow Restriction in Healthy Individuals. Frontiers in Bioengineering and Biotechnology, 9, 100. https://doi.org/10.3389/fbioe.2021.557761
    3. Klotz, T., Bleiler, C., & Röhrle, O. (2021). A Physiology-Guided Classification of Active-Stress and Active-Strain Approaches for Continuum-Mechanical Modeling of Skeletal Muscle Tissue. Frontiers in Physiology, 12, 1–13. https://doi.org/10.3389/fphys.2021.685531
    4. Ramakrishnan, A. N., Röhrle, O., Ludtka, C., Varghese, R., Koehler, J., Kiesow, A., & Schwan, S. (2021). Finite Element Evaluation of the Effect of Adhesive Creams on the Stress State of Dentures and Oral Mucosa. Journal of Mechanics in Medicine and Biology, 22(5), Article 5. https://doi.org/10.1142/S0219519422500270
    5. Gizzi, L., Vujaklija, I., Sartori, M., Röhrle, O., & Severini, G. (2021). Editorial: Somatosensory Integration in Human Movement: Perspectives for Neuromechanics, Modelling and Rehabilitation. 9. https://doi.org/10.3389/fbioe.2021.725603
    6. Shuva, S., Buchfink, P., Röhrle, O., & Haasdonk, B. (2021). Reduced Basis Methods for Efficient Simulation of a Rigid Robot Hand Interacting with Soft Tissue. International Conference on Large-Scale Scientific Computing, 402--409. https://doi.org/10.1007/978-3-030-97549-4_46
    7. Woodford, S. C., Robinson, D. L., Edelmann, C., Mehl, A., Röhrle, O., Lee, P. V. S., & Ackland, D. C. (2021). Low-Profile Electromagnetic Field Sensors in the Measurement and Modelling of Three-Dimensional Jaw Kinematics and Occlusal Loading. Annals of Biomedical Engineering, 49(6), Article 6. https://doi.org/10.1007/s10439-020-02688-6
    8. Lara, J., Cheng, L. K., Roehrle, O., & Paskaranandavadivel, N. (2021). Muscle-Specific High-Density Electromyography Arrays for Hand Gesture Classification. IEEE Transactions on Biomedical Engineering. https://doi.org/10.1109/TBME.2021.3131297
    9. Zhang, C., Shagieva, F., Widmann, M., Kübler, M., Vorobyov, V., Kapitanova, P., Nenasheva, E., Corkill, R., Röhrle, O., Nakamura, K., Sumiya, H., Onoda, S., Isoya, J., & Wrachtrup, J. (2021). Diamond Magnetometry and Gradiometry Towards Subpicotesla dc Field Measurement. Phys. Rev. Applied, 15(6), Article 6. https://doi.org/10.1103/PhysRevApplied.15.064075
  5. 2020

    1. Hessenthaler, A., Balmus, M., Röhrle, O., & Nordsletten, D. (2020). A class of analytic solutions for verification and convergence analysis of linear and nonlinear fluid-structure interaction algorithms. Computer Methods in Applied Mechanics and Engineering, 362, 112841. https://doi.org/10.1016/j.cma.2020.112841
    2. Hessenthaler, A., Southworth, B. S., Nordsletten, D., Röhrle, O., Falgout, R. D., & Schroder, J. B. (2020). Multilevel convergence analysis of multigrid-reduction-in-time. SIAM Journal on Scientific Computing, 42(2), Article 2. https://doi.org/10.1137/19M1238812
    3. Walter, J. R., Saini, H., Maier, B., Mostashiri, N., Aguayo, J. L., Zarshenas, H., Hinze, C., Shuva, S., Köhler, J., Sahrmann, A. S., Chang, C., Csiszar, A., Galliani, S., Cheng, L. K., & Röhrle, O. (2020). Comparative Study of a Biomechanical Model-based and Black-box Approach for Subject-Specific Movement Prediction. 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 4775--4778. https://doi.org/10.1109/EMBC44109.2020.9176600
    4. Asgharzadeh, P., Röhrle, O., Willie, B. M., & Birkhold, A. I. (2020). Decoding Rejuvenating Effects of Mechanical Loading on Skeletal Aging using in Vivo microCT Imaging and Deep Learning. Acta Biomaterialia. https://doi.org/10.1016/j.actbio.2020.02.007
    5. Asgharzadeh, P., Birkhold, A. I., Trivedi, Z., Özdemir, B., Reski, R., & Röhrle, O. (2020). A NanoFE Simulation-based Surrogate Machine Learning Model to Predict Mechanical Functionality of Protein Networks from Live Confocal Imaging. Computational and Structural Biotechnology Journal, 18, 2774–2788. https://doi.org/10.1016/j.csbj.2020.09.024
    6. Emamy, N., Litty, P., Klotz, T., Mehl, M., & Röhrle, O. (2020). POD-DEIM Model Order Reduction for the Monodomain Reaction-Diffusion Sub-Model of the Neuro-Muscular System. IUTAM Symposium on Model Order Reduction of Coupled Systems, Stuttgart, Germany, May 22--25, 2018, 177--190. https://doi.org/10.1007/978-3-030-21013-7_13
    7. Saini, H., Ackland, D. C., Gong, L., Cheng, L. K., & Röhrle, O. (2020). Occlusal load modelling significantly impacts the predicted tooth stress response during biting: a simulation study. Computer Methods in Biomechanics and Biomedical Engineering, 1--10. https://doi.org/10.1080/10255842.2020.1711886
    8. Klotz, T., Gizzi, L., Yavuz, U., & Röhrle, O. (2020). Modelling the electrical activity of skeletal muscle tissue using a multi-domain approach. Biomechanics and Modelling in Mechanobiology, 19, 335–349. https://doi.org/10.1007/s10237-019-01214-5
    9. Altan, E., Seide, S., Bayram, I., Gizzi, L., Ertan, H., & Röhrle, O. (2020). A systematic review and meta-analysis on the longitudinal effects of unilateral knee extension exercise on muscle strength. Frontiers in Sports and Active Living, 2. https://dx.doi.org/10.3389%2Ffspor.2020.518148
  6. 2019

    1. Gizzi, L., Röhrle, O., Petzke, F., & Falla, D. (2019). People with low back pain show reduced movement complexity during their most active daily tasks. European Journal of Pain, 23(2), Article 2. https://doi.org/10.1002/ejp.1318
    2. Tomalka, A., Röhrle, O., Han, J.-C., Pham, T., Taberner, A. J., & Siebert, T. (2019). Extensive eccentric contractions in intact cardiac trabeculae: revealing compelling differences in contractile behaviour compared to skeletal muscles. Proceedings of the Royal Society B, 286(1903), Article 1903. https://doi.org/10.1098/rspb.2019.0719
    3. Schmid, L., Klotz, T., Siebert, T., & Röhrle, O. (2019). Characterization of electromechanical delay based on a biophysical multi-scale skeletal muscle model. Frontiers in Physiology, 10, 1270. https://doi.org/10.3389/fphys.2019.01270
    4. Röhrle, O., Yavuz, U. S., Klotz, T., Negro, F., & Heidlauf, T. (2019). Multiscale modeling of the neuromuscular system: Coupling neurophysiology and skeletal muscle mechanics. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, e1457. https://doi.org/10.1002/wsbm.1457
    5. Bleiler, C., Ponte Castañeda, P., & Röhrle, O. (2019). A microstructurally-based, multi-scale, continuum-mechanical model for the passive behaviour of skeletal muscle tissue. Journal of the Mechanical Behavior of Biomedical Materials, 97, 171--186. https://doi.org/10.1016/j.jmbbm.2019.05.012
    6. Reski, R., Özdemir, B., Asgharzadeh, P., Birkhold, A., & Röhrle, O. (2019). The plastid skeleton: a source of ideas in the nano range. In Biomimetics for Architecture. Learning from Nature (pp. 163–166). Birkhäuser.
  7. 2018

    1. Hessenthaler, A., Nordsletten, D., Röhrle, O., Schroder, J. B., & Falgout, R. D. (2018). Convergence of the multigrid reduction in time algorithm for the linear elasticity equations. Numerical Linear Algebra with Applications, 25(3), Article 3. https://doi.org/10.1002/nla.2155
    2. Özdemir, B., Asgharzadeh, P., Birkhold, A. I., Mueller, S. J., Röhrle, O., & Reski, R. (2018). Cytological analysis and structural quantification of FtsZ1-2 and FtsZ2-1 network characteristics in Physcomitrella patens. Scientific Reports, 8(1), Article 1. https://doi.org/10.1038/s41598-018-29284-y
    3. Asgharzadeh, P., Özdemir, B., Reski, R., Röhrle, O., & Birkhold, A. I. (2018). Computational 3D imaging to quantify structural components and assembly of protein networks. Acta Biomaterialia, 69, 206--217. https://doi.org/10.1016/j.actbio.2018.01.020
    4. Eggs, B., Birkhold, A. I., Röhrle, O., & Betz, O. (2018). Structure and function of the musculoskeletal ovipositor system of an ichneumonid wasp. BMC Zoology, 3(1), Article 1. https://doi.org/10.1186/s40850-018-0037-2
    5. Röhrle, O. (2018). Skeletal Muscle Modelling. Encyclopaedia for Continuum Mechanics Section Biomechanics.
    6. Röhrle, O., Saini, H., Lee, P. V., & Ackland, D. C. (2018). A novel computational method to determine subject-specific bite force and occlusal loading during mastication. Computer Methods in Biomechanics and Biomedical Engineering, 21(6), Article 6. https://doi.org/10.1080/10255842.2018.1479744
    7. Hoekstra, A. G., van de Vosse, F., & Röhrle, O. (2018). The virtual physiological human conference 2016. Journal of Computational Science, 24, 65--67. https://doi.org/10.1016/j.jocs.2017.11.014
    8. Schneider, M., Buschbaum, J., Joeris, A., Röhrle, O., Dwyer, J., Hunter, J. B., Reynolds, R. A., Slongo, T. F., Gueorguiev, B., & Varga, P. (2018). Biomechanical investigation of two long bone growth modulation techniques by finite element simulations. Journal of Orthopaedic Research®, 36(5), Article 5. https://doi.org/10.1002/jor.23762
    9. Bradley, C. P., Emamy, N., Ertl, T., Göddeke, D., Hessenthaler, A., Klotz, T., Krämer, A., Krone, M., Maier, B., Mehl, M., Rau, T., & Röhrle, O. (2018). Enabling Detailed, Biophysics-Based Skeletal Muscle Models on HPC Systems. Frontiers in Physiology, 9. https://doi.org/10.3389/fphys.2018.00816
    10. Ramasamy, E., Avci, O., Dorow, B., Chong, S.-Y., Gizzi, L., Steidle, G., Schick, F., & Röhrle, O. (2018). An efficient modelling-simulation-analysis workflow to investigate stump-socket interaction using patient-specific, three-dimensional, continuum-mechanical, finite element residual limb models. Frontiers in Bioengineering and Biotechnology, 6. https://dx.doi.org/10.3389%2Ffbioe.2018.00126
    11. Valentin, J., Sprenger, M., Pflüger, D., & Röhrle, O. (2018). Gradient-based optimization with B-splines on sparse grids for solving forward-dynamics simulations of three-dimensional, continuum-mechanical musculoskeletal system models. International Journal for Numerical Methods in Biomedical Engineering, 34(5), Article 5. https://doi.org/10.1002/cnm.2965
    12. Roehrle, O., Saini, H., & Ackland, D. C. (2018). Occlusal loading during biting from an experimental and simulation point of view. Dental Materials, 34(1), Article 1. https://doi.org/10.1016/j.dental.2017.09.005
  8. 2017

    1. Krohn, B., Sathar, S., Röhrle, O., Vanderwinden, J.-M., O’Grady, G., & Cheng, L. K. (2017). A framework for simulating gastric electrical propagation in confocal microscopy derived geometries. 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 4215--4218. https://doi.org/10.1109/EMBC.2017.8037786
    2. Mordhorst, M., Strecker, T., Wirtz, D., Heidlauf, T., & Röhrle, O. (2017). POD-DEIM reduction of computational EMG models. Journal of Computational Science, 19, 86--96. https://doi.org/10.1016/j.jocs.2017.01.009
    3. Hessenthaler, A., Gaddum, N., Holub, O., Sinkus, R., Röhrle, O., & Nordsletten, D. (2017). Experiment for validation of fluid-structure interaction models and algorithms. International Journal for Numerical Methods in Biomedical Engineering, 33(9), Article 9. https://dx.doi.org/10.1002%2Fcnm.2848
    4. Hessenthaler, A., Röhrle, O., & Nordsletten, D. (2017). Validation of a non-conforming monolithic fluid-structure interaction method using phase-contrast MRI. International Journal for Numerical Methods in Biomedical Engineering, 33(8), Article 8. https://doi.org/10.1002/cnm.2845
    5. Röhrle, O., Sprenger, M., & Schmitt, S. (2017). A two-muscle, continuum-mechanical forward simulation of the upper limb. Biomechanics and Modeling in Mechanobiology, 16(3), Article 3. https://doi.org/10.1007/s10237-016-0850-x
    6. Heidlauf, T., Klotz, T., Rode, C., Siebert, T., & Röhrle, O. (2017). A continuum-mechanical skeletal muscle model including actin-titin interaction predicts stable contractions on the descending limb of the force-length relation. PLoS Computational Biology, 13(10), Article 10. https://doi.org/10.1371/journal.pcbi.1005773
    7. Zderic, I., Steinmetz, P., Benneker, L. M., Sprecher, C., Röhrle, O., Windolf, M., Boger, A., & Gueorguiev, B. (2017). Bone cement allocation analysis in artificial cancellous bone structures. Journal of Orthopaedic Translation, 8, 40--48. https://doi.org/10.1016/j.jot.2016.09.002
  9. 2016

    1. Chong, S.-Y., & Röhrle, O. (2016). Exploring the Use of Non-Image-Based Ultrasound to Detect the Position of the Residual Femur within a Stump. PloS One, 11(10), Article 10. https://dx.doi.org/10.1371%2Fjournal.pone.0164583
    2. Asgharzadeh, P., Özdemir, B., Müller, S. J., Röhrle, O., & Reski, R. (2016). Analysis of Physcomitrella chloroplasts to reveal adaptation principles leading to structural stability at the nano-scale. In Biomimetic Research for Architecture and Building Construction (pp. 261--275). Springer, Cham. https://doi.org/10.1007/978-3-319-46374-2_13
    3. Asgharzadeh, P., Özdemir, B., Müller, S. J., Reski, R., & Röhrle, O. (2016). Analysis of confocal microscopy image data of Physcomitrella chloroplasts to reveal adaptation principles leading to structural stability at the nanoscale. PAMM, 16(1), Article 1.
    4. Steinmetz, P., Benneker, L. M., Röhrle, O., Windolf, M., Boger, A., & Gueorguiev, B. (2016). Bone cement allocation analysis in artificial cancellous bone structures. Journal of Orthopaedic Translation, 20, 1e9.
    5. Betz, O., Birkhold, A., Caliaro, M., Eggs, B., Mader, A., Knippers, J., Röhrle, O., & Speck, O. (2016). Adaptive stiffness and joint-free kinematics: actively actuated rod-shaped structures in plants and animals and their biomimetic potential in architecture and engineering. In Biomimetic Research for Architecture and Building Construction (pp. 135--167). Springer, Cham.
    6. Röhrle, O., Neumann, V., & Heidlauf, T. (2016). The role of parvalbumin, sarcoplasmatic reticulum calcium pump rate, rates of cross-bridge dynamics, and ryanodine receptor calcium current on peripheral muscle fatigue: a simulation study. Computational and Mathematical Methods in Medicine, 2016. https://doi.org/10.1155/2016/3180205
    7. Heidlauf, T., Klotz, T., Rode, C., Altan, E., Bleiler, C., Siebert, T., & Röhrle, O. (2016). A multi-scale continuum model of skeletal muscle mechanics predicting force enhancement based on actin--titin interaction. Biomechanics and Modeling in Mechanobiology, 15(6), Article 6. https://doi.org/10.1007/s10237-016-0772-7
  10. 2015

    1. Kupczik, K., Stark, H., Mundry, R., Neininger, F. T., Heidlauf, T., & Röhrle, O. (2015). Reconstruction of muscle fascicle architecture from iodine-enhanced microCT images: a combined texture mapping and streamline approach. Journal of Theoretical Biology, 382, 34--43.
    2. Schmitt, S., Lechler, A., & Röhrle, O. (2015). Modellierung und Simulation als Werkzeug für das Design von Mensch-Maschine-Systemen (pp. 178–184). Springer Vieweg.
    3. Bleiler, C., Wagner, A., Stadelmann, V. A., Windolf, M., Köstler, H., Boger, A., Gueorguiev-Rüegg, B., Ehlers, W., & Röhrle, O. (2015). Multiphasic modelling of bone-cement injection into vertebral cancellous bone. International Journal for Numerical Methods in Biomedical Engineering, 31(1), Article 1.
    4. Chong, S.-Y., Dorow, B., Ramasamy, E., Dennerlein, F., & Röhrle, O. (2015). The use of collision detection to infer multi-camera calibration quality. Frontiers in Bioengineering and Biotechnology, 3, 65.
    5. Kleiner, B., Röhrle, O., Hülsmann, A., & Röhrle, A. (2015). Mobile radar-basierte Umgebungsvermessung unter Anwendung von Sensorfusion mittels Intrarotkamera und Inertialsensorik.
    6. Mordhorst, M., Heidlauf, T., & Röhrle, O. (2015). Predicting electromyographic signals under realistic conditions using a multiscale chemo--electro--mechanical finite element model. Interface Focus, 5(2), Article 2.
  11. 2014

    1. Röhrle, O. (2014). Verfahren zur Bestimmung einer Beißkraft.
    2. Heidlauf, T., & Röhrle, O. (2014). A multiscale chemo-electro-mechanical skeletal muscle model to analyze muscle contraction and force generation for different muscle fiber arrangements. Frontiers in Physiology, 5, 498.
    3. Kieser, J., Farland, M., Jack, H., Farella, M., Wang, Y., & Rohrle, O. (2014). The role of oral soft tissues in swallowing function: what can tongue pressure tell us? Australian Dental Journal, 59, 155--161.
    4. Ramasamy, E., Dorow, B., Schneider, U., & Roehrle, O. (2014). Simulation-assisted prosthetic design. BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 59, S1021--S1021.
  12. 2013

    1. Heidlauf, T., & Röhrle, O. (2013). Modeling the chemoelectromechanical behavior of skeletal muscle using the parallel open-source software library OpenCMISS. Computational and Mathematical Methods in Medicine, 2013.
    2. Wang, Y. K., Nash, M. P., Pullan, A. J., Kieser, J. A., & Röhrle, O. (2013). Model-based identification of motion sensor placement for tracking retraction and elongation of the tongue. Biomechanics and Modeling in Mechanobiology, 12(2), Article 2.
    3. Karajan, N., Röhrle, O., Ehlers, W., & Schmitt, S. (2013). Linking continuous and discrete intervertebral disc models through homogenisation. Biomechanics and Modeling in Mechanobiology, 12(3), Article 3.
    4. Wang, Y., Gamage, T. P. B., Nielsen, P. M., Röhrle, O., & Nash, M. P. (2013). Identification of tongue muscle fibre group contraction from MR images. In Computational Biomechanics for Medicine (pp. 185--196). Springer, New York, NY.
    5. Heidlauf, T., Negro, F., Farina, D., & Röhrle, O. (2013). An integrated model of the neuromuscular system. 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER), 227--230.
    6. Röhrle, O., Sprenger, M., Ramasamy, E., & Heidlauf, T. (2013). Multiscale skeletal muscle modeling: from cellular level to a multi-segment skeletal muscle model of the upper limb. In Computer models in biomechanics (pp. 103--116). Springer, Dordrecht.
  13. 2012

    1. Günther, M., Haeufle, D. F. B., Röhrle, O., & Schmitt, S. (2012). Spreading out muscle mass within a Hill-type model: A computer simulation study. Computational and Mathematical Methods in Medicine, 848630 (13pp). https://doi.org/10.1155/2012/848630
    2. Röhrle, O., Davidson, J. B., & Pullan, A. J. (2012). A physiologically based, multi-scale model of skeletal muscle structure and function. Frontiers in Physiology, 3, 358.
  14. 2011

    1. Röhrle, O., Köstler, H., & Loch, M. (2011). Segmentation of skeletal muscle fibres for applications in computational skeletal muscle mechanics. In Computational Biomechanics for Medicine (pp. 107--117). Springer, New York, NY.
  15. 2010

    1. Röhrle, O. (2010). Simulating the electro-mechanical behavior of skeletal muscles. Computing in Science & Engineering, 12(6), Article 6.
    2. Smith, N. P., Budgett, D. M., Hunter, P. J., Malcolm, D. T. K., Cheng, L. K.-W., Nash, M. P., Nielsen, P. M. F., Pullan, A. J., Young, A. A., Roehrle, O., & others. (2010). Biophysical virtual model database and applications.
    3. Schmid, H., Watton, P., Maurer, M., Wimmer, J., Winkler, P., Wang, Y., Röhrle, O., & Itskov, M. (2010). Impact of transmural heterogeneities on arterial adaptation. Biomechanics and Modeling in Mechanobiology, 9(3), Article 3.
  16. 2009

    1. Röhrle, O., Waddell, J. N., Foster, K. D., Saini, H., & Pullan, A. J. (2009). Using a motion-capture system to record dynamic articulation for application in CAD/CAM software. Journal of Prosthodontics: Implant, Esthetic and Reconstructive Dentistry, 18(8), Article 8.

My full CV can be downloaded from the following link: Full CV (English)

Since 10/21 Dean (Dekan), Faculty 2: Civil and Environmental Engineering, University of Stuttgart, Germany.
Since 04/19 Founding Director (jointly with Prof. S. Schmitt) of the Institute for Modelling and Simulation of Biomechanical Systems, Faculty 2: Civil and Environmental Engineering, University of Stuttgart, Germany.
04/17 - 09/21 Vice Dean (Prodekan), Faculty 2: Civil and Environmental Engineering, University of Stuttgart, Germany.
Since 02/16 Fellow of the Stuttgart Centre of Simulation Sciences (SC SimTech), Stuttgart, Germany.
Since 07/13 W3-Professor for "Continuum Biomechanics and Mechanobiology" at the Cluster of Excellence for Simulation Technology (SimTech) and at the Institute
of Applied Mechanics (Civil Engineering), Chair Continuum Mechanics, University of Stuttgart, Germany.
Since 10/11 Attract-Group Leader for the "Virtual Orthopaedic Lab" at the Fraunhofer Institute for Manufacturing Engineering and Automation IPA in Stuttgart.
11/08 - 07/13
Junior Professor for "Continuum Biomechanics and Mechanobiology" at the Cluster of Excellence for Simulation Technology (SimTech) and at the Institute of Applied Mechanics (Civil Engineering), Chair Continuum MechanicsUniversity of Stuttgart, Germany.
11/04 - 11/08
Research Scientist at the Auckland Bioengineering Institute, University of Auckland, New Zealand.
08/04 - 10/04
Postdoctoral Research Associate at the University of Colorado at Boulder, USA 
08/04
PhD in Applied Mathematics, University of Colorado at Boulder, USA
(Prof. S. McCormick and Prof. T. Manteuffel)
08/00 - 08/04
PhD student at the University of Colorado at Boulder, USA
05/00
Diplom Wirtschafts-Mathematiker (Dipl. Math.-oec.), Universität Ulm, Germany
09/99
Master of Science in Mathematics, University of Wisconsin at Milwaukee, USA
09/98 - 09/99
Master student in Mathematics, University of Wisconsin at Milwaukee, USA
10/94 - 05/00
Diplomstudent in Wirtschaftsmathematik, Universität Ulm, Germany

My academic geneology can be found by following this link: Geneology

  1. Ramasamy, E: A Modelling-Simulation-Analysis Workflow for Investigating Socket-Stump Interaction, 2019 (CBM-003)
  2. Sprenger, M.: A 3D Continuum-Mechanical Model for Forward-Dynamics Simulations of the Upper Limb, 2015 (CBM-002)
  3. Heidlauf, T.: Modelling the Neuromuscular System, 2015 (CBM-001)
  4. Wang, Y.: Modelling the movement of the tongue during the oral stage of the swallowing process, 2013 (University of Auckland)
  5. Davidson, J.: Biophysical Modelling of Skeletal Muscle, 2009 (University of Auckland)
To the top of the page