This image shows Thomas Klotz

Thomas Klotz

M.Sc.

Research Assistant

Contact

Pfaffenwaldring 5a
70569 Stuttgart
Deutschland
Room: 02.015

Publications:
  1. Schmid, L., Klotz, T., Röhrle, O., Powers, R. K., Negro, F., & Yavuz, U. Ş. (2024). Postinhibitory excitation in motoneurons can be facilitated by hyperpolarization-activated inward currents: A simulation study. PLOS Computational Biology, 20(1), Article 1. https://doi.org/10.1371/journal.pcbi.1011487
  2. Klotz, T., Lehmann, L., Negro, F., & Röhrle, O. (2023). High-density magnetomyography is superior to high-density surface electromyography for motor unit decomposition: a simulation study. Journal of Neural Engineering. https://doi.org/10.1088/1741-2552/ace7f7
  3. Saini, H., Klotz, T., & Röhrle, O. (2023). Modelling motor units in 3D: Influence on muscle contraction and joint force via a proof of concept simulation. Biomechanics and Modeling in Mechanobiology, 22(2), Article 2. https://doi.org/10.1007/s10237-022-01666-2
  4. Zhang, C., Zhang, J., Widmann, M., Benke, M., Kübler, M., Dasari, D., Klotz, T., Gizzi, L., Röhrle, O., Brenner, P., & Wrachtrup, J. (2023). Optimizing NV magnetometry for Magnetoneurography and Magnetomyography applications. Frontiers in Neuroscience, 16. https://doi.org/10.3389/fnins.2022.1034391
  5. Schmid, L., Klotz, T., Yavuz, U. Ş., Maltenfort, M., & Röhrle, O. (2022). Spindle Model Responsive to Mixed Fusimotor Inputs: an updated version of the Maltenfort and Burke (2003) model. Physiome. https://doi.org/10.36903/physiome.19070171.v2
  6. Klotz, T., Gizzi, L., & Röhrle, O. (2022). Investigating the spatial resolution of EMG and MMG based on a systemic  multi-scale model. Biomechanics and Modeling in Mechanobiology, 21, 983–997. https://doi.org/10.1007/s10237-022-01572-7
  7. Klotz, T., Bleiler, C., & Röhrle, O. (2021). A Physiology-Guided Classification of Active-Stress and Active-Strain Approaches for Continuum-Mechanical Modeling of Skeletal Muscle Tissue. Frontiers in Physiology, 12, 1–13. https://doi.org/10.3389/fphys.2021.685531
  8. Emamy, N., Litty, P., Klotz, T., Mehl, M., & Röhrle, O. (2020). POD-DEIM Model Order Reduction for the Monodomain Reaction-Diffusion Sub-Model of the Neuro-Muscular System. IUTAM Symposium on Model Order Reduction of Coupled Systems, Stuttgart, Germany, May 22--25, 2018, 177--190. https://doi.org/10.1007/978-3-030-21013-7_13
  9. Klotz, T., Gizzi, L., Yavuz, U., & Röhrle, O. (2020). Modelling the electrical activity of skeletal muscle tissue using a multi-domain approach. Biomechanics and Modelling in Mechanobiology, 19, 335–349. https://doi.org/10.1007/s10237-019-01214-5
  10. Schmid, L., Klotz, T., Siebert, T., & Röhrle, O. (2019). Simulating electromechanical delay across the scales--relating the behavior of single sarcomers on a sub-cellular scale and the muscle-tendon system on the organ scale. PAMM, 19(1), Article 1. https://doi.org/10.1002/pamm.201900312
  11. Schmid, L., Klotz, T., Siebert, T., & Röhrle, O. (2019). Characterization of electromechanical delay based on a biophysical multi-scale skeletal muscle model. Frontiers in Physiology, 10, 1270. https://doi.org/10.3389/fphys.2019.01270
  12. Röhrle, O., Yavuz, U. S., Klotz, T., Negro, F., & Heidlauf, T. (2019). Multiscale modeling of the neuromuscular system: Coupling neurophysiology and skeletal muscle mechanics. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, e1457. https://doi.org/10.1002/wsbm.1457
  13. Bradley, C. P., Emamy, N., Ertl, T., Göddeke, D., Hessenthaler, A., Klotz, T., Krämer, A., Krone, M., Maier, B., Mehl, M., Rau, T., & Röhrle, O. (2018). Enabling Detailed, Biophysics-Based Skeletal Muscle Models on HPC Systems. Frontiers in Physiology, 9. https://doi.org/10.3389/fphys.2018.00816
  14. Saini, H., Altan, E., Ramasamy, E., Klotz, T., Gizzi, L., & Röhrle, O. (2018). Predicting Skeletal Muscle Force from Motor-Unit Activity using a 3D FE Model. PAMM, 18(1), Article 1.
  15. Heidlauf, T., Klotz, T., Rode, C., Siebert, T., & Röhrle, O. (2017). A continuum-mechanical skeletal muscle model including actin-titin interaction predicts stable contractions on the descending limb of the force-length relation. PLoS Computational Biology, 13(10), Article 10. https://doi.org/10.1371/journal.pcbi.1005773
  16. Heidlauf, T., Klotz, T., Rode, C., Siebert, T., & Röhrle, O. (2016). Force enhancement and stability of finite element muscle models. PAMM, 16(1), Article 1.
  17. Heidlauf, T., Klotz, T., Rode, C., Altan, E., Bleiler, C., Siebert, T., & Röhrle, O. (2016). A multi-scale continuum model of skeletal muscle mechanics predicting force enhancement based on actin--titin interaction. Biomechanics and Modeling in Mechanobiology, 15(6), Article 6. https://doi.org/10.1007/s10237-016-0772-7
To the top of the page