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Deutschsprachige Zusammenfassung

Motivation

Das neuromuskuldre System wird im Allgemeinen definiert als ,,die Muskeln des Korpers
zusammen mit den Nerven, die diese innervieren* [146|. Die Aufgabe des neuromuskuléren
Systems ist die Bewegung des Korpers, die nur durch das Zusammenspiel von speziellen
Nervenzellen (Motoneuronen) und den Muskeln des Korpers (Skelettmuskeln) ermoglicht
wird. Funktionsstorungen des neuromuskuléren Systems beeintréchtigen folglich die Moto-
neurone, die peripheren Nerven, die Muskelfasern und die neuromuskuldren Endplatten
(die Stelle, an der die Nerven und Muskelfasern aufeinander treffen). Zu den héufigeren
Funktionsstorungen des neuromuskuldren Systems zidhlen periphere Neuropathien, ver-
schiedene Muskeldystrophien, entziindliche und andere Myopathien sowie Storungen der
neuromuskuliren Signaliibertragung [44, 62, 63]. Viele dieser Funktionsstérungen sind
schwerwiegend oder sogar todlich. Bei der spinalen Muskelatrophie vom Typ I zum
Beispiel tritt der Tod bereits im Kindesalter ein, aber auch andere Funktionsstérungen des
neuromuskuliren Systems verlaufen todlich [62]. Erkrankungen des neuromuskuldren Sys-
tems sind oft erblich bedingt, sie konnen aber auch durch eine abnormale Immunreaktion
oder eine genetische Mutation hervorgerufen werden.

Emery folgerte aus seiner umfassenden Literaturiibersicht [62], dass mindestens ein-
er von 3500 der Weltbevolkerung von einer beeintrichtigenden, vererblichen Erkrankung
des neuromuskulidren Systems betroffen ist. Laut MacIntosh et al. [161] ist allein et-
wa jeder dreitausendste Mann von der Muskeldystrophie des Typs Duchenne, einer X-
chromosomal-rezessiv vererblichen Funktionsstorung, betroffen. Diese Muskeldystrophie
wird durch einen Mangel an dem Membranprotein Dystrophin hervorgerufen und resul-
tiert in einer fortschreitenden Muskelschwichung, die zum Tod fithrt. Andere, weniger
hiufige Formen von Muskeldystrophien werden durch andere Proteindefekte verursacht
(eine Ubersicht findet sich in Emery [63]). Um eine Dystrophie zu diagnostizieren und
neurogene Ursachen einer Muskelschwiche auszuschliefen, stellt die Elektromyographie
eine wichtige Methode dar [63].

Bis heute konnen Dystrophien nicht geheilt werden, und auch fiir andere neuro-
muskuldre Funktionsstorungen gibt es oft kein wirksames Heilmittel. Da Erkrankungen
des neuromuskuldren Systems héufig genetisch bedingt sind, konnten in Zukunft gen-
technische Verdnderungen und eine Stammzellentherapie zu einer effektiven Behand-
lung fiihren, aber auch ein wirksames Medikament konnte entdeckt werden [63|. Bisher
jedoch kénnen nur Symptome behandelt werden, um die Lebensqualitidt der Betroffe-
nen zu verbessern. Zur effektiven Behandlung von Symptomen und fiir die Entwicklung
eines wirksamen Medikaments ist ein umfassendes Verstindnis der Physiologie des neuro-
muskuldren Systems Voraussetzung. Um dies zu Erlangen, ist es zweckméfig zunéchst
das gesunde System zu studieren, bevor pathologische Bedingungen, wie sie bei neuro-
muskuldren Funktionsstorungen auftreten, untersucht werden.
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Da biophysikalische Grofsen experimentell oft nur schwer oder iiberhaupt nicht be-
stimmt werden konnen (vor allem in Menschen und in vivo), kénnen mathematische
Modelle verwendet werden, um fehlende Daten zu generieren. Der Vorteil der mathe-
matischen Modellierung liegt vor allem auch darin, dass Daten in einer kontrollierten
Umgebung bestimmt werden konnen, was in Experimenten hiufig unmoglich ist. Ex-
istierende Modelle des neuromuskuldren Systems haben zu einem verbesserten Versténd-
nis der Physiologie beigetragen |76, [104]. Diese Modelle basieren jedoch zumindest zum
Teil auf einer phdnomenologischen Beschreibung, die den biophysikalischen Prozessen des
betrachteten Systems nicht nachempfunden ist. Da die phinomenologische Beschreibung
die Anwendung und die Vorhersagefiahigkeit dieser Modelle mafgeblich einschriankt, wer-
den detaillierte, biophysikalische Modelle von Skelettmuskeln und der zugehorigen Mo-
toneurone bendtigt, um das neuromuskulére System besser zu verstehen. Die vorliegende
Arbeit befasst sich folglich mit der Entwicklung von Methoden und Modellen fiir die bio-
physikalische Simulation des chemoelektromechanischen Verhaltens des neuromuskuléren
Systems.

Stand der Forschung, Zielsetzung und Vorgehensweise

Bei der Modellierung biologischer Systeme kann ganz allgemein zwischen phinomenologis-
chen und biophysikalischen Modellen unterschieden werden. Phinomenologische Modelle
basieren auf experimentell ermittelten Eingangs-/Ausgangsbeziehungen und sind oft ein-
facher, weniger rechenaufwindig und auf weniger Parameter angewiesen als entsprechende
biophysikalische Modelle. Beschrinkt auf den Bereich, in dem die Modellparameter an ex-
perimentelle Daten angepasst wurden, konnen phanomenologische Modelle das Verhalten
des Systems akkurat wiedergeben. Ein vollstindiges Verstindnis der zugrundeliegenden
Physiologie kann mit phidnomenologischen Modellen jedoch nicht erreicht werden. Im
Gegensatz dazu bauen biophysikalische Modelle auf den vorhandenen Kenntnissen der
Physiologie des entsprechenden Systems auf und kénnen daher als in-silico Labor verwen-
det werden, um das Verhalten des betrachteten Systems unter normalen und patholog-
ischen Bedingungen zu untersuchen.

Dem Aufbau des neuromuskuliren Systems entsprechend konzentrieren sich die ex-
istierenden mathematischen Modelle entweder auf die Krafterzeugung in den Muskelfasern
oder auf die Kontrolle der Muskeln durch das koordinierte Verhalten der Motoneurone
als Ensemble. Betrachtet man zunéchst die Motoneurone, lassen sich phdnomenologische
und biophysikalische Modelle in der Literatur finden. Zum Beispiel wurden von Fuglevand
et al. [76] und Heckman & Binder [104], basierend auf der Beziehung zwischen synap-
tischer Erregung eines Motoneurons und der Frequenz mit der das Motoneuron Aktions-
potentiale (kurzzeitige Depolarisierungen des Membranpotentials einer Zelle, die verwen-
det werden, um Informationen zwischen verschiedenen Teilen des Korpers auszutauschen)
abfeuert 29|, phinomenologische Modelle entwickelt. Diese werden hiufig zum Testen
von neurophysiologischen Hypothesen oder zur Interpretation von experimentellen Daten
verwendet, siehe z. B. [10, 142, [143, [180]. Eine wichtige Einschrénkung von ph&nomenol-
ogischen Motoneuronenmodellen ist jedoch, dass sie es nicht erlauben synaptische und
gemeinsame Eingangssignale an die Motoneurone zu beriicksichtigen. Biophysikalische
Motoneuronenmodelle sind von dieser Einschrinkung nicht betroffen, da sie Eingangs-
signale auf der Ebene der Zellmembran einbinden. In ,integrate-and-fire“-Modellen |1, [73]
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zum Beispiel bindet ein Motoneuron synaptische Strome von verschiedenen Quellen ein,
was zu einem Anstieg seines Membranpotentials fiihrt. Wenn das Membranpotential einen
bestimmten Schwellenwert erreicht, wird angenommen, dass das Motoneuron ein Ak-
tionspotential abfeuert, und sein Membranpotential wird zuriick auf den Ruhewert gesetzt.

Die komplexen, biophysikalischen Prozesse, die zum Offnen und Schliefen von ver-
schiedenen spannungsgesteuerten ITonenkanilen wihrend eines Aktionspotentials fiihren,
wurden zuerst von Alan L. Hodgkin und Andrew F. Huxley [120] beschrieben. Basierend
auf dieser Darstellung wurden zunehmend komplexere, biophysikalische Modelle der Moto-
neurone entwickelt (siehe z.B. Cisi & Kohn [39], Cushing et al. [41], Powers et al. [208]),
die zusétzliche Tonenstrome und/oder eine héhere Anzahl an Kompartimenten beriick-
sichtigen.

Um Motoneurone zu simulieren, iibernimmt die vorliegende Arbeit das Zwei-
kompartimentemodell von Negro & Farina [186], das auf der Beschreibung von Cisi &
Kohn [39] basiert. Interessanterweise beriicksichtigt dieses biophysikalische Motoneuro-
nenmodell bereits von sich aus das Hennemansche Grofenprinzip der sequentiellen Rekru-
tierung [112,113] (kleine Motoneurone mit niedrigem Erregungsschwellenwert werden vor
groferen Motoneuronen mit hoherem Erregungsschwellenwert rekrutiert) und die ,,onion-
skin“-Eigenschaft [46, 47| (fiir ein bestimmtes Level an synaptischer Erregung feuern Mo-
toneurone mit niedrigerem Erregungsschwellenwert mit einer hoheren Frequenz als Mo-
toneurone mit hohem Erregungsschwellenwert).

Die von den Motoneuronen abgefeuerten Aktionspotentiale 16sen in den Muskelfasern
die Krafterzeugung aus. Zur Simulation der Krafterzeugung wurden verschiedene Ansétze
verfolgt. Heckman & Binder [104] zum Beispiel schlugen, basierend auf dem Eingangs-/
Ausgangsverhalten von Muskelfasern (der Kraft-Frequenz-Beziehung), ein phédnomenol-
ogisches Modell vor. Besonders populér ist die analytische Formulierung von Fuglevand
et al. [76], die die Impulsantwort eines kritisch geddmpften Systems zweiter Ordnung ver-
wendet, um die Muskelzuckung zu beschreiben. Dieses vereinfachte Kraftmodell wurde
von mehreren Wissenschaftlern iibernommen und erweitert, siehe z.B. Cisi & Kohn
[39], Dideriksen et al. [50, [51), [52].

Wihrend diese Modelle auf einer stationdren Eingangs-/Ausgangsbeziehung basieren
und auf isometrische Bedingungen beschrinkt sind, sind die sogenannten Hill-Modelle
nicht von diesen Einschréankungen betroffen. Hill-Modelle basieren auf der Beschreibung
von Archibald V. Hill von 1938 [117] und sind wahrscheinlich die hdufigste Darstellung des
mechanischen und kinematischen Muskelverhaltens, siehe z. B. Giinther et al. [92-94], van
Ingen Schenau et al. [133], Pandy [198], Siebert et al. [242,1243], Till et al. [261], Zajac [282].
Hillsche Muskelmodelle sind phidnomenologische Formulierungen der makroskopischen
Muskelphysiologie, bei der eine lingenabhingige, passive Kraft (Spannungs-Dehnungs-
Beziehung in Abwesenheit von neuronaler Stimulation) mit einer Kraft superponiert wird,
die von der neuronalen Aktivierung des Muskels herriihrt und von der Muskellinge und
Kontraktionsgeschwindigkeit abhingt. Aufgrund ihrer Einfachheit, dem relativ geringen
Rechenaufwand und der geringen Anzahl an Parametern, werden Hill-Modelle haufig
zur Interpretation von experimentellen Daten oder zur Beschreibung von Bewegungen
und Kriften im Rahmen von Mehrkorpersimulationen verwendet, siehe z. B. Rupp et al.
[227], Siebert et al. [241].

Sowohl die Hillschen als auch die analytischen Muskelmodelle, die die Impulsantwort
verwenden, um die Muskelzuckung darzustellen, weisen signifikante Nachteile auf, da
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sie alle strukturellen und funktionellen Eigenschaften eines Muskels auf nur wenige Pa-
rameter reduzieren. Zum Beispiel beschreiben die Hillschen Modelle das Muskelverhal-
ten an einem einzigen Punkt durch Feder- und Dampfungskonstanten und ein einzelnes
Aktivierungsniveau. Die berechnete Muskelkraft wird dann entlang einer vorgegebenen
Wirkungslinie aufgebracht. Dariiber hinaus vernachléssigen diese vereinfachten, auf rein
phidnomenologischen Ansétzen basierenden Modelle Nichtlinearitéten in der Kraftantwort,
die aus der zuriickliegenden Aktivierung resultieren, vgl. z. B. |76, 204, 230)].

Die Erkenntnis, dass Hill-Modelle fiir Muskeln mit komplexer Geometrie nur un-
genaue Ergebnisse liefern (vgl. z.B. Rohrle & Pullan [222|), fiihrte zur Entwicklung
von kontinuumsmechanischen Modellen, die auf der Theorie der finiten Deformationen
beruhen, siehe z.B. [16, [167, 222, 229, 288]. Um das kontraktile Verhalten von Herz-
und Skelettmuskeln in einem kontinuumsmechanischen Modell zu beschreiben, wurden
héaufig Hill-Modelle verwendet, siehe z. B. Goktepe et al. [88], Johansson et al. [135], Ko-
jic et al. [147|, Pelteret & Reddy [203]. Wiahrend kontinuumsmechanische Modelle kom-
plexe Muskelfaserverteilungen [15], eine lokal variierende Aktivierung und eine dynamisch
bestimmte Wirkungslinie [222] beriicksichtigen konnen, sind die gewonnenen Erkennt-
nisse doch beschriankt auf rein mechanische, makroskopische Aspekte der Krafterzeugung.
Eine detailliertere Beschreibung des kontraktilen Verhaltens in einem volumetrischen
Muskelmodell kann durch den Einsatz von Mehrskalenmodellen erreicht werden, die die
Kontinuumsmechanik mit kinetischen Zellmodellen koppelt.

Das erste biophysikalische, kinetische Zellmodell wurde von Andrew F. Huxley 128, 129)]
entwickelt. Dieses Modell basiert auf der Filamentgleittheorie, die 1953 /1954 gleichzeitig,
jedoch unabhéngig voneinander, von Andrew F. Huxley und Ralph Niedergerke [130] sowie
Hugh E. Huxley und Jean Hanson [99, 132] vorgeschlagen wurde. Das kinetische Modell
von Huxley [128] unterscheidet zwischen Querbriicken im gebundenen und gelosten Zus-
tand und wurde spater auf Verteilungsfunktionen generalisiert, die Populationen von ver-
schiedenen biochemischen Zustdnden als Funktion von Bindungsldnge und Zeit darstellen,
siehe z. B. [280, [281]. Der Vorteil dieser biophysikalischen Modelle liegt darin, dass sie di-
rekt auf der mikroskopischen Struktur und den molekularen Mechanismen der Kontraktion
basieren. Thre mathematische Beschreibung fiihrt jedoch zu einem Satz von gekoppelten
partiellen Differentialgleichungen. Um die komplizierte Losung von partiellen Differen-
tialgleichungen zu vermeiden, wurden Approximationen entwickelt, die als gew6hnliche
Differentialgleichungen in der Zeit formuliert werden konnen, siehe z. B. der Ansatz von
Zahalak [280]. Dieser Ansatz wurde von Gielen et al. [83] verwendet, um das kontraktile
Verhalten in einem kontinuumsmechanischen Mehrskalenmodell zu beschreiben.

Ferner wurde im Kontext von kinetischen Zellmodellen von Razumova, Campell und
Kollegen ein Modell der Querbriickendynamik entwickelt, das drei verschiedene Zustinde
der Querbriicken (ein geloster und zwei gebundene Zusténde) beriicksichtigt, und an-
nimmt, dass die Kraft in einem Sarkomer proportional zum Produkt aus der Anzahl der
Querbriicken im jeweiligen gebundenen Zustand und ihrer durchschnittlichen Verzerrung
ist |36, 137, 214, 215]. Obwohl dieses Modell durch relativ simple gewohnliche Differential-
gleichungen beschrieben werden kann, reicht es aus, um die wesentlichen Charakteristiken
von Muskelkontraktionen zu beschreiben [214].

Neben den biophysikalischen Beschreibungen der Querbriickendynamik wurden auch
biophysikalische Modelle von anderen Teilen des komplexen Signalwegs von der elek-
trischen Stimulation zur Krafterzeugung in Muskelfasern entwickelt. Zum Beispiel schlu-
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gen Adrian & Peachey [2], basierend auf dem Hodgkin-Huxley-Formalismus [120], ein
elektrophysiologisches Modell der Muskelfasermembran vor. Dieses Modell wurde spéater
von Wallinga et al. [272]| auf ein Multikompartimentemodell erweitert, das Ionenstrome
iiber das Sarkolemm und die T-Tubulemembran einer Muskelfaser beriicksichtigt. Um den
gesamten Signalweg von der Erregung zur Kontraktion einer Muskelfaser zu beschreiben,
koppelte Shorten et al. [240] eine vereinfachte Version des elektrophysiologischen Mem-
branmodells von Wallinga [272] an ein Modell des Kalziumausstofes aus dem sarkoplas-
matischen Retikulum [217], ein Modell der intrazelluléren Kalziumdynamik [12] und eine
Erweiterung des Modells der Querbriickendynamik von Razumova et al. [214]. Dariiber
hinaus beinhaltet das Modell von Shorten et al. [240] eine Beschreibung der metabolischen
Ermiidung.

Ein grofer Vorteil des Modells von Shorten et al. [240] ist, dass es die zugrunde liegende
Physiologie sehr gut abbildet. Im Gegensatz zu phdnomenologischen Modellen beriick-
sichtigt diese biophysikalische Beschreibung nichtlineare Effekte in der Kraftentwicklung,
die zum Beispiel aus der zuriickliegenden Aktivierung resultieren, und erlaubt dariiber
hinaus eine detaillierte Analyse von pathologischen Bedingungen. Obwohl das Modell von
Shorten et al. [240] viele Details des Signalwegs von der Erregung zu Kontraktion bein-
haltet, unterliegt es mehreren Limitationen. Zum Beispiel betrachten Shorten et al. [240]
nur idealisierte Stimulationen des gesamten Muskels bei konstanter Frequenz. Aufierdem
kann das Modell nur isometrische Kontraktionen beschreiben.

Aus diesem Grund erweitert die vorliegende Arbeit das Modell von Shorten et al. [240]
auf nichtisometrische Kontraktionen. Auferdem wird das Modell von Shorten et al. [240]
auf eine Beschreibung der Muskelfasern der verschiedenen motorischen Einheiten eines
Muskels erweitert. Eine motorische Einheit bezeichnet hierbei ein Motoneuron zusammen
mit allen Muskelfasern, die von diesem Motoneuron innerviert werden. Um willkiirliche
Kontraktionen zu simulieren, wird das resultierende Muskelmodell mit dem Motoneuro-
nenmodell von Negro & Farina |186] gekoppelt. Dies fithrt zu einem neuen, integrierten
Modell des neuromuskulédren Systems, das in all seinen Hauptteilen biophysikalisch ist.

Rohrle und Kollegen koppelten das Modell des Signalwegs von der Erregung zur Kon-
traktion von Shorten et al. [240] mit bioelektrischen Feldgleichungen und einem kon-
tinuumsmechanischen Konstitutivgesetz, um die Ausbreitung von Aktionspotentialen
entlang von Muskelfasern bzw. die Krafterzeugung und Deformation des Muskels zu
simulieren [219-221, 223]. Um willkiirliche Muskelkontraktionen zu simulieren, verwen-
deten Rohrle et al. [221] das phénomenologische Motoneuronenmodell von Fuglevand
et al. [76], um ihr mehrskaliges, chemoelektromechanisches Muskelmodell anzuregen. Das
Modell von Rohrle und Kollegen beriicksichtigt die Rekrutierung und Frequenzmodula-
tion von motorischen Einheiten, die biophysikalischen Prozesse, die von der elektrischen
Stimulation zur Kontraktion fiihren, sowie die Ausbreitung von Aktionspotentialen im
Muskelgewebe und iiberwindet somit viele der Einschrinkungen von anderen kontinu-
umsmechanischen Modellen. Zum Beispiel beinhaltet das Modell von Herndndez-Gascon
et al. [114] nur eine phanomenologische Beschreibung der zellulidren Prozesse und ignoriert
biophysikalische Prinzipien der Ausbreitung des Aktionspotentials und der Querbriicken-
dynamik. Ferner verwenden Fernandez et al. [74] ein Motoneuronenmodell um ein Ak-
tionspotential gleichzeitig in allen Muskelfasern zu erzeugen, wobei die Tatsache, dass
motorische Einheiten in Skelettmuskeln unabhingig voneinander aktiviert werden, ver-
nachléssigt wird. Sowohl in Fernandez et al. [74] als auch in Bol et al. [22] breitet sich
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das Aktionspotential im dreidimensionalen Muskelgewebe aus, anstatt entlang einzelner
Muskelfasern, wie in Skelettmuskeln. Ferner verwenden beide Modelle eine rein phinome-
nologische Beschreibung des Zusammenhangs zwischen dem Aktionspotential und der
Krafterzeugung.

Obwohl das chemoelektromechanische Modell von Rohrle und Kollegen viele physiol-
ogische Eigenschaften des neuromuskulidren Systems beriicksichtigt, unterliegt es struk-
turbedingten Einschrinkungen, die die Erweiterung zu einem voll gekoppelten Modell, das
neuronale Aktivierung, Krafterzeugung und Riickkopplungsmechanismen beinhaltet, nicht
erlauben. Der limitierende Faktor ist hierbei, dass die zelluldren Gleichungen nur einseitig
an das mechanische Modell gekoppelt sind. Genauer gesagt wird das elektrochemische Ver-
halten einzelner Muskelfasern vorberechnet und in einer Nachschlagetabelle gespeichert.
Im mechanischen Modell werden die zelluliren Variablen, die mit der Krafterzeugung
zusammenhéngen, in ein detailliertes dreidimensionales Modell kopiert und homogenisiert,
um den Spannungstensor zu berechnen. Das Vorberechnen des zelluldren Verhaltens war
notwendig, um den Rechenaufwand zu reduzieren, da das urspriingliche Simulationspro-
gramm (CMISS) auf einer veralteten seriellen Implementierung basiert, die Datenstruk-
turen verwendet, die nicht unbedingt fiir eine Parallelisierung geeignet sind. Diese For-
mulierung erlaubt es nicht Anderungen in der Muskelfasergeometrie, wie z. B. eine Lin-
gendnderung, zu beriicksichtigen, die aus der Kontraktion resultiert. Ferner betrachteten
Rohrle und Kollegen nur isometrische Kontraktionen, was das Vernachlassigen der Kraft-
Geschwindigkeits-Beziehung rechtfertigte.

Die vorliegende Arbeit prisentiert ein voll gekoppeltes, mehrskaliges, chemoelektro-
mechanisches Modell fiir die Simulation von Muskelkontraktionen unter isometrischen und
nichtisometrischen Bedingungen. Dieses Modell basiert auf der Open-Source-Software-
Bibliothek OpenCMISS |[26], die konzipiert wurde, um maximale Flexibilitdt und Ef-
fizienz zu erreichen. Ermoglicht wird dies durch den Einsatz neuartiger Datenstruk-
turen wie FieldML [38|, den Zugang zu Modellbibliotheken durch die Verwendung von
CellML [82, [107, 158, [188| und einer Distributed-Memory-Implementierung, die Rechen-
effizienz gewihrleistet und es somit ermoglicht grofe Rechenbeispiele auszufiihren. Die
neuen Bibliotheken und Datenstrukturen bilden die Basis, um Finite Elemente Netze
mit verschiedener Dimension innerhalb eines Modells zu kombinieren. Dies erlaubt es
zum Beispiel innerhalb eines Modells nulldimensionale Ansétze fiir das zelluldre Verhal-
ten, eindimensionale Ansétze fiir die Ausbreitung des Aktionspotentials und dreidimen-
sionale Ansétze fiir strukturmechanische Untersuchungen miteinander zu koppeln. Die
prisentierte Implementierung ermdglicht eine starke und wechselseitige Kopplung zwis-
chen dem elektrochemischen und dem mechanischen Verhalten (elektromechanische und
mechanoelektrische Riickkopplung, siehe Nash & Panfilov [185]). Zusétzlich ermdglicht
es eine spatere Erweiterung des Modells um Propriozeptoren, die den mechanischen Zus-
tand des Muskels in neuronale Signale iibersetzen, um die Frequenzmodulation der Mo-
toneurone an die vorliegenden Bediirfnisse anzupassen (sensorische Riickkopplung), siehe
Heidlauf et al. [108].

Wenn in existierenden kontinuumsmechanischen Muskelmodellen die neuronale Kon-
trolle beriicksichtigt wurde, wurden dafiir phinomenologische Modelle eingesetzt, siehe
z.B. Rohrle et al. [221]. Im Gegensatz dazu koppelt die vorliegende Arbeit das présen-
tierte Mehrskalenmodell mit dem biophysikalischen Motoneuronenmodell von Negro &
Farina [186], um willkiirliche Muskelkontraktionen zu simulieren. Dies fiihrt zu einem in-
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tegrierten, mehrskaligen und multiphysikalischen Modell des neuromuskulidren Systems.
Andere Erweiterungen oder der Austausch von Modellkomponenten, wie z.B. das zel-
luldre Modell, sind aufgrund der modularen Organisation des Programms relativ einfach
durchfiihrbar.

Da das entwickelte mehrskalige Muskelmodell die elektrophysiologischen Vorgidnge in
der Zellmembran und die Ausbreitung des Aktionspotentials entlang der Muskelfasern
beschreibt [240, 1272], kann es zur Simulation von elektromyographischen (EMG) Sig-
nalen verwendet werden. EMG Signale spiegeln die elektrische Aktivitdt eines Muskels
wider. Thre hohe klinische Relevanz kann darauf zuriickgefithrt werden, dass EMG Sig-
nale relativ einfach in vivo gemessen werden konnen. Ein grofer Nachteil von EMG
Signalen ist jedoch, dass sie schwer zu interpretieren und analysieren sind [70]. Math-
ematische Modelle haben daher grofes Potential die Signalinterpretation zu verbessern.
Im Gegensatz zu vorherigen EMG Modellen, die die Form des Aktionspotentials und
seine Ausbreitungsgeschwindigkeit vorgeben (siehe z.B. Farina & Merletti [71], Farina
et al. [72], Lowery et al. |160], Merletti & Parker [168], Mesin [169]), beriicksichtigt der
vorgestellte, auf dem Hodgkin-Huxley-Formalismus basierende Ansatz Anderungen in der
Form und Ausbreitungsgeschwindigkeit des Aktionspotentials, die zum Beispiel durch
Membranermiidung hervorgerufen werden. Dariiber hinaus beriicksichtigt keins der ein-
skaligen EMG Modelle die Deformation des Gewebes, was bedeutet, dass diese Modelle
auf isometrische Bedingungen beschréinkt sind, vgl. Mesin et al. [L71]. Das présentierte
mehrskalige und multiphysikalische Modell ist von diesen Einschrankungen nicht betrof-
fen und kann Muskelkontraktionen und EMG Signale unter isometrischen und nichti-
sometrischen Bedingungen simulieren. Dariiber hinaus erlaubt es der vorgestellte Ansatz
beliebige Muskelgeometrien, komplexe Muskelfaserarchitekturen und beliebige Heterogen-
itdten zu beriicksichtigen.

Die mathematische Formulierung des mehrskaligen Muskelmodells fiihrt zu partiellen
Differentialgleichungen, die mit der Finiten Elemente Methode approximiert werden
[123, 1286]. Da der integrierte Ansatz offensichtlich zu rechenintensiven Modellen fiihrt,
miissen Optimierungsstrategien betrachtet werden. Zum Beispiel werden verschiedene Fi-
nite Elemente Netze fiir das bioelektrische und das kontinuumsmechanische Modell ver-
wendet, aber auch ,,Operator-Splitting“-Techniken und gestaffelte Losungsansétze werden
vorgestellt, die es erlauben verschiedene Zeitschritte fiir die Losung der verschiedenen Teil-
systeme zu verwenden.

Im Rahmen der kontinuumsmechanischen Muskelmodellierung wurde unldngst von
mehreren Forschern eine multiplikative Zerlegung des Deformationsgradiententensors
vorgeschlagen, um das passive und aktiv kontraktile Verhalten von Muskeln zu
beschreiben, siehe z. B. Murtada et al. [182], Rossi et al. [224, 225], Sharifimajd & Stalhand
[239], Stalhand et al. [246, 247|. (Urspriinglich wurde diese Zerlegung fiir die Beschrei-
bung von elastoplastischem Materialverhalten entwickelt [154].) Wiahrend dieser Ansatz
zundchst in Bezug auf eine thermodynamisch konsistente Formulierung vorteilhaft er-
schien, haben Rossi et al. [224] gezeigt, dass thermodynamische Konsistenz auch moglich
ist, wenn der klassische Ansatz verwendet wird, bei dem konstitutiv eine Superposition des
passiven und aktiven Spannungstensors (oder der Verzerrungsenergie) angenommen wird,
siehe auch Gizzi et al. [86]. Die kontinuumsmechanische Formulierung in der vorliegenden
Arbeit folgt deshalb dem klassischen Ansatz.

Die vorliegende Arbeit widmet sich der mathematischen Beschreibung und Simu-
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lation von Prozessen des neuromuskuldren Systems, die zur Muskelkontraktion und
Krafterzeugung fithren. Wéhrend diese Prozesse detailliert behandelt werden, ist die
Beschreibung des passiven Muskelgewebes relativ einfach gehalten und basiert auf
einer makroskopischen, kontinuumsmechanischen Formulierung. Genauer gesagt wird
angenommen, dass das passive Muskelgewebe sich transversal isotrop, hyperelastisch
und inkompressibel verhélt. Anséitze, die in der Beschreibung des passiven Materialver-
haltens zwischen Muskelfasern und extrazellulirem Bindegewebe unterscheiden, sind
eingeschrinkt durch Unsicherheiten in den Materialparametern und einem zusétzlichen
Rechenaufwand [237, 238, 271]. Dariiber hinaus vernachlissigt die vorliegende Arbeit
viskoelastische Effekte in der Beschreibung des passiven Materialverhaltens [24, 267, 1269
Eine teilweise Rechtfertigung fiir dieses Vorgehen ist gegeben durch die Arbeit von Tian
et al. [260], die zeigt, dass die viskosen Effekte in passivem Muskelgewebe relativ gering
sind.

Gliederung der Arbeit

Zunichst gibt Kapitel 2 einen Uberblick iiber die Anatomie und Physiologie des neuro-
muskuldren Systems, d.h. eines Muskels und der zugehérigen Motoneurone. Beleuchtet
wird vor allem die hierarchische Struktur des Muskels, da die Kraft aus Kontraktion
auf der mikroskopischen Ebene des Halbsarkomers erzeugt wird, aber eine Deformation
des gesamten Muskels bedingt. Da sich die vorliegende Arbeit mit der biophysikalischen
Modellierung des neuromuskuldren Systems befasst, erfolgt auferdem eine detaillierte
Beschreibung der Physiologie. Wahrend klassischerweise zuerst die Anatomie gefolgt von
der Physiologie eingefiihrt wird, iibernimmt die vorliegende Arbeit ein modernes Mantra
der Biologie, das besagt, dass die Struktur die Funktion bedingt, und behandelt beide
Themen gleichzeitig.

Das Ziel von Kapitel 3 ist es die mathematischen und kontinuumsmechanischen Grund-
lagen einzufiihren, die im Verlauf der weiteren Arbeit benotigt werden. Das Kapitel prasen-
tiert zunéichst eine Einfithrung in die numerische Losung von Differentialgleichungen.
Dariiber hinaus gibt das Kapitel eine allgemeine Einfiihrung in die Kontinuumsmechanik,
welche in Kapitel 6 auf den speziellen Fall der Muskelmodellierung angepasst wird.

Kapitel / préasentiert biophysikalische Zellmodelle von Motoneuronen und Muskelfasern.
Zunichst werden das klassische Hodgkin-Huxley-Modell und das Modell von Negro & Fa-
rina [186] vorgestellt. Letzteres wird in der vorliegenden Arbeit zur Beschreibung des Ver-
haltens der Motoneurone verwendet. Im Anschluss daran wird das biophysikalische Modell
des Signalwegs von der Erregung zur Kontraktion in den Muskelfasern von Shorten et al.
[240] prisentiert. Dieses Modell wird erweitert, um nichtisometrische Kontraktionen zu
simulieren und um das Verhalten der verschiedenen motorischen Einheiten eines Muskels
zu beschreiben. Ein Modell des neuromuskulédren Systems, das in allen wesentlichen Teilen
biophysikalisch ist, entsteht durch die Kopplung des Muskelmodells mit dem Motoneu-
ronenmodell von Negro & Farina [186]. Um das Potential des kombinierten Ansatzes
zu demonstrieren, wird exemplarisch der erste dorsale Interosseusmuskel des Menschen
simuliert.

Eine Erweiterung der Formulierung von Kapitel 4 um rdumliche Dimensionen erlaubt
es in Kapitel 5 die Ausbreitung von Aktionspotentialen durch das Muskelgewebe zu
beschreiben. Die Ausbreitung von Aktionspotentialen entlang von Muskelfasern wird hier-
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bei mit Hilfe des Monodomain-Modells dargestellt. Das Monodomain-Modell wird vom
allgemeineren, jedoch komplexen Bidomain-Modell abgeleitet, welches ein Kontinuums-
ansatz fiir die Beschreibung von elektrisch erregbaren Geweben darstellt. Numerische
Experimente belegen, dass die Monodomain-Vereinfachung fiir die prasentierten Anwen-
dungen giiltig ist. Dariiber hinaus wird die Formulierung der Ausbreitung von Aktionspo-
tentialen auf eine biophysikalische Beschreibung des EMG Signals erweitert. Mehrere nu-
merische Beispiele demonstrieren die Vorteile dieses Modells gegeniiber anderen EMG
Modellen. Einige dieser Bespiele wurden bereits in Mordhorst et al. [178] gezeigt.

Kapitel 6 fiihrt ein mehrskaliges, chemoelektromechanisches Muskelmodell ein, das
auf der Theorie der finiten Deformationen der Kontinuumsmechanik basiert. Unter Ver-
wendung geeigneter Konstitutivannahmen wird ein kontinuumsmechanischer Spannungs-
tensor hergeleitet, der geeignet ist das passive und aktive Verhalten von Muskeln zu
reprisentieren. Die Beschreibung des passiven Verhaltens des Muskelgewebes erfolgt hi-
erbei makroskopisch als transversal isotropes, hyperelastisches und inkompressibles Ma-
terial. Die Formulierung des aktiv kontraktilen Teils basiert auf der biophysikalischen,
zelluldren Beschreibung des Signalwegs von der Erregung zur Kontraktion (eingefiihrt in
Kapitel 4), welches, wie in Kapitel 5 beschrieben, wiederum an das Monodomain-Modell
gekoppelt ist.

Die numerische Behandlung des chemoelektromechanischen Muskelmodells fiihrt zu
einem mehrskaligen Berechnungsmodell, dessen numerische Losung rechentechnisch
anspruchsvoll ist. Deshalb présentiert Kapitel 6 neben dem mehrskaligen Berech-
nungsmodell auch geeignete Optimierungsstrategien, die zuvor bereits in Bradley
et al. |26] und Heidlauf & Rohrle [109] dargestellt wurden. Dariiber hinaus wird
das mehrskalige Berechnungsmodell verwendet, um Unterschiede in der Muskelkontrak-
tion und Krafterzeugung aufzuzeigen, die aus einer unterschiedlichen Anordnung der
Muskelfasern resultiert. Hierfiir werden Muskelmodelle mit parallel zueinander angeord-
neten Muskelfasern miteinander verglichen, wobei sich die Muskelfasern entweder iiber die
gesamte Linge des Muskels erstrecken oder intrafaszikuldr enden. Die Ergebnisse dieser
Studie wurden bereits in Heidlauf & Rohrle [111] veroffentlicht.

Um das Verhalten des gesamten neuromuskuléren Systems zu simulieren, wird das
mehrskalige Muskelmodell in Kapitel 7 mit dem Motoneuronenmodell von Negro & Farina
[186] gekoppelt. Basierend auf dem resultierenden Modell und dem Ansatz zur Simulation
von EMG Signalen (Kapitel 5) werden Simulationen durchgefiihrt, die gleichzeitig die
Muskelkrafterzeugung, die Deformation des Muskelgewebes und das EMG Signal wihrend
isometrischen und nichtisometrischen Kontraktionen vorhersagen.

Schlieklich liefert Kapitel 8 eine abschliefende Diskussion und Vorschlige fiir poten-
tielle Anwendungen der vorgestellten Methoden sowie Weiterentwicklungen des prasen-
tierten Modells. Zuséatzliche mathematische und mechanische Details werden im Appendix
dargestellt.
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Symbol Description

0D zero-dimensional (ODE model, no spatial dependency)
1D/2D/3D one-/two- /three-dimensional
Ca?t calcium cation

Cl™ chloride anion

K™ potassium cation

Mg?* magnesium cation

Na™ sodium cation

P, inorganic phosphate

F-¢ force-length

F-v force-velocity

ACh acetylcholine

ADP adenosine diphosphate

AHP afterhyperpolarisation potential
AP action potential

ATP adenosine triphosphate

BDF backward differentiation formula
CoV coefficient of variation

DHPR dihydropyridine receptor

EDL extensor digitorum longus

EMG electromyographic

EPSP excitatory postsynaptic potential
FDI first dorsal interosseous

FEM finite element method

IPSP inhibitory postsynaptic potential
IST interspike interval

MN motor neuron

MU motor unit

MUAP motor unit action potential
NDF numerical differentiation formula
ODE ordinary differential equation
PDE partial differential equation

RyR ryanodine receptor

sEMG surface electromyographic

SR sarcoplasmic reticulum

TA tibialis anterior

XB cross-bridge

XF cross-fibre
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Symbols
Symbol  Unit Description
dv [cm?] actual volume element
dv [em?] referential volume element
ls [pem] sarcomere length
0, 07 ¢ [em] resting and optimal sarcomere lengths
fs [Hz| stimulation frequency
fe(ls) [] normalised isometric active force-sarcomere length relation
fo, ' [1/ms] XB-attachment rate, XB-detachment rate (from the A; state)
f [1/ms] XB-attachment rate of an isometric contraction
9i, Gi [mS/cm?|  conductance per unit area to ion species i, maximum value
90 [1/ms] XB-detachment rate (from the A, state)
g [1/ms| XB-detachment rate if no neighbour is in the A, state
ho, b’ [1/ms] power stroke forward rate and backward rate
h [ms] time step size
h©PE [ms] time step size of the cellular model
hPEQ [ms] time step size of the diffusion equation
h oMM [ms] time step size of the continuum-mechanical model
p [N/em?]  hydrostatic pressure
t [ms] time
U, Umag [cm/ms|  velocity and maximum shortening velocity
Z [em] average distortion induced through the power stroke
1, To [em] average distortions in the pre-/post-power stroke states
Ay, Ay [LM] XB concentrations in pre-/post-power stroke states
A [1/cm] membrane specific capacitance
B [N] half-sarcomere-based active force of Razumova et al. [214]
Biso [N] isometric half-sarcomere-based active force of [214]
Cm [uF/cm?]  membrane specific capacitance
CaRF [] calcium recovery function
E; [mV] Nernst or equilibrium potential of ion species i
F, Fis [N] (isometric) half-sarcomere-based active force
Fuy, [N] active force of motor unit 4
I, [#A/cm?|  total current flow across the cell membrane
Lion [#A/cm?]  sum of the ionic currents crossing the cell membrane
I; [tA/cm?]  current density of ion species i
I, ar -] first, second, and third principal invariants
v [—] fourth and fifth (mixed) invariants
J [-] Jacobian determinant
N [-] number of motor units in a pool
N, [-] number of elements in a finite element mesh
pmaz [N/ecm?]  maximum isometric nominal stress
Tiot [—] total number of XBs in a sarcomere
TPRF [-] twitch peak recovery function
Vin [mV] membrane potential
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Vectors
Symbol  Unit Description
a [] vector of length A; pointing in the actual fibre direction
ay [] referential unit vector pointing in fibre direction
b [cm/ms?|  mass-specific acceleration (e.g. gravitation)
bo, ¢o [—] referential unit vectors normal to the fibre direction
da [cm? oriented actual area element
dA [cm?] oriented referential area element
dks [N] incremental force element
da [cm)] actual line element
dX [cm)] referential line element
e, e, e; || (Cartesian) orthonormal basis vectors
n [] actual surface normal vector
1y [] referential surface normal vector
t [N/em?]  traction vector
u [cm)] displacement vector
x [cm)] position vector in the actual configuration
X [cm] position vector in the reference configuration
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Almansian strain tensor

left Cauchy-Green deformation tensor

right Cauchy-Green deformation tensor

Green-Lagrangean strain tensor

(material) deformation gradient tensor

second-order identity tensor

Referential structural tensor associated w/ the fibre direction
Referential structural tensors associated w/ the XF directions
first Piola-Kirchhoff stress tensor

proper orthogonal rotation tensor

second Piola-Kirchhoff stress tensor

second Piola-Kirchhoff extra stress tensor

Cauchy or true stress tensor

Cauchy extra stress tensor

right and left stretch tensors

e

Ricci permutation tensor (third-order fundamental tensor)
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Calligraphic Letters

Symbol  Unit Description
B [—] material body
P [—] material point
w [J/cm?) volume-specific strain energy function

Greek Letters

Symbol  Unit Description

vy [] normalised, sarcomere-based active stress
0 [—] homogenised, normalised, sarcomere-based active stress
n [kg/s?| stiffness of one cross bridge

Y [—] level of distortion dependence

Ay [] fibre stretch (length)

A " Y [—] optimal and initial fibre stretches

v [—] influence of cooperative effects

p [g/cm?| actual mass density

00 lg/cm?] referential mass density

o [mV] intracellular potential

Ge [mV] extracellular potential

b0 [mV] potential of the body region

r [—] domain boundary of the material body
Q [—] domain of the material body

v; [-] orthonormal fibre coordinate system
o, [mS/cm|  intracellular conductivity tensor

o, [mS/cm|  extracellular conductivity tensor

o, [mS/cm|  conductivity tensor of the body region
Oeff [mS/cm|  effective conductivity tensor

T [N/cm?] Kirchhoff stress tensor

[

motion or placement function




1 Introduction

1.1 Motivation

The American Heritage Medical Dictionary [146] defines the neuromuscular system as
“the muscles of the body together with the nerves supplying them”. Only the interplay
of specialised nerve cells called motor neurons and the skeletal muscles (i.e., muscles of
the body) enables movement of the body, which is the task of the neuromuscular system.
Following this, neuromuscular disorders are diseases that impact the motor neurons, the
peripheral nerves, the muscle fibres, and the neuromuscular junctions (the location where
nerves and muscles come together). Among the more common disorders of the neuromus-
cular system are peripheral neuropathies, various muscular dystrophies, inflammatory and
other myopathies, and neuromuscular transmission disorders |44, 162, 63]. Many of these
disorders are serious or even fatal. For example, children affected by type-I spinal mus-
cular atrophy do not survive beyond the first few years of life, and some other disorders
also lead to premature death [62]. Neuromuscular diseases are often genetic, but they can
also result from an abnormal immune response or a genetic mutation.

Emery concluded from his comprehensive literature survey [62| that at least one in 3500
of the population is affected by a disabling inherited neuromuscular disease. Moreover,
according to MacIntosh et al. [161], Duchenne muscular dystrophy, a X-linked recessive
inherited disorder, affects one in 3000 males. This muscular dystrophy is caused by
the absence of the muscle membrane protein dystrophin and results in a progressive
weakening of the skeletal muscles that leads to death. Other, less common forms of
muscular dystrophies are caused by other protein defects, see Emery [63] for an overview.
For the diagnosis of a dystrophy and to exclude neurogenic causes of a muscle weakness,
electromyography is an important method [63].

As yet, there is no cure for any of the dystrophies, and there exists frequently no
efficacious remedy for other neuromuscular disorders either. Since neuromuscular diseases
are often genetic, advances in gene manipulation and stem-cell therapy might lead to an
effective treatment in the future, although the discovery of an effective drug treatment
is also possible [63]. However, for now, the focus is on providing improvements in the
patients’ quality of life by reducing symptoms [63]. Obviously, both the development of
techniques required for this purpose and the design of an effective drug are conditional
to having a comprehensive understanding of the physiology of the neuromuscular system.
To this end, it is pertinent to first investigate the physiology of the healthy system, before
studying pathological conditions occurring in neuromuscular disorders.

Due to the fact that many biophysical quantities are difficult or even impossible to
determine experimentally, in particular, in human subjects and in vivo, mathematical
models can be used to generate missing data. In this respect, mathematical modelling
has the advantage of generating data in a controlled environment, which is usually impos-
sible in experiments. Existing models of the neuromuscular system contributed to further
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the knowledge of the physiology of the neuromuscular system |76, [104]. However, these
models are based on phenomenological descriptions that do not mimic the biophysical
processes of the underlying system. The phenomenological description significantly limits
their application and their predictive capabilities, for example, with respect to patholog-
ical conditions. To gain a better understanding of the physiology of the neuromuscular
system, detailed biophysical models of the skeletal muscles and the motor neurons inner-
vating them need to be developed. So, the thesis at hand is concerned with the develop-
ment of methods and tools for the biophysical simulation of the chemo-electro-mechanical
behaviour of the healthy neuromuscular system.

1.2 Scope, Aims, and State of the Art

In general, one can distinguish between phenomenological and biophysical approaches
when modelling biological systems. Being based on experimentally determined input-
output relations, phenomenological models are often simpler, computationally more effi-
cient, and rely on fewer parameters than their biophysical counterparts. Within the range
in which the model’s parameters have been fitted to experiments, phenomenological mod-
els can accurately reproduce the system’s behaviour. However, phenomenological models
cannot, provide a full understanding of the underlying physiology. In contrast, biophysical
models are built on the existing knowledge of the physiology of the respective system,
and hence, they can be used as an in-silico laboratory to investigate the behaviour of the
modelled system under normal and pathological conditions.

Based on the constitution of the neuromuscular system, existing mathematical mod-
els either focus on the generation of force in the muscle fibres or the muscle’s control
through the coordinated operation of the motor neurons as an ensemble. Drawing at-
tention first to the motor neuron pool, phenomenological and biophysical models have
been proposed in the literature. For example, based on the relation between the synaptic
input to a motor neuron and its output discharge rate [29], Fuglevand et al. |[76] and
Heckman & Binder [104] developed phenomenological models that are frequently used
for the testing of neurophysiologic hypotheses or for interpreting experimental data, see
e.g. [10,1142, (143, 180]. An important limitation of phenomenological descriptions of the
motor neuron behaviour, however, is that they do not allow the integration of synaptic
or common inputs to motor neurons. Conversely, biophysical models of motor neurons
do not suffer from this limitation, since they perform the integration at the motor neuron
membrane level. For example, in integrate-and-fire models [1, 73], the motor neurons
integrate synaptic currents from different sources, which yields an increase in their mem-
brane potential. When the membrane potential reaches a certain threshold, the motor
neuron is assumed to discharge an action potential (AP, a short depolarisation of a cell’s
membrane potential used to transmit information between different parts of the body)
and the neuron’s membrane potential is reset to its resting value.

The complex biophysical processes leading to the opening and closing of different
voltage-gated ion channels in the neuron’s membrane during an AP were first described
by Alan L. Hodgkin and Andrew F. Huxley [120] based on their experiments on the giant
axon of the squid. Expanding this description with respect to the number of considered
ionic currents and /or compartments, progressively more complex models of motor neurons
have been developed, see e.g. Cisi & Kohn [39], Cushing et al. [41], Powers et al. [208].
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To simulate the motor neuron pool, this work adopts the biophysical model of Negro
& Farina [186], which builds on the description of the motor neurons by Cisi & Kohn
[39]. This two-compartment, Hodgkin-Huxley-type model balances biophysical details
and computational performance. Interestingly, the biophysical description of the motor
neuron behaviour inherently accounts for the size principle of motor neuron recruitment of
Henneman et al. [112,[113] (small, low-threshold motor neurons are recruited before larger
motor neurons with higher excitation threshold) and the “onion-skin” property [46, 47| (for
a certain level of synaptic input to the motor neuron pool, low-threshold motor neurons
have higher discharge rates than high-threshold motor neurons).

The APs generated by the motor neurons trigger the force generation in the skeletal
muscle fibres. For the simulation of the force generation, different approaches have been
followed. For example, Heckman & Binder [104] proposed a phenomenological model
based on the input-output behaviour of muscle units (the muscle fibres innervated by a
single motor neuron) during an isometric contraction (the force-frequency relation). One
of the most popular models is the analytical formulation of Fuglevand et al. [76], which
uses the impulse response of a critically damped, second-order system to represent the
twitch force. This simplified muscle unit force model has been adopted and enhanced by
several researchers, see e.g. Cisi & Kohn [39], Dideriksen et al. [50, 51, 52].

While these models are based on steady-state input-output relations and are limited to
isometric conditions, the so-called Hill-type models do not suffer from these limitations.
Hill-type models are based on the description of Archibald V. Hill in 1938 |117], and they
are probably the most common representation of a muscle’s mechanical and kinematic be-
haviour, see e. g. Giinther et al. [92-94], van Ingen Schenau et al. [133], Pandy [198], Siebert
et al. [242,1243], Till et al. [261], Zajac [282|. Hill-type models are phenomenological formu-
lations of the macroscopic muscle physiology that superpose a length-dependent passive
force (stress-strain relation in the absence of neural stimulation) with a force that results
from the neural activation of the muscle (in the following termed active force) and depends
on the muscle’s length and contraction velocity. Due to their simplicity, computational
effectiveness, and the low number of involved parameters, Hill-type muscle models are
commonly used to interpret experimental data or describe movement and forces of (parts
of) the muscular system within the framework of multibody dynamics, see e.g. Siebert
et al. [241] and Rupp et al. [227].

Both Hill-type models and analytical models that use the impulse response to represent,
the twitch force exhibit significant drawbacks, since they lump together all functional and
structural properties of a muscle to a few parameters. For example, Hill-type models are
described at a point in space through spring constants, damper properties, and one activa-
tion level, and the calculated muscle force acts along a predefined line of action. Moreover,
these simplified approaches neglect nonlinearities in the force response of muscle units,
which are due to their activation history, for example, fatigue, post-tetanic potentiation,
doublet potentiation, and serial dependence of twitch responses, cf. |76, 204, 230]. Fur-
thermore, these models are based on purely phenomenological approaches.

Based on the finding that Hill-type models inaccurately predict muscle forces in com-
plex geometries (cf. e.g. Rohrle & Pullan [222]), continuum-mechanical models based
on the finite-elasticity theory have been proposed, see e.g. |16, 167, 222, 229, 288]. To
describe the contractile behaviour of skeletal and cardiac muscles within a continuum-
mechanical framework, Hill-type models were employed by Goktepe et al. [88], Johansson
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et al. [135], Kojic et al. [147|, Pelteret & Reddy [203], and others. While continuum-
mechanical models can take into account complex muscle fibre distributions [15], regional
activation properties, and a dynamically generated line of action [222|, they restrict their
findings purely to macroscopic mechanical aspects of muscle force generation. To achieve
a more detailed description of the contractile behaviour within a volumetric muscle model,
multiscale models linking continuum mechanics to cellular kinetics can be used.

The first biophysical cellular kinetics model was developed by Andrew F. Hux-
ley [128,1129] based on the sliding filament theory, which was proposed simultaneously but
independently in 1953/1954 by Andrew F. Huxley and Ralph Niedergerke [130] and Hugh
E. Huxley and Jean Hanson [99, [132]. The kinetic model of Huxley [128] distinguishes
between cross-bridges in the attached and detached states, and it was subsequently gener-
alised to distribution functions representing populations of various biochemical states as
functions of bond length and time, see e. g. [280, 281]. These biophysical models have the
advantage of being directly based on the muscle’s microscopic structure and the molecu-
lar mechanisms of contraction. However, their mathematical formulation leads to a set of
coupled partial differential equations (PDEs). To avoid the complexity of solving PDEs,
approximations can be formulated in terms of ordinary differential equations (ODEs) in
time, see, for example, the distributed moments approach of Zahalak [280]. The approach
of Zahalak [280] was used by Gielen et al. [83] to describe the contractile behaviour within
a continuum-mechanical muscle model.

Further, in the context of cellular kinetics models, Razumova, Campell, and co-workers
proposed a cross-bridge dynamics model |36, 137, 214, 215] that considers three distinct
cross-bridge states (two attached and one detached) and assumes that the force in a
sarcomere is proportional to the product of the number of cross-bridges in each attached
state and their average distortion. Although the ODEs describing this model are relatively
simple, the model is sufficient to reproduce key characteristics of muscle contraction [214).

Besides biophysical descriptions of cross-bridge dynamics, biophysical models of other
parts of the complex signaling pathway from electrical stimulation to force generation in
skeletal muscle fibres have been developed. For example, based on the Hodgkin-Huxley
formalism, Adrian & Peachey [2] proposed a model of the membrane electrophysiology of
muscle fibres. This model was extended by Wallinga et al. [272] to a multicompartment
model of the ionic currents crossing the T-tubule membrane and the sarcolemma of a
muscle fibre. To simulate the entire excitation-contraction pathway in muscle fibres,
Shorten et al. [240] coupled a simplified version of Wallinga’s model of the membrane
electrophysiology [272] to a model of calcium release from the sarcoplasmic reticulum [217],
a model of intracellular calcium dynamics [12], and an extended version of the cross-bridge
dynamics model of Razumova et al. [214]. Furthermore, the model of Shorten et al.
[240] includes a description of metabolic fatigue based on the accumulation of inorganic
phosphate in the sarcoplasm.

A major advantage of the model of Shorten et al. |240] is that it closely represents
the underlying physiology. In contrast to phenomenological models, this biophysical de-
scription can represent history-dependent and other nonlinear effects, provide insights
into the complex signaling pathway from electrical activation to force generation, and
allows a detailed analysis of pathological conditions. Although including many details of
the excitation-contraction pathway, the model of Shorten et al. [240] is limited in several
respects. For example, Shorten et al. [240] considered only idealised, constant-frequency
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stimulations of entire muscles under isometric conditions.

Following this, the work at hand extends the model of Shorten et al. [240] to non-
isometric conditions. Moreover, the present work enhances the model of Shorten et al.
[240] to a description of the muscle units within a muscle taking into account their different
mechanical behaviours. To simulate voluntary contractions, the resulting muscle model
is coupled to the model of the motor neuron pool of Negro & Farina [186]. This yields a
novel, integrated model of the neuromuscular system that is biophysical in all main parts.

Previously, the model of the excitation-contraction pathway of Shorten et al. [240] has
been coupled to bioelectrical field equations and a continuum-mechanical constitutive
equation by Rohrle and co-workers [219-221, 223] to simulate the propagation of APs
along muscle fibres and the force generation and deformation of muscle, respectively. The
resulting multiscale chemo-electro-mechanical muscle model has been linked to the phe-
nomenological motor neuron model of Fuglevand et al. [76] to control the simulated muscle
contractions, see [221]. Accounting for motor unit recruitment and rate coding, the bio-
physical processes leading from electrical excitation to contraction, and the propagation
of APs within the muscle tissue, the model of Rohrle and co-workers overcomes many of
the limitations of other continuum-mechanical muscle models. For example, Hernédndez-
Gascon et al. [114] include a phenomenological description of the cellular processes and
ignore biophysical principles of AP propagation and cross-bridge dynamics. Further, Fer-
nandez et al. |[74] use a neuron model to simultaneously generate an AP in all muscle
fibres neglecting the fact that motor units (the muscle unit together with their corre-
sponding motor neuron) in skeletal muscle are activated independently of each other. In
both Fernandez et al. [74] and Bol et al. [22] the AP propagates anisotropically through
the three-dimensional (3D) muscle tissue instead of along single muscle fibres as in skeletal
muscle. Moreover, both models use purely phenomenological descriptions to relate the
AP to force generation.

Although the chemo-electro-mechanical model of Réhrle and co-workers includes many
physiological properties of the neuromuscular system, it has framework-inherent limi-
tations that do not allow an extension to a fully coupled framework embracing neural
inputs, force generation, and feedback mechanisms. The major limitation is that the cel-
lular equations are only coupled unidirectionally to the mechanical model. In detail, the
electro-chemical behaviour of single muscle fibres is precomputed and stored in a look-up
table. Within the mechanical model, the cellular variables associated with force gen-
eration are copied into a detailed 3D structural model and homogenised to compute the
resulting stress tensor. The choice of precomputing the cellular behaviour has been chosen
to reduce the overall computational cost. This was necessary as the original framework
(CMISS) is based on serial legacy code, appealing to data structures not necessarily suit-
able for parallelisation. This formulation does not allow to consider geometrical variations
of the muscle fibres, such as, for example, a length change, resulting from the contraction.
Therefore, Rohrle and co-workers considered only isometric contractions, which provided
justification for neglecting the force-velocity relationship.

The thesis at hand presents a fully coupled, multiscale, chemo-electro-mechanical sim-
ulation framework for skeletal muscle modelling under isometric and non-isometric condi-
tions. This framework is based on the open-source software library OpenCMIS [26], which

! An Open-source software library for Continuum Mechanics, Image analysis, Signal processing and System
identification.
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was designed to achieve maximal flexibility and efficiency through the use of new data
structures such as FieldML [38], access to well-established model repositories via CellML
[82,1107, 158, [188], and a distributed-memory foundation for computational efficiency and
executing large problems. The new libraries and the data structure provide the basis
for combining different mesh regions with different dimensionality within one framework,
for example, zero-dimensional (0D) models for the cellular behaviour, one-dimensional
(1D) models for the AP propagation, and 3D models for the mechanical analysis. This
allows for a strong and bidirectional coupling of the electro-chemical model on the one
hand and the mechanical model on the other hand (electro-mechanic and mechano-electric
feedbacks, cf. Nash & Panfilov [185]). Additionally, this will allow the integration of pro-
prioceptors, which translate the mechanical state of the muscle into neural signals that
influence the rate modulation of the motor neurons (sensory feedback), in the framework
at a later point in time, see Heidlauf et al. [108§].

If neural control has been considered in previous continuum-mechanical muscle mod-
els, a phenomenological description of the motor neurons was employed, see e.g. Rohrle
et al. [221]. In contrast, to simulate voluntary muscle contractions, this work couples the
multiscale muscle model to the biophysical motor neuron model of Negro & Farina [186].
This yields an integrated multiscale and multiphysics model of the neuromuscular system.
Further extensions of the model and substitution of model components, e. g. the cellular
model, are straightforward due to the modular organisation of the framework.

Since the developed multiscale skeletal muscle model contains a description of the mem-
brane electrophysiology and the AP propagation along muscle fibres [240, 272], it can be
used to simulate electromyographic (EMG) signals. EMG signals reflect the electrical
activity of a skeletal muscle. Their strong clinical relevance can be explained by the fact
that EMG signals can be measured in vivo in a relatively easy way. One of the major
drawbacks of EMG signals is that they are hard to interpret and analyse [70]. Thus, math-
ematical models have a great potential to improve signal interpretation. In contrast to
previous, phenomenological EMG models, which prescribe the AP shape and propagation
velocity (see e.g. Farina & Merletti [71], Farina et al. [72], Lowery et al. |[L60], Merletti &
Parker [168|, Mesin [169]), the presented biophysical Hodgkin-Huxley-type approach can
account for changes in the amplitude and propagation velocity of the AP that result, for
example, from membrane fatigue. Moreover, none of the existing single-scale and single-
physics EMG models takes into account tissue deformation, and hence, these models are
restricted to isometric conditions, cf. Mesin et al. [171]. The proposed multiscale and mul-
tiphysics model is not subject to such restrictions and can simulate muscle contractions
and the EMG under isometric and non-isometric conditions. Moreover, the presented
approach allows to consider arbitrary geometries, complex muscle fibre architectures, and
different heterogeneities.

The mathematical formulation of the multiscale muscle model leads to PDEs that are
approximated using the finite element method (FEM), see [123, 286]. Furthermore, it is
obvious that the integrated approach leads to a computationally expensive model. Hence,
optimisation strategies have to be considered. For example, different finite element meshes
for the bioelectrical and the continuum-mechanical models, as well as operator-splitting
techniques and staggered solution schemes allowing to use different time step sizes for the
solution of the different subsystems are employed.

Within the framework of continuum mechanics, recently, some researchers proposed a
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multiplicative split of the deformation gradient tensor (initially developed in the field of
elasto-plasticity, see Lee [154]) to describe the active (contractile) and passive behaviours
of muscle, cf. e. g. Murtada et al. [182], Rossi et al. [224,1225], Sharifimajd & Stalhand [239)],
Stalhand et al. [246, 247]. At first, this approach was believed to have certain advantages
with respect to a thermodynamically consistent formulation, but Rossi et al. [224] showed
that thermodynamic consistency is also possible when using the more classical approach
of constitutively assuming a superposition of passive and active stress tensors (or strain
energies), cf. also Gizzi et al. [86]. Following this, the continuum-mechanical model in
this work is based on the more classical formulation.

The work at hand is devoted to the mathematical description and simulation of the pro-
cesses of the neuromuscular system leading to muscle contraction and force generation.
While these processes are considered in detail, the description of the passive muscle tis-
sue is relatively simple and is based on a macroscopic continuum-mechanical formulation.
In detail, the passive muscle tissue is assumed to behave transversely isotropic, hypere-
lastic, and incompressible. Approaches distinguishing muscle fibres and the extracellular
connective tissue in the passive material description are limited by material-parameter un-
certainties and an additional computational complexity [237, 238, 271]. Besides lumping
together muscle fibres and extracellular connective tissue, the presented passive material
description neglects viscoelastic effects |24, 267, 269|. Partial justification for doing so is
given by Tian et al. [260], who demonstrated that the viscous effects in passive muscle
tissue are rather small.

1.3 Overview

First, Chapter 2 reviews the basic anatomy and physiology of the neuromuscular system,
i.e., a motor neuron pool and its associated skeletal muscle. In particular, the hierarchical
structure of the muscle is of interest, as the contractile force is generated at the microscopic
half-sarcomere level, but it causes a deformation of the entire muscle. Further, since this
work is concerned with the biophysical modelling of the neuromuscular system, a detailed
description of the physiology is provided. While classical works often first introduce the
anatomy followed by the physiology of a system, this work adopts a modern mantra of
biology stating that structure dictates function and covers both topics simultaneously.

The objective of Chapter 3 is to introduce the mathematical and continuum-mechanical
concepts required in the remainder of the thesis. The chapter presents a brief introduction
to numerical methods for the solution of differential equations. This is followed by a
general introduction to continuum mechanics, which will be further specified in Chapter 6
to the special case of skeletal muscle modelling.

Chapter J presents biophysical cellular models for motor neurons and skeletal muscle
fibres. First, the classical Hodgkin-Huxley model and the model of Negro & Farina [186]
are reviewed. The latter is used in this work to describe the behaviour of a motor neuron
pool. Next, the biophysical model of the excitation-contraction coupling in skeletal muscle
fibres of Shorten et al. [240] is presented, extended to non-isometric contractions, and
augmented to a description of the muscle units within a muscle. Coupling the resulting
muscle unit model and the motor neuron model of Negro & Farina [186] yields a model
of the neuromuscular system that is biophysical in all main parts. The human first
dorsal interosseous muscle is exemplarily simulated to demonstrate the capabilities of the
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combined approach.

Expanding the formulation of Chapter 4 by spatial dimensions, the propagation of
electrical signals through the muscle tissue is covered in Chapter 5. To simulate the
propagation of APs along muscle fibres, the monodomain model is employed. The mono-
domain model is derived from the more general but complex bidomain model, which is a
continuum approach for the description of electrically excitable tissues. Numerical exper-
iments reveal that the monodomain approximation is valid for the presented applications.
Furthermore, the formulation of the AP propagation is extended to a biophysical descrip-
tion of EMG signals. The advantages of this model over previous models of the EMG are
demonstrated in several numerical examples, some of which have already been presented
in Mordhorst et al. [178].

Chapter 6 introduces a multiscale, chemo-electro-mechanical skeletal muscle model that
is based on the finite-elasticity theory of continuum mechanics. Based on appropriate
constitutive assumptions, a continuum-mechanical stress tensor is derived that is capable
of representing passive and active skeletal muscle behaviour. The passive behaviour of
the muscle tissue is modelled macroscopically as a transversely isotropic, hyperelastic,
and incompressible material. The formulation of the active contractile part relies on
the biophysical cellular description of the excitation-contraction coupling (introduced in
Chapter 4), which in turn links to the monodomain model as described in Chapter 5.

The numerical treatment of the chemo-electro-mechanical muscle model yields a mul-
tiscale computational model, whose numerical solution is computationally challenging.
Thus, Chapter 6 presents the multiscale computational framework as well as appropri-
ate optimisation strategies, which have previously been described in Bradley et al. [26]
and Heidlauf & Rohrle [109]. Moreover, the multiphysics model is used to investigate
differences in the muscle contraction and force generation arising from the muscle fibre
arrangement. To this end, parallel-fibred muscle models, in which the muscle fibres either
span the entire length of the muscle or terminate intrafascicularly, are compared to each
other. The results of this study have previously appeared in Heidlauf & Rohrle [111].

To simulate the behaviour of the entire neuromuscular system, Chapter 7 couples the
multiscale skeletal muscle model to the model of the motor neurons of Negro & Farina
[186]. Based on the resulting model of the neuromuscular system and the approach to
simulate EMG signals (Chapter 5), simulations are carried out predicting simultaneously
muscle force generation, muscle tissue deformation, and the EMG signal during isometric
and non-isometric contractions.

A final discussion is provided in Chapter 8 including suggestions for potential applica-
tions of the presented methods as well as further developments of the presented modelling
framework. Further, for the sake of convenience, the Appendiz provides additional math-
ematical and mechanical details.
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2 Anatomical and Physiological
Fundamentals

This chapter introduces the anatomy and physiology of the neuromuscular system, i. e., the
structure and function of the skeletal muscles and the nerves supplying them. Due to their
complexity, only a brief overview of the anatomy and physiology of the neuromuscular
system is given here. The reader is referred to the literature for more details. An elaborate
description of the nervous system and its components, the neurons, can be found, for
example, in Kandel et al. [139]. MacIntosh et al. |[L61] give full account on the anatomy and
physiology of skeletal muscles and provides some details on the motor neurons (MNs). The
motor unit as the functional unit of the neuromuscular system has recently been reviewed
by Heckman & Enoka [105, [106]. The mechanisms involved in human movement, from
neural control to muscle mechanics, are comprehensively described in Enoka [65]. With
regard to theoretical and mathematical descriptions, the reader is referred to Keener &
Sneyd [144, 145], Tuckwell |264], and Herzog [116].

2.1 Summary

This section summarises briefly the processes of the neuromuscular system leading to force
generation. The following sections then explain the anatomy and physiology of MNs and
muscles in more detail.

Nerves are cord-like bundles of nervous tissue. They are made up of nerve fibres that
connect the central nervous system with other parts of the body [146]. In the context
of this work, especially those nerve cells (neurons) are of interest that are known as
motor neurons. This is due to the fact that motor neurons innervate skeletal muscles.
Skeletal muscles consist of parallel-aligned muscle fibres that are embedded in a matrix
of extracellular connective tissue. Each muscle fibre is a long, cylindrical, biological cell.

The cell body (or soma) of a MN is located in the spinal cord, which is part of the central
nervous system. There, the MN receives signals from other neurons, such as those of the
motor cortex of the brain. Depending on the received signals, the MN itself might generate
action potentials (electrical signals of short duration), which are transmitted along the
MN’s axon (nerve fibre) to the muscle. At its end, the axon branches profusely, with each
end linking to a muscle fibre. The AP of the neuron is transmitted to the muscle fibre at
a site called neuromuscular junction. Starting from the neuromuscular junction, the AP
propagates along the length of the muscle fibre. The propagating signal triggers the release
of calcium ions from an intracellular calcium storage called sarcoplasmic reticulum (SR).
The released calcium binds, amongst others, to the troponin-tropomyosin regulatory unit.
When two calcium ions are bound to the regulatory unit, it undergoes a conformational
change that allows myosin heads to attach to actin binding sites. Myosin and actin
are proteins within so-called thick and thin filaments, respectively. The thick and thin
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filaments are structural components within a sarcomere, which is the basic contractile
unit in a muscle fibre. The process of binding, bending, and unbinding of the myosin
head is called cross-bridge cycling. As a result, the thick filament moves relative to the
thin filament, which induces the contraction and force generation in the muscle fibres.

2.2 Basic Anatomy of the Motor Unit

The entity of a MN and all the muscle fibres innervated by that MN is called motor
unit (MU). The MU is considered the functional unit of a skeletal muscle, since its MN
stimulates all muscle fibres belonging to the MU conjointly, and these fibres contract
simultaneously in response to the stimulation. Depending on the size of a muscle and
the task assigned to it, the number of its MUs ranges from about one hundred to several
thousand. In the human tibialis anterior (TA) muscle, about 300000 muscle fibres are
innervated by approximately 450 MNs.

The group of muscle fibres innervated by a single MN is referred to as a muscle unit.
The muscle unit is not locally concentrated in one part of the muscle, but distributes over
a part of the muscle’s cross-sectional area and interdigitates with other muscle units. The
number of fibres in a muscle unit, i.e., the number of fibres innervated by a single MN,
is commonly referred to as the innervation number and can vary from tens to thousands,
often within a single muscle. For example, in the human TA muscle the innervation
number ranges from 50 to 12000 [105]. The human TA muscle, as all other muscles,
consists of many small and few large MUs, such that the average innervation number (the
ratio of the total number of muscle fibres and the number of MUs in a muscle) is about
600. The combination of many parallel-arranged MUs and the wide range in innervation
number allows a single muscle to exert a huge spectrum of outputs, ranging from precise
movements to large forces. This spectrum of outputs is controlled through the coordinated
action of the MUs.

The MNs innervating a muscle are usually clustered into an elongated motor nucleus
within the ventral horn of the spinal cord that may extend over one to four spinal cord
segments [139]. The MNs receive synaptic input from various sources, such as from the
motor cortex via the corticospinal pathway, the brain stem and other descending pathways,
as well as from neighbouring motor nuclei, spinal cord interneurons, and afferent neurons.
These signals affect the neuron’s membrane potential, which is described in detail in the
next section.

2.3 The Cell Membrane of Excitable Cells

The cell membrane, known as sarcolemma, is formed by phospholipids. Phospholipids
have a globular head that is hydrophilic (attracted to water) and two fatty acid tails that
are hydrophobic (repelled by water) [211]. Given an aqueous environment such as that
in the human body, phospholipids have the property of forming a bilayered structure,
where the lipid’s hydrophilic heads form the inner and outer boundary of the membrane,
while the lipid’s hydrophobic tails are pointing towards the interior of the membrane, cf.
Figure 2.11
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Figure 2.1: The cell membrane.

Embedded in the sarcolemma are many types of large protein structures, for example,
several different types of receptors and transport proteins. Some of these proteins are
capable either of actively transporting specific ions from one side of the membrane to the
other (transport proteins, ion pumps) or providing channels through which certain ions
can move (ion channels). Passage through ion channels is governed by their opening and
closing in response to chemical or electrical signals. The actions of transport proteins and
ion channels enable the cell to establish a resting membrane potential and shape APs,
both of which are discussed in the following sections.

2.3.1 Resting Membrane Potential

The sarcolemma’s low permeability to ions enables the cell to have a chemical composition
in the cytosol (the solution in a biological cell) different to the fluid surrounding the cell.
In excitable cells, there is a surplus in the concentration of potassium (K*) cations in the
cytosol, and a surplus of sodium (Na™) and calcium (Ca®") cations as well as chloride
(C17) anions in the extracellular matrix. These differences in the ionic concentrations are
sustained by the cell membrane and its embedded ion pumps and channels. Most relevant
in establishing the resting potential is the Na™-K* pump, which transports three Na™
ions out of the cell and two K™ ions in, at the cost of one adenosine triphosphate (ATP).
Further, Na™-Ca?"-exchangers, exchanging three Na™ ions from the extracellular space
for one Ca?' ion from the intracellular space, ensure a very low Ca®" ion concentration
in the cytosol in the resting state. Cl™ is not actively transported but can move through
so-called leakage channels that remain open all the time. Leakage channels are selectively
permeable to either C1~ or KT ions.

K™ cations leak out of the cell along their concentration gradient leaving behind rela-
tively immobile anions. This leads to a net negative charge inside the cell with respect to
the cell outside, i.e., a potential difference across the membrane arises. At the so-called
equilibrium potential the outward flux of K* ions due to their concentration gradient is
balanced by an inward flux of KT ions due to the negative electrical charge of the cell
inside. The equilibrium potential F; of ion species i, with ¢ = {K, Na, Cl, Ca}, can be
determined using the Nernst equation:

(2.1)
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Therein, R is the universal gas constant, 7" is the absolute temperature, and F' denotes
the Faraday constant. Furthermore, z; is the charge of the ion, and [i]; and [7], denote
the ion’s intracellular and extracellular concentrations, respectively.

As the equilibrium potential is different for different ion species, the resting membrane
potential of a cell consists of the contributions of all involved ions. The resting poten-
tial can be determined using the Goldman-Hodgkin-Katz equation and is defined as the
weighted average of the equilibrium potentials of the involved ions, where the relative
permeability of the membrane to the specific ion species is used as weight, cf. e. g. Mac-
Intosh et al. [161]. Commonly, only K*, Na™, and Cl™ ions are considered. Since the
cell membrane is much more permeable to K* and Cl~ than to Na', the resting mem-
brane potential is close to the equilibrium potentials of KT (—90 mV, all values given at
physiological temperature) and CI~ (—85mV) but slightly shifted towards the equilib-
rium potential of Nat (+75mV). This results in a cell’s resting potential of about —70 to
—80mV, with a negative voltage inside the cell as compared to the cell outside.

2.3.2 Action Potentials

In the resting state, the cell membrane is relatively impermeable to Na™ ions. If, due to
a stimulus, the membrane becomes more permeable to Na™ ions, a strong Na™ ion influx
occurs. This current is driven by the difference between the membrane potential and
the equilibrium potential of Na™ and is particularly strong as Na® is far away from its
equilibrium potential. The resulting change in the membrane potential towards the equi-
librium potential of Na™ is called depolarisation, since the membrane potential becomes
less negative. If the depolarisation is strong enough, i. e., the membrane potential exceeds
a certain threshold value (approximately —55mV), voltage-gated ion channels open, which
allows for a large inward flux of Nat ions and an outward flux of K* ions. Due to the
dominating Na™ flux, the membrane potential changes towards the equilibrium potential
of Na™ resulting in an inversion of the membrane voltage. The raised membrane voltage
causes the voltage-gated Na™ channels to close, and the still ongoing K* outward flux re-
polarises the membrane potential, which changes again towards the equilibrium potential
of Kt (repolarisation). When the membrane potential is repolarised, the voltage-gated
K™ channels close, and the resting membrane potential is restored. This short (2-5ms)
event, in which the electrical potential of the cell is inverted and restored again, is known
as action potential. Figure shows the typical course of an AP. In neurons, a short-
lasting drop in the membrane potential below the resting membrane potential occurs at
the end of the repolarisation process. This drop is called afterhyperpolarisation. The
afterhyperpolarisation potential (AHP) inhibits the development of subsequent APs by
increasing the amount of stimulus required to reach the threshold value for AP generation.

It is noteworthy that the actual concentrations of Nat and K+ hardly change throughout
the AP, and a cell can fire many thousands of APs without actively pumping Na™ out of
the cell or K into it. This is important, since neurons transmit information only through
the AP discharge frequency, and not through the magnitude of the AP, which is similar
for each discharge.

In excitable cells, APs are used to transmit signals between different parts of the cell.
The mechanism is as follows. The currents flowing locally into the cell during an AP
spread out along the length of the cell. This yields a depolarisation of the potential of ad-
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Figure 2.2: The action potential.

jacent patches of the cell membrane. If the depolarisation is strong enough, voltage-gated
Na™ channels open, and the AP is reproduced in this neighbouring patch. Subsequent
reproductions of the AP on successive patches result in a wave-like propagation of the
AP along the membrane of an excitable cell. Note that voltage-gated Na™ channels fall
into an inactive state after closing for a short period of time, which ensures that the AP
moves only in one direction.

APs propagate along muscle fibres at a speed of 2-10m/s [157, 159]. This is relatively
slow compared to AP propagation speeds of up to 100m/s found in neurons [127]. The
fast AP propagation speeds in neurons result from an insulating myelin sheath that is
wrapped around the nerve fibres, cf. Section

APs are assigned different tasks in neurons and muscle fibres. Neurons transmit sig-
nals between different parts of the body, while in muscle fibres, the AP triggers internal
processes that eventually lead to force generation.

2.3.3 Synapses, Excitatory and Inhibitory Postsynaptic Potentials

Synapses are connections between cells, at which signals are transmitted from a neuron
to another cell, which does not necessarily have to be a neuron. The following description
of synapses is restricted to chemical synapses, which are present in the neuromuscular
system, and occur either between neurons or between MNs and muscle fibres. Besides
chemical synapses, electrical and immunological synapses exist in the human body.
Chemical synapses pass information unidirectionally, i.e., at a certain synapse, signals
are exclusively transmitted from a signal-passing, presynaptic neuron to a signal-receiving,
postsynaptic cell. At the synapse, both the presynaptic and postsynaptic cells contain
specialised structures that enable signal transmission. In the presynaptic cell, the synaptic
bouton (axon terminal) contains neurotransmitters enclosed in synaptic vesicles. When an
AP, which propagates along the membrane of the presynaptic cell, reaches the synapse, the
membrane depolarisation causes Ca?* channels to open. The resulting inward flux of Ca?"
ions increases the Ca®' concentration in the cell immediately, since the intracellular Ca®"
concentration is kept at a very low level during the resting state. The rise in intracellular
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Ca?" concentration causes a release of neurotransmitter into the narrow space between
the presynaptic and postsynaptic cells called synaptic cleft. The neurotransmitter binds
to receptors embedded in the membrane of the postsynaptic cell, which either open ligand-
gated ion channels (in both neurons and muscle fibres) or activate intracellular signaling
pathways (only in neurons).

Assuming, first, that the presynaptic cell is a MN, and the postsynaptic cell is a muscle
fibre, the neurotransmitter is acetylcholine (ACh), and the synapse is called neuromus-
cular junction. The neuromuscular junction is a huge synapse, and an AP discharged by
the presynaptic MN always causes an AP in the postsynaptic muscle fibre. (Excluded
are pathological cases, which are not within the scope of this thesis.) Due to this one-
to-one relation between motor neuron APs and muscle APs, the term motor unit action
potential (MUAP) is commonly used. Following the release of ACh from the MN at the
neuromuscular junction, the ACh molecules bind to ACh receptor channels in the cell
membrane of the muscle fibre, which, in response, become permeable to Na™ ions. An
inward current carried by positive-charged Na™ ions develops, which causes a depolarisa-
tion of the membrane potential, and an AP is generated at the muscle fibre membrane.
The muscle AP propagates along the length of the muscle fibre, from the neuromuscular
junction towards the ends of the fibre.

If the presynaptic and postsynaptic cells are neurons, the situation is more com-
plex. First, it is assumed that the input is an ionotropic signal. In this case, the
neurotransmitter-binding receptors open ligand-gated channels. Depending on the re-
leased neurotransmitter and the type of ion channel activated, the resulting change in the
postsynaptic potential is excitatory or inhibitory. If the opened channel is, for example,
a Na™ channel, the resulting inward flux of Na™ ions will depolarise the membrane of the
postsynaptic neuron, i.e., an excitatory postsynaptic potential (EPSP) is generated. In
general, the amplitude of the EPSP resulting from a single presynaptic AP is not suffi-
cient to exceed the threshold potential, however, postsynaptic potentials can overlap and
summate, both in space (from different nearby synapses) and time (subsequent signals
at the same synapse). The most common excitatory neurotransmitter in MNs is gluta-
mate. In contrast, if the activated channel is a K™ channel, an outward flux of K ions
will hyperpolarise the postsynaptic neuron’s membrane, and an inhibitory postsynaptic
potential (IPSP) is generated. The most common inhibitory neurotransmitters in MNs
are GABA and glycine.

If the input, however, is neuromodulatory, the neurotransmitter-binding receptors will
activate intracellular signaling pathways to control the state of excitability of the postsy-
naptic neuron. This is often realised through persistent inward currents that raise or lower
the membrane potential relative to the previous resting membrane potential, and can last
for hours. The resting membrane potential in MNs should therefore not be considered as
a static quantity, but rather as one that is constantly adjusted through neuromodulatory
input to MNs [106].
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2.4 Neurons

The key characteristic of neurons, i.e., their ability to transmit signals between different
parts of the body, has been described in previous sections. This section provides detailed
information on the neural structure and the physiology of the MN pool.

2.4.1 The Structure of a Neuron

A neuron consists of three parts: the cell body or soma, the dendrites, and the axon (nerve
fibre). Some details of the neuron’s structure are shown in Figure 23] Dendrites are thin
structures arising from the cell body that extend and branch extensively. Dendrites largely
enhance the surface area of neurons and often account for 95 % of a neurons surface. Since
the dendrites account for most of the neuron’s surface area, the majority of synapses from
other neurons connect there, and hence, the dendrites receives the most neural input.
While a neuron has typically many dendrites, it only has a single axon. The axon, a
long, slender, cylindrical-shaped extension, arises from the cell body at a site called axon
hillock. At the axon hillock, where the density of ion channels is very high, APs are
generated, which then propagate along the length of the axon towards its end. At its
end, the axon branches profusely and each branch ends in a synapse. Depending on the
kind of neuron, the synapse connects to, for example, another neuron or a muscle fibre.
The axon of neurons is covered with myelin sheaths, which are, in the peripheral nervous
system, produced by Schwann cells. The purpose of the myelin sheaths is to increase the
propagation speed of APs in the axon by insulating it from ions in the surrounding fluid.
The exchange of ions across the sarcolemma during an AP, as described in Section 2.3.2]
can only take place at the sites between the myelin sheaths called nodes of Ranvier. This
phenomenon is known as saltatory conduction and largely accelerates the AP propagation,
cf. e.g. Huxley & Stampeli [131]. Note that multiple sclerosis, an inflammatory disease,
in which parts of the nervous system loose their ability to communicate, is caused by a
pathological loss of the myelin sheaths that insulate axons in the brain and spinal cord.

/ dendrite

synapse
nucleus yiap

Schwann cell

myelin sheath

Figure 2.3: Schematic representation of the structure of a neuron. [Figure modified from Quasar
Jarosz at hitp://en.wikipedia.org/ with permission]



18 Chapter 2: Anatomical and Physiological Fundamentals

2.4.2 Types of Neurons

Different types of neurons are distinguished. Neurons that conduct signals from the
periphery towards the central nervous system, e.g. sensory neurons, are referred to as
afferent neurons. Neurons that carry impulses away from the central nervous system,
e.g. motor neurons, are referred to as efferent neurons. Further, spinal cord interneurons,
e.g., Renshaw cells, Ta and Ib inhibitory neurons (IaIN, IbIN), form a connection between
other nearby neurons. These spinal cord neurons and other neurons, such as those of the
brain are not considered in this thesis.

2.4.3 The Physiology of the Neural System

The term motor unit pool refers to all MUs in a muscle. Analogously, the term motor
neuron pool denotes the entity of the neurons that subserve a single muscle. The electrical
properties of MNs and their size vary across a MN pool. Typically, a MN pool consists
of many small, low-threshold MNs and few large, high-threshold MNs, cf. e. g. Powers &
Binder [207]. Note that the size of the MN is proportional to the size of its corresponding
muscle unit, i. e., small MNs innervate few muscle fibres, while large MNs innervate large
muscle units consisting of many fibres.

The MN pool is subject to signals of different sources, viz. cortical input, afferent sig-
nals, e. g. from muscle spindles, and signals from interneurons and Renshaw cells. Motor
neurons integrate all the excitatory and inhibitory signals that they receive from presy-
naptic neurons. This causes changes in their membrane potential. Once the input is
large enough such that the MN exceeds its threshold potential, an AP is discharged. The
fact that a neuron either discharges an AP or not, but nothing in between, is known as
all-or-none principle and results from the existence of a threshold potential, i.e., if and
only if the threshold potential is exceeded, then the neuron will discharge an AP.

Mechanisms of Recruitment and Rate Coding

It is not completely understood how the MN pool in the central nervous system operates
as an ensemble to control the force that is exerted by a skeletal muscle. In general,
to vary this force, the central nervous system has two options: (i) recruitment, i.e.,
altering the number of active MUs, and (ii) rate coding, i.e., changing the frequency of
electrical impulses driving the MUs. It is generally accepted that MUs follow an orderly
recruitment according to Henneman'’s size principle [112, 113], that is, from the smallest
MU (the smallest MN innervating the fewest muscle fibres) to the largest MU (the largest
MN innervating the largest muscle unit). However, there is some evidence that the size
principle might not be the only principle applied. Butler & Gandevia [34], for example,
postulate the idea that also the biomechanical efficiency needs to be taken into account.
An increased synaptic input to the MN pool will not only result in an increase of the
number of recruited MUs, but it will also increase the discharge rate of all MUs that have
already been recruited. Following this, the small, low-threshold MUs always discharge
APs at a higher frequency than larger, higher-threshold MUs independent of the synaptic
input to the MN pool. This property is known as onion skin property, cf. De Luca and
co-workers [46, [47].
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2.5 Skeletal Muscle

Skeletal muscles are composed of muscle fibres that are mechanically coupled to each
other by a network of extracellular connective tissue. The extracellular connective tissue
is composed of mainly collagen and elastin, and it is hierarchically organised in different
structures called endomysium, perimysium, and epimysium. The endomysium is a dense
sheath of collagen fibres that envelops each muscle fibre and is connected to the basement
membrane, which is part of the muscle fibre’s cell membrane. The perimysium divides the
muscle into bundles of fibres, called fascicles. Its tough and relative thick structure keeps
the individual fibres together, and provides the pathway for the major blood vessels and
nerves running through the muscle. The muscle as a whole is coated by the epimysium,
which is a particularly tough woven network of thick collagen fibres. The epimysium
separates muscles from each other and is connected to the perimysium, cf. Figure 2.4l
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Figure 2.4: Schematic representation of the structure of a skeletal muscle.

The connective tissue serves several functions. Besides holding the fibres together and
giving the muscle its shape, it contains the blood vessels and nerves, which are necessary
for the supply of the muscle fibres. Further, the connective tissue resists excessive stretch-
ing of the muscle and distributes forces to minimise damage to the muscle fibres. The
elasticity of the elastin and the wavy collagen bundles enable the muscle belly to regain
its shape when external forces are removed. Furthermore, the extracellular connective
tissue plays a key role in the force transmission from the muscle fibres to the tendons, see
e.g. Huijing [124, [125], Monti et al. [177], Street [252], Street & Ramsey [253|, Yucesoy
et al. [278,1279).

2.5.1 Skeletal Muscle Architecture

Although all skeletal muscles are made up of the same components, viz. muscle fibres
and extracellular connective tissue, they come in different forms and sizes depending on
their specific task. The muscles in the human body range from very small, consisting of
only a few hundred muscle fibres, to very large, consisting of more than a million fibres.
Depending on the arrangement of their fascicles, muscles are classified in distinct forms.
In parallel-fibred muscles, for example, the fascicles run from tendon to tendon and are
aligned with the muscle’s force-generating axis. If the directions of the fascicles form an
angle to the muscle’s line of action, the muscle is called pennate, and the fascicles attach
to aponeuroses, which run along each side of the muscle. Pennate muscles can exhibit
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larger forces than parallel-fibred muscles of the same volume due to their higher effective
or physiological cross-sectional area (PCSA), i.e., the cross-sectional area perpendicular
to the fascicle direction. However, the pennation angle decreases the amount a muscle
can shorten as well as its contraction velocity. While the direction of the muscle fibres is
determined by the fascicle direction, in large mammalian skeletal muscles, muscle fibres
might not span the entire length of the fascicle, but they can also be arranged in series and
terminate intrafascicularly, see e. g. Heron & Richmond HE], Loeb et al. m], Richmond
et al. m], Young et al. |, and Section 6.3.3

The Structure of a Skeletal Muscle Fibre

Muscle fibres are long, cylindrical-shaped cells with a diameter of approximately 50—
80 um. The most prominent structures within the muscle fibres are the myofibrils, which
are parallel-aligned, rod-shaped units that are made up of repeating sections called sar-
comeres. The sarcomere, or more precise the half-sarcomere, is the basic contractile unit of
a muscle fibre. It contains thick filaments, which consist primarily of the protein myosin,
and thin filaments, which consist primarily of the protein actin. The thick filaments are
cross-connected by a fine, filamentous structure at one end of the half-sarcomere, called
M-disc. The thick filament’s other end is connected to titin filaments, which are fine
and very elastic, and link the thick filament to a structure at the other end of the half-
sarcomere called Z-disc, see Figure The titin filaments act as a molecular spring and
keep the thick filament in its position. A hexagonal lattice of thin filaments surrounds
each thick filament. The thick and thin filaments interact via cross-bridges (XBs), i.e.,
myosin molecular heads, that can attach to a neighbouring thin filament. The length of
a sarcomere is about 2 ym.
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Figure 2.5: Structure of a sarcomere.  On the left side, an image of a sarcomere is
shown, while the right side shows the schematic structure of a sarcomere including thick, thin,
and titin filaments as well as the Z-discs and M-disc. [Figure modified from Sameerb at
http://en.wikipedia.org/ with permission]

Passive Behaviour of Skeletal Muscle Tissue

Passive muscle tissue exhibits transversely isotropic material behaviour ﬂﬂ, , ]
The response of the passive muscle tissue is attributed to both the extracellular connective
tissue and the myofilaments, especially titin, within the sarcomeres of the muscle fibres, see
Prado et al. |. While it is often assumed that muscle tissue is stiffer in fibre direction
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(see e.g. |181]), Takaza et al. |[256] and Nie et al. [189] report a more compliant material
behaviour in the fibre direction compared to the cross-fibre directions. Further, passive
muscle tissue exhibits slightly viscoelastic behaviour, see e.g. |24, 122, [156, 267, 269,
and due to its high content of water, it is commonly considered to behave incompressible
within the physiological range [19, 85, 256, [268].

2.5.2 Muscle Fibre Contractions

The complex signaling pathway leading from electrical excitation of a muscle fibre to its
contraction is known as excitation-contraction coupling.

Excitation-Contraction Coupling

The excitation-contraction coupling in skeletal muscle fibres, together with the most
prominent structures of the muscle fibre, is schematically represented in Figure

The AP, generated at the neuromuscular junction, not only propagates along the length
of a muscle fibre, but it is also conducted from the surface to the interior of the fibre by
numerous, channel-like invaginations of the sarcolemma called T-tubules. Embedded in
the membrane of the T-tubules are dihydropyridine receptor (DHPR) channels that are
sensitive to changes in the membrane potential. The DHPR channels are mechanically
linked via protein structures to the ryanodine receptors (RyR) in the membrane of the
SR. The SR is an extensive network of channels in the muscle fibres that stores large
amounts of calcium (Ca*"), and the RyR is a Ca*" channel consisting of four subunits.
An AP entering the T-tubules activates the DHPR channels, which will then induce the
opening of the RyR in the membrane of the SR. When the RyR opens, large amounts
of Ca®" will leave the SR and enter the cytosol, following their concentration gradient,
since the free concentration of Ca?" in the cytosol is kept at a very low level in the resting
state.

Ca*" ions play a key role in muscle contraction. Once released into the cytosol, Ca*"
binds to troponin C, which is part of the troponin-tropomyosin regulatory unit. The
binding of two Ca?" ions to troponin C yields a conformational change in the troponin
molecule that removes the blocking tropomyosin from the thin filaments. This enables
the formation of a XB connection between the thick and thin filaments in the sarcomeres.

The contractile, force-producing step is called power stroke and can be figured as a
bending mechanism of the myosin heads, which moves the thick and thin filaments relative
to each other (sliding filament theory). The energy required for a power stroke is provided
by the hydrolysis of one ATP molecule per myosin head. Since each XB acts as an
individual molecular motor, i.e., an independent force generator, the force developed
during a contraction depends on the number of simultaneous interactions between myosin
heads and actin filaments per half-sarcomere (cross-bridge theory).

Length and Velocity Dependence of the Active Force

The maximum isometric force a sarcomere can exert depends on the number of possible
XB connections between the thick and thin filaments, which is primarily governed by the
regions of overlap between the thick and thin filaments, i.e., by the length of the sarcom-
ere. Figure 2.7h shows the experimentally determined force-sarcomere length relation of
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Figure 2.6: Schematic representation of the excitation-contraction coupling in
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Gordon et al. [@], a passive stress-strain relation, and their superposition. Figure 2.7b
depicts the regions of overlap between the thick and thin filaments at 5 selected points of

Figure 2.7h.
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Figure 2.7: (a) Normalised passive, active, and total isometric forces. The active isometric force
exerted by a sarcomere depends on (b) the region of overlap between the thick and thin filaments.

Further, the force that a muscle fibre can generate, depends on the fibre’s contraction
velocity, i.e., the faster the fibre shortens, the less force it can exert [E] During length-
ening contractions, the generated force exceeds the isometric force, cf. Figure 2.8 Note
the kink at the transition from shortening to lengthening contractions M]
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Figure 2.8: The influence of the contraction velocity on the force generation of a skeletal muscle.

2.6 The Motor Unit

Since electrical activation from one muscle fibre to adjacent ones is not observed in skele-
tal muscle, each fibre must have its own neuromuscular junction. While it is generally
assumed that each fibre is innervated by exactly one MN, there is some electrophysiolog-
ical evidence that a few doubly innervated fibres (fibres with multiple motor endplates
and polyneuronal innervation) also exist, see e.g. Lateva et al. Nﬁj], McGill & Lateva
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[164]. Further, while all muscle fibres belonging to one MU have similar properties, the
contractile and metabolic properties of different muscle units vary heavily.

2.6.1 Properties of Motor Units

The differences observed in the contractile and metabolic properties of skeletal muscle
fibres inspired the distinction of different MU types. To this end, MUs have been classified
based on their speed of contraction, the handling of intracellular Ca*" ions, or their
resistance to fatigue during prolonged contractions. For example, muscle fibres can be
classified based on the expression of certain isoforms of the myosin heavy chain, which
determines the rate of XB cycling, and hence, the speed of contraction. Moreover, based
on their metabolic properties, aerobic type-I (slow-twitch) fibres can be distinguished
from their fast-twitch counterparts (type-II fibres), which, in addition to the oxidation
of fats and carbohydrates, use an anaerobic metabolism. Based on a certain stimulation
protocol, Burke et al. [30] distinguished slow-twitch units (type S) and fast-twitch units
(type F). The group of type-F units was further split into fatigue-resistant (type FR) and
fast-fatigable (type FF) units [30].

In general, the smallest MUs, which are recruited first, exert the smallest forces, exhibit
the slowest speed of contraction, and show the least amount of fatigue. Conversely, the
largest MUs, which are recruited last, exert the largest forces, have the highest speed of
contraction, and are most affected by fatigue. However, the physiological properties of hu-
man MUs do not cluster into discrete groups, but rather exhibit a continuous distribution
from one extreme to the other [57].

2.6.2 Types of Contractions

The most simple contraction is a single twitch, which is the muscle unit’s response to
a single AP discharged by the MN. The shape of a twitch can be well described by the
impulse response to a critically damped second-order system, cf. Fuglevand et al. [76].
The total duration of a muscular AP, from depolarisation to the point where the resting
state is restored, is about 2-5ms. In contrast, the duration of a twitch from the first
rise to complete relaxation varies from about 200 ms to more than 500 ms depending on
the MU type. Thus, if subsequent stimulations are applied before the actively generated
twitch force of the fibre returned to its initial value, a summation of the resulting twitches
is observed (fused twitches). Obviously, the increase in force following subsequent stimu-
lations is not unlimited, but after a number of stimulations, a peak force is reached. The
value of the peak force depends on the stimulation frequency — it increases with rising fre-
quency up to a certain optimal frequency, beyond which, no further increase in force can
be generated. This form of contraction is referred to as tetanic contraction. Peak firing
frequencies during isometric contractions of human muscles are approximately 45 Hz [76]|.

While single twitches and stimulations with constant frequencies are commonly applied
in experimental protocols, actual trains of MN discharges contain a certain degree of vari-
ation in the interstimulus interval (time between two successive MN discharges). During
isometric contractions, the ratio of the standard deviation of the interstimulus interval
to its mean is about 10-30%. This relation holds for a wide range of mean discharge
frequencies.



3 Mathematical and Mechanical
Prerequisites

Before introducing the basic concepts of continuum mechanics, this chapter reviews some
of the fundamentals of solving differential equations. This is required due to the fact that
the mathematical description of biophysical models in general, and the models proposed
in this work in particular, is carried out in terms of differential equations. Since analytical
solutions to these differential equations are commonly not available, numerical methods
are required to approximate the solution. This work uses the finite element method
for the numerical treatment of the spatial derivatives occurring in partial differential
equations. As the very common (Bubnov-)Galerkin method and Lagrange finite elements
are employed, the description of the spatial discretisation is kept rather brief. If the
differential equation is a transient PDE, the spatial discretisation yields a set of coupled
ordinary differential equations in time, which have to be treated appropriately. Following
this, first, the treatment of the spatial derivatives is covered, before discussing numerical
methods for solving ODEs. Since some of the presented models are described by stiff
ODESs, which impose certain restrictions on the numerical solution scheme, the discussion
on ODE solvers is more elaborate.

3.1 Finite Element Method for the Spatial
Discretisation of Partial Differential Equations

For the sake of convenience, a linear, vector-valued PDE of second order in space and first
order in time is exemplarily considered. The equation is given by

y(t, @) — div (c(x) grady(t, @) = 0, (3.1)

where t € [0,7] is the time, £ € Q C R? denotes the spatial position vector, y €
[0, 7] x Q — R? is the vector-valued unknown function, c(x) is a parameter, grad (- ) and
div (- ) denote the gradient and divergence operators, respectively, and the superimposed
dot denotes a time derivative. Furthermore, for an initial-boundary-value problem, the
definition of appropriate initial and boundary conditions is required:

initial conditions: y(to,z) = y,(x) € RY,
Dirichlet boundary conditions: y(t,z) = y(t) on IO, (3.2)
and Neumann boundary conditions: A(t,z)n(t,z) = g(t,x) on QY

where n(t,x) denotes the outward-oriented unit normal vector, and A(t,z) =
c(x)grady(t,x). The number of spatial dimensions of the problem is denoted by

25
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d € {1,2,3}. Further, Q denotes the domain of the problem, and 9Q” and 9OV
are the Dirichlet and Neumann parts of the domain boundary, 02, respectively, with
00 = 00P U 9OYN and 90 NN = .

3.1.1 The Weak Form

In this work, the FEM (see e. g. Hughes [123|, Zienkiewicz et al. [285, 286]) is used to treat
the spatial derivatives in Equation (B.]). To this end, Equation (B3.)) is first multiplied
by an arbitrary test function dy(a) and then integrated over the domain, €2. This yields
the so-called weak form, which is given by

/Q(i/(t>‘”) — div (¢(x) grad y(t,x)) ) - Sy() dv = 0, (3.3)

where dv represents an infinitesimal volume element of the domain. Pointwise satisfaction
of the strong form (B.I]) is still given by the integral form (3.3) due to the fact that the
choice of the test function is arbitrary. In detail, choosing dy = é(x — x;), where §( -)
denotes the Dirac delta function, subsequently for all points x; € 2 of the domain, yields
again the strong form (B.1).

Next, applying integration by parts and the Gaufian integral theorem to Equation (B.3])
yields after some tensor algebra a weak form suitable for applying the FEM, viz.:

/'y(t,m)-éy(m) dv+/c(a:)grady(t,a:)-gradéy(m) dv = / g(t,z)-dy(x)da,
Q Q o0 (3.4)

where da represents an infinitesimal surface element. Due to the fact that the Neumann
boundary term quite naturally occurs in the weak form (3.4), the associated type of
boundary condition (Neumann boundary condition) is also called natural boundary con-
dition. Tt is furthermore noteworthy that the order of PDE (3.I]) has been reduced from
two to one, as only first-order spatial derivatives occur in its weak form (B:4). Further,
all solutions of the strong form (B.I]) are also solutions to Equation (3.4)).

3.1.2 The Finite Element Method

The FEM relies on approximating the domain, such that it can be subdivided into several
smaller, non-overlapping parts called finite elements, i.e.,

O~ Q" = J. (3.5)

Therein, Q" denotes the approximated domain, which can be represented by N, finite
elements of element domain size ¢).. Defining each finite element by /N; nodal points
yields a total of N,, < N, N; nodes in the finite element mesh. A discrete representation
of the continuous PDE (B.4)) is obtained by approximating the unknown and test functions
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by

ytw) ~ Ytz) = B+ o@D,
= (3.6)

Sylw) = oy@) = 3wy,

Therein, 9" (t,z) denotes the discrete version of the Dirichlet boundary conditions.
Furthermore, y,;(t) are the time-dependent nodal degrees of freedom, and ¢, (x) =
diag[p; 1(x), ..., ¢iq(x)] and ¥, (x) = diag[y); 1 (x), . . ., 1 q(x)] represent the global basis
functions for the approximation of the unknown and test functions, respectively, when us-
ing Lagrange finite elements. Following the (Bubnov-)Galerkin approach, the same basis
functions are used to approximate the unknown and test functions, i.e., ,(x) = ¥,(x).
The decoupling of the temporal and spatial dependencies of the unknown function in
Equation (3.6]); is obtained by introducing the basis functions, which have not yet been
further specified. (The subscript 1 in the notation (B:6); refers to the first equation
in (3.6]).)

Conveniently, the basis functions are chosen to have compact (local) support. Moreover,
the basis functions can be constructed by so-called shape functions that are defined on
a simple reference element using a local coordinate system. Thus, the element integrals
arising when inserting the approximations (B.6) into the weak form (B:4]) can be mapped to
the reference element using the Jacobian determinant, where they can be evaluated using
a method that is suitable for numerical implementation, such as, for example, Gaufian
quadrature. For the sake of brevity, a detailed presentation of these steps is omitted here
but can be found in any FEM textbook, see e. g. [123, 286].

Evaluating the resulting equation for each finite element and assembling the resulting
element matrices to global matrices finally yields a set of coupled ODEs of the form

Dy(t) + Ky(t) = g(t), (3.7)

where D and K are the global damping and stiffness matrices (dimension N, x N,,),
respectively, y(t) is the global vector of unknown nodal values, and g(t) is the global right-
hand side vector (dimension N,, x 1), which contains the Neumann boundary conditions.

3.2 Numerical Methods for Ordinary Differential
Equations

Since analytical solutions to nonlinear ODEs or coupled sets of ODEs, which, for exam-
ple, arise from the spatial discretisation of a transient PDE, are commonly not available,
numerical methods are used to approximate the solution of the governing ODEs. Nu-
merical methods for the integration of ODEs is a research field on its own, and a general
presentation of these methods is beyond the scope of this thesis. Instead, a brief discus-
sion is provided, which focuses on a particular group of ODE integrators that will, in the
subsequent sections, be used for the solution of stiff ODE systems arising from the math-
ematical description of biophysical models of the neuromuscular system. Further reading
on numerical methods for the solution of ODEs can be found, for example, in Ascher &
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Petzold [4], Gupta et al. [95], Hairer et al. [97|, Hairer & Wanner 98], Press [210], and
Schwarz [231].

The ODEs considered in this work can mathematically be represented by first-order,
nonlinear systems of equations of the form

y(t) = f(t,y(t),  ylto) =y, € R". (3.8)

Therein, y(¢) denotes the vector of unknown functions, y, denotes the vector of given
initial values, and f is a vector-valued, potentially non-linear function of ¢ and y(¢). The
dimension of the problem denoted by k£ > 1 depends on the specific model under consid-
eration.

3.2.1 Introduction

Numerical methods for the solution of ODEs often approximate the time derivative in
Equation (3.8) by a truncated Taylor series. A Taylor series can be used to represent an
unknown function value as an infinite sum of terms that are determined from the value
and derivatives of the (sufficiently smooth) function at a different point:

h h2 Ly VI
Yoi1 = ¥, + ﬂy'n + ny b= Z;ﬁygp. (3.9)
]:

Therein, y,, = y(t,), y) = dly/dt |y, , h = tu41 — t, denotes the time step size, and
t, = to+nh (n=0,1,...). In the following, the Taylor series (8:9) is considered up to
the first-order derivative, and the remaining terms are lumped together in O(h?) making
use of the big-O notation. Solving the resulting equation for the derivative term yields

A % + O(h). (3.10)

Approximating Equation (BI0) by neglecting the higher-order terms and inserting the
resulting approximation in the ODE system (B.8]), yields the explicit forward Euler scheme,

Similarly, a Taylor series can be used to represent y, by y, ., and its derivatives. Neglect-
ing the higher-order terms, this yields the implicit backward Euler scheme

yn+1 = yn + hf(tn-i-layn—i-l) . (312)

Since the neglected terms are proportional to h, the forward and backward Euler methods
are first-order accurate, i.e., p = 1, where p denotes the order of accuracy. The order
of a numerical method is a measure of how well it approximates the exact solution of
the problem. Note that (BI1]) represents an explicit procedure for the evaluation of the
unknown values y, ;. In contrast, the vector of unknown values y,_, is additionally
implicitly contained in the right-hand side of (3.12). Explicit methods are much simpler
to implement and are often more efficient than implicit methods, however, their stability
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often depends crucially on the time step size. Implicit methods, on the other hand, require
the solution of a system of equations in each time step. Moreover, if f is a nonlinear
function of y, the solution of (B.12)) yields a root-finding problem, which has to be solved
using an appropriate method. To this end, a modified Newton method (see Section [3.3)
is used in this work.

3.2.2 Linear Multistep Methods

The forward and backward Euler methods are one-step methods, i. e., to approximate the
solution y,  ; at time ¢,,1, only values from the previous step y,, at time ¢,, are considered.
In contrast, a multistep method of order k takes into account the information of the last
k time steps, e.g., a multistep method of order 3 uses information from time levels ¢, »,
tn—1, and t,, to compute y, ;.

Approximating the derivative in (38) by y,, ; ~ —¢ Z?:o ;Y1 (cf. Brayton et al.
[27]), the general form of a k-step linear multistep method is given by

k
§ :a’jynJrlfj = h
Jj=0

with coefficients a; and b;, where ay # 0. Without loss of generality, one commonly
chooses ag = 1. If by = 0, Equation (3.I3) denotes an explicit method, otherwise the
method is implicit. The coefficients are chosen such that the order of the resulting method
is maximal, see Schwarz [231| for details. Note that a k-step linear multistep method
requires k initial values, of which only one (y(ty) =y,) is given. To determine the other
initial values, one-step methods can be used, which, however, have to be at least of the
same order p as the multistep method to achieve an overall method of order p. In the
following some particularly popular explicit and implicit linear multistep methods are
presented in detail.

-

bj f(tnt1—4, Yns1—j) (k=1), (3.13)
7=0

Adams-Bashforth, Adams-Moulton, and Adams-Bashforth-Moulton Methods

Using the general form for linear multistep methods (B:I3]), the explicit Adams-Bashforth
(bp = 0) and implicit Adams-Moulton methods (by # 0) are obtained when choosing

ap =1, a; = —1, and a; = 0 for all other values. This yields
k
Yont1 — Yn = D ij f(tni1-js Y1) (k>1). (3.14)
j=0

As demonstrated in Schwarz [231], the k-step Adams-Bashforth and Adams-Moulton
methods are of order p = k and p = k+ 1, respectively. The methods of Adams-Bashforth
are very popular as they only require a single function evaluation per time step, since
all other values have previously been determined. Note that the first-order, one-step
Adams-Bashforth method is equivalent to the explicit Euler method (B.11)).

To avoid the cumbersome solution of an implicit equation in each step when using
the Adams-Moulton methods, an Adams-Bashforth method is combined with an Adams-
Moulton method to give a predictor-corrector method. The resulting methods are called
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Adams-Bashforth-Moulton methods, are explicit, and read

k
ygﬁl — Y, = h pr‘f(t"“*j’y"“_j)’
=1
k (3.15)
Yor1 — Yo = h (bco f(tn+17ygfl) + Zij f<t"+1*j’y"+1_j))'

j=1
Therein, yfffl is the predictor value, and b,; and b.; are the coefficients of the predictor
and corrector step, respectively. The combination of the m-step Adams-Bashforth method
(order p = m) and the m-step Adams-Moulton method (order p = m+1) yields a method
of order p = m + 1. A method of the same order but with higher accuracy is obtained
when combining the m+1-step Adams-Bashforth method with the m-step Adams-Moulton
method [231].

Some of the ODE systems presented in this work are solved using MATLAB'Y] build-in
solver ODE113. ODE113 is a multistep variable-order PECE (Predict-Evaluate-Correct-
Evaluate) Adams-Bashforth-Moulton solver. Further details on this solver are given
in Shampine & Gordon [235].

As it is the case for all explicit methods, predictor-corrector methods are very inefficient
for the solution of stiff problems. The most popular linear multistep methods for the
solution of stiff ODEs are the so-called backward differentiation formulas.

Backward Differentiation Formulas

The backward differentiation formulas (BDFs), which are also known as Gear’s methods,
are implicit linear multistep methods. The k-step BDF is derived by differentiating the
polynomial that interpolates the previous k values of y and setting the derivative at ¢,
to f,11 [4]. The family of k-step BDFs can be represented in the general form

k
Zaj Ynsi—j = hbof(tni1, ¥ni1) (k=>1). (3.16)

J=0

BDFs are A-stable for k < 2, A(«)-stable for 3 < k < 6, and become unstable for £ > 6
(not zero-stable), see Section B.2.3] for related definitions of stability. The accuracy of a
k-step BDF is of order p = k. The values of the coefficients a; and b # 0 for all stable
BDFs are provided in Ascher & Petzold |4]. Note that the first-order, one-step BDF is
equivalent to the implicit Euler method (BI2]). Further details on BDFs can be found,
for example, in Gupta et al. [95].

'http://www.mathworks.com/products/matlab/
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Numerical Differentiation Formulas

The numerical differentiation formulas (NDFs) are a class of modified BDFs. The NDFs
are given by

k
K

E Aj Ynt1—5 = hof(tni1, Yni1) + b Vi (Yng1 — Y;Oll) (1<k<0), (3.17)

Jj=0

wherein 7, = Zle 1/j are additional coefficients, and k denotes a scalar parameter. The

values of x can either be chosen to maximise the A(«a)-stable region for 3 < k <5 at the
price of reduced efficiency or to maximise the efficiency while reducing the stability, cf.
Shampine & Reichelt [234]. For k = 6, the A(a)-stable region of BDFs and NDFs is so
small that often only orders up to k = 5 are used [95]. Furthermore, YSL denotes the
initial guess for the modified Newton iteration, which is found by an extrapolation of the
values y,, ¥, 1, ---:¥Yn_ps1, cf. Shampine & Reichelt [234].

Some of the ODE systems presented in this work are stiff. In this case, their solution
is approximated using MATLAB’s build-in solver ODE15s. ODE15s is an implicit, mul-
tistep, variable-order solver based on the NDFs. Further details on this solver and its
implementation are given in Shampine & Reichelt [234] and Shampine et al. [236].

3.2.3 Convergence, Stability, and Stiffness

The previous sections mentioned the terms convergence, stability, and stiffness. Since
these terms have not been discussed yet, they will be briefly explained in this section.
The interested reader is referred to Ascher & Petzold [4], Gupta et al. [95], and Schwarz
[231]] for more in-depth details.

A numerical method is called convergent if it is both consistent and zero-stable. A
method is consistent if the local truncation error (the error committed by one step of the
method) approaches zero faster than the step size, when considering the limit h — 0.
Multistep methods are consistent if they are at least of order p = 1. Further, a linear
multistep method is called zero-stable if, within a given time interval, the error of the
approximated solution that is induced by a perturbation in the initial values, does not
depend on the time step size.

A numerical method is said to be stable if errors in the approximation are damped
out or are at least not amplified in subsequent steps of the method. The stability of
many methods depends on the time step size. Explicit methods, such as, for example, the
Adams-Bashforth methods, have very small regions of absolute stability. Implicit meth-
ods have in general larger regions of absolute stability, but not all implicit methods are
A-stable. A method is called A-stable if the region of absolute stability of the method
contains the complex left half-plane for the model problem y(t) = Ay(t) with A € C. Im-
plicit multistep methods can only be A-stable if their order is at most 2 (second Dahlquist
barrier). For example, the first-order backward Euler method and the second-order trape-
zoidal rule are A-stable, cf. Dahlquist [42]. Implicit multistep methods of order greater
than 2 are often A(«a)-stable. In this case, the region of absolute stability does not contain
the entire complex left half-plane but only a sector with opening angle 2a.. The values of
« of all stable BDF methods and further details can be found in Hairer & Wanner [98].



32 Chapter 3: Mathematical and Mechanical Prerequisites

A stiff equation is a differential equation for which certain methods lead to numerical
instabilities, unless the step size is chosen extremely small. While it is difficult to formulate
a precise definition of stiffness, the main idea is that the equation includes some terms
that can lead to rapid variations in the solution. Note that A-stable methods do not
exhibit the mentioned instabilities.

3.3 Newton’s Method

In Section B.I], for the sake of convenience, a linear PDE was assumed, which yielded
the linear space-discrete equation (B.7)). For a nonlinear system of equations, the discrete
form can be represented by

k(y) = o, (3.18)

where k denotes the generalised stiffness vector that nonlinearly depends on the vector of
unknowns. Note that, for clarity, the index denoting the time step (if any) is omitted in
this derivation. For transient equations, the following procedure has to be carried out in
each time step.

The solution of Equation ([BI8]) corresponds to a root finding problem, which is conve-
niently carried out using an iterative method, such as, for example, Newton’s method. To
this end, first the solution increment Ay*! := y**! — y? is introduced, where y’ denotes
the approximate solution of the i-th iteration step. The approximate solution of iteration
step i+ 1 is then obtained by subsequently solving a linear system of equations for the
solution increment, followed by an update of the approximate solution, i.e.,

Jz‘ AyiJrl — —k(yi) 7 and yi+1 — yz‘ + Ayi+1 ) (319)
Therein, J denotes the Jacobian matrix of the i+ 1-st iteration step, which is given by

ok(y)

T =

(3.20)

y=y!

For Newton’s method the computation of the Jacobian matrix and the steps in (3.19)
have to be repeated until a certain tolerance is met. A simplified version of Newton’s
method is obtained when the Jacobian matrix is not computed in every iteration, but a
computed Jacobian matrix is reused in a number of subsequent iteration steps.

To solve the linear system of equations ([B:I9); for the respective solution increment, the
Jacobian matrix is commonly not inverted but an appropriate (direct or iterative) solver is
employed. Typical direct solvers are the LU decomposition, the Cholesky decomposition
for symmetric positive definite matrices, or some special method for sparse matrices, which
arise, for example, from the FEM. For larger systems, iterative methods are commonly
more efficient. Typical iterative solvers are, for example, the Jacobi method, the Gauf-
Seidel method, Krylov subspace methods such as the conjugate gradient (CG) method or
the generalised minimal residual (GMRES) method, or multigrid methods. The interested
reader is referred to Press [210] for details.
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3.4 Continuum-Mechanical Fundamentals

Continuum mechanics provides a convenient and flexible framework for modelling and
simulating the deformation behaviour of a mechanical body as well as the stress and
strain distributions that occur within such a body if it is subjected to a load. Being
derived from general balance relations, continuum mechanics can be applied to many
different problems. Among the numerous applications in the field of biomechanics, skeletal
muscle modelling is just one example. Due to the fact that the physiological working
range of many muscles involves changes in length of 50 % and more [32|, a continuum-
mechanical skeletal muscle model must be based on the theory of finite deformations.
Therefore, a brief introduction to finite-deformation continuum mechanics is provided
in the following. For more details, the interested reader is referred to Bonet & Wood
[23], Gurtin [96], Holzapfel [121], Truesdell & Noll [263], among many others.

3.4.1 Kinematic Relations

This section presents the kinematic relations required to describe the nonlinear deforma-
tion of a body B, which is defined as the connected manifold of material points P.

Motion of a Body

In continuum mechanics, the motion or placement function x assigns a material point
with position X in the reference (undeformed) configuration at time ¢y to a position in
the actual (deformed) configuration x at time ¢, cf. Figure Bl i.e.,

x = x(X,t). (3.21)

The displacement vector, u, is given by the difference of the position of a material point
in the actual configuration and its position in the reference configuration, i.e., u = x —X.
The first and second material time derivatives of the placement function are the velocity
and the acceleration fields, & and &, respectively, which are given by

. dx(X,t)

A’y (X . t
i x(X,1)

r = —/———. .22
T and & 7 (3.22)

It is important to note that any physical quantity can be defined in the Lagrangean

Figure 3.1: Motion of a mechanical body.
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and in the Eulerian framework. In the Lagrangean framework, the physical quantities
are expressed with respect to the referential coordinates, while in the Eulerian setting,
the physical quantities are defined with respect to the spatial (actual) coordinates. The
possibility to express quantities in the Eulerian representation requires the existence of
the inverse of the placement function. The unique placement function can be uniquely
inverted if the Jacobian, J, does not vanish. This yields the following relation

X = x Hx,1) if J = deta—x # 0 (3.23)

) 90X )

where det (- ) denotes the determinant operator. Following the Lagrangean setting, which
is commonly used in solid mechanics, the material time derivatives in ([8.22]) are equal
to their partial time derivatives. In contrast, in the Eulerian framework, which is often
conveniently used for fluid-mechanical problems, the material time derivatives in Equation
(B22) contain, in addition to the local time derivative, a convection term that arises due
to the fact that the derived function also implicitly depends on the time through the
spatial coordinates, which themselves are functions of time, i.e., = x(¢). In detail, the
material time derivatives of a scalar-valued function W(x,t) and a vector-valued function
W (x,t) in the Eulerian framework are given by

U(x,t) = aa—\f +grad ¥ - &, and U(x,t) = 88—\? + (grad @) & . (3.24)
Herein, the gradient operator grad (- ) = 9( - )/Ox denotes the derivative with respect to
the spatial variables, whereas Grad (-) = J( - )/0X denotes the derivative with respect
to the referential coordinates. Moreover, the dot in (3.24);, (+) - (+) indicates a scalar
product. Note that in the mathematical sense, the material time derivative equals the
total time derivative.

As common in solid mechanics, the Lagrangean description is conveniently used in the
following. Thus, the (material) deformation gradient tensor F' is defined as the derivative
of the placement function with respect to the material coordinates, i.e.,

P Ix(X,t)  ox(X,1)
T 9X 09X

= Gradz(X,1). (3.25)

In the undeformed reference configuration at time ¢y with X = x (X, ty), the deformation
gradient equals the second-order identity tensor, i.e., F(ty) = I with det F(to) = 1.
This and the fact that physically meaningful deformations prohibit the compaction of
the material body to a single mathematical point (det F' = 0, cf. also Equation (3.23))),
require that a continuous deformation process satisfies

J=det F>0. (3.26)

Based on this result, one can conclude that the inverse of the deformation gradient exists,

which is given by

ox '(xz,t) 09X
oz - Oz

It follows directly from its definition that the deformation gradient tensor is a dimension-

less quantity.

F! = = grad X . (3.27)
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Acting as basic kinematic quantity, the deformation gradient plays a key role in finite-
deformation continuum mechanics. This becomes more clear when the transport theorems
for differential line, area, and volume elements are considered, which are given by

de = FdX, da = (cof F)dA, dv = (det F)dV . (3.28)

Thus, the deformation gradient itself maps referential line elements dX to actual line
elements dz, its cofactor cof F' := (det F) F7~! transports referential area elements d A to
area elements of the actual configuration da, and its determinant relates volume elements
of the reference configuration dV' to volume elements of the actual configuration dv. Note
that area elements are defined as vector-valued quantities using the normal vector n,
i.e., da = n(x,t)da and dA = ny(X,t)dA, where, in general, the normal vectors in
the reference and actual configurations do not coincide, i.e., n(x,t) # ng(X,t). In
fact, a relation between the normal vectors of the reference and actual configurations
known as Nanson’s formula results from Equation (28], and is given by n(x,t)da =
JFT 'ny(X,t)dA.

Deformation and Strain Measures

To characterise the deformations and strains in a body, it is convenient to derive suitable
deformation and strain measures from the deformation gradient. To this end, first a
unique polar decomposition of the deformation gradient is introduced, namely

F=RU-=VR, (3.29)

where R denotes the rotation tensor, and U and V' are the right (or material) and left (or
spatial) stretch tensors, respectively. Note that the rotation tensor is a proper orthogonal
tensor with RTR = RR” = I and det R = 1, and the stretch tensors K € {U,V}
are symmetric, positive-definite tensors, i.e., K = KT and a’ K a > 0 for any non-
zero vector a. Based on the polar decomposition (3:29), the right and left Cauchy-Green
deformation tensors, C' and B, respectively, are introduced according to

C =F'F=U"RTRU =UU, B:=FF"=VRR'VI =VvV. (330

The meaning of the right and left Cauchy-Green deformation tensors is most easily appre-
ciated when expressing the square of line elements of the actual configuration by referential
line elements and vice versa, i.e.,

de-de = (FdX) (FdX) = dX -F'FdX = dX- -CdX, 531
dX -dX = (Fl'dz) (F'dz) = dz-F"'F'dx = dx-B 'dx. (3:31)
Mapping referential line elements to actual line elements, the deformation gradient must
be a two-field tensor with its first basis in the actual and its second basis in the reference
configuration. Furthermore, the first basis of the deformation gradient tensor is covariant,
while its second basis is contravariant. Covariant and contravariant basis vectors as well as
covariant and contravariant transport operations (push-forward and pull-back operations
between the reference and the actual configurations for covariant and contravariant vectors
and tensors) are briefly described in Appendix [A.1l and more comprehensively discussed
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in Markert |[162]. From the square of line elements (3.31I]), one can further conclude
that the right, contravariant and left, covariant Cauchy-Green deformation tensors are
entirely defined in the reference configuration and in the actual configuration, respectively.
Moreover, using the definitions of the right and left Cauchy-Green deformation tensors
(B30), one can see that the right and left stretch tensors are also single field tensors,
where U (such as C) is entirely defined in the reference configuration, and V' (such as
B) is entirely defined in the actual configuration. Since the right and left stretch tensors
are single field tensors, the polar decomposition (3.29) reveals that the rotation tensor
is a two-field tensor such as the deformation gradient, which transports vectors from the
reference configuration to the actual configuration.

Based on these results, it is interesting to further investigate the transport theorem for
differential line elements. To this end, the polar decompositions ([B:29]) are inserted into

Equation (3.28); to give
de = R(UIX) = V (RX). (3.32)

The first part of Equation (3.32)) can be interpreted as a stretch of the line element in the
reference configuration, followed by a rotation of the stretched line element to the actual
configuration. Further, the second part of Equation (8.32)) denotes a rotation of the line
element from the reference configuration to the actual configuration, followed by a stretch
that is carried out in the actual configuration.

Furthermore, relations between the right and left deformation and stretch tensors can
be followed from Equations (8.29) and (3.30), such that

U =R'VR, V = RUR?,

C = R"BR, B = RCR". (3.33)

It is noteworthy that the different deformation and stretch tensors are not related to
each other through the push-forward and pull-back operations of (A.6) and (A.7) of Ap-
pendix [A.T], but through the rotation tensor. In fact, both the contravariant push-forward
of the right Cauchy-Green deformation tensor as well as the covariant pull-back of the
left Cauchy-Green deformation tensor yield the second-order identity tensor.

Equations (3.31]) reveal that the deformation measures characterise the squares of line
elements. Thus, it is convenient to introduce strain measures relating the squares of
line elements of the actual configuration to the squares of line elements of the reference
configuration, i.e.,

de-dx — dX -dX =

_ JdXx.CdX -dX-dX =dX - (C-I)dX = dX -2EdX, (3.34)
| dez-dz—de B 'dz = dz-(I-B Y)dz = dz-2Adx.

Therein, E and A are the Green-Lagrangean and the Almansian strain tensors, respec-
tively. It follows directly from their definitions

E = %(C—I), and A = %(I—B‘l), (3.35)
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that the Green-Lagrangean strain tensor describes strains in the reference configuration,
while the Almansian strain tensor is defined in the actual configuration. Furthermore,
both presented strain tensors are contravariant, and hence, are related to each other
through the contravariant transport operations in (A7) of Appendix [A.I. Moreover,
as can be directly followed from their definitions, all presented deformation and strain
measures are dimensionless quantities. Besides the Green-Lagrangean and the Almansian
strains, further strain measures can be defined, cf. Truesdell & Noll [263]. These, however,
are not required in the present work.

3.4.2 Stress Measures

Strains can be interpreted as a relative movement of neighbouring material particles of
a continuous body, while stresses can be understood as internal forces that these neigh-
bouring particles exert on each other. Stresses and strains are related to each other since
a strain in the body induces a stress, and vice versa. The relation between stress and
strain can, for example, be observed when compressing elastically a linear spring. The
spring reacts to the applied deformation by exerting a resistance to the deformation that
is proportional to the applied deformation. The resistance to the deformation and the
deformation itself can be measured by means of stresses and strains, respectively. Since
stresses are defined as forces per area, their physical dimension is force per unit area.

The concept of a stress tensor goes back to Cauchy, who introduced his lemma and
theorem in 1823. Cauchy’s lemma states that the traction vectors at a material point on
different sides of a surface, which notionally divides the material body into two pieces,
have the same value but opposite directions, i.e.,

t(x,t,n) = —t(x,t,—m), (3.36)

where t is the traction vector and n denotes the outward-oriented normal vector of the
actual configuration. The surface traction vector is not a usual field function since it
depends in addition to position and time on the orientation of the normal vector. In
order to replace the traction vector by a more convenient quantity, i.e., a proper field
function, Cauchy introduced his theorem, which reads

t(x,t,n) = T(x,t)n(x,t), (3.37)

where T' denotes the Cauchy stress tensor. Due to the fact that the Cauchy stress relates
incremental surface force elements dkg of the actual configuration to actual area elements,
i.e.,

dks = tda = Tnda = Tda, (3.38)

the Cauchy stress is also called true stress and is obviously a quantity of the actual
configuration.

Two further stress measures, namely the Kirchhoff (or weighted) stress and the 1% Piola-
Kirchhoff (or nominal or engineering) stress, can be introduced by applying the transport
theorem for area elements ([3.28), to relate the actual area element to its referential coun-
terpart, i.e.,

dks = Tda = T (cof F)dA = T (det F) F"'dA = TF"'dA = PdA. (3.39)
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While the Kirchhoff stress tensor T (x,t) := (det F')T is completely defined in the ac-
tual configuration, the 1% Piola-Kirchhoff stress P(x,t) := (det F)T F* ! is a two-field
tensor, in which the second basis was pulled-back to the reference configuration by a co-
variant transport. Thus, the 15¢ Piola-Kirchhoff stress relates an actual force element to
a referential area element.

The interpretation of the 15° Piola-Kirchhoff stress as a partial pull-back of the Kirchhoff
stress tensor inspires the definition of the 2"¢ Piola-Kirchhoff stress. Thus, the 2°¢ Piola-
Kirchhoff (or reference) stress is obtained by also pulling the first basis of the Kirchhoff
stress to the reference configuration using a covariant transport, i.e.,

S(X,t) =F'TF''=F'P=(det F)YF'TF'. (3.40)

Obviously, the 2°¢ Piola-Kirchhoff stress is entirely defined in the reference configura-
tion, and, similar to the Kirchhoff stress, it has no direct physical interpretation. From
Equation (340) one can follow that the Kirchhoff and the 2"¢ Piola-Kirchhoff stresses
are related to each other through covariant push-forward and pull-back operations for
second-order tensors. Indeed, all of the presented stresses are covariant. It is furthermore
noteworthy that if the Cauchy stress is symmetric, the Kirchhoff and the 2°¢ Piola-
Kirchhoff stresses are also symmetric, while the 15¢ Piola-Kirchhoff stress is not. Further
stress measures can be defined, which are, however, not relevant in this work.

The introduction of stress and strain measures of the reference and actual configura-
tions inspires the concept of conjugate variables. To this end, scalar products between
(covariant) stresses and (contravariant) strains of the same configuration are computed
according to

S-E=(F'F)S - E(F'F)=(FSF'). (FF''EF ') =T A, (3.41)

yielding the conjugate pair of the reference configuration, {S, E'}, and the conjugate pair
of the actual configuration, {7, A}.

3.4.3 Balance Relations

Being based on physical observations, the balance relations are axiomatically introduced
within a continuum-mechanical framework. For a mechanical body B the balance relations
combine information given for the body (e.g. motion or deformation) with influences
originating from outside the body (e.g. contact or gravitational forces).

In general, the balance relations are introduced as an equation for the entire mechanical
body in a global sense. However, in continuum mechanics, one is particularly interested
in local relations that are valid for each material point of the mechanical body. To this
end, local balance relations valid for the material point are deduced from their global
counterparts. Moreover, the balance relations can either be formulated in the reference
configuration or in the actual configuration — the latter are presented in this section.

In general, mechanical and thermodynamical balance relations can be introduced. The
mechanical balance relations are the balance of mass, the balance of momentum, and the
balance of angular momentum. The thermodynamical balance relations are the balance of
energy and the balance of entropy. The balance of energy is an important relation when
taking into account temperature effects, which are not considered in this work. Further,
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the balance of entropy in conjunction with the second law of thermodynamics, which
states that the entropy production in a closed system can never be negative, are used
to formulate thermodynamic-sound constitutive equations. Similar to Hill-type muscle
models, this work assumes a priori a superposition of the active and passive stress con-
tributions. Further, neglecting viscous effects, the passive behaviour of the muscle tissue
is modelled as an hyperelastic material. For hyperelastic materials, the result of the eval-
uation of the second law of thermodynamics is well known. Following this, instead of
explicitly introducing the thermodynamical balance relations, their results are directly
adopted in this work.

Balance of Mass

The balance of mass states that, in a closed system, the mass of a body does not change
in time. This directly yields the global form of the balance of mass

d
— dv = 0 3.42

where p denotes the (mass) density. To derive the local form of the balance of mass,
first, the time derivative is carried out, whereby one has to keep in mind that the actual
volume element depends on the time. Inserting the time derivative of the volume element,
(dv)" = (div &) dv, and dropping the integral yields the local form of the mass balance,

p+ pdive = 0. (3.43)

Balance of Momentum

The balance of momentum states that the change in time of the momentum of the body
equals the sum of the forces acting on the mechanical body at the vicinity and from the
distance. In terms of mathematics, this yields the global momentum balance

d
— [ pxdv = Tnda + / pbdv. (3.44)
dt Js o8B B

Therein, pb denotes the supply term, which is usually the volume-specific gravitational
force. To derive the local form of the momentum balance, one first carries out the time
derivative on the left-hand side of ([8.44]). To simplify the result, the time derivative of the
volume element and the local mass balance (8:43)) are used. Next, the divergence theorem
(or Gauk’s theorem) is applied to transform the surface integral into a volume integral.
Finally, the integration can be dropped. This yields the local balance of momentum

p& = divT + pb. (3.45)

Equation (3.45), also known as Cauchy’s first law of motion, is the most important relation
in continuum mechanics.
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Balance of Angular Momentum

Within the balance of angular momentum (moment of momentum), the change in time of
the body’s angular momentum is balanced with the moments acting on the body evoked
by internal and external forces with respect to the same arbitrary reference point. This
yields the global balance of angular momentum

G f@xswa = [ @xTindis [@xppan. 3o

Following the same procedure as before and inserting the local forms of the mass and
momentum balances, ([3.43)) and (8.45]), respectively, Equation (3.46]) yields the local form
of the balance of angular momentum (Cauchy’s second law of motion), viz.

0o =1xT. (3.47)

A 3 3
Using the definition of the axial vector, t := %ETT = %I x T, where E denotes
the third-order Ricci tensor, the local balance of angular momentum (B.47) yields the
symmetry of the Cauchy stress tensor

T = T". (3.48)

Note that, according to Section B.4.2] the symmetry of the Cauchy stress implies the
symmetries of the Kirchhoff and 2"¢ Piola-Kirchhoff stresses.



4 Biophysical Cell Modelling of the
Neuromuscular System

The aim of this chapter is to establish a novel model of the neuromuscular system that is
biophysical in all main parts. To this end, a biophysical model of the motor neuron pool
is coupled to a biophysical model of the muscle units.

An important property of neurons and muscle cells alike is the electrical excitability of
their cell membrane, cf. Section 2.3l Biophysical models of cellular membrane dynamics
that describe the flow of ions crossing the sarcolemma are often based on the Hodgkin-
Huxley formalism. Therefore, this chapter presents the classical Hodgkin-Huxley model
in Section [4£.Il An extension of this description to a two-compartment model is presented
in Section by reviewing the model of a motor neuron pool of Negro & Farina [186)].

Section describes the model of the excitation-contraction coupling in skeletal muscle
fibres of Shorten et al. [240] and its extension to non-isometric contractions. Further, the
model of Shorten et al. [240] is extended to a description of the motor units of a muscle.
To simulate the entire neuromuscular system, Section [£.4] couples the resulting model of
the muscle units to the model of the MN pool of Negro & Farina [186]. Representative
simulations demonstrate the capacity of the integrated model.

4.1 The Hodgkin-Huxley Model of the Membrane
Electrophysiology

In a series of papers published in 1952, Hodgkin and Huxley investigate the flow of electric
current through the cell membrane of the giant axon of a squid. They were awarded the
Nobel Prize in Physiology or Medicine in 1963 for their discovery of the ionic mechanisms
in the cell membrane during an action potential. In a summary paper [120], the authors
develop a mathematical description of the membrane behaviour based on their experi-
mental results. Their key idea was to model the membrane of electrically excitable cells
as an electrical circuit and to represent currents flowing through a large population of ion
channels based on voltage-dependent gating properties [187|. The form of this description
has been used as the basis for almost all other ionic current models of excitable tissues.
The Hodgkin-Huxley model is briefly presented here, as it builds the foundation for the
MN model and the model of the skeletal muscle membrane used in this work.

Cell membranes are selectively permeable to (charged) ions, and consequently they are
able to separate electrical charges. In the context of modelling, this can be represented
by assigning a capacitance to the cell membrane. The law of capacitance states that
the electric charge of a capacitor equals the voltage difference across the capacitor times
its capacitance. Taking the time derivative of the law of capacitance, the membrane
capacitance, C,,, times the temporal change of the membrane potential, V,,, equals the

41
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(negative) sum of the ionic currents crossing the membrane, I;,,:

oV,

I, = C,—"

+ Lion = 0, (4.1)
where I, denotes the total current flow across the cell membrane. The Hodgkin-Huxley
model considers currents through sodium and potassium channels, Iy, and I, respec-
tively, and a leakage current I; representing the natural permeability of the membrane
to, for example, C1™ ions. Further, a current I, is considered that allows to stimulate
the model from outside:

[ion = [Na + [K + [L - [stim- (42)

Note that, by convention, a positive sign indicates an outward current with the exception
of Iyim, where a positive sign indicates an inward current. Based on Ohm’s law, the
membrane current of a given ion type i, with i € {Na, K, L}, is proportional to the
membrane’s conductance for this ion species and to a driving force in the form of the
difference between the membrane potential and the ion’s equilibrium potential, E;:

I = g (Vm - E@) ) (4-3)

where g; denotes the conductance per unit area for ion species 7 and is the inverse of the re-
sistance. While the leakage conductance, gy, is assumed to be constant, the conductances
for the potassium and sodium channels depend on the membrane potential:

gk = grm’, gNa = Gnam’h. (4.4)

Therein, gx and gy, denote the maximum values of the respective conductances, and n, m,
and h are gating variables resembling probabilities associated with the potassium channel
activation, sodium channel activation, and sodium channel inactivation, respectively [120].
The evolution equations of the gating variables are based on first-order kinetics and can
either be expressed using relaxation time constants (cf. [120]), or take the form

ow

i ay(Vin) (1 —w) = Bu(Vim) w, (4.5)
for w € {n,m,h}. The dependence of the forward and backward reaction rates 7, €
{a,(Vin), Bo(Vin)}, respectively, on the membrane voltage can be generalised using the
form

Cy + dy, exp (—met%) ’

with constants ay, by, Cu, d,, €, and f, [187]. For the sake of brevity, further details are
omitted here but can be found, for example, in [120, [187|. Figure @Ik shows the electrical
circuit used in the Hodgkin-Huxley model to represent the cell membrane. Furthermore,
parameters for the Hodgkin-Huxley model are summarised in Table [£.1]

In Figure the Hodgkin-Huxley model is used to simulate a train of APs at a
discharge rate of 50 Hz. For this simulation, a stimulating current of Iy, = 20 uA/cm? is
applied for 0.5 ms at times ¢t = 0, 20, ...,80ms. Initial conditions are listed in Table [£.2]

Nw = (4.6)
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Figure 4.1: Hodgkin-Huzley model. (a) Electrical circuit equivalent to the model. Resistors
with an arrow indicate voltage-dependent conductances. The membrane potential, V., equals the
difference between the intracellular potential, ¢;, and the extracellular potential, ¢p.. The driving
forces in the model are the differences between the membrane potential and the corresponding
equilibrium potentials, which are represented by batteries. (b) Simulated train of APs due to
external stimuli at t = 0,20, 40, 60, 80 ms.

Cm JNa Ik gL Eng Ek Ey
1.OpF/cm? 120.0mS/cm?  36.0mS/cm? 0.3mS/cm? 40.0mV -87.0mV  -64.387mV

Table 4.1: Parameters for the Hodgkin-Huxley model.

Vin n m h
-75.0mV - 0.325[—| 0.05[—-| 0.6]]

Table 4.2: Initial conditions for the Hodgkin-Huzley model.

The Hodgkin-Huxley model can also be driven by applying a lower, long-lasting stimu-
lation current. For example, an output discharge rate of approximately 50 Hz as in Figure
Ib, can be achieved by constantly applying I, = 4.1 uA/cm? to the MN model. This
type of stimulation is more realistic, as MNs receive permanently synaptic input of varying
intensity form different sources. This is commonly simulated by superimposing a mean
input current with noisy signals representing, for example, synaptic noise, cf. Section [£.2.3]

Hodgkin-Huxley-type models are commonly formulated as systems of nonlinear ODEs
for V,, and the gating variables m, n, and h, cf. Equations (£I)) and (&3]), respectively.
Making use of the abstract representation for ODEs B.8), y = [V;,, m,n, h]T € RY. The
model of Hodgkin & Huxley [120] consists of a single compartment and considers ionic
currents for sodium and potassium as well as a leakage current. Based on the same
formalism, more detailed models have been proposed in the literature. These models
typically distinguish more ionic currents, and/or subdivide the modelled membrane into
multiple compartments, which are coupled to each other, see e.g. |2, 232, 272|. Further
information on the Hodgkin-Huxley model and its variants can be found, for example, in
Nelson [187], Noble [194], and in a critical review of Meunier & Segev [172].
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4.2 Modelling Motor Neurons and the Motor Neuron
Pool

Based on the Hodgkin-Huxley formalism, Cisi & Kohn [39] proposed a compartmental
model for the simulation of spinal cord MNs. The number of simulated compartments for
each MN is limited to two in order to balance the biological realism and the computational
load [39]. In detail, the dendrites are lumped together in one compartment. The second
compartment represents the soma. Somatic APs are assumed to propagate along the
axon, which is not modelled explicitly, and are transferred to the muscle fibres at the
neuromuscular junctions. To be able to solve Equation (4.5) analytically, Cisi & Kohn
[39] approximate the time courses of the reaction rates (£6) by rectangular pulses. Negro
& Farina [186] discard this approximation and solve the ODEs for the gating variables
(4.5)) using functions of the form (4.6]) provided by Traub & Miles |262|. This model of
Negro & Farina [186] and its parametrisation are adopted in this work for the simulation
of spinal cord MNs.

4.2.1 Mathematical Description of the Motor Neuron Model

The MN model of Cisi & Kohn [39] distinguishes the membrane potential in the dendrites
and in the soma, V4(t) and V5 (t), respectively, given by

8Vd 8V$
Cogrs = ~TonVi) =LV V), CLgt = —Lion(Vi) = I6(Vi, Vi) - (47)
The two equations are linked to each other through coupling currents Ig and [}, where
IS, = —I% due to the conservation of electric charge. Further, in Equation ([&7), I¢,

and I; are the ionic currents crossing the membrane of the dendrites and the soma,
respectively. For the dendrites only a leakage current I¢ is considered, while for the soma
a leakage current I}, a sodium current Iy,, a fast and a slow potassium current, Ix; and

Ik, respectively, and an external current [, are considered:
e, =1, IE, = I + Ing + Ixg + Iy — Lgtim - (4.8)

Cisi & Kohn [39] reduced the number of ionic currents to a minimum that still enabled the
reproduction of a reasonably large set of neuronal properties. The slow potassium current,
for example, has been included to incorporate the afterhyperpolarisation, which impedes
the generation of subsequent APs, cf. Section 2.3.2l The electrical circuit corresponding
to the MN model of Cisi & Kohn [39] is depicted in Figure

Similar to the approach of Hodgkin & Huxley [120], the description of the ionic currents
is based on Ohm’s law, i.e., the currents equal a conductance times a potential difference,
i.e.,

If = ¢t (Vi—Ey), I; = g; (Ve —EL),
L = go(VE-Vs), Ine = gnva (Vi — Ena), (4.9)
Iy = gxr(V,y — Ek), Ixs = gxs(Vy — Ek).

Therein, Ey, Ey,, and Ey are the equilibrium (or Nernst) potentials, go denotes the
(constant) coupling conductance, g¢ and g§ are the (constant) dendritic and somatic
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Figure 4.2: FEquivalent electrical circuit of the motor neuron model. Resistors with an arrow
indicate voltage-dependent conductances. The dendritic membrane potential, V,g, equals the dif-
ference between the dendritic intracellular potential, gbf, and the extracellular potential, ¢.. The
somatic membrane potential, V.5 | equals the difference between the somatic intracellular potential,

2, and the extracellular potential, ¢.. The driving forces in the model are the differences between
the membrane potentials and the corresponding equilibrium potentials, which are represented by

batteries.

leakage conductances, respectively, gn, is the sodium channel conductance, and gxy and
gk, represent the fast and slow potassium channel conductances, respectively. To model
the membrane potential dependence of gn,, gk, and gk, gating variables m, n, h, and ¢
are introduced, together with the maximum conductances, gnq, gk, and ggs:

GNa = gNa", gxkr = Grrnt, grs = Jrsqh. (4.10)

The evolution of the gating variables, w € {m, n, h, ¢}, is given by Equation (&3] using
the respective forward and backward reaction rates given in Equation (£6]). Together
with the equations for the dendritic and somatic membrane potentials (£7), this yields
a nonlinear system of six coupled ODEs. Using the abstract representation of (3.8]),
y=1[V4 Vi m, n, h, q/f €RS. A complete description of the mathematical equations
of the MN model of Negro & Farina [186] is included in Appendix [Bl

4.2.2 Motor Neuron Pool Modelling

To simulate the behaviour of a MN pool, each MN is described by the equations given
above. Note that the equations for one MN can be solved independently of all other
MNs, since the modelled MNs are not coupled to each other or do exchange information.
The MNs of a pool are only related to each other through synaptic input components
common to several MNs and the assigned MN parameters, e. g. the excitation threshold.
As described in Section 2.4.3] MN excitation thresholds are distributed across a MN pool,
whereat many low-threshold MNs and few high-threshold MNs are found, cf. e. g. Powers
& Binder |207|, Thomas et al. [259]. The MN model of Negro & Farina |186] accounts for
this distribution by specifying extreme values for the electrical and geometrical properties
of the MNs in a pool, and interpolating exponentially between these extreme values to
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find the properties of a given MN. To do so, it is convenient to number the MNs in
the pool in an ordered sequence, e.g., starting from the MN with the lowest excitation
threshold (MN number 1) to the highest-threshold MN (MN number N, with NV being the
number of MNs in the pool). Let §; and ¢, denote the lower and upper extreme values of
a property, respectively. Following Negro & Farina [186], the corresponding value of the
i-th MN with i € {1,..., N} is determined from

0 = & + 5u1005l exp (In (100) %) : (4.11)
The extreme values of the electrical (soma- and dendrite-specific resistances) and geomet-
rical properties (length and diameter of soma and dendrite) used in the interpolation are
adopted from Cisi & Kohn [39] and are provided in Appendix Bl It is noteworthy that
due to the assigned parameter ranges, a size-ordered MN recruitment pattern is observed,
when applying a common stimulation current to the entire MN pool [39]. This behaviour
is also experimentally observed, cf. Henneman et al. [112, [113|. Further parameters such
as equilibrium potentials and membrane capacitance (cf. Appendix [B]) are also adopted
from Cisi & Kohn [39], who based their model on a broad range of experimental data
available from the literature.

4.2.3 Input to Motor Neurons

Spinal cord MNs constantly receive excitatory and inhibitory postsynaptic inputs from
various sources, for example, from the motor cortex via the corticospinal tract, from the
brain stem, from afferent neurons, and from interneurons. Due to the temporal and spatial
summation of these postsynaptic potentials, the MN’s membrane potential is permanently
subject to random fluctuations [35]. To account in the model for these fluctuations, the
synaptic input current to each MN contains noise components. Furthermore, components
in the input signal can be different for each MN or common to (parts of) the MN pool
depending on the origin of the input. In detail, a cortical input current /-;, common to
the entire MN pool, is considered. This input consists of two parts, a mean component
I, and a noise component I7,. The fluctuating component, 7, is modelled as coloured
Gaufian noise (bandwidth 0.5-40Hz), cf. [186]. Gaufian white noise refers to a random
signal with zero mean, constant power spectral density, and Gaubian (normal) amplitude
distribution. Further, a second common input component Ig; is considered represent-
ing, for example, signals from the brain stem, interneurons and afferent neurons. This
component is modelled as band-limited (0-100 Hz) Gaufian white noise [186]. Addition-
ally, an independent signal I;y for each MN is considered representing synaptic noise,
which is modelled as band-limited (0-100 Hz) Gaufian white noise [186]. The specific
forms of the components are chosen based on literature data, cf. Negro & Farina [186].
The synaptic input signal for each MN is a linear combination of these components, i.e.,
Tsim = (1% + 1)) + Isr+ I . Note that the independent noise component, the secondary
common input component, and the fluctuating cortical component contain positive and
negative values, representing excitatory and inhibitory signals, and variations from the
mean cortical input, respectively.
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4.2.4 Behaviour of the Motor Neuron Model

To demonstrate the basic behaviour of the MN model, MATLAB’s build in solver ODE113
is employed to approximate the solution to the governing differential equations using
optimised time steps within intervals of 1 ms. Figure [£3h shows a single AP of a high-
threshold MN. Figure depicts a low-threshold MN discharging a train of APs in
response to an input signal as described in Section [£.2.3l
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Figure 4.3: (a) Simulated single AP of a high-threshold motor neuron. (b) Simulated train of
APs of a low-threshold MN.

The following examples demonstrate the behaviour of a MN pool by considering 100
MNs with geometrical and electrical properties according to Equation (£IT]). The simu-
lation time is 10s, and the sampling rate in all simulations is 1000/s. In the first example,
a constant mean cortical input current of 1%, = 0.005 A /cm? is chosen for all MNs. Fur-
ther, also common to all MNs of the pool are input components I, and Ig; (zero mean,
standard deviation SD=0.00074). Individual to each MN is the synaptic noise compo-
nent I;y (zero mean, SD=0.0021). All input components are modelled as described in
Section 23 Figure [L4h shows the coefficient of variation (CoV, defined as the ratio of
the standard deviation and the mean multiplied by 100 %) of the input signal for each
MN in the pool.

Due to the applied input signal, 85 out of the pool’s 100 MNs are recruited. The
discharge rates of nine selected MNs are depicted in Figure [4.4c. Figures and
show the temporal mean of the discharge rate and the CoV of the interspike interval (IST),
respectively, of all active MNs.

The average discharge rate of most MNs in the simulation ranges from 10-16 Hz for
the applied synaptic input signal (cf. Figure[4.4b), which compares well to experimentally
determined MN discharge rates at low force and EMG levels, cf. e.g. Bellemare et al.
[13|, Farina & Falla [69]. While the CoV of the input signal is approximately 44.5%
for all MNs, cf. Figure [£4h, the CoV of the ISI is around 20% for most MNs, and
only increases for larger MNs discharging few APs, see, for example, MN number 81 in
Figure [£ 4. The CoV of the ISI for isometric contractions of human muscles generally
ranges from 10 to 30 %, cf. Nordstrom et al. [195].



48 Chapter 4: Biophysical Cell Modelling of the Neuromuscular System

a) 46 ‘ ‘ ‘ b) 16

12

S
t

CoV of the Input |%|
=
(&

Mean Discharge Rate [Hz|
oo

44
4,
43.5+
43 ‘ ‘ : ‘ 0 ‘ ‘ : ‘
20 40 60 80 100 20 40 60 80 100
MN Number [ | MN Number [ |
c) 25/ ‘ d)

1

u 80+
20 2|
— | a1 | »O\—o
% 41 ‘ : 60
~ 157 51 <2
gb il 61 =
% 106 71 = 40
B2 8l =
[ [=}
z. “ 90l
S 5t 20

2 4 6 8 10 20 40 60 80 100
Time [s] MN Number | |

Figure 4.4: Input-output behaviour of the motor neuron model. (a) Coefficient of variation of
the input signal. The mean of the input signal is 0.005 nA/cm? for all MNs. (b) Temporal mean
of the discharge rate for all 85 active MNs. (c) Discharge rates of nine selected MNs of a pool
consisting of 100 MNs. The numbers of the depicted MNs are displayed in the legend. (d) CoV
of the interspike interval for all active MNs.

The second example illustrates the behaviour of the MN model for synaptic input signals
of different magnitude. To do so, an input scale factor 6, € [0, 10] is introduced. Similar to
the previous example, the considered MN pool consists of 100 MNs, the simulation time is
10, the sampling rate is 1000/s, and a mean input current of I7% = 0.005 #A /cm? (before
scaling) is applied. Two scenarios, called WN and NN, are considered. In scenario WN it
is assumed that the individual synaptic noise increases when cortical input is increased,
while the amplitude of the fluctuations in the cortical signal and the amount of secondary
input remain at the same level. Hence, the synaptic input current is modelled by [, =
O, 17+ 1%+ Isr++/0, I1n, where the individual input components are modelled as described
in Section [4.2.3l Note that this synaptic input current is not necessarily physiological. In
reality the fluctuations in the cortical signal and the amount of secondary input to MNs
might also increase with increasing mean cortical input. The second scenario, called NN,
is included to demonstrate the effect of fluctuations in the synaptic input to MNs. To
do so, only the mean component of the cortical input is considered, while all fluctuating
components are excluded, i.e., Iy = 05 7.
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Figure 4.5: Mean discharge rates for each MN in a pool of 100 MNs, and for varying synaptic
wmput current strengths. Colour bars on the right indicating discharge rates in Hz also apply to
(a). (a,b) Average MN discharge rates, when fluctuations are present in the synaptic input to
MNs (scenario WN). (¢) The average CoV of the ISI of all active MNs versus the input scale
factor for scenario WN. (d) Average MN discharge rates, when no fluctuations are present in
the synaptic input to MNs (scenario NN ).

For scenario WN Figures[4.5h and depict for different combinations of input scale
factor and MN number the discharge rates averaged over the 10s simulation time as
surface plot and as contour plot, respectively. For comparison, Figure shows the
contour plot of the discharge rates for scenario NN. Figure [L.3k plots for scenario WN the
CoV of the ISI averaged over all active MNs versus the input scale factor.

Although not necessarily physiologic, the specific form of the synaptic input current of
scenario WN has been chosen such that the CoV of the IST of the MN discharges is ap-
proximately 20 % for a wide range of input scale factors, cf. Figure d35k. The value of 20 %
has been chosen in agreement with data of isometric contractions of human muscles. For
example, Nordstrom et al. [195] reported 10-30 % for isometric contractions in humans.
In the model, the CoV of the IST exceeds 30 % only for very low input scale factors and
for input scale factors ranging from 4 to 6, which is beyond the physiological range (see
further below). For low input scale factors, and hence low synaptic inputs, many MNs
are just recruited. The increased CoV of the ISI at low synaptic inputs corresponds to
the experimental observation that the variability in the ISI of a MN is marked close to
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its recruitment and declines with an increase in contraction intensity, cf. Duchateau &
Enoka [57] and references therein.

The mean discharge rates due to existing or non-existing fluctuations in the synaptic
input to MNs are only similar for low inputs, cf. Figures and [£5d. In detail, for
fs < 2.5 the mean and standard deviation of the difference between the discharge rates of
the two scenarios are 1.92 Hz and 2.37 Hz, respectively. The maximum difference in this
region is 11 Hz, and is observed for MN numbers 78, 88, 90, and 91 and for scale factors
ranging from 1.4 to 2.5. The mean discharge rates are generally higher when fluctuations
are considered in the input signal to MNs for 6, < 2.5. For input scale factors ranging from
2.5 to 4, different behaviours are observed for the different scenarios. When fluctuations
are not considered in the input signal (scenario NN), low- and medium-threshold MNs
stop discharging APs, while the MN discharge rates in scenario WN further increase. A
decrease in the discharge rates is observed in scenario WN only for even higher synaptic
inputs (fs > 4). The observed behaviour that MNs stop discharging APs at higher
injected currents can also be observed in the Hodgkin-Huxley model (result not shown).
In experiments, however, this behaviour is not observed. Instead, MN discharge rates
reach a plateau, cf. Duchateau & Enoka [57]. It should be noted though, that the range
of input scale factors considered here largely exceeds the physiological range of synaptic
inputs to MNs (physiological range: 0, < 3, i.e., 0, % < 0.015puA/cm?). Comparing
the mean discharge rates of the two scenarios, one can conclude that fluctuations in the
input signal not only introduce variability in the IST of the MN discharge rates but also
influence to a large extent the mean MN discharge rates averaged over the 10s simulation
period. This observation can potentially be explained by nonlinearities in the MN spiking
process.

Further, the exponential distribution of parameters is reflected in the shape of the
contour plot. This can be observed, for example, in Figure d.5b at an input scale factor of
three. Here, the majority of MNs (those with lower MN numbers) discharge APs at a rate
of 30 to 40 Hz, and few MNs with higher MN number discharge APs at lower frequencies.
The mean discharge rates of 30 to 40 Hz for 6, ~ 3 compare well to the peak discharge
rates observed in human non-ballistic isometric contractions, which typically range from
20 to 50 Hz, cf. Bellemare et al. [13]. Note that much higher instantaneous discharge
rates (>100Hz) are observed in human muscles at the onset of ballistic contractions, cf.
e.g. Duchateau & Baudry [56|, Duchateau & Enoka [57], Farina & Falla [69]. Ballistic
contractions are characterised by high MN discharge rates, brief contraction times, and
high rates of force development [283|. Further, the form of the MN discharge rates implies
that most MNs of the pool are recruited at relatively low synaptic inputs. Therefore, at
low synaptic input levels, and hence low force levels, force control relies mainly on the
recruitment of MUs, while at high synaptic input levels, and hence high force levels,
rate modulation remains as the mechanism for varying the force. This behaviour is in
agreement with experimental observations, cf. Duchateau & Enoka [57].

It is furthermore noteworthy that, when using the presented MN model, high-threshold
MUs cannot reach very high discharge rates, since at the required synaptic input levels
(05s>8), low-threshold MNs have already stopped discharging, cf. Figure[43l From a phys-
iological point of view, this behaviour is not reasonable, as high-threshold MNs innervate
fast-twitch muscle units, whose twitches only fuse at high discharge rates. The actual
behaviour of the MN pool at high synaptic inputs remains still unresolved. According
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to Duchateau & Enoka [57|, this is largely due to technical factors limiting the ability
to record the maximal discharge rate of high-threshold MUs, and to follow low-threshold
MUs over the full range of contraction forces.

4.3 Modelling the Subcellular Behaviour of Skeletal
Muscles

The signaling pathway from electrical excitation to contraction and force generation in
skeletal muscles (see Section 2.5.2)) is extremely complex and to date not completely un-
derstood [161]. Due to this complexity, most research groups specialise on a certain aspect
of the excitation-contraction coupling rather than trying to capture the entire pathway.
This might explain why a large number of mathematical models exist in the literature
describing biophysically a certain component involved in the excitation-contraction cou-
pling, but hardly any model has been proposed that represents the entire signaling path-
way. An exception is the model of Shorten et al. [240], which combines several models
of components to describe the subcellular processes leading from electrical activation to
cross-bridge cycling and isometric force generation in skeletal muscle cells.

The main advantage of the model of Shorten et al. [240] is that it resembles closely the
actual cellular biochemical events leading to force generation in skeletal muscle fibres, i.e.,
the model includes descriptions of the membrane electrophysiology, calcium dynamics,
and XB cycling [240]. The model was validated using slow-twitch and fast-twitch skeletal
muscles of mice at different stimulation frequencies. Due to its biophysical basis, the
model can help to further the understanding of the physiology of skeletal muscles, and it
can be applied to investigate pathological conditions.

4.3.1 Mathematical Description of the Skeletal Muscle Model

To represent subcellular processes in skeletal muscles, the present work adopts the model
of Shorten et al. [240]. To model the complex nonlinear signaling pathway leading from
electrical stimulation to force generation in a skeletal muscle fibre, Shorten et al. [240]
combine several models of components of the excitation-contraction pathway representing

(a) the Hodgkin-Huxley electrophysiology of action potentials via currents in the sar-
colemma and T-tubules, cf. Adrian & Peachey [2]|, Wallinga et al. [272],

(b) intracellular Ca®* release from the sarcoplasmic reticulum in response to membrane
depolarisation through ryanodine receptor Ca*" release channels, cf. Rios et al. [217],

(c) calcium dynamics, i. e., the binding of Ca?* to parvalbumin, adenosine triphosphate,
troponin, and in the SR to calsequestrin, cf. Baylor & Hollingworth [12],

(d) force generation via cross-bridge cycling, cf. Campbell et al. [36, 137], Razumova
et al. [214, 215], and

(e) the cellular mechanisms behind muscle fatigue on the basis of phosphate dynamics.
Figure[L.6lschematically depicts an overview of the model of Shorten et al. [240], indicating

the individual model components (a—e, see above) and their interactions. Additional
details will be provided in the following sections.
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Figure 4.6: Schematic representation of the model of Shorten et al. [24(0], indicating its compo-
nents and their interactions. Therein, (a) indicates the model of the membrane ionic currents,
(b) is the Ca®" release model, (c) denotes the Ca®T dynamics model, (d) is the model of the XB

dynamics, and (e) shows the fatigue model.

The model of Shorten et al. [240] consists of 56 coupled ODEs describing the tempo-
ral changes of the unknowns y = [y} ., Year> Yeans Yxs Ypl' € R%. The complete
mathematical description of the model is omitted here but can be found in the appendix
of Shorten et al. [240]. In the following, a brief summary of each component model is
provided. For more details, the interested reader is referred to Shorten et al. [240] and
the literature cited therein.

Membrane Electrophysiology

Based on the Hodgkin-Huxley formalism, a two-compartment model of membrane elec-
trophysiology is utilised, cf. Wallinga et al. [272] and Adrian & Peachey |2]. The model
distinguishes ionic currents crossing the sarcolemma (superscript s) and the T-tubule

membrane (superscript ¢), I3 and If , respectively, which are given by

L = e+ g+ I+ I+ T Tin = Ing+ Ipp + i + 1+ Ik - (412)

Both currents consist of the sum of the individual currents through sodium channels
(I%,, Ik,), delayed rectifier (I3, It ) and inverse rectifier potassium channels (I35, Iig),
chloride channels (I3, IL,), and Na™-K*™ pumps (I§,% Iy.x)- Based on Ohm’s law,
an access current between the T-tubule space and the extracellular space is introduced
coupling the two compartments to each other:

Vi = Vi

Iy = R

(4.13)
Therein, R, denotes the access resistance at the T-tubule entrance, and V¥ and V! are
the potential differences across the sarcolemma and the T-tubule membrane, respectively.
Figure [£7h shows schematically the individual currents crossing the sarcolemma and the
T-tubule membrane.
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Figure 4.7: (a) The muscle membrane electrophysiological model. Shown are ionic currents
crossing the sarcolemma (superscript s) and the T-tubule membrane (superscript t) through
sodium channels (I%,, Ik,), delayed rectifier (I3, 1% 5) and inverse rectifier potassium channels
(Iin, Itp), chloride channels (1%, It,), and Na™-K* pumps (15, I5ai), as well as the access
current (current between the T-tubules and the extracellular space, I, 15¢). (b) The calcium
dynamics model. Ca*t binds to troponin, parvalbumin, and ATP in the cytosol, as well as to
calsequestrin in the sarcoplasmic reticulum.

Both the currents crossing the sarcolemma and the access currents contribute to changes
in the sarcolemma’s membrane potential, i.e.,

oV
Cro=a it = =Lt V) = Ir. (4.14)

Being based on the Hodgkin-Huxley formalism, the ionic currents for the sodium chan-
nels, delayed rectifier and inverse rectifier potassium channels, and chlorides channels are
computed as described in Section The component model describing the membrane
electrophysiology accounts for 18 of the 56 ODEs of the model of Shorten et al. [240)],
i.e., Ymem € RS, Further details are omitted here but can be found in Adrian & Peachey
[2], Shorten et al. [240], Wallinga et al. [272].

Intracellular Calcium Release and Calcium Dynamics

Incoming APs enter the T-tubule and depolarise the T-tubule membrane ensuring a si-
multaneous activation of all sarcomeres in the cross-section of a muscle fibre. Changes
in the T-tubule membrane potential are sensed by the dihydropyridine receptor. The
dihydropyridine receptor in the T-tubule membrane is linked to the RyR complex in the
membrane of the SR, which, upon activation, enables the release of Ca®" ions.

The intracellular release of calcium from the SR to the cytosol is described by a ten-
state model originally proposed by Rios et al. [217], i.e., yo,z € RY. In the model, the
RyR complex consists of a Ca?" channel and four voltage sensors, which are activated by
the T-tubule membrane potential. Each sensor can be in an activated or a deactivated
state, and the Ca®" channel can be closed or open. The rate at which the Ca®>" channel
opens (closes) increases with the number of voltage sensors in the activated (deactivated)
state.
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The released Ca®" ions in the cytosol bind to buffers such as parvalbumin and ATP
along with troponin on the myofilaments to enable XB dynamics. This is described by
first-order kinetics. For example, for the binding of Ca** to ATP,

CaZt + ATP 22 CaATP, (4.15)

kofr

this yields the following differential equations:

2+

a[c; | fCaATP] — ky,[CaZ*][ATP]

a[AafP] = kog[CaATP] — ko, [Ca®T][ATP], (4.16)
% — oon[Ca2H][ATP] — kog[CaATP] .

Therein, square brackets indicate concentrations.

After being transported back to the SR via Ca*"-ATPase, the Ca®" ions bind to calse-
questrin. Intracellular magnesium ions (Mg®") compete with Ca®* for parvalbumin and
ATP binding sites. The Ca" transport model is depicted in Figure E7b. The cal-
cium dynamics model considers two cytosol compartments, one close to the SR and one
further away. Considering calcium dynamics in both compartments separately, the cal-
cium dynamics model accounts for 18 ODEs to the biophysical muscle model [240], i.e.,
Ycap € RIB'

Force Generation via Cross-Bridge Dynamics

The binding of two Ca®*" ions to troponin C leads to a conformational change in the
troponin molecule that removes the blocking tropomyosin from the actin filament, which
allows the myosin heads to attach to the actin binding sites to form XBs.

An eight-state model of XB dynamics in skeletal muscle based on the generic models
of Razumova, Campbell, and co-workers [36, 37, 214, 215] is employed. The eight-state
model can be expressed using seven ODEs, as the concentration of XBs in the eighth
state can be algebraically determined from the concentration of the seven other states
and the total number of XBs available for XB cycling, i.e., yyz € R7. Figure £.8h shows
schematically the XB-cycling scheme. In six of the eight states XBs are detached with
either zero, one, or two Ca®" ions bound to troponin (denoted by indices 0, 1, and 2,
respectively), and tropomyosin in either the blocking (B) or non-blocking (D) position.
Only when two Ca*" ions are bound to troponin, the tropomyosin block can be removed
(By — Dy ), and the detached XB can move to a state in which the myosin head is
attached. Two attached states are distinguished — the pre-power stroke state, A, and the
post-power stroke state, A,. The transition from the A; to the A, state represents the
power stroke, i.e., the force producing step. The concentrations of XBs in the detached
state Do and the attached states A; and A, are denoted by the respective quantity in
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square brackets and are derived from the following differential equations:

T~ kI - D] + k(] - D)
— Jo[Da] + f'[A1] + go[A2],
AN~ i~ 1A+ 1) — mola) o
a[A2] _ /
5 — 1A = ho[Ai] — go[Al].

Therein, [Ca*"] denotes the concentration of calcium ions, k" and k;ﬁ are the rate coef-
ficients for the binding and unbinding of Ca®" to troponin, respectively, and kgn and l{:"c’z
denote the rate coefficients for switching between the blocking and the non-blocking state
of the regulatory unit when two Ca*" ions are bound to troponin. Further, fy, f’, ho, &', go
are reaction rate coefficients for XB cycling, where the forward attachment is governed by
fo, the forward power stroke is governed by hg, and XB detachment (from the post-power
stroke state) is governed by go, cf. Figure L.8h. Primes indicate the corresponding reverse
reactions, whereat the index ( « ), is omitted. For the sake of brevity, the differential equa-

tions for the other states are omitted here but can be found in the appendix of Shorten
et al. [240].

M e e b)
(e)e] [ Je] (X ]
By B,y By sarcoplasmic reticulum
calsequestrin
[Ca*"] [Ca**] Ca* )
Dy D, By b : :
0 0 / 2
+ .
00 °© o N\ Ca F,
I A AA
cytosol oo Az ho A o'e ’ ' cytosol

Figure 4.8: (a) The cross-bridge dynamics model. When two Ca®T ions are bound to troponin,
and the tropomyosin regulatory unit is removed, XB cycling is enabled. The states in which the
tropomyosin requlatory unit is in the blocking position and the non-blocking position are denoted
by B and D, respectively. Indices 0,1,2 indicate the number of Ca®* ions bound to troponin.
Ay and Ay are the attached pre-power stroke and attached post-power stroke states, respectively.
fo, ', ho, b and go are reaction rate coefficients for the XB cycling. Previously published in [111].
(b) The phosphate dynamics model. P; is produced during XB cycling and is transported to the
SR, where it precipitates with Ca" .

In the XB dynamics model of Razumova et al. [214], the force generated through XB
cycling is represented as the product of the stiffness of all parallel XBs and their average
distortion, i.e., the XBs are modelled as parallel aligned linear springs. Under isometric
conditions, only the XBs in the post-power stroke state bear loads with their distortion
being induced through the power stroke, cf. Figure 9. Razumova et al. [214] model the
force produced during an isometric contraction, B;,, as proportional to the concentration
of XBs in the post-power stroke state and the average distortion induced by the power
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stroke, x:
Biso(ta fs) = nTtot [AZ] Zo , (418)

Therein, 7 is the stiffness of a single XB, and T},; denotes the total number of XBs available
for XB cycling, which is assumed to be constant under isometric conditions. Note that
under isometric conditions, changes in the concentrations of XBs in the different states
exclusively depend on the time (activation history) and stimulation frequency, f,, at which
neural APs are delivered to the muscle fibres, i.e., Bis, = Biso(t, fs). Due to the fact that
the concentration of XBs in the post-power stroke state does not vanish in the resting
state (assumed at ¢t = ¢y), the active force in the model of Razumova et al. [214] does
not vanish for no activation (fs = 0). In order to have a vanishing active force for no
activation, the active force in this work is defined as

F(tv f8> = Biso@a fs) - Biso(toao)- (419)

myosi Lo
yosin PO o,
A cross-bridge A,

actin

Figure 4.9: The average distortion xg induced through the power stroke in an isometric con-
traction. In the pre-power stroke state, A1, the cross-bridge is attached to the myosin binding
site (small filled circle) and does not experience an elastic distortion. The power stroke converts
the A1 to the As state by transducing chemically stored energy into mechanical energy, which is
stored in the elastically distorted XBs. Note that the length of the sarcomere does not change
during the isometric contraction. Previously published in [111].

The model of Shorten et al. [240] was designed for the simulation of isometric muscle
contractions. An extension of the model to non-isometric conditions will be presented in

Section .3.41

Fatigue via Phosphate Dynamics

The accumulation of phosphate (P,) is believed to be the primary mechanism behind
metabolic fatigue [240]. P; is formed from the energy-providing reaction of ATP to adeno-
sine diphosphate (ADP) during SR Ca®' pumping and XB cycling when weakly bound
XBs isomerise into strongly bound XBs. The accumulation of phosphate has been pro-
posed to slow XB cycling by decreasing XB isomerisation, which results in a decreased
proportion of XBs in the force-producing state.

The model of Shorten et al. [240] only considers the P; production during XB cycling but
not the P, production that results from the pumping of Ca?" into the SR. The produced
P, can passively be transported into the SR, where it can precipitate with Ca*". Thereby,
the amount of Ca?" that is released from the SR during activation decreases, and, as a
result, less troponin regulatory units can be removed from their blocking state. With
more regulatory units in the blocking state, less active force can be generated through
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XB cycling. In summary, sustained muscle contraction causes an accumulation of P, ions,
which slow-down muscle contraction through feedback. The phosphate transport model
is shown in Figure and accounts for three ODEs in the model of Shorten et al. [240],
ie.,y, R

4.3.2 Parametrisation

Shorten et al. [240] provide two parametrisations for their muscle model — one parametri-
sation to simulate mouse soleus muscle, and one to simulate mouse extensor digitorum
longus (EDL) muscle. Both parametrisations are based on experimental data of mainly
mice and rats taken from the literature. Unfortunately, not all parameters could be taken
from a single source and not even all parameters were available for a single species. It
is assumed that the parameters are compatible and that the model is also applicable to
other mammals due to identical underlying biophysics.

Soleus muscle in many species has the highest portion of slow-twitch muscle fibres of
all muscles, reaching up to 100 % in some animals such as guinea pig and cat, cf. Ariano
et al. |3], Burke et al. [31]. For rat soleus muscle, Soukup et al. [244] and Augusto
et al. |[5] report that almost all fibres are of type I. Therefore, it is assumed that the
parametrisation of the mouse soleus muscle of Shorten et al. [240] can be identified with
a slow-twitch (type-I) muscle fibre. In contrast to the soleus muscle, the EDL muscle
is composed of mainly fast-twitch fibres. For example, Bobinac et al. [17] and Soukup
et al. [244] found only 4-6 % type-I fibres within the EDL muscle of the rat. Further,
Augusto et al. [5] report that mouse and rat EDL muscles predominantly consist of type-
IT fibres. Thus, the parametrisation for the mouse EDL muscle of Shorten et al. [240] is
assumed to be consistent with a fast-twitch (type-II) muscle fibre. Only 30 out of the 105
parameters of the model of Shorten et al. [240] are different in the two parametrisations.
They include, amongst others, parameters describing the membrane electrophysiology,
the calcium dynamics, and the XB dynamics.

According to Heckman & Enoka [106], the mechanical properties of the muscle units
match the electrical properties of their corresponding MNs. For example, the duration of
the neuronal AHP duration and the duration of the twitch in the corresponding muscle
unit are positively correlated, cf. e.g. Gardiner & Kernell [80], Meehan et al. [166]. In
general, the MNs with low recruitment threshold innervate muscle units with high con-
traction times (slow-twitch units), while MNs with high recruitment threshold innervate
muscle units with low contraction times (fast-twitch units). The properties of human
MUs, however, do not cluster into discrete groups of type-I and type-II fibres but are
distributed continuously within a MU population [106]. Thus, to realistically simulate a
human muscle, a description of the mechanical behaviour of each muscle unit is required.
The methodology to extend the model of Shorten et al. [240] to a description of the in-
dividual muscle units of a muscle is presented in the following. To this end, the human
first dorsal interosseous (FDI) muscle is representatively simulated. This hand muscle
comprises approximately 120 MUs [106].

Many of the parameters of the model of Shorten et al. [240] cannot be determined and
few are readily available for the MUs of the human FDI muscle. Thus, it is assumed
that the basic principles of the subcellular processes are similar in different mammalian
muscles, and that the reaction rates determining these processes are comparable in mice
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and humans. Accordingly, the parameters of Shorten et al. [240] are adopted. To account
for the slower XB dynamics in human compared to mouse (cf. Campbell et al. [37]), the
reaction rates in the XB dynamics model of Razumova et al. [214] are adjusted. The
values originally proposed by Razumova et al. [214] are adopted for the simulation of the
slowest MU in the human FDI muscle. These values correspond to 0.1-times the values
used in Shorten et al. [240] for the mouse soleus muscle. Accordingly, the XB dynamics
rate constants for the mouse EDL muscle [240] are multiplied by a factor of 0.1 for the
simulation of the fastest MU in the human FDI muscle. The resulting XB dynamics
reaction rate constants are summarised in Table [4.3]

fo [ms™Y  f |[ms™ hg [msT A [msTl  go [msT

slow twitch 0.05 0.5 0.008 0.006 0.004
fast twitch 0.15 1.5 0.024 0.018 0.012

Table 4.3: Reaction rates for the cross-bridge dynamics model of the human FDI muscle. Here,
fo denotes the rate of XB attachment, f' is the rate of pre-power stroke XB detachment, hg
denotes the forward rate of the power stroke, h' is the reverse rate of power stroke, and gy is the
rate of post-power stroke XB detachment.

The XB dynamics rate constants determine, among others, the shape of a single twitch,
cf. Campbell et al. [36]. Based on the parameters given in Table [£3] Figures and
depict normalised twitches of a slow-twitch MU and a fast-twitch MU, respectively.
Instead of comparing the simulated twitches to experimental data, they are compared
to the impulse responses of a critically damped, second-order system, which has been
proposed by Fuglevand et al. [76] to simulate the twitch shape. Fuglevand et al. [76] build
their model on a wide range of experimental data. The twitch rise times (contraction
times) are set as identical in the two models for this comparison. They are 93.7ms and
30.5ms for the slow-twitch and the fast-twitch MUs, respectively. The half-relaxation
times (time elapsed from peak twitch force to 50 % of this value) for the slow-twitch
and fast-twitch models are 155.6 ms (proposed biophysical model) and 159.2ms (impulse
response; 2.3 % relative difference), and 44.5ms (proposed biophysical model) and 51.1 ms
(impulse response; 12.9 % relative difference), respectively. The largest relative differences
between the two models occurs in the beginning of the rise of the MU twitches. Therefore,
Figures 4.10b and [ 10d highlight the initial phases of the twitch shapes. Note the delayed
and hence more physiological rise of the MU twitches in the proposed biophysical model.
A major advantage of the biophysical description compared to phenomenological relations
is that quantities of the modelled signaling pathway can be investigated. To illustrate this,
Figures and additionally depict the corresponding intracellular free calcium
concentrations as predicted by the proposed biophysical model.

The mechanical properties of MUs are distributed continuously across the motor
pool [105,1106]. Thus, it is assumed that the parameters of a muscle unit can be determined
from the parameter sets of the slowest MU and the fastest MU. Since data are available
for the contraction times of the individual MUs, this property is a convenient measure
for the distribution of the muscle unit parameters across the pool, cf. [76, [106, 266]. The
frequency distribution based on contraction time (time elapsed from stimulation to peak
twitch force) is nonlinear across a MU pool, i.e., small MUs have contraction times that
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Figure 4.10: Twitch forces in the proposed model (blue solid line) and the model of Fuglevand
et al. M] (red dashed line). (a,c) Comparison of normalised twitch forces of (a) a slow MU
(contraction time: 93.7ms) and of (¢) a fast MU (contraction time: 30.5ms), and their relative
differences (grey line). (b,d) First 100ms of the normalised twitch forces of (b) a slow MU and
of (d) a fast MU, and corresponding myoplasmic free calcium concentration (green line) in the
proposed model.

vary over most of the range of observed values, while intermediate and large MUs are gen-
erally fast contracting and exhibit little variation in contraction time @] Similarly to the
approach chosen for the parameters of the MN model, an exponential distribution across
the MU pool, cf. Equation (£I1), is first applied. However, the resulting distribution of
contraction times is not in agreement with experimental findings. Linear interpolation
of the parameter sets generates a much more realistic distribution of contraction times
across the MU pool, cf. Figure [£.ITh. Note that although the parameter sets are linearly
interpolated, the distribution of contraction times across the MU pool is clearly nonlinear.
Additionally, Figure[4.1Th shows the distribution of contraction times used in the model of
Fuglevand et al. [76]. Parameters for this simulation are directly adopted from Fuglevand
et al. [76], i.e., the contraction time of the slowest MU is set to 90 ms and a three-fold
range in contraction times is assigned. The maximum relative difference between the
two models is 14.4%. For the majority of MUs, the proposed biophysical model predicts
shorter contraction times than the model of Fuglevand et al. [76]. This is in accordance
with the experimental findings of Van Cutsem et al. .
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The increase in force from slow-twitch to fast-twitch MUs primarily depends on the
MU innervation number [106]. Slow-twitch and fast-twitch mammalian muscle fibres do
not show significant differences in generated active stresses [L06]. Further, only minor
differences in muscle fibre diameters are observed. Assuming that the model of Shorten
et al. [240| represents a single muscle fibre, the predicted twitch forces should be approx-
imately equal for the different model parametrisations. However, the MU force model
predicts approximately four times larger twitch forces for a slow-twitch fibre than for a
fast-twitch fibre. Using a least-squares fit, a straight line is approximated to the distri-
bution of maximum twitch forces of single muscle fibres across the MU pool. Dividing
the fibre force of each MU by the corresponding value of the approximated line yields a
much more uniform distribution of the single-twitch forces across the MU pool. To take
into account the MU innervation number, the resulting single fibre forces are multiplied
by an exponential function, as in Fuglevand et al. [76], to obtain physiological MU forces.
Therefore, the MU force is given by

Fuyy, = Fyexp (In(ry) ’ (4.20)

N
where Fi, denotes the force of the i-th MU, F; is the single fibre force, 7 is the range of
twitch forces, and NN is the number of MUs in the pool, i.e., N = 120 for the human FDI.
Although MU force summation is nonlinear at low force levels (cf. Clamann & Schelhorn
[40]), the simulated MU forces are linearly summed up to obtain the total muscle force,
Fii.e.,

N
F = Fuy,. (4.21)
=1

Based on the linear interpolation of the parameters of the muscle unit force model,
Figure[d.ITlcompares the distribution of maximum twitch forces across the MU pool to the
distribution obtained from the model of Fuglevand et al. |[76]. In the model of Fuglevand
et al. [76], the maximum twitch force of the slowest MU is set to 1 [AU] (arbitrary unit)
and the range in twitch force is set to 100 [76]. As the same exponential distribution in
the MU innervation number is used in both models, the twitch-force distribution shows
good agreement. A maximum difference of 6.3 % is observed.

4.3.3 Behaviour of the Isometric Skeletal Muscle Model

In the following, a number of representative simulations are presented to demonstrate the
capability of the proposed muscle model.

Response to Trains of Discharges with Constant Frequency

Previous examples focused on the properties of isolated twitches. From a physiological
point of view, it is more relevant to investigate the effect of multiple subsequent stim-
uli under conditions leading to fused twitches. Figure shows the simulated force
response of the slowest muscle unit to trains of stimuli at 5, 10, 20, 40, and 50 Hz. Addi-
tionally, Figure depicts the force response of the same muscle unit using the model
of Fuglevand et al. [76] with a 20 Hz stimulation frequency. As expected for slow-twitch,
low-force muscle units, a high resistance to fatigue is observed, see Burke et al. [30]. The
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Figure 4.11: Basic twitch properties in the proposed biophysical model (blue solid line) and
in the model of Fuglevand et al. [76] (red dashed line) for a MU pool consisting of 120 MUs.
(a) Contraction times. (b) Mazimum twitch forces.

slow-twitch muscle unit reaches full force output at stimulation rates of approximately
50Hz. The model of Fuglevand et al. |[76] reaches its maximum force at a stimulation
frequency of 20 Hz. The ratio of twitch force to maximum tetanic force (twitch-tetanus
ratio) of the biophysically modelled muscle unit is 0.07 (at 50 Hz stimulation frequency).
Figure shows the simulated force responses of the fastest muscle unit to trains of
stimuli at 10, 20, 40, 50, and 100 Hz. The force output clearly shows sag, i.e., a decrease
of the force. Burke et al. [30] used the property to develop sag to differentiate fast-twitch
from slow-twitch muscle units. Slow-twitch muscle units do not develop sag. For the
fast-twitch muscle unit, the model reaches full force output at a stimulation frequency
of approximately 100 Hz. The twitch-tetanus ratio is 0.12 (determined at 50 Hz stimu-
lation frequency before the force decreases). In addition, Figure shows the force
response of the model of Fuglevand et al. [76] due to a 50 Hz stimulation frequency. At this
stimulation frequency the model of Fuglevand et al. [76] reaches full force output. Since
Fuglevand et al. [76] do not model fatigue, no force decrease is observed. The twitch-
tetanus ratio in the model of Fuglevand et al. [76] is 0.11 for all MUs. The frequency
of tetanic contractions for the computation of the twitch-tetanus ratios of the proposed
model is chosen as 50 Hz, since MU discharge rates increase with increasing excitatory
synaptic input up to a certain value beyond which the discharge rate does not further
increase. Experimentally determined peak discharge frequencies in human MUs during
isometric contractions are approximately 45 Hz [76].

While Figure compares the behaviour of the proposed model only to the reference
model [76], Shorten et al. [240] also validated their model to force responses at different
stimulation frequencies. Moreover, the reader is referred to Shorten et al. |[240] for more
sustained contractions demonstrating further effects of fatigue on the force in the model.
As demonstrated by the fatiguing fast-twitch MUs, nonlinearities in the force response
due to the activation history are an important feature of the proposed model. In the
following a second nonlinearity of the model is discussed in detail.
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Figure 4.12: Force responses to stimulation trains at various frequencies of (a) the slowest MU
and (b) the fastest MU of a pool of 120 MUs. Additionally, for the same MUs in the model
of Fuglevand et al. [76] the frequency leading to mazimum tetanic force in each case is plotted

(traces indicated by (ref)).

Doublet Potentiation

It is well known that two consecutive stimuli with a short interstimulus interval yield
contractile forces that are larger than twice the twitch force (nonlinear sum) ﬂﬁ] This
effect is termed doublet potentiation. Doublets are frequently observed at the onset of
MU firing, i.e., at the recruitment of a MU, especially during ballistic contractions [@]

Doublet potentiation has been attributed to an enhanced free calcium concentration in
the myoplasm resulting from the summation of residual calcium due to the first stimulus
and the calcium release due to the second stimulus [@, 59, @] The higher concentration
of free calcium allows the formation of a larger number of XBs that contribute to the force
as independent motors, cf. Huxley [@]

Using the muscle unit force model, doublets are simulated for interstimulus intervals
ranging from 5ms to 500ms in 5ms steps. Figure shows for the slowest muscle
unit the twitch responses due to a single stimulus (thick line) and due to a selection of
doublet stimulations (thin lines). Figure shows the twitch peak recovery function
(TPRF) for the doublets. To calculate the TPRF, first, the force response of the singlet,
Fy(t), is subtracted from the force response of a doublet, Fy(t), and then, the ratio of
the maximum value of the resulting function and the maximum value of the singlet is
determined, i.e.,
max [Fy(t) — Fi(t)]

max [Fy(t)]

As the proposed model contains a description of calcium release and dynamics, it is used
to investigate if doublet potentiation is caused by an enhanced free calcium concentration
in the myoplasm. Figure shows for a singlet (thick line) and for the doublets (thin
lines) depicted in Figure the respective myoplasmic calcium concentrations for a
slow-twitch muscle unit. Furthermore, a calcium recovery function (CaRF') is introduced.
The CaRF is defined as the ratio of the difference of the integrated calcium concentrations
of a doublet and the singlet and the baseline-corrected, integrated calcium concentration

TPRF = (4.22)
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of the singlet, i.e.,
te e
Jio Fa(t)dt — [,° Fi(t) dt
i Fu(t) dt — Fu(te)(te — to)

Therein, t is the time of stimulation of the first stimulus and ¢. denotes a time at which
the calcium concentration resumed again its baseline value (¢, = 1000 ms). Figure £.13d
plots the calcium recovery function versus the interstimulus interval. Equivalently to
Figure [4.13] Figure shows the same quantities for a fast-twitch muscle unit.

CaRF = . (4.23)
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Figure 4.13: Doublet stimulations in a slow-twitch MU. (a) The normalised force of a singlet
(thick line) and a selection of doublets with different ISIs (thin lines; for ISIs up to 100 ms the IST
is increased in steps of 10ms, after 100ms in steps of 50ms). (b) Twitch peak recovery function
for doublets with ISI ranging from 5ms to 500 ms in 5ms steps. (¢) Myoplasmic free calcium
concentrations of a singlet (thick line) and the doublets (thin lines) shown in (a). (d) Calcium
concentration recovery function (see text for definition) for doublets with ISI ranging from 5ms
to 500ms in 5 ms steps.

Figures [4.13] and [4.14] demonstrate that the proposed model is able to reproduce a
marked enhancement in the force response when two consecutive stimuli with a short
interstimulus interval are applied. It is remarkable that no parameter optimisation is
required to evoke the doublet potentiation. Further, the simulations suggest that the
force enhancement is in fact due to an increased calcium concentration, which results
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Figure 4.14: Doublet stimulations in a fast-twitch MU. (a) The normalised force of a singlet
(thick line) and a selection of doublets with different ISIs (thin lines; for ISIs up to 100 ms the IST
is increased in steps of 10ms, after 100ms in steps of 50ms). (b) Twitch peak recovery function
for doublets with ISI ranging from 5ms to 500ms in 5ms steps. (c) Myoplasmic free calcium
concentrations of a singlet (thick line) and the doublets (thin lines) shown in (a). (d) Calcium
concentration recovery function (see text for definition) for doublets with ISI ranging from 5ms
to 500 ms in 5ms steps.

from the summation of residual calcium due to the first stimulus and the additional
calcium injection due to the second stimulus. Considering the evolution of the calcium
concentrations and the calcium recovery function of the fast-twitch MU (Figures
and A.141), the model furthermore predicts that the force enhancement is due to a raised
peak calcium concentration and is not due to an increased total amount (integrated values)
of calcium. Experimentally determined doublet potentiations of whole muscle are much
larger than those predicted by the model, see, for example, Kamavuako & Farina [137].
It is possible that the additional force increase is related to the muscle-tendon complex,
i.e., the system is already under tension when the second stimulus is applied. Moreover,
Nishikawa et al. [193] measured 20 % higher doublet potentiations in the soleus muscle
of wild type mice, than in the mdm (muscular dystrophy with myositis) mouse, with a
779 base-pair deletion in the N2A region of the titin gene. Based on these experiments,
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Nishikawa et al. [193] hypothesized that the calcium activation of titin contributes to the
active force generation. Hill-type or 3D continuum-mechanical muscle models need to be
developed to investigate this phenomenon in more detail.

4.3.4 Extension to Non-Isometric Contractions

Due to the fact that the original model of Shorten et al. [240] is limited to isometric
conditions, it is extended in this section to simulate non-isometric contractions of skeletal
muscle. To this end, changes in myofilament overlap are incorporated, and a distortion
dependence and cooperative effects are added to the XB-dynamics component model [214]
within the model of the excitation-contraction coupling of Shorten et al. [240].

Incorporating the Force-Sarcomere Length Relation

The force that can be exerted by a half-sarcomere depends on the number of XB con-
nections between the actin and myosin filaments, cf. Section and Huxley [128]. The
number of possible XB connections in turn depends on the filament overlap and hence on
the sarcomere length, see Gordon et al. [89]. Based on analytical considerations of the
filament overlap, Campbell et al. [37] proposed a piecewise linear relation between the
sarcomere half-length and the number of possible XB connections. The relation is de-
picted in Figure (green dashed line) assuming a direct relation between the number
of possible XB connections and the isometric active force at full activation. Experiments
on single sarcomeres, however, suggest a steeper decline of the force on the ascending
limb of the active force-length (F-¢) curve at sarcomere lengths below 1.7 um and no
active force production at lengths below 1.27 yum [89]. This is attributed to an interaction
of the myosin filament with the Z-disks at low sarcomere lengths. The red solid line in
Figure shows the experimentally determined relation between the sarcomere length
and the isometric active force at full activation. The present work uses a fourth-order
polynomial, cf. Figure (dot-dashed blue line), given by

fo(ls) = max {—1.205" + 11.505> — 41.745° + 67.6 (s — 40.3, 0} . (4.24)

Therein, ¢s denotes the sarcomere length and f,(¢s) is the normalised isometric active
force-length relation at full activation. The polynomial in (£24]) is symmetric with respect
to the optimal sarcomere length (& = 2.4 ym [32], and can be seen as an approxima-
tion to the experimentally determined force-sarcomere length relation, where the largest
deviations occur at very long sarcomere lengths. In this work, the behaviour at very
long sarcomere lengths plays a minor role since the passive stiffness of the muscle tis-
sue prevents for the most part such sarcomere lengths, cf. Section Note that the
fourth-order polynomial in (A24]) is a generic description of a muscle’s F-¢ behaviour,
cf. [287]. This approximation can be easily replaced by a different F-¢ curve that was
fitted to experimental data of a specific muscle. The advantage of using a closed-form
polynomial rather than a piecewise linear function is the smooth transition between the
different regions leading to improved computational efficiency.

To account for length changes in the model during a contraction, the approach proposed
by Campbell et al. [37] is followed. At this, average distortions (or elastic deformations)
of XBs in a sarcomere are introduced into the XB-dynamics component model. The
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Figure 4.15: (a) Normalised relation between the number of possible XB connections and sar-
comere length. Sarcomere denotes the actual relation determined from length-clamp experiments.
Campbell denotes the relation proposed by Campbell et al. ,@] This work uses the fourth-order
polynomial denoted by Polynomial (cf. Equation {[.27))). (b) Normalised force-velocity relations
for different combinations of v and 0. Figure previously published in ]

average elastic deformations among XBs in the pre-power and post-power stroke states
are denoted by x; and x5, respectively, and are schematically represented in Figure [4.16]

a) b)

Figure 4.16: Average distortions (a) x1 and (b) zo induced through filament sliding during
non-isometric contractions on the cross-bridges in the A1 and As states, respectively. Figure
previously published in ,m]

While the average distortion induced by the power stroke, xg, is assumed to be constant,
x1 and x5 account for distortions entering and leaving due to XB cycling and for distortions
imposed by shearing between thick and thin filaments [@] From the distortional balances,
Campbell et al. [37] derived the following ODEs:

0x, o [D2] ’ [A2] / [A2] e

e vt v L

. [Al] és (4.25)
a5 = “ho Ay (z2 — (x1 +20)) + 5

where (g denotes the sarcomere contraction velocity.
Further, the actively generated force is proportional to the product of the stiffness of
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all parallel XBs and their average distortions |37, 214], i.e.,
B(t, fo,ls) = 1T ([A1] 21 + [As] ) . (4.26)

In Equation (£26)), [A;] and [A3] depend only on the stimulation frequency, fs, while x;
and x5 are functions of f,; and (5. Note that in the original XB-dynamics model [36, 137,
214, 215 the number of XBs in a certain state is given in absolute values, while here, in
compliance with the model of Shorten et al. [240], concentrations are used. Hence, in the
equations for the active force (LI8) and (4£.20), the concentrations are multiplied by the
number of possible attachment sites. To account for the resting concentrations of XBs in
the pre-power and post-power stroke states as well as the F-¢ relation, the active force is
defined as

F(ta fS)ESaéS) = fK(ES) [B(ta fs>é5) - B(to,0,0)} . (427)

The F-¢ relation dominates the active behaviour of skeletal muscles under isometric
conditions at a specified level of stimulation. Under non-isometric conditions, the force-
velocity relation (F-v), i.e., the dependence of the force on the shortening or lengthening
velocity, has to be considered additionally.

Incorporating the Force-Velocity Relation

To reproduce the hyperbolic F-v relation of Hill |[117], Razumova et al. [214] introduce two
modifications into their four-state XB-dynamics model: (i) Considering nearest-neighbour
cooperative effects within the forward rate of XB attachment, fy, i.e., increased XB-
attachment probabilities due to neighbouring XBs in the force-bearing state, and (ii) in-
corporating a distortion dependence in the XB-detachment rate, gg, lead to the following
rules within the XB-dynamics model |214]:

I

fo = f(l + [;ij[exp (x—o(y—l))—l} + %:j[exp(z—z(y—l))—l}),

do = gexp (79(362 — il?o)z) ;

where g is the XB-detachment rate of an isometric contraction, and 9 controls the distor-
tion dependence. Further, f is the forward rate of XB attachment if no neighbour is in
the force-bearing state, and v controls the influence of the cooperative effects.

To show that the extended model exhibits a F-v relation as muscles fibres do, the
sensitivity of the model to the newly introduced parameters v and 1 is analysed. To
do so, in-silico experiments using the fast-twitch version of the extended model at a
stimulation frequency of f; = 100Hz are carried out. For different prescribed constant
velocities, the corresponding normalised active forces are computed at optimal sarcomere
length.

For constant rate coefficients fy and go (¢ =0, v = 1), the model predicts a linear F-v
relation, cf. Figure [LI5b. When considering nearest-neighbour cooperative effects in fy
(¥ = 0, v = 3.4), the model is able to predict a hyperbolic relation for shortening con-
tractions, but unreasonable high forces occur for lengthening contractions. The distortion
dependence in gy (v = 3.4, ¥ = 1000, 2000) mainly influences lengthening contractions.

In the next example, three shortening contractions are simulated to demonstrate the
influence of the F-¢ and the F-v relations on the active force profiles. To this end,
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the extended model is stimulated at a frequency of 100 Hz. After 500 ms of isometric
contraction at the optimal length, the fibre shortens at a constant prescribed velocity.
Three different velocities are considered: 5, 10, and 15% of the maximum shortening
velocity, vpqz-

Figure [L.17 shows the evolution of the normalised active forces (top) and the sarcomere
length (g, bottom). The profiles show, for the first part, which is identical for all three
traces, an increase in the active force due to the stimulation. After 500 ms, when the force
approximately saturates and the shortening starts, the model shows an instantaneous drop
of the force, which is due to the shortening velocity. As expected, the magnitude of the
drop increases with the shortening velocity, cf. Figure [L.15b. The model further predicts
a decrease in the force, which is due to the F-¢ relation. In detail, as the sarcomere
shortens along the ascending limb of the F-¢ relation (from the optimal length towards
smaller sarcomere lengths, cf. Figure [L15h), the region of filament overlap reduces, and
hence, the force decreases.
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Figure 4.17: Evolution of the normalised active force of the extended model for three different
shortening velocities at a stimulation frequency of 100 Hz (top). The shortening contraction is
preceded by an isometric contraction of 500ms duration at optimal length. Additionally, the
actual sarcomere length ({s) is shown for each of the force profiles (bottom). Figure previously
published in m]
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4.4 Modelling of the Neuromuscular System

The numerical experiments presented in the previous sections focused on the behaviour
of a MN pool (Section [£2) or the behaviour of a muscle unit under idealised conditions
(Section [L3). In this section, the muscle unit force model is coupled to the MN model of
Negro & Farina [186] to establish an integrated model of the neuromuscular system that
is biophysical in all its main parts. Figure provides an overview of the integrated
model, where the discharge trains predicted by the MN model are used to drive the muscle
unit force model (cf. Section 4T for details).

- RIRRRTINL
lndepeinndpellllt? —>@—> muscle unit 1

muscle unit 2

muscle unit 3

common
input

F=Y"Fuy,

RIRTIRIRN . =l
muscle unit ...

muscle unit N

Figure 4.18: Schematic representation of the structure of the biophysical model of the neuromus-
cular system. The discharge trains (indicated by the vertical bars above the arrows) predicted by
the motor neuron model are used to drive the muscle unit force model. The input to the coupled
model is the synaptic input to the motor neurons, and the output of the model is the muscle force,
which is the sum of the MU forces.

Without loss of generality, the following sections consider representatively the human
FDI muscle. The presented simulations are chosen to demonstrate the capacity of the
integrated model to be applied to many scenarios, such as, for example, physiological and
pathological tremor.

4.4.1 Coupling the Motor Neuron Model and the Muscle Unit
Force Model

The skeletal muscle model of Shorten et al. [240] is mathematically represented by a
system of stiff, nonlinear ODEs. Its numerical solution requires a much smaller time
step than the solution of the ODEs describing the MN model. Further, in this thesis,
proprioceptors that generate afferent signals are not considered explicitly, and thus, the
flow of information is unidirectional from the MN model to the muscle model. Hence,
the MN model and the MU force model are not integrated into a single model that is
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solved with a common time step. Instead, the models are solved successively. For each
MN discharge, a stimulating current of 150 zA/cm? and 0.5ms duration is applied to
the corresponding muscle unit model. This stimulation leads to a muscle fibre membrane
depolarisation and the corresponding force generation [240]. Both models are implemented
in MATLAB. For the integration of the MN model, the Adams-Bashforth-Moulton solver
ODE113 is used, while ODE15s for stiff differential equations is used to solve the muscle
unit model.

It is noteworthy that the MN model and the muscle unit force model can also be
integrated into a single framework and solved concurrently. Such an approach is necessary
when proprioceptors are considered, and hence, the muscle unit force model feeds back to
the MN model. Proprioceptors, such as e. g. muscle spindles and Golgi tendon organs, are
sensory organs providing the central nervous system with information about the state of
the muscles. Although proprioceptors can be considered as a part of the neuromuscular
system, they are not explicitly modelled in this work. If, however, a certain application
requires a more detailed description of afferent signals, models of proprioceptors |173, [174|
can be integrated in the presented models of the neuromuscular system.

4.4.2 Linear Ramp Increase and Decrease
Comparing Different Models

An advantage of the decoupled approach is that individual parts of the model can easily
be replaced. This provides the basis to quantify the effect that each model part has on the
behaviour of the whole system. Following this idea, the next case study compares parts
of the proposed model of the neuromuscular system to the corresponding parts of the
model of Fuglevand et al. [76]. Similarly to the proposed model, the model of Fuglevand
et al. |76] consists of a MN model to determine the MN discharge times and a muscle unit
force model to predict the force. In contrast to the proposed model, however, the model
of Fuglevand et al. [76] is a completely phenomenological approach. In the following, the
model of the neuromuscular system of Fuglevand et al. [76] is termed reference model.

An isometric contraction of the human FDI muscle is exemplarily simulated. The effec-
tive synaptic input and the excitation function used as input to the MN model of Negro
& Farina [186] and the reference model, respectively, are chosen to have a ramp profile.
To this end, the mean input first linearly increases up to a peak value. Symmetrically,
after reaching the peak value, the mean input decreases linearly to zero with the same
slope. The peak value of the input functions is chosen such that all 120 MUs of the FDI
are just recruited.

The MN discharge times predicted by the biophysical model of Negro & Farina |186]
are used to drive the proposed biophysical muscle unit force model and the muscle unit
force model of the reference model. Similarly, the MN discharge times predicted by the
MN part of reference model are used to drive both muscle unit force models.

Figure shows the excitation function that is used as input to the MN part of the
reference model. The discharge rates of twelve selected MNs as predicted by this model
are depicted in Figure[£I9%. Based on these discharge rates, Figures[Z.19 and [£.19g show
the resulting forces of these twelve muscle units (different colours) and the total muscle
force (thick black line) of the force part of the reference model [76] and the muscle unit
force part of the proposed model, respectively. Note that although the simulated forces
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are in arbitrary units (AU), the forces are comparable, since the twitch forces are similar
in the two muscle models, cf. Figure [£1Tb.

Figure[d.19b shows a representative synaptic input function that is used to drive the MN
model of Negro & Farina @] The ramp-shaped synaptic input is common to all MNs
and can be associated with an idealised cortical input to the motor nucleus. The ramp
profile is superimposed by independent synaptic noise (Gaufian distributed, bandwidth
0-50Hz) for each individual MN. The standard deviation of the independent synaptic
noises is selected to generate a coefficient of variation of the interstimulus interval of
approximately 15 % when a steady level of synaptic current equal to the peak value of the
ramp is simulated. The resulting discharge rates of twelve selected MNs as predicted by
this model are depicted in Figure .19d. Based on these MN discharge rates, Figures
and [.T9h show the resulting forces of these twelve muscle units (different colours) and the
total muscle force (thick black line) of the reference model @] and the proposed muscle
unit force model, respectively.

The predicted discharge rates demonstrate that both MN models account for Henne-
man’s size principle of recruitment , ], i.e., the number of recruited MUs increases
with increasing mean synaptic input. Further, both models show the “onion-skin” prop-
erty [@, @], i.e., earlier-recruited low-threshold MNs have for a certain level of synaptic
input higher discharge rates than later-recruited high-threshold MNs. Figures and
[4.19d suggest that the model of Negro & Farina Nﬁ] predicts higher discharge rates than
the MN model of Fuglevand et al. [76]. This behaviour, however, is not observed for the
entire MN pool as shown in Figure In fact, for the largest MUs, which contribute the
highest forces, the MN model of Fuglevand et al. @] predicts higher mean discharge rates
than the model of Negro & Farina [@] This might explain the fact that the reference
model predicts higher forces for the discharge rates of Figure .19, cf. Figure [4.19, than
for those in Figure [L.T9d, cf. Figure [L.TOF.

The difference between the forces of the reference model and the proposed model, cf. Fig-
ures and [£.19h, respectively, are less pronounced for the discharge rates predicted
by the model of Negro & Farina ﬂ@] shown in Figure A19d. This can potentially be
explained by the fact that force saturation in the proposed model only occurs at discharge
rates above 50 Hz, which do not occur in this simulation, cf. Figure [A.T9d.

Influence of the Rate of Change of the Input

Similar to the previous example, a ramp-shaped mean synaptic input function is applied
to the model of Negro & Farina [@] While the peak synaptic input is identical in all
simulations, different slopes are considered. In detail, the mean synaptic input rises from
zero to its maximum value in 4, 2, and 1s and decreases afterwards back to zero within
the same times. The resulting discharge rates are used as input to the proposed muscle
unit force model.

The force responses for twelve selected MUs (different colours) and the total resulting
force (thick black line) are shown in Figures L2Th-{4.2Tk for three different slope values.
Figure 4.2Td compares the total forces of the three different slopes. Although the peak
synaptic input is the same for all cases, the maximum total forces of the simulations with
medium and high slopes are 8.2% and 18.2% higher, respectively, than the total force
achieved with the lowest slope.

Although the peak synaptic input is identical for the different ramps, the integrated
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Figure 4.19: Comparison of the proposed model and the reference model M] (a) Ramp-shaped
excitation function used as input to the reference model. (¢) MN discharge rates of twelve selected
MNs as predicted from the reference model. The force predicted by (e) the reference muscle unit
force model and (g) the proposed muscle unit force model for the MN discharge rates in (c).
(b) Ramp-shaped effective synaptic current used as input to the proposed MN model. (d) MN
discharge rates predicted by the proposed MN model. The force predicted from the muscle unit
force part of (f) the reference model and (h) the proposed model for the MN discharge rates in (d).
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Figure 4.20: Comparison of the mean discharge rates for each motor neuron in the model of
Negro & Farina | (blue line) and in the model of Fuglevand et al. M] (red line).
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Figure 4.21: Behaviour of the model for slow and fast synaptic inputs. Forces generated by a
subgroup of individual MUs and total force (black thick line) for (a) slow, (b) medium wvelocity,
and (c) fast ramp contractions. (d) Comparison between the three total force profiles generated
by simulations (a—c).

model shows a nonlinear behaviour, whereat a higher slope in the mean synaptic input
current yields a higher peak force. Note that in reality an increase in the rate of change of
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a voluntary contraction also causes a change in the neural drive to the muscle. However,
this is not included in the model, and the predicted differences in the force response are
entirely due to the muscle unit model. Therefore, the results of the ramp example cannot
directly be compared to experimental data of voluntary contractions. Nonlinearities in
the force response that are independent of changes in the neural drive are known from
experiments, e. g., in the context of postactivation potentiation |11, [176] or early depres-
sion and potentiation, which occur when two or more stimuli are applied with a short
interstimulus interval, cf. [200, 249, 250] and Section In phenomenological models
of skeletal muscle, these nonlinearities are often neglected (cf. e. g. Fuglevand et al. [76]),
which might lead to inaccurate model predictions.

4.4.3 Force Variability

To confirm the physiological behaviour of the proposed model, the coefficient of variation
of the simulated force is calculated for different net synaptic input levels. The simulated
input is a steady level of current common to all MNs with an additional independent
Gaufian noise in the bandwidth 0-50 Hz. The standard deviation is simulated as a func-
tion of the mean current in order to generate a coefficient of variation of the interstimulus
interval of approximately 15 % for all synaptic input levels. Figure shows the simu-
lated results, which are in good agreement with the experimental findings of Moritz et al.
[180].
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Figure 4.22: Coefficient of variation of the force versus mean force. Simulated data are shown
as black crosses. Best fit f(x) to the data points is shown as red line.

A function of the form a
fla) = 5 +e, (4.29)

with coefficients a, b, and ¢ is used to approximate the computed pairs of mean force (x)
and coefficient of variation of the force (f(x)). Using a least-squares fitting algorithm,
the coefficients a, b, and ¢ are determined as 0.78, 0.58, and 1.80, respectively.

Besides the cortical input [153], common input signals are delivered to the motor nucleus
by afferent neurons [134|, brain stem neurons [148], and other pathways. Synaptic input
components common to the MN population generate correlations between MN spike trains
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that are transmitted unaltered to the force output, cf. Farina et al. [73].

The aim of the next example is to investigate the effects of common synaptic input
components on the modelled force output. Two cases are considered. In the first case, the
noise in the synaptic input to the MNs is completely independent (no common synaptic
input other than the cortical input). In the second case, 50 % of the noise in the synaptic
input is common to all MUs. Different levels of excitation, i.e., 5% and 50 %, are simulated
for both cases. The independent noise and the common synaptic noise have both Gaufsian
distribution and a bandwidth of 0-50 Hz.

Figure .23 shows the force output for the different scenarios (left column) and the
corresponding power spectra of the force output (right column). In both cases, the intro-
duction of the shared noise increases significantly the force oscillations as demonstrated
by the increase of the power spectrum of the force in all frequencies. The power spec-
trum of a signal describes how the variance of the signal is distributed over the frequency
components into which the signal may be decomposed. It indicates the portion of a sig-
nal’s power (energy per unit time) falling within given frequency bins. Furthermore, the
coefficient of variation of the interstimulus interval and the coefficient of variation of the
force are listed in Table for the different scenarios.

common 5% excitation 50 % excitation
synaptic noise | CoV-ISI CoV-force | CoV-ISI CoV-force

0% 15.98 % 7.34% | 16.91% 3.44 %
50 % 1210%  14.35% | 12.14% 6.82 %

Table 4.4: The coefficient of variation of the interstimulus interval (CoV-ISI) and the coefficient
of variation of the force (CoV-force) for 5% and 50 % excitation without common synaptic noise
and with 50 % common synaptic noise.

Considering the variation in force fluctuations across a large range of mean synaptic
inputs, the present model predicts a hyperbolic relation between the coefficient of variation
of the force and the mean force. While the predicted force fluctuations agree well with the
experimental findings of Burnett et al. [33], Galganski et al. [79], and Laidlaw et al. [149,
150], the coefficients of variation in the simulated force are approximately twice as large as
those reported by Moritz et al. [180]. If, furthermore, input components that are common
to all MNs but different from the mean cortical input (e.g. afferent inputs) are included
in the input currents, the modelled coefficient of variation of the force will even further
increase. However, while Moritz et al. |[180] measured exponentially decreasing coefficients
of variation of the interstimulus interval for each MU from an average of 30 % to 13%
as force increased, an approximately constant coefficient of variation of the interstimulus
interval of about 15% is assumed in the proposed model. Furthermore, Moritz et al.
[180] reported that the maximal discharge rates of MNs across the pool increases with
recruitment threshold, while the present model predicts a decreasing maximal discharge
rate, which is in agreement with the findings of De Luca & Hostage [46], De Luca et al.
[47], Duchateau & Hainaut [60], and Tanji & Kato [257]. In summary, the behaviour of
the proposed biophysical model of the neuromuscular system is in agreement with the
existing experimental data.
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Figure 4.23: Total force (left column) and power spectrum (right column) of the force variability
example. (a, b) 5% excitation, no common synaptic input; (¢, d) 5% excitation, 50 % common
synaptic input; (e, f) 50 % excitation, no common synaptic input; (g9, h) 50 % excitation, 50 %

common synaptic input.
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4.4.4 Tremor

This case study demonstrates the ability of the proposed model to simulate physiological
and pathological conditions. This is done by including a narrow frequency band around 8
Hz of common synaptic noises in the synaptic input to the MNs resembling tremor. The
aim of this case study is to use the proposed biophysical model to quantify the influence
of common synaptic noise, which resembles physiological tremor, on the force output.
The mean synaptic input current is set to 5nA and the standard deviation of the total
synaptic noise (common and independent) is fixed at 1nA in all cases. Three cases with
different proportions of common synaptic noise (25 %, 35 %, and 45 % of the total synaptic
noise) are considered.

Figure shows the power spectrum of the common synaptic noise components for
the three cases. For each case, the level of coherence is estimated from pairs of MU spike
trains and is depicted in Figure 4.24b. Furthermore, a short segment of the total force
responses is shown in Figure 4.24c.

Table lists for each of the three cases the mean discharge rate, the mean coefficient
of variation of the interstimulus interval, and the coefficient of variation of the force. To
quantify the sensitivity of these quantities with respect to the amount of common synaptic
input, a linear regression is carried out. The slopes of the linear regression lines are —1.5
(R? = 0.998), 2.7 (R? = 0.72), and 20.35 (R? = 0.97) for the mean discharge rates, the
mean coefficients of variation of the interstimulus interval, and the coefficients of variation
of the force, respectively.

common noise ‘ Mean Discharge Rate CoV-ISI CoV-force

25% 10.63 Hz 16.89%  10.25%
35 % 10.47 Hz 1745%  11.711%
45 % 10.33 Hz 17.43%  14.32%

Table 4.5: Mean discharge rate, mean coefficient of variation of the interstimulus interval (CoV-
ISI), and the coefficient of variation of the force (CoV-force) for the tremor example with increas-
g amplitude of the common synaptic noise.

With increasing common synaptic noise, the level of coherence estimated from pairs
of MN spike trains increases significantly. Furthermore, linear regression demonstrates
that the mean discharge rate and the mean coefficient of variation of the interstimulus
interval do not change significantly with the amount of common synaptic noise, while
the coefficient of variation of the force increases significantly with the amount of common
synaptic noise (approximately 10-times higher slope of the linear regression line).

4.5 Discussion

A novel model of the neuromuscular system, which is biophysical in all main parts has been
presented. The new model arose from coupling the MN model of Negro & Farina [186]
to the model of the excitation-contraction coupling in skeletal muscle fibres of Shorten
et al. [240]. In contrast to previous, biophysical models, the proposed model accounts for
nonlinearities in the force response that result from the activation history.
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Figure 4.24: Tremor ezample. (a) Power spectrum of the motor neuron input when 25 % (dark
blue), 35 % (light blue), and 45 % (magenta) of the total synaptic noise is common to all motor
neurons. (b) Coherence estimated from MU firing times. The dashed line shows the 95 % confi-
dence level. (c) Total simulated forces when 25 % (top), 35% (middle), and 45 % (bottom) of the

total synaptic noise is common to all motor neurons.

To account for the different contractile properties of the muscle units in a MU pool,
the slow-twitch and fast-twitch parametrisations of Shorten et al. [240] were linearly in-
terpolated. While this simple approach is sufficient to reproduce a frequency distribution
of contraction times that is similar to experimental data, it is justified to assume that the
linear interpolation yields an oversimplification compared to the actual parameter distri-
bution. In fact, certain properties of muscle units are not continuously distributed, but
can be classified into discrete groups, such as, for example, the myosin heavy chain iso-
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forms. Moreover, the muscle unit model of Shorten et al. [240], which has been validated
for mouse muscles, has been applied to simulate human muscle. To this end, only the re-
action rates within the XB dynamics model have been modified. While this simplification
was necessary due to a lack of experimental data of human subcellular properties, one
can easily imagine that other reaction rates in human muscles also differ from those in
mouse muscles. To summarise, while the proposed model closely resembles the underlying
biophysical processes of the neuromuscular system leading to force generation, there exist
significant uncertainties regarding its parameters.

Wherever applicable, the behaviour of the proposed model has been compared to the
model of Fuglevand et al. [76]. The model of Fuglevand et al. |[76] has been chosen as
reference, due to the fact that it is build on a broad range of experimental data. Although
the shape of the single twitch is similar in both models, there are significant differences
in the generated muscle forces, when a ramp-shaped synaptic input is applied to the
motor nucleus. This also applies when recombining the individual parts (MNs and muscle
units, see Figure [L19) of the two models. It would be very interesting to see, which of
the combinations yields the most accurate result, when compared to experimental data.
Unfortunately, this comparison is not possible at this point, since, to date, it is not possible
to completely decompose the neural drive to muscles (e. g. from the EMG) or to precisely
extract the individual MU forces from the total force.

Due to its simplified, phenomenological formulation, the model of Fuglevand et al. [76]
cannot be applied to more complex examples, and thus, no comparison with the proposed
model can be performed. Although a quantitative analysis is not possible in each case, the
qualitative behaviour of the proposed model is in agreement with experimental findings.

In conclusion, the presented examples demonstrate the capabilities of the proposed
model to simulate different scenarios of normal and pathological conditions.






5 Propagation of Electrical Signals
Through Biological Tissues

The previous chapter demonstrated that many properties of the neuromuscular system
can be modelled using a description that is independent of the spatial components of the
underlying system. Many other interesting applications, however, depend on the spatial
dimensions of the musculo-skeletal system. Spatial dimensions of the tissue are essential,
for example, for simulating the propagation of electrical signals through biological tissues.
In skeletal muscle the propagation of action potentials along muscle fibres induces the
contraction, and the resulting electrical potentials can be measured at the skin surface
using a surface electromyograph.

The aim of this chapter is to extend the muscle model of Chapter [ to take into account
the spatial dimensions of the muscle. To this end, a description of the cellular membrane
electrophysiology (e.g. the Hodgkin-Huxley model [120] or the model of Shorten et al.
[240]) is linked to a propagation equation. This is schematically represented in Figure 5.1l

muscle fibre model

‘/”L . .
membrane electrophysiology propagation equation

Figure 5.1: Overview of the model of a muscle fibre. The model of the membrane electrophysi-
ology is coupled to the propagation equation through the membrane potential, Vy,.

In brief, the previous chapter described the rise and fall of the AP by solving

oV,
ot

for I, = 0, cf. Equations ([@1]), (£1), and ([@I4]). Considering spatial components of the
muscle tissue, however, current can also flow from one point of the cell membrane to an-
other point, and hence, the total current across the membrane does not necessarily vanish
locally [185]. Based on this consideration, Hodgkin & Huxley [120] proposed the cable
equation to simulate the propagation of APs along a 1D structure. Although Hodgkin &
Huxley [120] considered the giant axon of the squid, the cable equation is equally applica-
ble to muscle fibres [211]. In this work, the cable equation will be introduced as a special
case of the more general bidomain equations, which will be derived in the following.

Im = Cm + Iz’ona (51)

81
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5.1 The Bidomain Model

Based on the simulation of the AP propagation in the heart M], Roéhrle et al. [@]
suggested to use the bidomain equations to model the spreading of the change of the
membrane potential in skeletal muscle tissue. The bidomain model is a continuum ap-
proximation of the electrophysiology of excitable biological tissues. The model describes
how currents from one region of a cell interact with other regions ]

In electrically active biological tissue, such as muscle, the bidomain model considers
two interpenetrating domains representing the intracellular space (i.e., the muscle cells
or fibres) and the extracellular space (i.e., the space surrounding the fibres). Since the
bidomain model is a continuum model, these two spaces coexist at each point of the
muscle region, QM at all times. The intracellular and extracellular domains can interact
with each other through currents crossing the cell membrane, I,,. Further, each domain
is assigned its own conductivity tensor and its own potential. The conductivities in the
intracellular domain and the extracellular domain are denoted by o; and o, respectively,
and the intracellular potential and the extracellular potential are denoted by ¢; and ¢,,
respectively. A schematic representation of the bidomain model is given in Figure

4 N\
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I\
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Figure 5.2: Schematic representation of the bidomain model. The bidomain model distinguishes
between the electrically inactive body region, QF, and the electrically active muscle region, QM.
At each point of the muscle region the intracellular (subscript i) and extracellular (subscript e)
domains coezist at all times. While the intracellular and the extracellular domains of the muscle
region interact with each other through currents crossing the cell membrane, I,,, muscle-body
interactions are considered through currents between the extracellular domain of the muscle region
and the body region, Iy,q,. The reader is referred to the text for further details.

Besides the electrically active muscle tissue, the bidomain model allows to consider
electrically inactive tissues in the body region, QF, representing, for example, skin and
subcutaneous fat tissue. While there is no direct interaction between the intracellular
domain of the muscle region and the body region, the extracellular domain of the muscle
region can interact with the body region through a current .4, crossing the muscle-
body interface, I'! := QM N 9QB. Further, the conductivity tensor and potential in
the body region are denoted by o, and ¢,, respectively. Neglecting the conductivity of
the surrounding air and other adjacent tissues (e.g. bone), there is no current crossing
the outer surface of the body region, I'? := 9OP\I'!, or the outer muscle boundary,
'™ .= 9OM\T!.
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5.1.1 Derivation of the Bidomain Equations

Several formulations of the bidomain equations exist, which differ in the dependent vari-
ables used. The formulation presented here, which can also be found, for example, in
Pullan et al. [211], is in terms of the extracellular potential, ¢., and membrane potential,

Vi = ¢z - ¢e~ (52)

This formulation has the advantage that it can interface in a straightforward manner with
the cell models presented in Chapter 4, as these also rely on the membrane potential.

Describing an electric field problem, the bidomain equations can be derived from
Maxwell’s equations, given by

. v ob
dive = —, rote = ——,
divb = 0, rotb = ,uo(q+ 60%).

Therein, e denotes the electric field density, b is the magnetic flux density, q is the current
density, and v denotes the electric charge density. Further, ¢y and pg are the permittivity
and permeability of free space, respectively, and rot ( - ) represents the rotation or curl
operator. In addition to Maxwell’s equations, a balance equation is employed to ensure
continuity of current, i.e.,

ov
2 — _d; 4

where S, denotes a current source. Commonly, quasi-static conditions are assumed for
muscle tissue, since the frequencies of the generated electric and magnetic fields are rel-
atively low (less than 100 Hz), cf. e.g. Mesin [169]. Following this assumption, the time
derivatives in Equations (0.3]) and (.4 can be neglected [211]. For Maxwell’s equations
this yields a decoupling of the electric field and the magnetic field. Since for the deriva-
tion of the bidomain equations only the electric field is required, the equations for the
magnetic field are not further considered. This yields the following equations

dive = g, rote = 0, divg = S,. (5.5)
0
Considering first the electrically active muscle region, in the absence of other sources, the
current entering the extracellular domain must be equal to the current that leaves the
intracellular domain. Furthermore, currents between the intracellular and extracellular
domains have to cross the muscle cell membrane, and hence, the current source equals
the total current crossing the membrane multiplied by the surface-area-to-volume ratioﬂ,
A, e,
—divg, = divg, = A, L. (5.6)

!Neglecting the lateral surface areas, a cylindrical-shaped fibre with length [ and radius r has a surface-

area-to-volume ratio of
27710, 204

A, = =
mr2l r

Y

where a membrane folding factor 6, is included to account for the roughness of the fibre surface that
can increase the effective membrane area by a factor of ten, cf. DiFrancesco & Noble [53].
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Ohm’s law states that the current density equals the ratio between the electric field
density and the resistivity. Using instead of the resistivity, its inverse, the conductivity,
Ohm’s law reads

q = oe, (5.7)

where o is the conductivity tensor. Furthermore, Equation (5.3]), states that the electric
field density is curl free, and hence, it can be derived from a scalar potential field, ¢, i.e.,

e = —grado, (5.8)

where the minus sign ensures that current flows from regions of higher potential to regions
of lower potential. Combining Equations (5.6)), (5.7), and (5.8)), and using the definition of
the membrane potential (5.2]), the second bidomain equation is found, which, in rearranged
form, is given by

div ((O’Z + o) grad gbe) = —div (o, gradV,,) Ve QM. (5.9)

Inserting the definition of the current crossing the cell membrane (5.I)) into the current
balance (5.6]), and again using the definition of the membrane potential (5.2)) to eliminate
the intracellular potential yields the first bidomain equation

oV,

div (o; grad V,,,) + div (o; grad ¢.) = Am(CmW

+ Lion) Vo e QM. (5.10)
Equations (5.9) and (5.I0) are a system of two coupled partial differential equations.
The first bidomain equation (5.I0) relates changes in the membrane potential and the
extracellular potential to currents crossing the cell membrane. From a mathematical
point of view, Equation (5I0) is a parabolic PDE in the membrane potential that links
to a system of ODEs, y = f(¢,y), required to determine the ionic currents crossing the cell
membrane, i.e., [;o, = Lion(t, Vi), where V,, is an entry of y that depends on other entries
of y. The second bidomain equation (5.9) relates changes in the membrane potential to
changes in the extracellular potential. Equation (5.9)) is an elliptic PDE that is solved for
the extracellular potential.

Inserting Equation (5.7)) into Equation (5.5)3 and assuming that there exists no current
source in the electrically inactive body region yields a generalised Laplace equation that
describes the potential distribution in the body region, i.e.,

div (o, grad¢,) = 0 Vx € QF. (5.11)

Note that the body region has only one domain, which corresponds to the extracellular
domain of the muscle region. This is due to the fact that there are no active cellular
responses but only passive electric properties in the electrically inactive body region.

Analytical solutions to the bidomain equations are not generally available and their
numerical solution is computationally complex. This complexity results from the coupling
between the PDEs and the system of stiff ODEs, cf. Pathmanathan et al. [201], Vigmond
et al. [270]. To simplify this complexity, approximations to the bidomain equations have
been developed. The most common approximation is the monodomain equation (see
Sundnes et al. [255]), which will be presented in Section .21
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Interface and Boundary Conditions

Since the potential in the body region is the continuation of the extracellular potential of
the muscle region, continuity of potential and continuity of current flow must be satisfied
at the muscle-body interface. This can be achieved by demanding

b = ¢ VT’ (oograd¢.) -n™ = —(o,grad¢,) -n” vV ecl! (5.12)

where n* and n? denote the outward-oriented unit normal vectors of the muscle region
and the body region, respectively, and n = —n?® at the muscle-body interface. Note
that the interface conditions ensuring continuity of potential and continuity of current at
the muscle-body interface (5.12)) are automatically satisfied when using the finite element
method.

The assumptions that there is no current flow between the intracellular domain of the
muscle region and the body region and that current cannot flow across the outer muscle
boundary yield the boundary condition

(ai grad¢;) - n™ =0 — (0',~ grad V,,) -n™ = —(O'i grad¢.) -n™ VacT! Ul

(5.13)
In (5.13]) a change in variables has been carried out using the definition of the membrane
potential, since the intracellular potential is not a primary variable of the presented formu-
lation of the bidomain equations. Note that boundary condition (2.I3]) has to be applied
also at the muscle-body interface, since the intracellular potential has no continuation in
the body domain within the bidomain model.

Boundary condition (5.13)), however, only restricts the flow of current from the intracel-
lular domain across the outer muscle boundary. To ensure that no current can flow across
the outer muscle boundary, additionally a no-flow (homogeneous Neumann) boundary
condition is required for the extracellular potential, which takes the form

(o.grad¢.) - n™M = 0 VaeTH. (5.14)

Further, to ensure that current cannot flow over the outer boundary of the body region,
a no-flow boundary condition is applied at the body surface. This condition is given by

(o,grad¢,)-n? = 0 Ve elP. (5.15)

The extracellular bidomain equation (5.9) is essentially a Poisson equation, and the
equation for determining the potential in the body region, Equation (5.11]), is a generalised
Laplace equation. Since only Neumann-type boundary conditions for a Laplace-type or
a Poisson-type equation yield an ill-conditioned matrix [211], an additional boundary
condition is required. Dirichlet boundary conditions far away from the electrical source,
as proposed, for example, by Pullan et al. [211] for the heart/torso, are too restrictive for
the EMG. Hence, a zero-mean condition, as proposed by Austin et al. [6], is applied to
the extracellular bidomain equation in the muscle domain and to the generalised Laplace
equation in the body domain. The zero-mean condition is given by

b dv + podv = 0 Ve QMUQP, (5.16)
oM OB
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where dv denotes an infinitesimal volume element. The constraint in (5I6) can conve-
niently be applied in a post-processing step.

5.2 The Monodomain Model

Assuming that the intracellular and extracellular conductivity tensors have equal
anisotropy ratios, i.e., ; = ko, for some scalar £ > 0, the bidomain equations (5.9)
and (2.I0) can be simplified to the monodomain equation, cf. Keener & Sneyd [144]. To
this end, the second (extracellular) bidomain equation (5.9)) is first rearranged

div ((ai + o) grad gbe) = —div(o;gradV,,),
1
div ((1 + E) o;grad¢.) = —div (o grad V),
1 5.17
bt div (o; grad ¢.) = —div (o gradV,,), (5:17)
div (o; grad ¢.) = 7 _]T_ ] div (o; grad V,,,) ,

and then inserted into the first bidomain equation (5.10) yielding

div (o grad V,,,) — ]H div (o, grad V,,) = Am(cmW + Lion) ,
7 div (o grad V) = Am(cm% + Lion) ,
(k+1 o, gradV,,) = Am(Cm% + Tion) » (5.18)
div ((ko. +o.) o0, grad V,,) = Am(Cm% + Iion) ,
div (o + 0.) "o, grad V) = Am(Cm% L)

Introducing the effective conductivity oz := (o +0'e)_10'i o ., the monodomain equation

reads
ov,,

ot

The monodomain equation, essentially a transient reaction-diffusion equation, is a
parabolic PDE coupled to a system of ODEs, which are needed to determine I;,,. Com-
paring Equation (5.19) with the equations that describe the ionic current crossing the
cell membrane in the models of Chapter [ i.e., Equations (41]), (@), and (4I4]), the
monodomain equation contains additionally a diffusive term. The diffusion of the mem-
brane potential depolarises the membrane potential of adjacent segments of a fibre. If the
threshold value is reached, voltage gated channels in these segments will produce the AP
and restore the impulse shape of the propagating AP.

Although the monodomain model is an exact representation of the bidomain model
only if the extracellular and intracellular conductivity tensors are equally anisotropic, the
monodomain model is also often employed in other cases as an approximation [191]. To
this end, Nielsen et al. [191] present mathematically optimal monodomain approximations

div (o grad V,,) = Am(Cm + [m) Vo e QM. (5.19)
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to the bidomain model.

Within the limits of this approximation, it is sufficient to solve the monodomain equa-
tion (2.19) if one is only interested in the membrane potential. If one is also interested
in the extracellular potential, one needs to solve the second bidomain equation (5.9) for
the extracellular potential, after solving the monodomain equation (5.I9) for the mem-
brane potential. Since the monodomain equation (5.I9) does not rely on the extracellular
potential, these calculations can be carried out in a decoupled fashion, which enables a
simple parallel execution.

To accurately simulate the propagation of APs through muscle tissue, a detailed knowl-
edge of the underlying material parameters is required. Here, especially the conductivities
of the intracellular and extracellular domains in lateral and transversal directions of the
muscle are of interest. As often in biomechanics, however, these parameters are not read-
ily available. In fact, the experimentally determined values for muscle conductivities vary
by at least a factor of five, cf. Gielen et al. [84], Lowery et al. [160]. However, due to the
fact that gap junctions do not exist in skeletal muscle tissue, the AP is not transferred
between adjacent fibres. Gap junctions are specialised intercellular connections between
two cells that are present in most tissues, e.g. the myocardium (cardiac muscle tissue) of
the heart. Since electrical stimulation from one fibre to adjacent ones does not occur, it is
pertinent to consider the propagation of APs along a muscle fibre as a 1D problem. The
1D representation of the monodomain equation reads

0 oV,
% (Ueff g) - Am (Cm

where s is the spatial variable along the muscle fibre, and 0.5 denotes the conductivity,
which is a scalar for 1D problems. Further, for 1D problems, the monodomain approxima-
tion (the conductivity tensors have equal anisotropy ratios) is always satisfied (cf. Nielsen
et al. [191]), and thus, the monodomain model is equivalent to the bidomain model. Tt is
furthermore noteworthy that the 1D monodomain equation with constant conductivities
coincides with the cable equation proposed by Hodgkin & Huxley [120].

()7

W + ]ion) , (520)

Boundary Conditions

Similar to the bidomain model, the most common boundary condition for the mono-
domain model is the no-flow boundary condition. Neglecting the conductivity of adjacent
structures, current cannot flow out of the muscle domain. Thus, for the membrane po-
tential of the monodomain model, no-flow (homogeneous Neumann) boundary conditions
are applied at all muscle domain boundaries, yielding

(orgrad Vi) - n™ = 0 VeI, (5.21)

If, in addition to the membrane potential, the extracellular potential is of interest, one
can first solve the monodomain equation (5.I9) for the membrane potential, and then
solve the extracellular bidomain equation (5:9) in the muscle domain, and, if appropriate,
the generalised Laplace equation (5.1T)) in the body domain. To this end, the appropriate
boundary conditions for these equations are applied, see Section L.1.11
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5.2.1 Numerical Methods for Solving the Monodomain Equation

Analytic solutions to the monodomain equation are restricted to low dimensional problems
and very simple phenomenological cell models, e.g. the cubic polynomial ionic current
model, cf. Hunter et al. [126]. For complex, nonlinear biophysical cell models, such as the
model of Hodgkin & Huxley [120] or the model of Shorten et al. [240], however, analytic
solutions are generally not available.

Numerical methods for the solution of PDEs typically rely on a discrete representation
of its differential terms, see Section B.Il To this end, it is often convenient to first treat the
spatial derivatives yielding a system of coupled ODEs, before treating the time derivatives.
Discretising the monodomain equation in space, a reaction term o, ; = Iipn(t, Vin,i) occurs
at each spatial discretisation point 7 of the space-discrete, time-continuous equation. For a
problem with n spatial discretisation points and a cell model of dimension m, this yields
a system of coupled nonlinear ODEs of dimension m x n that has to be solved using
a Newton iteration in every time step. Furthermore, biophysical cell models are often
mathematically represented by stiff differential equations, requiring very small time steps
to resolve the steep gradients and rapid changes occurring in these models [211].

Although it is certainly possible to follow this approach, it is not very efficient from a
computational point of view. Instead, operator splitting methods [155] that allow to treat
the cell models separately from the diffusion term are frequently used for the solution of
the monodomain and bidomain equations, cf. e.g. Qu & Garfinkel [212|, Sundnes et al.
[254], Whiteley [275].

Operator Splitting Methods

In contrast to the approach discussed above, the presented operator splitting methods rely
on first discretising the temporal derivatives, and then treating the spatial derivatives.
These methods can be represented using the abstract notation

% = Zﬁi(u), (5.22)

where L£; represents an operator, such as, for example, a spatial derivative, u is the un-
known function, and N denotes the number of steps of the splitting method. Two common
operator splitting techniques are presented in the following, the Godunov splitting and
the Strang splitting. The reader is referred to LeVeque |155] and Strang [251] for further
details.

Godunov Operator Splitting The simplest differential operator splitting technique is
called Godunov splitting and is obtained for N = 2. Its splitting error is of first order,
i.e., O(h). Since the overall order of a numerical method can never be higher than its
submethods lowest order, it is sufficient to use first-order time-stepping schemes for the re-
sulting subproblems. Applying the Godunov splitting to the monodomain equation (5.19)
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and employing finite differences for the time discretisation, Equation (5.22]) yields

vy~ VE 1

= - = ——Iion h = thtl — ¢k
V) h Cra ™  (5.23
Vk+1 B Ve 1 - i ( : )

Lo(Vy) = e o div (oo grad V;,) h = tFth — ¢k

where V¥ and V**! are the discrete solutions at times t* and t**!, respectively, and V*

denotes an intermediate step introduced through the operator splitting method. Note
that each equation in (5.23) is solved over the interval [t*, t*+1]. Figure 5.3k graphically
represents the Godunov operator splitting method.
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Figure 5.3: Schematic representation of the time stepping in operator splitting methods, where A
denotes the solution of the reaction term I;on, and B marks the solution of the transient diffusion
equation. (a) Godunov splitting. (b) Strang splitting.

Strang Operator Splitting The Strang splitting [251] obtained for N = 3 yields second-
order accuracy assuming each subproblem is solved using a method of at least this accu-
racy. The Strang splitting of the monodomain equation is given by

Vi -V 1
;Cl(vm) = -m__m = - Iz’ona 1 h — tk+1/2 _ tk,
sh Ch, 2
VO _ V* 1
Lo(Vin) = % = T div (o grad V) | h = thtl — ¢k
Vit —ye 1
L3(Vy) = 2™ = —— [, Lp = ghtl _ght1/2
sh Chn 2

where a further intermediate step V> has been introduced. The Strang splitting scheme
is graphically represented in Figure [5.3b.

Employing operator-splitting methods to the monodomain and bidomain equations pro-
vides several advantages. The most obvious advantage results from the fact that the re-
action term, I;,,, at one discretisation point can be evaluated completely independent of
all other discretisation points. Thus, instead of solving one huge nonlinear system, many
small systems are solved. This is typically much faster and can easily be done in parallel,
potentially employing a massively parallel GPGPU (general-purpose computing graphics
processing units), cf. Rocha et al. [218]. Moreover, due to the separation of the reaction
term from the diffusion term, the most suitable numerical method can be used for each
subproblem. Hence, the transient diffusion equation (5.23), a linear parabolic PDE, can
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be treated differently than the nonlinear ODE in (5.:23);. This also includes that different
time step sizes can be used to solve the equations within the interval [tF, t+1] e.g., subcy-
cling can be performed. This is particularly interesting for the integration of biophysical
cell models, which are commonly described by stiff equations and require very small time
step sizes to resolve the rapid changes and steep gradients that are occurring especially
during the rising phase of an AP.

5.3 Simulating the Action Potential Propagation

The first part of this section demonstrates that for the presented applications the mono-
domain model is a good approximation to the more complex bidomain model. Based on
this result, the subsequent parts of this section investigate the effect that the choice of
material and discretisation properties of the monodomain model have on the AP propa-
gation.

5.3.1 Comparing the Monodomain and Bidomain Models

As previously mentioned, the monodomain model equals the bidomain model only if
the assumption of equal anisotropy ratios of the intracellular and extracellular conduc-
tivity tensors is satisfied. Appendix [C| presents numerical examples demonstrating this
behaviour. The aim of this section is to investigate how well the monodomain model
approximates the bidomain model for the present applications if the assumption of equal
anisotropy ratios is not satisfied.

The investigation is carried out on a simple two-dimensional (2D) test problem of
size QM = |21, 25] = [0,0.0625 cm]?. The domain is discretised using the finite difference
method and 10 discretisation points in each direction. No body domain is considered. The
Godunov operator splitting is employed for both the monodomain equation (5.19) and the
bidomain equations. The coupled PDEs representing the bidomain model (5.9) and (5.10)
are solved in a monolithic fashion. The fast-twitch parametrisation of the cell model of
Shorten et al. [240] is used to represent the ionic currents crossing the cell membrane.
Furthermore, the surface-area-to-volume ratio, A,,, and the membrane capacitance, C,,,
are chosen to be 500cm™' and 1.0 uF/cm?, respectively, [221, 1240]. Both models are
implemented in MATLAB. The (implicit) backward Euler method and a time step size
of 0.01 ms are used to solve the PDEs. MATLAB’s build-in solver ODE15s is employed to
integrate the stiff ODEs of the cell model of Shorten et al. [240] using optimised internal
time steps within intervals of 0.01 ms. To evoke an AP, a stimulating current sufficiently
high to depolarise the membrane potential is injected close to a corner of the domain, one
grid point away from the boundary in each direction.

It is interesting to note that for the very small examples considered in this section,
there is almost no difference in the computation time required to solve the monodomain
and the bidomain problems. This can partially be explained by the fact that the solution
of the cell model of Shorten et al. [240], which needs to be carried out in both models,
requires most of the computing time, while the solution of the linear matrix system, which
contains twice as many equations for the bidomain model than for the monodomain model,
requires only very little time. Furthermore, it is noteworthy that the m x m matrix arising
from the discretisation of the bidomain model has rank m — 1, i. e., it is singular (2-norm
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condition number 1.37 - 1017). The singularity arises from exclusively using Neumann
boundary conditions for the extracellular bidomain equation, which is a Poisson-type
equation. For the resulting system of equations, an infinite number of solutions for the
extracellular potential exists. MATLAB still solves the linear system of equations. The
zero-mean condition (B.16]) is applied in a post-processing step to determine a reasonable
solution for the extracellular potential.

Conductivity Tensors with Unequal Anisotropy Ratios

Two different test cases are considered. The first test case assumes an anisotropy ratio of
10 for the intracellular conductivity tensor and an isotropic extracellular conductivity ten-
sor (anisotropy ratio of 1), cf. Mordhorst et al. [178|. In detail, the following conductivity
tensors are considered:

1 0
0 0.1

10

} e, e, o. = 6.7 [ } e.Re. (5.24)

Based on the conductivity tensors in (5.24]), Figures 5.4h — 5.4k compare the evolution
of the membrane potential of the monodomain and bidomain models at three different
grid points. Furthermore, the distribution of the difference between the monodomain and
bidomain models is depicted in Figure 5.4d 0.5 ms after stimulation has been applied at
node (z1,xs) = (9,9).

While the membrane potentials based on the monodomain and the bidomain models
are quite similar, one can observe that the difference between the two models increases
with increasing distance from the stimulation point. This is due to the fact that for the
conductivity tensors in (5.24) the propagation velocity in the bidomain model is slightly
higher than in the monodomain model. The higher propagation velocity can be explained
by an interaction of the membrane potential with the extracellular potential in the bido-
main model, which is neglected when using the monodomain model. Furthermore, the
differences between the two models are significantly larger than in the previous test cases
and are now of the order of several millivolts, cf. Figure 5.4d. The maximum difference
between the models is 24.04 mV and occurs at node (x1,z2) = (9,10) 0.03ms after stim-
ulation. It is however noteworthy that except for grid points close to the stimulation
point at times briefly after stimulation, the difference between the two models is less than
10mV, cf. Figure 5.4l Although differences exist between the two models, it can be con-
cluded that for the conductivity tensors in (5.24]), the monodomain model approximates
the bidomain model quite well.

It is furthermore noteworthy that for these conductivity tensors propagation of the AP
is fast in the x;-direction but also occurs at a slower rate in the xo-direction, due to the
assumed intracellular conductivity in this direction. In skeletal muscle, however, the APs
only propagate along the muscle fibres but not perpendicular to them. This is due to the
fact that gap junctions do not exist in skeletal muscle tissue.

The absence of gap junctions in skeletal muscle tissue inspired the choice of conduc-
tivities used in the second test case. Here, for the intracellular domain, conductivity
exists only in one direction, i.e., the fibre direction, which is assumed to coincide with
the xi-direction. The values of the extracellular conductivity tensor are chosen such that
the resulting conductivity tensor on the left-hand side of the extracellular bidomain equa-
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Figure 5.4: Difference of the membrane potential of the monodomain and bidomain models
for an anisotropic intracellular conductivity tensor and an isotropic extracellular conductivity
tensor. The evolution of the membrane potential of the bidomain model (red) and the mono-
domain model (blue) is shown (a) at node (z1,x2) = (8,8), (b) at node (r1,x2) = (5,5), and
(c) at node (x1,22) = (2,2). In addition, (a—c) show the difference between these two models
(gray, right y-azis). (d) The distribution of the difference (in mV) between the bidomain and the
monodomain models is depicted 0.5 ms after stimulation has been applied at node (x1,x2) = (9,9).

tion (0.9), i.e., o; + 0., has an anisotropy ratio of 5, cf. e.g. Mesin ﬂﬂ] In detail, the
following conductivity tensors are used:

893 0 6.7 0
o, = [ 0 0] e, ey, o, = [O 3.126} e. Re;. (5.25)

Based on these conductivity tensors, Figures 5.5 — BBk compare the evolution of
the membrane potential of the monodomain and bidomain models at five different grid
points. Furthermore, Figure depicts the distribution of the difference between the
monodomain and bidomain models 0.25ms after stimulation has been applied at node
(x1,22) = (9,9).

To interpret the results of Figure 5.5 it is pertinent to consider also the distribution of
the extracellular potential. For the bidomain model, the extracellular potential is a pri-
mary variable. After applying the zero-mean condition (5.1I6)), the extracellular potential
can directly be stated. The extracellular potential, however, is not a variable of the mono-
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Figure 5.5: Difference of the membrane potential of the monodomain and bidomain models for
an intracellular conductivity only in fibre direction and an anisotropic extracellular conductivity
tensor. The evolution of the membrane potential of the bidomain model (red) and the mono-
domain model (blue) is shown (a) at node (z1,x2) = (6,9), (b) at node (z1,x2) = (5,9), (c) at
node (z1,x2) = (3,9), (d) at node (x1,z2) = (9,8), and (e) at node (x1,x2) = (9,7). In addition,
(a—e) show the difference between these two models (gray, right y-axis). (f) The distribution of
the difference (in mV) between the bidomain and the monodomain models is depicted 0.25ms
after stimulation has been applied at node (x1,z2) = (9,9).

domain model, and hence, based on the computed membrane potential distribution, the
extracellular bidomain equation has to be solved for the extracellular potential. Again,
the zero-mean condition (5.I6]) is applied in a post-processing step.
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For the conductivity tensors in (5.20), Figure compares the distribution of the
bidomain-based extracellular potential with the monodomain-based extracellular poten-
tial 0.2 ms after stimulation has been applied at node (z1, xz) =(9,9).

a) ¢, [mV] (monodomain) b)  ¢e [mV] (bidomain) Difference [mV]
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Figure 5.6: Distribution of (a) the monodomain-based extracellular potential (in mV), (b) the
bidomain-based extracellular potential (in mV), and (c) the difference between the models (in mV)
for intracellular conductivity only in xi-direction and an anisotropic extracellular conductivity
tensor. The results are shown 0.2ms after stimulation has been applied at node (x1,22) = (9,9).

2

Considering the membrane potential in Figure [.5] it can be observed that for the
conductivity tensors in (B.25]), the AP propagates almost exclusively in the fibre direction.
Along this direction, the membrane potential of the monodomain and bidomain models
are comparable, whereat the bidomain model again shows a slightly higher propagation
velocity (cf. Figures B.5h—c). Normal to the fibre direction, there is no propagation of the
membrane potential in the monodomain model (cf. Figures and [.5k). In contrast,
in the bidomain model, propagation of the membrane potential also occurs normal to
the fibre direction due to a non-zero entry in the extracellular conductivity tensor in this
direction. This is due to the fact that the extracellular potential propagating normal to
the fibre direction induces a change in the membrane potential at grid points that are
located at a distance in xo-direction from the stimulation point, cf. Figure 5.6l Solving
successively the monodomain and the extracellular bidomain equations, the extracellular
potential does not influence the membrane potential, and hence, the extracellular potential
distribution in Figure 5.6 has no influence on the membrane potential. It is, however,
noteworthy that the propagation equation for the extracellular potential is a Poisson
equation, describing diffusion processes, and hence, the potentials rapidly decline with
increasing distance in xs-direction. The induced membrane potential at grid points next
to those along which the AP propagates is low enough that the membrane potential in
the cell models associated with these grid points does not reach the threshold potential,
and hence, no AP is generated at these points.

The maximum difference in the membrane potential between the models is 36.16 mV
and occurs 0.03 ms after stimulating node (z1,x2) = (9,10). Except for grid points close
to those along which the AP propagates, the difference between the two models is much
smaller, cf. Figure 5.5l Thus, differences between the extracellular potentials of the two
models are of the order of the extracellular potential close to the propagating AP but van-
ish with increasing distance from the AP, cf. Figure It can be concluded that, for the
conductivities in (5.25]), the monodomain model approximates well the AP propagation
along the fibres, while it exhibits significant differences in the normal-to-fibre (cross-fibre)
direction. The most important property of the propagation equations, however, is the AP
propagation along the muscle fibres.
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5.3.2 Propagation of the Action Potential Along Muscle Fibres

The previous section demonstrated that the monodomain model is a good approximation
to the bidomain model for the considered applications. Based on this result, the 1D mono-
domain equation (5.20) is now used to simulate the propagation of APs along muscle fibres.
As before, the model of Shorten et al. [240] is employed to represent the ionic currents
crossing the cell membrane.

Making use of the Godunov operator splitting method, Equation (5.23]); is integrated
using the forward Euler method. For the time discretisation of the transient diffusion
equation (5.23), the backward Euler method is employed. In the following, a 6 cm long
fibre is considered. The fibre is spatially discretised using linear Lagrange finite elements.
Unless otherwise stated, the material parameters listed in Table [5.1] are used for the
simulations.

Symbol Description Value (slow/fast) Unit Ref.
Oeff effective conductivity 3.828 mS/cm  [221]
A surface-area-to-volume ratio 500 cm™! [221]
Chn, membrane capacitance 0.58/1.0 uF/cm?  [240]

Table 5.1: Material parameters for the monodomain equation.

The weak form of the monodomain equation is provided in Appendix [D.1 and its
finite element formulation has been implemented in the open-source software library
OpenCMIS. For the integration of the cell model use is made of the CellML APT (appli-
cation programmer interface). Further implementational details are provided in Bradley
et al. |26].

5.3.3 Influence of the Time Step Size

The aim of this section is to investigate the influence of the time step sizes used for the
solution of the ODE and PDE models, which result from the operator splitting. To this
end, the 6 cm long muscle fibre is homogeneously discretised using 1152 one-dimensional,
linear Lagrange finite elements. All simulations employ the fast-twitch parametrisation
of the model of Shorten et al. [240]. The fibre is stimulated by injecting a current of
9600 1A /cm? for 0.1 ms into the intracellular domain at the leftmost node of the finite
element mesh. To avoid boundary and stimulation effects, the propagation time is mea-
sured between two nodes that are 5 cm apart from each other and remain away from both
boundaries. The times at which the AP reaches its maximum value at each of the two
nodes are used to compute the propagation speed.

First, the effect of the time step size used for the solution of the cell model is inves-
tigated. To this end, the time step size for the transient diffusion equation is fixed at
hPEQ = 0.0005ms. Table (left) lists the resulting AP propagation times required to
travel the 5 cm long distance and the corresponding propagation velocities for different cell
model time step sizes. It can be observed that the propagation speed converges towards
approximately 1.95m/s.

’http://physiomeproject.org/software/opencmiss
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Having investigated the effect of the cell model time step size, now the influence of
the time step size for the solution of the diffusion equation is analysed. To this end, the
cell model time step size is fixed at h?PF = 0.0001 ms. Table 5.2 (right) summarises the
propagation times and velocities for different time step sizes of the diffusion equation.

hOPE [ms| | time [ms| velocity [m/s] hPEQ [ms] | time [ms| velocity [m/s]
0.001 no convergence 0.01 26.6 1.88
0.0001 23.6 2.12 0.005 26.0 1.92
0.00001 254 1.97 0.001 24.8 2.02
0.000001 25.6 1.95 0.0005 23.6 2.12

Table 5.2: Propagation times and velocities required by the AP to travel a 5cm long distance for
(left) different cell model time step sizes, hOPE and a fized time step size of hPF? = 0.0005 ms
for the transient diffusion equation, and (right) different time step sizes for the transient diffusion
equation, hPPR@ and a fized time step size for the cell model of h®PF = 0.0001 ms.

Interestingly, decreasing the time step size of the cell model, hPF, yields a decrease in

the propagation velocity, while a decrease of the time step size of the diffusion equation,
hPEQ vields an increase in the propagation velocity. In detail, reducing the cell model
time step size by an order of magnitude caused an 8.7% decrease of the propagation
velocity. Further, a reduction of the time step size of the diffusion equation by an order of
magnitude yielded a 9.4 % increase in the propagation velocity. Furthermore, it should be
mentioned that a decrease of the time step size comes at the cost of increased computing
time. This applies, in particular, to the cell model, where a reduction caused a dramatic
increase of the total computing time (result not show). This can be explained by the
fact that the solution of the nonlinear cell models is much slower than the solution of the
linear diffusion equation.

5.3.4 Influence of the Element Size

This example investigates the influence that the element size has on the propagation
velocity. The investigation is carried out for both the fast-twitch and the slow-twitch
parametrisation of the cell model of Shorten et al. [240]. Similar to the previous examples,
a 6 cm long 1D muscle fibre is stimulated at the leftmost node, and the propagation time
between two nodes that are 5cm apart from each other is measured. The time step
sizes for the cell model and the transient diffusion equation are h°PF = 0.0001 ms and
hPFQ = 0.0005 ms, respectively.

Initially, the 6 cm long fibre is discretised using 144 linear Lagrange finite elements.
Successively, the number of elements is doubled until convergence of the propagation
velocity is achieved. Following Pathmanathan et al. [201], the stimulation current has
to be adjusted when changing the discretisation. For the discretisation with the fewest
elements, here 144 elements, the injected currents equal 1200 A /cm? and 2000 pA /cm?
for the slow-twitch and the fast-twitch parametrisations, respectively. These values dou-
ble when the number of elements are doubled, since the amount of injected current is
proportional to the number of elements, when injecting current at a single node.
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Table 5.3lsummarises for the different discretisations the AP propagation times required
for the 5cm long distance and the resulting AP propagation velocities using the fast-
twitch (left) and slow-twitch (right) parametrisations of Shorten et al. [240].

N, | time [ms| velocity [m/s| N, | time [ms| velocity [m/s]
144 24.6 2.03 144 35.8 1.40
288 25.4 1.97 288 37.0 1.35
576 26.2 1.91 576 37.4 1.34
1152 26.4 1.89 1152 37.6 1.33
2304 26.4 1.89 2304 37.6 1.33

Table 5.3: Action potential propagation times required to travel a 5 cm long distance and resulting
conduction velocities in fast-twitch (left) and slow-twitch (right) muscle fibres for different number
of elements, Ne.

For both parametrisations, the propagation velocity converges when decreasing the
element size. The converged propagation velocities are 1.89m/s and 1.33 m/s for the fast-
twitch and the slow-twitch parametrisations, respectively. Experimentally determined AP
propagation velocities usually range from approximately 2m/s to 6 m/s, cf. e.g. McGill
& Lateva [164]. The fact that the AP propagation velocities predicted by the model
are smaller than literature values might be attributed to inaccurate material parameters.
Hence, the influence of the material parameters is investigated in the following section.

5.3.5 Influence of Material Parameters

The 1D monodomain equation (5.20)) depends on three material parameters — the effective
conductivity, o.¢r, the membrane capacitance, C,,, and the surface-area-to-volume ratio,
A,,. However, assuming a homogeneous conductivity, the formulation reduces to two
effective parameters — the membrane capacitance and the ratio between the conductivity
and the surface-area-to-volume ratio. To investigate the effect these parameters have on
the AP propagation, and to analyse the sensitivity of the propagation velocity to changes
in these parameters, a systematic variation of the parameters is carried out. The fast-
twitch parametrisation of the model of Shorten et al. [240] is used for the investigation.
Time steps sizes are h?PP = 0.0001 ms for the cell model and A”F? = 0.0005 ms for the
diffusion equation. Further, 1152 linear Lagrange finite elements are used for the spatial
discretisation of the 6 cm long fibre.

Table [5.4] summarises for different values of the material parameters the time an AP
requires to propagate along a 5cm long segment of a muscle fibre and the corresponding
propagation velocity. The results indicates that both a lower membrane capacitance and a
higher ratio between the conductivity and the surface-area-to-volume ratio yield a higher
conduction velocity. Since the aim of this work is not to model a specific muscle but
rather the development of methods for the simulation of any skeletal muscle, the material
parameters of Table 5.1l which are based on literature values, are still used in the following
simulations.
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Oefr/Am [1S]  Cy [uF /em?| | time [ms]  velocity [m/s] | Remarks

1.914 1.0 48.2 1.04
3.828 1.0 33.4 1.50
7.656 1.0 23.6 2.12 C
15.312 1.0 16.8 2.98
30.624 1.0 - - A
7.656 0.25 13.3 3.76 B
7.656 0.5 16.8 2.98
7.656 2.0 33.4 1.50
7.656 4.0 - - A

Table 5.4: Propagation times and velocities required by the AP to travel a 5cm long distance for
different values of the material parameters. Remarks: A — no propagating AP is generated. B -
besides the propagation velocity, also the amplitude of the AP is affected, i.e., an approrimately
14 % higher AP amplitude is observed. C — this simulation corresponds to the reference case of

Table [A 1]

5.3.6 Influence of the Activation History

From experiments it is known that the AP propagation velocity and the amplitude of
the AP depend on the activation history, cf. Juel [136], Milner-Brown & Miller [175]. Of
particular interest are the reduced AP amplitude and the reduced propagation velocity
observed during sustained contractions at high frequency. This phenomenon is termed
membrane fatigue and is attributed to an accumulation of potassium ions and a depletion
of sodium ions within the T-tubules as a result of high-frequency stimulation. Due to
a change in the ionic concentration gradient across the T-tubule membrane in response
to sustained high-frequency AP discharges (cf. Green [90], Sejersted & Sjogaard [233]),
the amplitude of the membrane potential decreases and the AP propagation velocity is
reduced, cf. Juel [136], Milner-Brown & Miller [175].

Due to the fact that the biophysical cell model of Shorten et al. [240] includes a descrip-
tion of T-tubule ionic currents, the presented model of a muscle fibre is used to investigate
the effect of membrane fatigue on the AP amplitude and propagation velocity. For the
analysis, the model setup described in Section [5.3.4lis used. In agreement with the results
of Table5.3] the 6 cm long fibre is discretised using 2304 finite elements. The fast-twitch
model is stimulated using a frequency of 100 Hz. Due to the fact that the stimulation
frequency of 100 Hz is too high for the slow-twitch parametrisation (APs were not reliably
generated), a stimulation frequency of 50 Hz is considered for the slow-twitch model.

Stimulating the fast-twitch model at 100 Hz for 500 ms, the propagation velocity de-
creases from 1.89m/s to 1.58 m/s, which corresponds to a decrease of 16.4 %. Employing
the slow-twitch parametrisation, the AP propagation velocity decreases within 500 ms
from 1.33m/s to 1.25m/s, which corresponds to a 6.0 % decrease. The model predicted
decreases of the AP propagation velocity of 6.0 % and 16.4 % within 500 ms can be com-
pared to the experimentally determined decrease of about 30-50 % obtained after 2min
of stimulation, cf. Juel [136].
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Besides a reduction of the AP propagation velocity, changes in the AP amplitude are
observed. Figure B.7a shows the evolution of the membrane potential at a point far
from the stimulation point in the fast-twitch model as a result of 100 Hz stimulation.
Figure 5.7b shows the same quantity for the slow-twitch model due to 50 Hz stimulation.
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Figure 5.7: Ewolution of the membrane potential (a) in the fast-twitch model during 100 Hz
stimulation, and (b) in the slow-twitch model during 50 Hz stimulation at a point far away from
the stimulation point.

In Figure 5.7 it can be observed that for both parametrisations, the AP amplitude
decreases rapidly to an approximately steady level. Due to a 500 ms long stimulation
at 100 Hz, the fast-twitch model predicts an amplitude reduction of 44.9%, while the
slow-twitch model at 50 Hz stimulation predicts an amplitude reduction of 27 %. Due to
the fact that the direct measurement of changes of the AP amplitude of a single fibre is
difficult, instead, the amplitude reduction of the surface-detected potential is commonly
reported in experimental studies. Therefore, the predicted AP amplitude reductions are
not compared to experimental data at this point, but a comparison will be provided, when
investigating surface-detected potentials in Section B.4.3]

The predicted decreases in the AP amplitude and the AP propagation velocity due to
high-frequency stimulation demonstrate that the model is capable of simulating mem-
brane fatigue. As previously mentioned, membrane fatigue is attributed to potassium
accumulation and sodium depletion in the T-tubules. Therefore, Figure 5.8 shows the
evolution of the potassium and sodium concentrations in the T-tubules of a fast-twitch
muscle fibre due to a high-frequency stimulation of 100 Hz.

The model predicts that potassium concentration saturates at a level almost twice as
high as its resting concentration, when the fibre is stimulated for approximately 300 ms at
100 Hz, cf. Figure 5.8h. It is noteworthy that the steady level of the AP amplitude during
high-frequency stimulation is also reached after approximately 300 ms, cf. Figure [5.7h.
The decrease in the concentration of sodium in the T-tubules is less pronounced than the
increase of the potassium concentration, cf. Figure B.8b. After 500 ms of high-frequency
stimulation, the model predicts a T-tubule sodium concentration that is about 10 % lower
than the resting concentration.
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Figure 5.8: Evolution of (a) the potassium concentration and (b) the sodium concentration in
the T-tubules during 100 Hz stimulation in a fast-twitch muscle fibre.

5.4 Simulating Electromyographic Signals

The electrical activity of a muscle is the superposition of the APs generated by its muscle
units, each of which consists of many fibres that are simultaneously activated by their
corresponding motor neuron. The electrical activity of a muscle can be recorded either
at the skin surface above the muscle or within the muscle using needle electrodes. These
experimentally recorded signals are generally termed EMG signals, or more specifically,
surface EMG (SEMG) and intramuscular EMG, depending on the electrode placement.
Providing information on healthy and pathological conditions of a muscle, EMG signals
are widely used as source of data in rehabilitation medicine but also in scientific research
such as movement analysis, neurology, or the development of biofeedbacks. Due to the
fact that EMG signals are the result of cascades of complex biophysical processes, they
are often hard to interpret and analyse. Therefore, computational models predicting the
EMG have great potential to improve comprehension of recorded signals.

Building on the results of Sections B.1] and [(.2], the electrical activity of muscle tissue
consisting of many fibres is modelled in this section. Further, to predict the EMG signals,
the muscle tissue model is linked to a volume conductor. In addition, the MN model
of Negro & Farina [186] is included in the model to evoke the MUAPs. A schematic
representation of the resulting model is shown in Figure 5.9

Some of the results presented in this section have previously been published in Mord-
horst et al. [178]@.

5.4.1 Propagation of Electrical Signals Through a Volume
Conductor
The propagation of electrical signals through the 3D muscle tissue can be modelled at

the macroscale using the bidomain model, cf. Section LIl Neglecting the effect that
the extracellular potential has on the membrane potential, the bidomain model can be

3The methods and results presented in this section have been developed in close collaboration with Mylena
Mordhorst, M. Sc., during her master thesis and thereafter. The work of Mylena is greatly acknowledged.
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Figure 5.9: Overview of the model of the EMG. Each boz indicates a model part. The couplings
between the parts are indicated through arrows together with the transferred information.

simplified to the monodomain model, cf. Section 5.2 While both the bidomain and
the monodomain models are well established for simulating the electrical activity of the
heart (cf. Pullan et al. [211]), these approaches have not yet been applied to model EMG
signals. The activation of skeletal muscle, however, is much more complex than the
activation of the heart. The contraction of the heart is initiated by a single continuous
wave front propagating through the myocardium. In contrast, in skeletal muscle, the
fibres belonging to a MU are activated through their corresponding MN independent of
all other MUs, and electrical activation from one fibre to adjacent ones does not occur.
Hence, the individual fibres can be considered as electrically isolated and can be modelled
as 1D objects. Following this argumentation, the distribution of the membrane potential
can be determined from the 1D monodomain equation (5.20), similarly to the approach
presented in Section (.3.2]

Once the membrane potential has been determined by solving the monodomain equa-
tion (B.19)), the extracellular potential distribution can be computed in the muscle tissue
using the extracellular bidomain equation (5.9) and in the electrically inactive tissues
using the generalised Laplace equation (5.11). Due to the fact that the extracellular po-
tential not only propagates along the fibre direction but also in directions perpendicular
to it, Equation (5.9) has to be discretised on a 3D domain. To this end, the nodes of the
1D muscle fibre meshes are connected such that a 3D linear Lagrange finite element mesh
is obtained, see Figure .10 The weak forms of the extracellular bidomain equation (5.9)
and the generalised Laplace equation (5.I11)) are provided in Appendix [D.2l The spatial
derivative terms in the extracellular bidomain equation (5.9) are discretised and solved
using the resulting fine-spaced 3D finite element mesh. Note that this straightforward
approach is chosen due to its simplicity but other methods are also possible. For exam-
ple, a computationally more efficient method that uses a coarser finite element mesh for
the solution of the extracellular bidomain equation than for the monodomain equation is
used in Vigmond et al. [270] for modelling the electrical activity of the heart. Due to the
fact that skeletal muscle fibres are electrically isolated, the distribution of the membrane
potential in the 3D muscle tissue, which enters the extracellular bidomain equation (5.9)
as a source term, is highly irregular and non-smooth. The projection of such a fluctuating
signal to a different grid is not straightforward, which further complicates the usage of
different discretisations.



102 Chapter 5: Propagation of Electrical Signals Through Biological Tissues

M > o4
M‘ >—o ¢
m ——
S Tassaaae Sl 1]
M > o4
m >—o ¢
m' ——
M

monodomain bidomain

Figure 5.10: A 2D schematic representation of the 3D problem highlighting the connection of
the nodes of the 1D fibre meshes (red, left) to the 3D mesh for the solution of the extracellular
bidomain equation (red, right). Each finite element node point of the 1D muscle fibre meshes
requires the solution of the biophysical half-sarcomere model (blue, left).

To summarise, the steps used in this work to compute the EMG signal are: (i) The 1D
monodomain equation (5.20) is solved for the membrane potential distribution along the
muscle fibres. (ii) The extracellular bidomain equation (5.9) and the generalised Laplace
equation (B.IT]) are solved for the extracellular potential in the muscle region and for the
potential in the body region, respectively. The weak forms of these equations have been
implemented into the open-source software library OpenCMISS ﬂﬁ]

While the electrically inactive body region is assumed to behave electrically isotropic, an
anisotropy ratio of 5 is assumed for the overall conductivity of the extracellular bidomain
equation (o; + o), cf. Epstein & Foster [@], Gielen et al. [@], Mesin [@] Further, in
agreement with the previous findings, the intracellular conductivity tensor has a non-zero
component only in fibre direction. To model an arbitrary distribution of the fibre direc-
tions, it is convenient to introduce a local, orthonormal fibre coordinate system (cf. Pullan
et al. [|E1|]), denoted by v;, such that

o, 00 cré 0 O o, 0 O
o;,=10 0 0|lvy®uv,, o.=|0 o 0|y, o,=|0 o0, 0|V, Qv
0 0 0 0 O Ué 0 0 o,

and a local fibre direction can be assigned at each material point of the considered body.
Here, the v-direction is chosen to coincide with the direction of the muscle fibres. The

material parameters used in the presented simulations are summarised in Table L.l and
Table 551

Symbol Description Value [mS/cm|  Ref.
o longitudinal intracellular conductivity 8.93  [2§]
ol longitudinal extracellular conductivity 6.7 [228]
ol transversal extracellular conductivity 3.126 [170]
oldt fat conductivity 0.4 [228]
o skin skin conductivity 0.2 [78]

Table 5.5: Electrical conductivities.
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5.4.2 Surface and Intramuscular EMG in a Rectangular Cuboid

This section demonstrates that the proposed method can simulate realistic intramuscular
and sEMG signals. To this end, a rectangular cuboid of length | = 6 cm (x1-direction),
width w = 2.9cm (zo-direction), and overall height A = 1.4cm (x3-direction) is consid-
ered. The lower 1.2cm are defined as transversely isotropic muscle region that is covered
by a 0.2 cm thick isotropic fat layer. (This simulation does not explicitly account for the
skin.) Within the muscle region, a total of 30 x 13 = 390 muscle fibres are equally dis-
tributed. The 390 fibres are randomly assigned to 10 MUs. The resulting distribution is
shown in Figure 5. 1Th. To simulate a parallel-fibred muscle, all fibres are chosen to run in
parallel with the cuboid’s long edge and span over its entire length. Further, each muscle
fibre is meshed using 144 finite elements, and the cell model assigned to each node of the
resulting mesh uses the fast-twitch parametrisation of Shorten et al. [@] This leads to
the same AP propagation velocity along all fibres. The innervation zone is assumed to be
located at the middle of the muscle cuboid. To model the innervation zone, a Gaufsian
distribution around the middle of the fibres with a standard deviation of two nodes is
assigned to the stimulation point. The maximum deviation is 7 nodes, which corresponds
to a 0.5 cm wide spread of the innervation zone.

The MU discharge times are determined using the biophysical model of the MNs of Ne-
gro & Farina [@], which has been described in Section 4.2l The input to the MN model
is a constant mean synaptic current of 0.005 A /cm? superimposed by two Gaufian-
distributed high-frequency oscillating signals, one common to the entire MN pool and one
independent for each MN, see Negro & Farina ﬂ@] for details. Due to the total synaptic
input signal, 8 out of the 10 MUs are recruited. The mean discharge frequencies of the
recruited MUs are approximately 10-15Hz, and the interstimulus interval exhibits a co-
efficient of variation of approximately 20 %. Figure 5.ITb shows the MU discharge times
as predicted by the MN model.

a) | b) 1
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Figure 5.11: (a) The attribution of the fibres to the 10 MUs. (b) The motor neuron discharge
J175]

times. Figure previously published in

Figure shows the APs propagating along the muscle fibres and the resulting sSEMG
signals at the beginning of the simulation (0-13ms). While in experimental studies often
differential EMG signals are recorded, all EMG signals presented in this thesis result from
monopolar detections. Due to the fact that the proposed method determines the potential
at each point of the domain, differential signals can easily be computed from the difference
of two monopolar signals if necessary.
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Figure 5.12: Muscle fibre APs and the resulting sSEMG signals at times t = 0-6ms (left, from
top to bottom) and t = 7-13ms (right) in steps of size 1 ms.
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Figure .13 shows a short segment of the virtual SEMG signal at 25 (5 x 5) selected
points. In both directions, the distance between the points is chosen to be 5 mm, which
is in agreement with the interelectrode distance (IED) of high-density SEMG electrodes.
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Figure 5.13: High-density sEMG signals. The x1-direction coincides with the muscle fibre di-
rection, and the xo-direction is perpendicular to the fibre direction. In both directions, the inter-
electrode distance (IED) is 5mm.

Figure shows the computed EMG signals at 7 selected positions within the muscle
(different depths) and one position at the outer surface of the fat tissue. This represen-
tation reveals that the intramuscular EMG depends heavily on the electrode position,
picking up signals from only few fibres, which is in agreement with experimental observa-
tions [138]. Furthermore, Figure demonstrates the effect of the low-conductivity fat
tissue on the EMG signal.

Despite the simplified example set-up (cuboid geometry, unrealistic MU territories),
the predicted EMG signals compare qualitatively well with the experimental sSEMG data
of Farina et al. [70] and Barbero et al. [9]. A quantitative comparison is difficult as
experimental EMG signals depend heavily on properties that are difficult to control in ex-
periments, such as, for example, the MU territories and the thickness of the subcutaneous
tissue [54]. It is furthermore noteworthy that no noise has been added to the computed
EMG signals. Experimental EMG recordings, in contrast, always contain noise, for ex-
ample, electrode-electrolyte noise, the noise of the electronic amplifiers, line interference,
biological noise and the interference activity of MUs far from the detection point |68, [168|.

5.4.3 Effect of Membrane Fatigue on the EMG

The aim of this test case is to investigate the effect of membrane fatigue on the EMG
signal. Changes of the AP amplitude and propagation velocity of a single skeletal muscle
fibre due to membrane fatigue have been analysed in detail in Section £.3.6. Due to
the fact that the direct measurement of changes of the AP amplitude of a single fibre
is difficult, the resulting amplitude reductions of the surface-detected potential are now
investigated.

For the numerical experiments the cuboid of Section is extended by a 1 mm thick
layer of skin tissue on top of the fat layer. The conductivity of the isotropic skin layer is
provided in Table 5.5l As before, the fast-twitch parametrisation of the model of Shorten
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Figure 5.14: Intramuscular and sEMG signals at position (x1,x2) = (3.92cm,1.25cm) and
different depths (x3), where x3 = 1.4 cm is at the outer surface of the fat tissue, and x3 = 1.2 cm

is at the muscle-fat interface.
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et al. ] is used. To clearly demonstrate the effect of fatigue on the sEMG signal, only
a single fibre in the tissue block is activated. The activated fibre is located in the middle
of the cuboid and 0.4 cm below the skin surface. Stimulation of this fibre occurs at its left
end at a frequency of 100 Hz.

Figure shows the first simulated APs propagating along the stimulated fibre and
the resulting SEMG signal on top of the skin surface. The decrease in the amplitude of
the potential from the first to the second AP is clearly visible in the sSEMG signal. Note
that this decrease is due to the high stimulation frequency and becomes less pronounced
with larger interstimulus intervals (not shown).

— — —

0.1 ¢o [mV] 03 -820 V, [mV] 33.0

Figure 5.15: Single fibre APs propagating from left (point of stimulation, stimulation frequency
100 Hz) to right and resulting sSEMG at time t = 30.4 ms. Note that for illustrational purposes
only the activated fibre is depicted in the muscle tissue. Additionally, two sides of the cuboid
indicate the muscle and fat tissues. Previously published in M]

To quantify the decrease in the amplitude of the EMG signal over a larger number
of APs, Figure displays the SEMG signal recorded at a position in the middle of
the skin surface versus time. Within 500 ms, the amplitude of the EMG decreases from
0.37mV to 0.22mV, which corresponds to a decrease of 40 %.

Furthermore, to illustrate changes in the propagation velocity due to membrane fatigue,
Figure depicts the potential distribution in fibre direction at the surface along the
cuboid’s centre line at times 30.4 ms and 500.4 ms. These time instants are chosen such
that in both cases the next stimulation occurs at the left end of the fibre. Comparing
the SEMG of the non-fatigued state (¢ = 30.4 ms) with the fatigued state (¢ = 500.4 ms),
one observes that both the propagation velocity and the amplitude of the signal decrease
with time.

The model predicted AP amplitude reduction of 40 % compares well to the experimen-
tally determined surface-detected mean amplitude reduction of 32 %, see Milner-Brown &
Miller ] Experimental data reflecting changes in the AP amplitude exist only based
on the sEMG. In contrast, changes in the conduction velocity due to membrane fatigue
can be analysed intramuscularly from single fibres or from surface-detected potentials, cf.
Juel @], McGill & Lateva |. Since the intramuscular recordings of the propagation
velocity are probably more reliable than the values obtained from the sEMG, and since
the model predicted changes of the AP propagation velocity in single fibres have already
been discussed in detail in Section £.3.6], a comparison of the predicted surface-detected
potentials with experimental recordings is omitted here.



108 Chapter 5: Propagation of Electrical Signals Through Biological Tissues

..... 0.3

<
w

30.4ms —
500.4 ms — 1
0.2 0.2
= =
) £
= 0.1 = 0.1
= =
S LHHHHHETHEHTHEHETTE, = £
£ U £ O
—0.1+ -0.1
0 100 200 500 o 1 2 3 4 5 6
Time [ms] Spatial Coordinate |cm]|
Figure 5.16: (a) The surface potential wersus time captured at  position

(r1,22,23)=(3.0,1.4,1.5)cm.  (b) The surface potential versus the spatial coordinate for
times 30.4 ms and 500.4 ms. Figure previously published in M]

5.5 Discussion

The presented model for simulating the intramuscular and surface EMG is based on
the bidomain model, which is a continuum approximation of the electrophysiological be-
haviour of electro-active biological tissue ] The continuum character of the bidomain
model is reflected by the fact that not each half-sarcomere of a muscle fibre is represented,
but instead a continuous distribution of the subcellular quantities is assumed. Further-
more, assuming homogeneous conditions in the cross-section of the muscle fibre, only one
half-sarcomere model in the cross-section is used to determine the AP propagation along
the muscle fibre.

A monolithic coupling of the bidomain model with a detailed biophysical cell model
in the muscle and the generalised Laplace equation in the surrounding tissues leads to
computational expensive simulations. One common approach to decrease the computa-
tional complexity of the bidomain model is to use the less complex monodomain model,
cf. Nielsen et al. ﬂﬁ], Sundnes et al. [@] This approach yields an exact method if the
assumption of equally anisotropic intracellular and extracellular conductivity tensors is
satisfied, and an approximation if not M] Therefore, it has been demonstrated that the
monodomain model approximates well the bidomain model for the presented applications.

Using the monodomain model, the equations for the membrane potential and for the
extracellular potential are decoupled from each other, and hence, can be solved succes-
sively. The successive solution of the monodomain equation and the extracellular bido-
main equation essentially corresponds to the approach used in previous models of the
EMG |72, , , ] These phenomenological models prescribe the shape (e.g. the
Rosenfalck approximation) and propagation velocity of the AP, and solve a Poisson equa-
tion for the extracellular potential to predict the EMG.

By successively solving the monodomain equation and the extracellular bidomain equa-
tion, the effect that the extracellular potential has on the membrane potential is neglected.
However, it has been demonstrated that this approximation has a minor effect on the AP
propagation velocity. In fact, the monodomain model predicts slightly lower AP prop-
agation velocities than the bidomain model. This is also reflected in the discrepancy
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between the monodomain-based AP propagation velocities reported in Section and
those reported by Davidson [45] for the bidomain model.

The AP propagation velocities obtained from the monodomain or bidomain models for
the material parameters given in Table 5.1l however, are rather small compared to exper-
imentally determined AP propagation velocities, which in skeletal muscle are commonly
about 4m/s, cf. Mesin [170]. Although there is also variability in the experimental data
(for example, McGill & Lateva [164] assumed 2-6m/s), it is pertinent to assume that the
given set of material parameters is inaccurate. Following this, it has been shown that
both a lower membrane capacitance and a higher ratio between the conductivity and the
surface-area-to-volume ratio yield a higher conduction velocity.

In contrast to previous models of the EMG, which prescribe the shape and propagation
velocity of the AP as part of the model constitution, the generation and propagation of
the AP in the presented model is based on a transient diffusion equation in conjunction
with a biophysical Hodgkin-Huxley-type model of the membrane electrophysiology. One
of the major advantages of the biophysical description is that it intrinsically accounts for
physiological effects such as, for example, membrane fatigue that causes changes in the
amplitude and conduction velocity of the AP during sustained contractions. Thus, using
the presented biophysical model, one can analyse their effect on the EMG signal, which
might improve signal interpretation and lead to a better understanding of recorded EMG
signals. Moreover, changes in the EMG that might occur, for example, in pathological
conditions, can potentially be investigated using the presented model due to its biophysical
description. A further potential application of the model is the in-silico testing of drugs.
For example, knowing the effect a certain medication has on the conduction of a species
of ion channels, its effect on the AP shape and conduction velocity can be studied, and
the simulation results can be validated using EMG measurements. No previous model of
the EMG could combine all these processes within one framework.

Other drawbacks of existing models also apply to the presented model, e.g., a lack of
reliable experimental data such as accurate descriptions of the fibre directions, material
parameters, heterogeneities, and MU territories. This and the fact that recorded EMG
signals vary a lot, for example, due to differences in the thickness of the subcutaneous
tissue (cf. Dimitrov et al. [54]), make a quantitative validation of the EMG computation
difficult. The bidomain model and its simplification, the monodomain model, however,
are well established within the field of biosignal modelling, in particular for simulating the
electrical activity of the heart, see Pullan et al. [211]. In this context, Vigmond et al. [270]
demonstrated that a coarser mesh can be used for the (elliptic) extracellular bidomain
equation than for the (parabolic) monodomain equation and still maintain reasonable
accuracy. Choosing the same mesh size for the extracellular bidomain equation would
not have been necessary but appeared to be, from an implementational point of view, the
simplest choice.

Commonly, as also described in Section[3.2] implicit methods are used for the integration
of the stiff ODEs describing the cellular behaviour. This is due to the fact that, when
using explicit methods to solve stiff equations, the time step size is often restricted by
stability issues. Employing an implicit method, such as, for example, the backward Euler
method, a larger time step can be used, however, a nonlinear system of equations has to
be solved in each time step. Independent of the solution method, however, a very small
time step size is required to resolve the rapid changes and steep gradients occurring during
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the rising phase of an AP. Despite the fact that the cell model of Shorten et al. [240] is
mathematically represented by a system of stiff ODEs, the advantage of using an implicit
method and a larger time step is balanced by the additional computational cost of solving
a nonlinear system of equations in every time step. Indeed, the forward Euler method,
an explicit, first-order accurate method, turned out to be efficient to solve the nonlinear
cell model of Shorten et al. [240]. Tt is, however, noteworthy that the small time step
size required to resolve the rising phase of an AP is not required during other phases. To
simulate these phases an implicit method and a larger time step size might be much more
efficient than an explicit method. Therefore, an implicit method using an adaptive time
step size might be ideal for the solution of the cell models. Such methods have been used
to solve the examples in Chapter [ and Section (5.3.1] using MATLAB, however, they are
currently not implemented in OpenCMISS.

The Hodgkin-Huxley-type model of the membrane electrophysiology used within the
monodomain model is part of the biophysical half-sarcomere model of Shorten et al. [240].
Since the half-sarcomere model describes the entire excitation-contraction coupling, i.e.,
the signaling pathway from AP generation via calcium release and calcium dynamics to
stress generation, the model can, in addition to the EMG, also predict the force that is
generated by the muscle. This, amongst others, will be comprehensively discussed in the
next chapter.



6 A Multiscale Skeletal Muscle
Model

Previous chapters presented modelling approaches that either completely neglected the
spatial components of the underlying system (Chapter[) or considered spatial components
of the muscle only with respect to the propagation of electrical signals through the tissue
(Chapter []). The activation-induced contraction of skeletal muscles, however, causes also
a deformation of the muscle, which in turn affects the force-generating capacity of the
muscle (cf. the force-length and force-velocity relations in Figures 2.7 and 2.8) and the
action potential propagation (mechano-electric feedback). To simulate the deformation,
as well as the total force that is exerted during contraction, a continuum-mechanical
description of skeletal muscle behaviour is introduced in the following. In this regard,
continuum mechanics provides a flexible framework for modelling and simulating isometric
and non-isometric muscle contractions.

6.1 Constitutive Modelling

The continuum-mechanical balance relations presented in Section are universally
valid, independent of the material of the body under consideration. However, due to the
fact that the presented system contains more unknowns than equations, further relations
have to be developed to close the system of equations. To this end, suitable assumptions
have to be constitutively introduced, which will also characterise the behaviour of the
material.

6.1.1 Preliminary Assumptions and Resulting Equations

Proceeding from the local forms of the continuum-mechanical balance relations of Sec-
tion B.4.3] assumptions are made towards adapting the generally valid balance relations
to the special case of skeletal muscle modelling. Furthermore, simplifying assumptions
are introduced to decrease the computational complexity of the model such that the re-
sulting model can be solved within a reasonable time on today’s hardware architecture.
For the sake of convenience, all basic assumptions are first summarised before they are
comprehensively discussed and applied to the balance relations.

Material incompressibility,

quasi-static conditions,

negligible body forces,

isothermal conditions,

the superposition of passive and active stress contributions,
hyperelastic material behaviour.
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Due to its high content of water, skeletal muscle tissue is generally considered to behave
materially incompressible under physiological conditions, cf. e.g. Bol et al. [19], Gindre
et al. [85], Takaza et al. [256], Van Loocke et al. [268]. In incompressible materials the
mass density does not change during a deformation process. Hence, the time derivative of
the density in the local form of the mass balance (3.43) vanishes and the resulting relation
yields

dive = (grade)-I = L-1I = D-1I = 0. (6.1)

Therein, D :=sym L = % (L™ 4 L) denotes the spatial rate of deformation tensor, which
is defined as the symmetric part of the spatial velocity gradient, L := grad®. The
mass balance, such as all other balance relations, is stated in Section in the actual
configuration. Of course, the balance relations can similarly well be expressed in the
referential frame. In the reference configuration, the condition of incompressibility states
that the material density of the body at all times equals its density in the reference state,
i.e., p = pp. Assuming material incompressibility, the local form of the mass balance in
the reference configuration leads to

po = pdet F — det F = 1. (6.2)

Equation (6.2]) restricts the set of admissible deformations to the subset of volume pre-
serving deformations. To take this restriction into account, the product of a Lagrange
multiplier p (the hydrostatic pressure) and the incompressibility constraint (€] is added
to the entropy inequality, which is obtained when the balance of entropy is inserted into
the second law of thermodynamics. Evaluation of the entropy inequality then yields that
the total stress consists of two parts, i.e.,

T = —pI + T, S = —pJC'+ S, (6.3)

where Tz and Sg are the so-called extra stresses of the actual and reference configurations,
respectively. Since the treatment of incompressible materials is well-known in continuum-
mechanics, further details are omitted here but can be found, for example, in Bonet &
Wood [23| and Holzapfel [121].

Further, the assumption of quasi-static conditions for the continuum-mechanical model
implies that the inertia term in the balance of momentum (3.45]) vanishes. This assump-
tion is obviously only valid for slow deformations. Deformations involving large accelera-
tions have to be excluded. For example, the model will not necessarily produce accurate
results for quick-release experiments, cf. e.g. Hill [117, [118|, Siebert et al. [243]. Restrict-
ing the application of the model to more physiological and slow contractions, however,
one can assume that the inertia terms are small in comparison to the forces exerted by
the muscle. The same assumption holds for the body (gravitational) forces. Following
these assumptions, the local form of the balance of momentum (B.43]) reduces to

divT = 0. (6.4)

Furthermore, the local form of the balance of angular momentum (B.47) directly yielded
the symmetry of the Cauchy stress tensor, which implies the symmetries of the Kirchhoff
and the 2°¢ Piola-Kirchhoff stresses. While these results will be used in the following, the
balance of angular momentum will not be considered any further.
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Next, the assumption of isothermal conditions is considered. In reality, muscle contrac-
tions generate heat, cf. Epstein [67], Hill [117], which is released to adjacent body parts
and the environment. Furthermore, it is known from experiments that the temperature
has an effect on the force-producing capabilities of the muscle and the AP propagation
velocity, see |14, [164]. Moreover, the temperature of a muscle depends on its position in
the body, the temperature of the environment, and the level of muscle activity. Follow-
ing the idea of isothermal conditions used in experimental studies, temperature effects
are neglected in this work. Therefore, the energy balance drops out and is not further
considered.

Muscle tissue resists external loads like any other material but can, in addition, also
actively contract and generate force. To incorporate the active contractile behaviour
within the continuum-mechanical framework, the stress tensor of the muscle tissue is
a priori constitutively assumed to consist of two parts describing the passive and active
behaviours, S&* and Sp™, respectively, i.e.,

Sy = SE¥ + St (6.5)

The rheological model corresponding to the superposition of the passive and active stresses
is shown in Figure [6.1]

— M

passive

active
— \\\\\_——

Figure 6.1: Rheological model for the superposition of passive and active stresses.

While the superposition of the passive and active stresses is inspired from Hill-type
muscle modelling, Hill-type models typically consist of three elements. In addition to the
contractile and the parallel elastic elements, they include an elastic element in series to the
active element or in series to the parallel arrangement depicted in Figure [6.1], cf. Siebert
et al. [242]. The series elastic element represents the series elasticity of the muscle-tendon
complex. Since the series elasticity can mainly be attributed to tendon, which is not
considered in this work, the third element is omitted here.

In this work, only the passive part of the stress tensor is derived from a strain energy
(see below), while the form of the active part is constitutively assumed, and hence, does
not necessarily satisfy the second law of thermodynamics. Recently, a few researchers
also derived the active part of the stress tensor from a strain energy, which allows to
demonstrate the thermodynamic consistency of the overall model, cf. e.g. Gizzi et al.
[86], Rossi et al. [224], Sharifimajd & Stalhand [239], Stalhand et al. [246, 247].

While details regarding the thermodynamic consistent formulation of constitutive mod-
els are omitted here, Appendix [A.2] provides additional information on this subject. For
more details, the reader is referred to Wang & Truesdell [273] and references therein.

Neglecting viscous effects and assuming hyperelastic material behaviour of the passive
muscle tissue, the second law of thermodynamics yields that the stress tensor can be
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derived from a strain energy function ¥V according to

ow
ShY = 2 —. 6.6
For a transversely isotropic material, the strain energy depends on the right Cauchy-
Green deformation tensor, C, and a structural tensor, M,. Commonly, however, the

strain energy is formulated in terms of its principal and mixed invariants (cf. Appendix

A2), i.e.,

W(C,M,) = W, IIIIIV,V). (6.7)
Therein, the principal invariants are given by
I = tr C = tr B = F F,
II = tr(cof C) = tr(cof B) = cof F-cof F, (6.8)
I = detC = detB = (detF)-(detF),

and the mixed invariants, which are only required for anisotropic materials and vanish for
isotropic materials, are given by

IV =tr(M,C) = (ay®ay)”-C =ay-F'Fay = Fay-Fay = a-a,

6.9
V = tr(M,C?) = ay-C?ay. (6.9)

Herein, ag is a unit vector pointing in the materials preferred direction in the reference
configuration, and the structural tensor is given by M, = ag ® ag. Moreover, IV = )\} is
the squared fibre stretch in the direction of the mapped fibre orientation a = F ag, where
At = |a| denotes the fibre stretch (length). Invariant V' has no direct physical meaning.

6.1.2 Resulting Strain Energy Functions

Based on the findings of the previous section, suitable strain energy functions are defined
for the passive muscle tissue and the tissue of the subcutaneous layer. Hereby, the strain
energy function for the isotropic subcutaneous tissue is included as a special case of the
anisotropic passive muscle tissue.

Further, due to the fact that muscles consist of muscle fibres and extracellular connective
tissue, the muscle derives its passive response from a combination of these structures [85|.
Within the fibres, the titin filament, which connects the myosin filament to the Z-discs, is
believed to contribute most of the passive response, cf. e. g. Prado et al. [209]. Besides the
titin filaments, the hierarchical organisation of the extracellular connective tissue, with its
various filament orientations and cross-connections, gives rise to an anisotropic, or more
precisely, transversely isotropic passive material behaviour, cf. e. g. Bol et al. [20], Gindre
et al. [85], Takaza et al. [256]. Based on the description of fibre-reinforced materials, the
passive part of the energy function is decomposed into an isotropic part and an anisotropic
part,

WL I T, IV, V) = WS(IL I T + W™ (IV, V). (6.10)

Therein, the isotropic part of the energy function depends on the principal invariants and
represents a fictitious ground matrix, whereas the anisotropic part is assumed to depend
only on the mixed invariants and represents the fibre reinforcements. Note that in this
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macroscopic continuum-mechanical formulation, neither does the isotropic ground matrix
reflect the behaviour of the extracellular connective tissue, nor do the fibre reinforcements
represent the mechanical behaviour of the muscle fibres (although the direction of the fibre
reinforcements coincides with the muscle fibre direction). For example, there is no reason
for assuming that the extracellular connective tissue behaves mechanically isotropic.

Isotropic Contribution to the Passive Behaviour

A group of isotropic material models that is well-known in continuum mechanics, is the
generalised Rivlin or polynomial hyperelastic material. This group is characterised by the
strain energy functions

N
wise (I, IT) Z WIT - 3). (6.11)

Therein, ¢;jo > 0 are material parameters and agy = 0 to satisfy the normalisation con-
dition. The strain energy in (G.II) does not depend on the third principal invariant
III = det C = (det F)?, which is unity due to the incompressibility constraint. Inter-
estingly, the incompressible form of the generalised Rivlin models (6.1T]) does not satisfy
the condition of a stress-free reference configuration, cf. Ogden [197|. However, due to
the fact that the residual stresses are identical normal stresses, they cause no deformation
of the incompressible material, similar to the penalty terms resulting from the incom-
pressibility constraint. Note that the compressible form of the generalised Rivlin model is
constructed in such a way that it a priori satisfies the requirement of a stress-free reference
configuration.

Several commonly used material models, such as, for example, the Neo-Hookean solid
(N =1,co1 = ¢11 = 0), can be derived from this group. In this work, the Mooney-Rivlin
model is adopted [121]. The strain energy of the Mooney-Rivlin model is given by

WHULIT) = cyo(d —3) + cor(IT —3). (6.12)

To obtain a completely stress-free reference configuration, which is advantageous for the
numerical solution process, the initial condition of the undetermined Lagrange multiplier
is chosen to be p = —(c10 + 2 ¢o1), cf. Ogden [197]. Note that the Mooney-Rivlin material
a priori satisfies the requirements of polyconvexity and coercivity (see Appendix [A.2.6]).

From the strain energy function in (612) the isotropic part of the extra stress can be
derived according to Equation (6.6), i.e.,

o _ OV oWl oW an
S0 = 2%¢ ~%%rac T(omac (6.13)

Making use of the derivatives of the principal invariants,

ol o1l
oC ’ aC (tr C) Cc, cof C, (6.14)
the symmetry of the right Cauchy-Green deformation tensor, and the definition of the

first principal invariant, the isotropic part of the 2"¢ Piola-Kirchhoff stress tensor results
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in

SEe(I1, 1) = 2¢10I + 2¢(IT - C). (6.15)
This stress tensor is not only used for representing the isotropic part of the muscle tissue,
but also to model the material behaviour of the subcutaneous layer. Due to the fact that

subcutaneous tissue is isotropic and does not actively contract, the terms derived in the
following vanish for this material.

Anisotropic Contributions to the Passive Behaviour of Muscle Tissue

Skeletal muscle tissue is generally considered to behave transversely isotropic, i.e., the
material has a single preferred direction, which coincides with the local muscle fibre di-
rection. While many experiments indicate that muscle tissue is stiffer in fibre direction
than normal to the fibre direction (cf. e.g. Bol et al. [19], Morrow et al. [181]), a more
compliant behaviour of the fibre direction compared to the cross-fibre direction is reported
by others, cf. Nie et al. [189], Takaza et al. [256]. Due to the fact that different muscles
and different species are considered in the different experiments, it is possible that both
behaviours exist in different muscles. Following this, first a strain energy function is in-
troduced to represent the more common case with stiffer fibre direction. For this case, the
energy function describing the anisotropic behaviour of the muscle tissue is adopted from
Markert et al. [163]. This strain energy depends only on the fourth (mixed) invariant and
is given by

M

> (@(Ivdi/2 —1) — b 1n(IV1/2)> if IV>1,

WH(IV) = 4= \d; (6.16)

0 otherwise .

Therein, b; and d; are material parameters (see Markert et al. [163| for their restrictions),
and M specifies the number of terms. The form in (6.16)) satisfies a priori the normalisation
condition and the condition of a stress-free reference configuration. For further details on
this anisotropic strain energy function, the interested reader is referred to Karajan [140)|
and Markert et al. [163].

Since the energy in (6.16) depends only on the fourth invariant, Equation (6.6) yields

i g OV W QIV ov
SpM = 2 5C 2 o 90 where 5C M,. (6.17)

Proceeding from this result, the anisotropic portion of the extra stress describing a ma-
terial with stiffer behaviour in fibre direction is given by

M
D b(VEE v M, i V=1,
i=1

SEi(IV) = (6.18)

0 otherwise .
The stress tensor of a transversely isotropic material with stiffer behaviour in the di-

rections normal to the fibre direction is, for the sake of brevity, not derived from a strain
energy, but directly stated. The derivation follows ideas presented by Markert et al. [163].
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First, additional unit vectors, by and ¢y, describing directions normal to the fibre direc-
tion are introduced, together with their corresponding squared stretches, IV}, and IV, and
structural tensors, M and M.

bo 1 [0 7)) M = bO‘CbO Mb = b0®b0,

A
Cy = a0Xb0 M = Co'CCO MC = cHR®c¢Cy. (6 9)

Note that for the sum of the structural tensors, the relation M, + M, + M, =
holds. Using the quantities defined in (6.19)), the anisotropic portion of a stress tensor
describing a stiffer behaviour in the directions normal to the fibre direction (i.e., in cross-
fibre direction, XF') can be given by

( 3

K
WV, IV,) = ZE (V7 — My if > 1

L 0 otherwise )
(6.20)

( )

K
Zz} (VS22 — v M, it IV, >1

L 0 otherwise )

Of course, a superposition of the two anisotropic tensors, ot and S 7 xr» 18 also possible,
where the choice b; = b, and d; = d; forall: =1,... K =M y1e1ds again an isotropic
material behaviour.

Active Contribution

The focus of this section is on the continuum-mechanical description of the key property
of skeletal muscle to actively contract and generate force. Muscle contraction originates
from the interaction and relative movement of the actin and myosin filaments in the
sarcomeres of the muscle fibres, see Section 2.5.2]

Two approaches are commonly used to incorporate the active contractile behaviour of
muscle within a continuum mechanical framework. The first approach is inspired from
the field of Hill-type muscle modelling, cf. e.g. Giinther et al. [92|, Giinther & Schmitt
[93], Siebert et al. [242], Till et al. [261], and assumes a priori a superposition of the energies
or stress tensors describing the passive and active behaviour. This approach is often used
in continuum and multiscale muscle mechanics, cf. e. g. Blemker et al. [16], Bol [18], Bol &
Reese [21], Dal et al. [43], Goktepe & Kuhl [87, 87|, Johansson et al. |[135], Murtada et al.
[182], Nash & Hunter [184], Niederer & Smith [190], Odegard et al. |[196], and Roéhrle and
co-workers [219-223, 274|.

The second approach is based on the multiplicative split of the deformation gradient
tensor, which was initially developed to model processes involving elastic and inelastic
deformations (viscoelasticity, elastoplasticity), cf. Lee [154]. In the context of muscle
mechanics, the deformation gradient is decomposed into an active (contractile) and a
passive (elastic) part, cf. e.g. Gizzi et al. [86], Goktepe et al. [88], Rossi et al. [224, 225,
Sharifimajd & Stalhand [239], Stalhand et al. [246,247|. Note that the multiplicative split
of the deformation gradient tensor also yields an additive strain energy (cf. [86, (110, 1224]),
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but the method requires to identify and solve an additional equation for the evolution of
an internal variable.

To avoid the additional complexity involved with the second approach, the present work
follows the first method. Thus, the active stress contribution is not formally derived from
a strain energy but is constitutively assumed to take the form

1 .
Sgct(t’ M’Y) _ )\_f Pmar,y(t,oz, )\f, )\f) M, . (621)

Therein, P™* denotes the maximum isometric active force per unit reference area (nom-
inal or engineering stress), and v is a normalised measure of the local active stress in the
muscle, which depends on the activation, «, the sarcomere length expressed through the
fibre stretch, As, and the contraction velocity, j\f, cf. Section Although the active
stress tensor in ([6.27)) is not derived from a strain energy function, the form is chosen to
comply with such an approach. Assuming that an active strain energy W**(\;) exists,
the active stress tensor can be derived from

onweet oWt o ; IV

O 1
act __ ) - 9 h “2f = —.
5S¢ oC ox; OIV 9C where oIV 2,

(6.22)

This yields the active stress tensor in (6.21) for OW**/ON; = P™* ~ [110].

As commonly, the active stress tensor in (6.21)) only acts in the direction of the muscle
fibres, M. This assumption is based on the observation that, when muscles contract,
they shorten along their fibre direction, and, due to their incompresibility, they expand
in the cross-fibre directions. Although one can easily imagine that activated muscle tis-
sue exhibits also a higher stiffness in the cross-fibre direction than non-activated muscle
tissue, no experimental data exist that investigate this effect. Hence, the values of mate-
rial parameters of the additional stiffness in cross-fibre direction cannot be determined.
Despite this lack of experimental data, active stress tensors considering additional com-
ponents in the cross-fibre direction have been proposed by Baillargeon et al. [7], Rossi
et al. [224], Usyk et al. [265] in the context of modelling the mechanical behaviour of the
heart.

Different formulations for the normalised active stress in (6.21) are possible. A purely
macroscopic description could, for example, be based on the active contractile element
in Hill-type muscle models, cf. e.g. Blemker et al. [16]. This leads to v(¢, a, Ay, )\f) =
a(t) fo(Af) fo(Af), where a(t) € [0,1] is a measure of the activation of the muscle, fo(\f) is
the force-length relation, and fv(}\ ) denotes the force-velocity relation, cf. Gordon et al.
[89], Hill [117], Katz [141], Siebert et al. [242].

A different approach yielding a multiscale model is obtained when the normalised active
stress in the macroscopic continuum-mechanical formulation is derived from a microscopic
model, such as, for example, the biophysical half-sarcomere model of Shorten et al. [240)].
When the normalised active stress is derived from a microscopic cell model, it is often
more convenient to express the fibre stretch in terms of the sarcomere length, ¢g, which is
directly related to the fibre stretch via Ay = /0% with % = 2.0 yum being the sarcomere
resting length 61, i.e., the sarcomere length of the reference configuration. Following
this and using the definition of the cell-model-based active stress in Equation (4.26]), the



6.2 Numerical Treatment of the Multiscale Model 119

normalised active stress in the multiscale chemo-electro-mechanical model is given by

B(tu f87 gs) - B(t07 07 O)
B(ts, fm= 0) — B(to,0,0)

Yt o, s, ls) = folls) (6.23)

Therein, the stimulation frequency, f, is used as a measure of the activation, «, and the
F-( relation is denoted by f,({s), cf. Equation (@24]). Moreover, t; is the time, at which
the cell model develops its maximum force, and f** denotes the maximum stimulation
frequency.

The form in ([6.23) accounts for the resting concentrations of XBs in the pre-power
stroke and post-power stroke states and normalises the active stress using its value at
full activation, at optimal sarcomere length, and under isometric conditions. While the
minimal value of the active stress is zero, its maximal value can exceed the value of one
during lengthening contractions, cf. Zajac [282].

Note that the forces obtained from the 0D model introduced in Chapter M4 are here
interpreted as stresses. Justification for this is given by the fact that normalised nominal
stresses are considered; since the nominal stress is defined as the ratio between the force
and the referential area element, the normalisation process cancels out the referential
area elements, which do not change in time, and the resulting normalised nominal stress
is identical to the normalised force.

Summary

In summary, the resulting overall 2" Piola-Kirchhoff stress tensor of the anisotropic and
active skeletal muscle tissue is given by

S = —pJC'+ S5+ SEM + S + Si (6.24)

On the right hand side of Equation (6.24]), the first term results from the incompressibility
constraint, the second term describes the isotropic part of the passive material response,
and the third and fourth terms represent the additional passive stress contributions in fibre
and cross-fibre directions, respectively. Further, the fifth term describes the active stress
contribution that is due to cross-bridge cycling and vanishes if purely passive material
behaviour is considered.

6.2 Numerical Treatment of the Multiscale Model

The previous section demonstrated that the formulation of the active part of the stress
tensor of the continuum-mechanical muscle model relies on the biophysical half-sarcomere
model of Shorten et al. [240], which has been introduced in Section[4.3l Further, Chapter [l
presented the extension of the description of the membrane electrophysiology to spatial
conditions. Together, these models constitute a multiscale skeletal muscle model.

The major drawback of the presented multiscale muscle model is its extreme computa-
tional complexity. To deal with this, methods are developed in this section to biophysi-
cally simulate muscle behaviour from the cellular level to the whole organ level on today’s
hardware architectures.
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6.2.1 Overview of the Multiscale Muscle Model

Figure provides an overview of the proposed modelling framework. The individual
parts of the framework have been presented in previous sections (the model of the half-
sarcomeres in Section 3], the AP propagation model in Chapter B, and the continuum-
mechanical model in Section [6I). Here, the interactions and couplings between the
individual model parts are reviewed and highlighted.

multiscale muscle model

muscle fibre model

Vin
half-sarcomere (ODE) ~——| diffusion eqn. (1D PDE)

ls, ls v
continuum-mechanical deformed geometry x
model (3D PDE)

Figure 6.2: Overview of the multiscale muscle model. Each box indicates a part of the model. The
couplings between the parts are indicated through arrows together with the transferred information.

To induce the contraction of a muscle fibre, a stimulating current is injected into the
half-sarcomere model [240] that is located at the neuromuscular junction. The location
of the neuromuscular junction is assumed to be, for example, at the middle of the muscle
fibres. Starting from the neuromuscular junctions, the APs propagate along the muscle
fibres. This process is described by the diffusion term of the monodomain model, cf.
Section For the solution of the monodomain model, use is made of the operator
splitting approach, which has been presented in Section .2.1l The aim of the operator
splitting is to separate the biophysical cell model of Shorten et al. [240] from the transient
diffusion equation, which are coupled to each other through the membrane potential (cf.
Section B.2.T)). Besides the membrane potential and many other biophysical quantities,
the cell model of Shorten et al. [240] provides the active stress, v, that is generated in
each half-sarcomere, cf. Equation (6.23)).

The normalised active stress enters the active part of the continuum-mechanical con-
stitutive equation through a mapping (homogenisation), which will be discussed in detail
in Section [6.2.3. The continuum-mechanical muscle model predicts the stress and strain
distributions, as well as the actual (deformed) geometry of the muscle. From the strain
distribution, the changes in the sarcomere lengths are determined and, via a finite dif-
ference approximation, the local contraction velocities are computed. The contraction
velocities directly enter the model of the half-sarcomere, while the sarcomere lengths are
used to scale the generated active stresses at the half-sarcomere level, cf. Section [£.3.4l
Hence, at a point in space, the half-sarcomere model and the continuum-mechanical model
are bidirectionally coupled.

In contrary to Rohrle et al. [220], the governing equations describing the bioelectrical
fields and 3D finite elasticity theory are solved in a strongly coupled way, where the
solution of the mechanics influences the bioelectrical fields and vice versa. Furthermore,
to take into account length changes that arise from the deformation of the muscle tissue,
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the monodomain equation is solved on a deforming/moving domain. The adjustments
required to take into account the deformation of the domain when solving the equations
describing the AP propagation along the muscle fibres will be presented in detail in the
next section.

6.2.2 Monodomain Model on a Deforming Domain

This section investigates changes that have to be applied to the monodomain model
when taking into account a deformation of the conducting tissue. In a general set-
ting, the conductivity tensor, the membrane capacitance, the surface-area-to-volume ra-
tio, and the ionic currents crossing the cell membrane can depend on the deformation,
i.e., oy = o5C), Cp, = Cn(C), A, = A,(C), and L;,, = I;,n(C), respectively,
cf. Nash & Panfilov [185]. Furthermore, the deformation of the domain has to be taken
into account when evaluating the diffusive term on the left-hand side of the monodomain
equation (5.I19). Moreover, stretch-activated ion channels could be added to a Hodgkin-
Huxley-type description of the membrane ionic currents or in a phenomenological model
of the AP generation, cf. Guharay & Sachs [91], Panfilov et al. [199].

Without loss of generality, the conductive, capacitive, and ionic dependencies are ne-
glected in the following. Further, since the surface-area-to-volume ratio depends to a
large extend on the membrane folding factor (cf. Pullan et al. [211]), changes of this
quantity due to the contraction of muscle fibres are expected to be negligible. Here, the
focus is on modelling the changes introduced through the deformation of the domain.
Distinguishing between derivatives with respect to the actual coordinates and those with
respect to referential coordinates, and using the short-hand notation g = —o.4 grad V,,,
the monodomain equation can be formulated in the actual configuration by

oV,

+ Lion) - (6.25)
Equation ([6.25) can either be directly solved in the actual configuration, or it can be solved
in the reference configuration by pulling back the respective geometric quantities. To this
end, the local formulation in (6.25)]) is first transformed into the global representation, i.e.,

/—diquv = /Am(Cm% + Iion) dv, (6.26)
Q [¢) 815

and then shifted to the reference configuration. Making use of the transport theorem for
the volume element, dv = (det F') dV = J dV/, the right-hand side of Equation (6.26]) can

be rewritten in the reference configuration according to

oV,

/ Am(Cm% + Lipn) dv = / J Ay (Crp—
Q Q ot

o + Lipy) AV . (6.27)

Using Gauf’s divergence theorem and Nanson’s formula, da = J F7 ' dA, the left-hand
side of Equation (6.26) can be reformulated to obtain

/—diquv = / —q-da = / ~Jq-F''dA = /—Div(Jqu)dV. (6.28)
Q oN o0 Q
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While the divergence operator and the integral have been pulled-back to the reference
configuration, the current flux, q, is still defined with respect to the actual configura-
tion. Following Holzapfel [121], the spatial gradient is related to the material gradient by
grad (+) = F""'Grad (- ). Furthermore, the referential conductivity tensor, oy, is in-
troduced through a covariant pull-back operation, i.e., aeoff =F! Oecff FT~'. This yields
for the current flux vector

qg = —ogrgradV,, = —ouy F'1GradV,, = —F o;?ff FTFT-1GradV,,. (6.29)

Inserting Equations (6.27)), (6.28), and (6.29) into (6.26), and returning to a local for-

mulation yields the monodomain equation in the reference configuration, which is given
by
L piv (Jogy GradV;,) = Am(Cm% + Lion) - (6.30)
J it ot

For further details, the reader is referred to, for example, Dorfmann & Ogden [55|, Gizzi
et al. [86], Nash & Panfilov [185].

6.2.3 High-Performance Computing

Previous sections discussed the individual modelling parts and their interactions within
the multiscale modelling framework. This section focuses on implementational and high-
performance computing aspects of the resulting multiphysics discretisation schemes. To
this end, efficient solution strategies are developed for the resulting complex and compu-
tationally very demanding multiphysics model describing phenomena on different length
and time scales. To achieve this, various concepts of software engineering, for example,
advanced discretisation schemes for multiphysics problems, parallelisation, or staggered
solution schemes are adopted. These concepts have been implemented within the open-
source software library OpenCMISS, cf. Bradley et al. |26], Heidlauf & Rohrle [109].

Discretisation in Space and Time

The numerical solutions of both the continuum-mechanical model, presented in Sec-
tion 6.1, and the monodomain equation, presented in Section (.2 rely on the finite
element method. The weak forms of the governing equations of the bioelectrical and
continuum-mechanical models, required for a finite element implementation, are provided
in Appendix [Dl A straightforward implementation would use the same mesh for the solu-
tion of both problems. However, the solution of the bioelectrical field equations requires
an extremely small time step and a very fine mesh due to the rapid changes and steep
gradients occurring in physiological cell models, see Section [b.3]and Pullan et al. [211]. On
the other hand, using the same spatial and temporal discretisation for the solution of the
3D nonlinear continuum-mechanical model is prohibitively expensive and unnecessary, as
changes on the scale of an entire muscle occur at considerably larger time scales.
Following the idea of different characteristic length scales, a multiphysics discretisation
scheme is proposed, which uses a much finer mesh for the bioelectrical model than for
the continuum-mechanical system. To this end, first, a relatively coarse 3D finite ele-
ment mesh of the muscle’s geometry is generated. Then, relatively fine 1D finite element
muscle fibre meshes are embedded within the 3D elements, cf. Rohrle et al. [221]. This
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is schematically represented in Figure 6.3 The governing equations of the continuum-
mechanical model are discretised using the coarse 3D mesh, while the diffusion part of
the bioelectrical field equation is solved on the 1D muscle fibre meshes.

half-sarcomere model

mechanics monodomain

Figure 6.3: A 2D schematic representation of the 3D problem highlighting the use of the different
meshes for the different subproblems of the multiscale model. First, the geometry of the muscle
is discretised using 3D quadratic Lagrange finite elements (black mesh). This mesh is used for
the solution of the continuum-mechanical model. Embedded in these 3D finite elements are 1D
muscle fibre meshes (red) used for the solution of the monodomain equation. Each finite element
node point of the 1D muscle fibre meshes requires the solution of the biophysical half-sarcomere
model (blue).

Since some variables exist on both meshes, transfer operations between the two meshes
are required. The transfer from the coarse 3D finite element mesh to the fine 1D fibre
meshes is called interpolation, while the transfer in the opposite direction is termed ho-
mogenisation. The homogenisation and interpolation operations are discussed for each
affected variable further below.

Due to the different characteristic time scales of the different physical phenomena, a
staggered solution scheme with three different time step sizes is applied in this work.
A schematic representation of the time-stepping scheme is shown in Figure First,
the half-sarcomere models are solved for 50 time steps with time step size h9PF, cf.
Section [£3] The symbol A in Figure denotes the solution process for computing
the states of the half-sarcomere model for time ¢ + h®PF. Note that for simplicity and
readability of Figure only a fractional number of time steps are depicted. In case of
computing the cellular states, which will be used within the next time step of the diffusion
equation, only 5 instead of the 50 time steps typically used are depicted in Figure 6.4
Each discretisation point of the monodomain equation is associated with its own half-
sarcomere model. The half-sarcomere model is mathematically described by ODEs in

@ h ODE

ODE (0D)

DEQ (1D)

CMM (3D)

Figure 6.4: Schematic representation of the time-stepping scheme. Therein, h is the time step,
ODE denotes the half-sarcomere model, DEQ) is the diffusion equation, and CMM is short for
continuum-mechanical model. Previously published in [109].
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time, which do not rely on any spatial quantities. Therefore, each half-sarcomere model
can be solved independently of all other half-sarcomere models. The final values of the
membrane potential computed in these steps are used as starting values for the diffusion
equation, cf. Section (.2l This process is denoted by B in Figure Following the
solution of the diffusion equation with time step h”?% (indicated by C), the updated
values of the membrane potential are used as initial conditions for the next solution step
of the half-sarcomere model (indicated by D). This procedure is repeated a number of
times (3 times in Figure [6.4], typically 1000 times in the actual computations) before the
values of the active stress, 7, are homogenised (I" : 7 — 7). The homogenisation process is
denoted in Figure by E. The homogenised values, 7, enter the continuum-mechanical
model through the active stress tensor, cf. Section The continuum-mechanical
model is only solved in time increments of size h“MM (cf. step F). Further, the values of
the sarcomere lengths and sarcomere velocities are interpolated and applied to the half-
sarcomere models, see G in Figure[6.4l At the same time, the position of the nodes of the
1D fibre meshes are updated based on the calculated deformation. The described steps
are repeated until the final time is reached.

Homogenisation and Interpolation

As described above, some variables are shared between the different discretisations. For
example, the values of the active stress field are determined in the model of the half-
sarcomere, i.e., at the nodes of the 1D fibre meshes. In order to include the sarcomere-
based active stresses in the continuum-mechanical constitutive equation, which is evalu-
ated at the integration points (e.g. the Gauf points) of the 3D finite elements associated
with the weak formulation of the mechanical model (see Appendix [D.3]), the values need
to be homogenised. Like in Rohrle et al. [220], the homogenisation is achieved by com-
puting the arithmetic mean of all 1D nodal values that are closest to a certain Gaufl point
of the continuum-mechanical 3D finite element mesh. Other elaborate homogenisation
techniques could be adopted but are not further considered in this work.

The positions of the nodes of the 1D fibre meshes are defined in terms of the local
element coordinate system of the 3D geometric finite elements. Following this, the actual
positions of the nodes of the 1D fibre meshes can be determined from the deformation of
the muscle’s geometry, i. e., from the actual configuration. For the interpolation the basis
functions of the 3D finite elements are used. The nodal positions of the 1D fibre meshes
are updated after each solve of the mechanical submodel.

Further, information about the sarcomere lengths and sarcomere velocities is required
in the half-sarcomere models located at the nodes of the 1D fibre meshes. The sarcomere
lengths and velocities cannot be determined in the biophysical model of the half-sarcomere,
as they also rely on the boundary conditions of the continuum-mechanical model of the
entire muscle. Therefore, the local sarcomere velocity, A ¢, is approximated by a backward
finite difference scheme: A; = (nf*1 — k) /hCMM where 1; represents the distance between
two adjacent nodes, and £ and k + 1 denote two consecutive time steps of the continuum-
mechanical model. To avoid unrealistic high variations in the sarcomere velocity, the
average of the velocity is calculated over a patch of seven sequential nodes of one fibre.
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Data Structure

The open-source software library OpenCMISS [26]| provides a highly flexible framework for
the simulation of coupled multiphysics problems. Being arranged in a hierarchical fashion,
the concepts of regions, meshes, fields, etc. (see Bradley et al. |26 for details) allow for
couplings between different physical problems at different length and time scales. The
presented skeletal muscle model is built on two regions that occupy the same physical
space (volume-coupled problem). Note that the model just as well could have been built
on a single region that contains two meshes, as shown in Figure[6.5l When the interaction
of a skeletal muscle with neighbouring structures such as other muscles, bone, fat, or skin
is of interest, these structures have to be added to the model as additional regions. To
couple different regions, their interaction can be defined via interface conditions, e.g.
contact.

i region 1 region 2

mesh 1 mesh 3

1
! |
! 1
! 1
| 1
! 1
| 1
i | mesh 2 :
i i
! 1
! 1
! 1
| 1
! |
! |

Figure 6.5: Schematic drawing of regions and meshes in 0penCMISS. Different regions can be
coupled via interface conditions. Several meshes can be associated with a region. Previously
published in [109].

Although a region can contain an arbitrary number of meshes, each region used for
the chemo-electro-mechanical muscle model contains only one mesh. The region used for
the 3D representation of the geometry and the continuum-mechanical model uses a 3D
mesh, while the region used for the bioelectrical model contains a mesh that consists of
a number of 1D fibres. The 1D fibre meshes are embedded in the 3D finite elements, cf.
Figure 6.3

Fields are a key data structure in OpenCMISS. Any quantity that can be associated with
a mesh is represented in OpenCMISS as a field. A field variable can be constant across the
mesh, it can vary from element to element, from node to node, from interpolation point
(e.g. Gaufs point) to interpolation point, or from data point (arbitrarily located) to data
point. The representation of fields in OpenCMISS is based on FieldMTI[] [38], which provides
field transfer operators (homogenisation or interpolation) to handle different spatial scales,
cf. Section

Further, OpenCMISS employs nested control loops to handle different temporal scales.
In the presented model, two separate control loops for the continuum-mechanical model
and the bioelectrical problem, each with its own time step size, are linked to a superior
main control loop. The control loop for the mechanical model is only associated with a
single solver, while the bioelectrical control loop is connected to a solver for the diffusion

'http://physiomeproject.org/software/fieldml/
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equation and a second solver for the half-sarcomere model.

The half-sarcomere model is provided in CellML format [82, [107, [158]. CellML is a
markup language for the description of subcellular models based on XML (Extensible
Markup Language). In a multiscale model, CellML can be used to conveniently describe
the physical processes occurring at a single point within a model at a larger spatial
scale, cf. Bradley et al. [26], Nickerson et al. [188]. Within OpenCMISS, CellML files
are converted to Fortran code, complied, and linked to the multiscale model at runtime.
CellML models can be downloaded from the CellML repositoryﬁ, which contains more than
500 models, among them the biophysical model of a half-sarcomere of Shorten et al. [240].
In OpenCMISS, the time step sizes for the CellML models can be chosen independently of
the time step sizes used to solve equations representing different physics. For example,
the half-sarcomere model requires a much smaller time step than the diffusion equation,
and hence, subcycling of the CellML model is employed. Mathematical justification for
doing this is given by the operator splitting technique, cf. Section £.2.1]

Parallelisation

OpenCMISS is developed for parallel computations in a heterogeneous multiprocessing
environment [26], where the MPI (Message Passing Interface) standardd is used for dis-
tributed memory parallelisation, and the OpenMP standardH is used for shared memory
parallelisation.

The implementation of the distributed memory parallelisation in OpenCMISS builds on
the concept of domain decomposition. For the presented chemo-electro-mechanical skele-
tal muscle model, the domain is decomposed in such a way that each embedded 1D
fibre mesh is uniquely assigned to a processor, see Figure This approach reduces
the amount of communication between the individual processors to a minimum for the
bioelectrical model. Parallel efficiency is hereby guaranteed by the fact that the diffu-
sion part of the bioelectrical model is usually evaluated 1000 times more often than the
continuum-mechanical model (h“MM = 1000 hPF?). Hence, a user-defined domain decom-
position, rather than a computed decomposition based on the graph partitioning packages
ParMETISH or Scotch@, which is typically used within OpenCMISS, is optimal with respect
to the entire chemo-electro-mechanical model.

Although currently not implemented, the individual muscle fibre meshes within a single
computational domain could be further parallelised using an OpenMP shared memory
parallelisation. Further, the integration of the ODEs describing the half-sarcomere model
is highly suitable for parallel execution on GPGPUs.

6.3 Applications of the Multiscale Model

This section demonstrates the capability of the proposed multiscale and multiphysics
model to biophysically simulate muscle contractions. First, the parameters of the multi-

2http://www.CellML.org

3http://mpi-forum.org

‘http://openmp.org/wp/
Shttp://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
Shttp://www.labri.fr/perso/pelegrin/scotch/
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Figure 6.6: Schematic drawing of the domain decomposition as realised for the chemo-electro-
mechanical skeletal muscle model. The decomposition of the 8D mesh of the muscle geometry
does not split any of the muscle fibre meshes. Previously published in [109].

scale model introduced in the previous sections are determined from experimental data.
Further, the performance of the computational model is investigated, and a computa-
tional validation of the multiscale model is provided. Finally, different applications of the
multiscale and multiphysics model are presented.

6.3.1 Parameter ldentification

This section deals with the identification of the material parameters that have been in-
troduced in the previous sections. For this purpose, experimental data obtained from the
literature are used.

The two parametrisations for the model of the excitation-contraction pathway of
Shorten et al. [240] are based on mouse muscles. To simulate human muscle fibres, a
partial reparametrisation has been carried out in Section Within the multiscale
muscle model, however, the cell model of Shorten et al. [240] is used to represent indi-
vidual half-sarcomeres. When modelling fibres that consist of individual half-sarcomeres,
the fibre length significantly influences the twitch shape and duration, see Section [6.3.3
Therefore, the reparametrised version will not lead to twitch durations similar to those
observed in human muscles. Instead of introducing yet another reparametrisation, the
original parametrisations of Shorten et al. [240] are used in this section. While this ap-
proach is considered to be sufficient for the generic model developed in this chapter, the
simulation of a specific muscle might require a fine tuning of the model. This, however,
is beyond the scope of this work.

Being part of the monodomain equation, the description of the membrane ionic cur-
rents within the half-sarcomere model of Shorten et al. [240] significantly affects the AP
propagation velocity, cf. Pullan et al. [211]. Furthermore, the parameters describing the
diffusive part of the monodomain model govern the AP propagation velocity, cf. Sec-
tion The parameters for the diffusive part of the monodomain equation are based
on literature values and are provided in Table .1

Passive Material Parameters

The anisotropic continuum-mechanical description of the passive muscle tissue is based on
several parameters that need to be identified. Unfortunately, the majority of experimen-
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tal data existing in the literature have been determined with the macroscopic Hill-type
model in mind. Therefore, the experimentally reported stretches are either given in ab-
solute lengths or they are normalised with respect to the optimal length of the muscle.
Furthermore, experimental data almost exclusively exist for the muscle’s along-fibre direc-
tion, since Hill-type muscle models are 1D descriptions that do not consider the cross-fibre
directions.

Following the Lagrangean description of continuum mechanics, all quantities are ex-
pressed with respect to the reference configuration, which, by definition, has to be stress
free. Therefore, the muscle’s resting length plays a crucial role in the description of contin-
uum mechanical models. Unfortunately, the resting length of muscles is rarely reported in
the literature. Following this, it is difficult to identify valid continuum-mechanical stress-
strain relations of passive muscle tissue from the experimental literature. Among the few
existing stress-strain data, Hawkins & Bey |102]| carried out uniaxial extension tests only
in fibre direction. Morrow et al. [181], Nie et al. [189], and Takaza et al. [256] considered,
in addition to the fibre direction, the tensile behaviour of muscle tissue in cross-fibre di-
rection. Due to the fact that extension experiments require a non-destructive fixation of
the tissue samples, which is extremely difficult to achieve, several researchers investigated
the properties of the 3D muscle tissue under compression, see Bol et al. [20], Bosboom
et al. [24], Van Loocke et al. [267, 268, 269], and Zheng et al. [284]. Furthermore, Bol
et al. [19] investigated the behaviour of passive muscle tissue under pure shear.

In this work, the characterisation of the passive material behaviour is based on the
description of fibre-reinforced materials, where one commonly assumes that the fibres bear
load only under tension but not under compression [163]. Following this, the parameters
of the isotropic Mooney-Rivlin model are determined from the data of the compression
experiments of Zheng et al. [284] using a least-squares fit. Compared to other experiments
(see Van Loocke et al. [268]), the data of Zheng et al. [284] describe muscle tissue exhibiting
intermediate stiffness. Figure [6.7h demonstrates that the resulting material behaviour
nicely fits the experimental data [284).

Comparing the resulting isotropic material behaviour to data obtained from tension
experiments in fibre direction, the model’s behaviour is much too compliant (result not
shown). Following this, the parameters of the anisotropic material model of Markert et al.
[163] are determined from the experimental data of Hawkins & Bey [102]| by performing a
least-squares fit. Figure shows the resulting behaviour of the model in fibre direction
together with the experimental data of Hawkins & Bey [102|. A single term of the model
of Markert et al. [163] is sufficient to fit the experimental data. The fitted parameters of
the isotropic and anisotropic models (parameter set A) are summarised in Table

Symbol Description Value (slow/fast) Unit Reference
10 15* Mooney-Rivlin parameter 6.352e7 1! N/cm? [284]
Co1 214 Mooney-Rivlin parameter 0.3627 N/cm? [284]
by 1%" anisotropy parameter 2.756e7% N/cm? [102]
dy 21 anisotropy parameter 43.373 [-] [102]

Table 6.1: Passive material parameters of the mechanical model (A).
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Figure 6.7: Comparison of the model and passive experimental data. (a) The parameters of the
1sotropic Mooney-Rivlin material, c19 and co1, are fitted in a least-squares sense to the experimen-
tal data of passive skeletal muscle under compression of Zheng et al. [284]. (b) The parameters
of the anisotropic material in fibre direction, by and dq, are fitted in a least-squares sense to the
experimental data of Hawkins € Bey [102].

While parameter set A nicely fits the experimental data of Zheng et al. [284] and
Hawkins & Bey [102], it shows less agreement with the passive behaviour of other mus-
cles. This can be explained by the fact that the passive properties of skeletal muscles
vary heavily from muscle to muscle, subject to subject, and species to species, cf. e.g.
Gareis et al. [81]. To demonstrate that the presented model is flexible enough to simulate
muscles with different mechanical behaviour, now a muscle is considered that has a more
compliant mechanical behaviour in fibre direction than in cross-fibre direction, cf. Nie
et al. [189], Takaza et al. [256]. Furthermore, this muscle has a quite different behaviour
in fibre direction than normal to the fibre direction. Hence, while the parameters of the
isotropic Mooney-Rivlin material are retained, an alternative set of anisotropic parame-
ters is determined from the experimental data of Takaza et al. [256] using a least-squares
fit (parameter set B). Figure 6.8 demonstrates that the model can nicely fit the experi-
mental data [256] in fibre direction (Figure[6.8h) and in cross-fibre direction (Figure [6.8b).
In each direction, a single term of the respective material model was sufficient to fit the

experimental data. The resulting material parameters (parameter set B) are listed in
Table

Symbol  Description Value (slow/fast) Unit Reference
C10 1% Mooney-Rivlin parameter 6.352e" ' N/cm? [284]
Co1 214 Mooney-Rivlin parameter 0.3627 N/cm? [284]
by 15* anisotropy parameter 0.3554 N/cm? [256]
dy 2" anisotropy parameter 12.6605 || [256]
by 1% cross-fibre anisotropy parameter 5316.3722 N/cm? [256]
dy 27 cross-fibre anisotropy parameter 1.499¢e7% [-] [256]

Table 6.2: Passive material parameters of the mechanical model (B).
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Figure 6.8: Comparison of the model and passive anisotropic experimental data. The parameters
of the anisotropic material (a) in fibre (F) direction, by and dy, and (b) in cross-fibre (XF)
direction, by and dy, are fitted in a least-squares sense to the experimental data of Takaza et al.
[256].

Due to the fact that Takaza et al. [256] only report passive material properties but
do not investigate the active behaviour of the muscle, the passive material parameters of
Table [6.1] i.e., parameter set A, are used in the following. These parameters are based
on the data of Hawkins & Bey [102], who also investigated the active behaviour of the
muscle.

Active Material Parameters

Having identified the parameters of the passive material description, the active behaviour
is considered next. The description of the active part of the continuum-mechanical model
depends on the parameter P™*" and via 74 on the F'-¢ and the F-v relations. For the de-
scription of the F'-£ relation, the fourth-order polynomial of Section [4.3.4]is used. Further,
the maximum isometric stress, P™%, can directly be obtained from experimental data.
For example, Hawkins & Bey [102] report a maximum isometric stress of approximately
7.3N/cm? for the tibialis anterior muscle of the rat. Although values of 20-25N/cm?
are reported by other researchers, this work adopts the value of Hawkins & Bey [102],
since the passive anisotropic material parameters are also determined from this source.
Of course, for the simulation of a different muscle, the maximum isometric stress can
easily be changed in the model, just as well as all other parameters. While one can easily
find the value of the maximum isometric stress, the stretch or strain at which this stress
can be generated is more difficult to determine. Following the direct relation between the
sarcomere length and the fibre stretch and adopting the value of the resting sarcomere
length ¢ = 2.0 um [61], the stretch at the optimal sarcomere length of £&* = 2.4 ym [32] is
found to be )\;’cpt = 1.2. Finally, the parameters required in the cell model to obtain a F'-v
relation that is similar to experimental data, are directly adopted from Section [£.3.4l For
the sake of convenience, the parameters of the active mechanical model are summarised
in Table [6.3
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Symbol Description Value (slow/fast) Unit Ref.
pmaz maximum isometric stress 7.3 N/em? [102]
20 average distortion induced through the 0.05 um [240]
power stroke
I XB-detachment rate (from A;) 5/15 ms™!  [240]
ho power stroke forward rate 0.08/0.24 ms™!  [240]
' power stroke backward rate 0.06/0.18 ms™!  [240]
7 XB—attachment rate of an isometric 0.5/1.5 ms~! [240]
contraction
_ XB-detachment rate if no neighbour is 1
g in the A, state 0.04/0.12 ms [240]
v influence of cooperative effects 3.0/3.4 || [213]
W, level of distortion dependence 1700/1000 [-] [213]
14 resting sarcomere length 2.0 pm [61]
T optimal sarcomere length 2.4 um [32]

Table 6.3: Material parameters of the active mechanical model.

6.3.2 The Multiscale Computational Model

This section deals with the computational model that results from the discretisation
of the multiscale muscle model. First, as a proof of concept, the multiscale model is
used to simulate key parameters of macroscopic muscle behaviour. Furthermore, critical
discretisation parameters and the parallel performance of the multiscale computational
model are investigated. The results presented in this section have previously appeared in
Heidlauf & Rohrle [109, [111].

Verification of the Multiscale Computational Model

The presented multiscale approach is based on the assumption that key properties of
skeletal muscle behaviour, namely the F-¢ and F-v relations, can be recovered at the
macroscale although they are completely defined at the microscopic half-sarcomere level.
Following this, the multiscale model is first compared to experimental F-¢ data to demon-
strate that the chemo-electro-mechanical muscle model can reproduce typical mechanical
behaviour of whole muscle under isometric conditions on the macroscale. For the com-
parison, the experimental F-¢ data of Hawkins & Bey [102] are used, from which the
parameters of the anisotropic material parameters and the value of the maximum isomet-
ric stress have been determined.

Hawkins & Bey [102] analysed the rat TA muscle, which consists of about 97.5 % type-
IT fibres [248]. Therefore, all fibres within the model are assumed to be of type II. The
numerical specimen used for the comparison is chosen as a rectangular cuboid with di-
mensions 4cm X 2cm X 2cm. The fibres are aligned with the long edge of the cuboid.
Starting from the stress-free reference configuration, the muscle specimen is first pas-
sively stretched along the fibre direction to the desired muscle length. After passively
stretching, displacement in the direction of the fibres is constrained at both ends of the
specimen in order to simulate fixed-end contractions. Moreover, displacement at two fur-
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ther non-parallel faces of the specimen is constrained in the direction perpendicular to the
respective face (symmetry boundary conditions). Note that the lengths of the individual
half-sarcomeres are not constrained but only the total length of the muscle. To simulate
a fully activated muscle, a stimulation frequency of f, = 100 Hz is applied to the central
half-sarcomere model of each muscle fibre model. The simulation output is the nominal
stress, which is defined as the ratio of the resulting reaction forces in fibre direction and
the initial cross-sectional area of the specimen. The peak nominal stress of the chemo-
electro-mechanical model induced through the passive stretch and the applied stimulation
provides the value of the total model. The determined passive and total nominal stresses
at different muscle stretches are shown in Figure [6.9h together with the experimental
stress-stretch data of Hawkins & Bey [102].

After establishing realistic mechanical behaviour under isometric conditions, the cou-
pled chemo-electro-mechanical model is now tested for its capacity to reproduce exper-
imental F-v data of whole muscle. The hyperbolic F-v relation of Hill [117] can be
expressed by o

N St VL1 (6.31)

Umaz 1+ F/(HESO)

where Fj,, denotes the maximum isometric force, vpq, is the maximum shortening velocity
at ' = 0, and & is a dimensionless parameter. In the literature, x ranges from 0.15 to
0.25 |165]. Ranatunga [213], for example, reports a mean value of k = 0.24 for rat soleus
muscle. Since rat soleus muscle consists mainly of type-I fibres [244], all half-sarcomere
models in the multiphysics model use now the type-I parametrisation of Shorten et al.
[240].

Within the numerical experiments the model specimen is first passively stretched to
the optimal length. Then, the length of the specimen is kept fixed, and all fibres are fully
activated (f; = 100Hz). For a prescribed velocity the corresponding reaction force is
computed. The resulting F-v data are depicted in Figure[6.9b, where the force values have
been normalised to the value at isometric conditions and the velocity has been normalised
to the maximum shortening velocity. Fitting the parameter x in Equation (6.3I)) in a
least-squares sense to the simulation results obtained for shortening contractions yields
k = 0.241, cf. Figure [6.9b.

For lengthening contractions, the chemo-electro-mechanical model predicts a maximum
force of 1.77 times the isometric force. In the literature, different behaviours are reported
for lengthening contractions of skeletal muscles, see Morgan [179]. The bounded increase
predicted by the model is in agreement with the findings of Zajac [282], who reports a
maximum of 1.8 times the isometric force. Since the model behaviour for lengthening
contractions proved to be sensitive to a single parameter, the presented model can easily
be adapted to a different shape. However, the non-continuously differentiable behaviour at
the transition from shortening to lengthening contractions, observed in experimental F-v
relations (see Katz [141]), is not predicted by the model. Once the origin of this unique
feature is completely understood, it could potentially be included in the XB-dynamics
component model.
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Figure 6.9: F'-¢ and F'-v relations of the multiscale muscle model compared to experimental data.
(a) The passive and total stresses of the model, and the experimental data of rat TA muscle [102].
Simulations are carried out at stretches varying from 0.8 to 1.4 in steps of size 0.1 and at \y =
0.75, 0.76, 1.35, and 1.375. (b) The F-v data of the model (black crosses), the corresponding fit
of Hill’s hyperbolic relation (k = 0.241, blue line), and the region of typical muscle F-v curves
(0.15 < k < 0.25, light-blue shaded area). Figure previously published in [111].

Investigation of Critical Discretisation Parameters

The presented multiscale model is build on a staggered solution scheme that uses differ-
ent time step sizes for the solution of the different submodels. Critical time step sizes
for the bioelectrical model have already been discussed in Section 5.3.3l Here, the model
behaviour for different time step sizes of the continuum-mechanical model, hMM  is inves-
tigated. Figure[G.I0shows the stress evolution of a shortening contraction (v = —0.1 Vppqy)
of a muscle that is uniformly stimulated at 50 Hz. The results for three different time step
sizes (h“MM = 0.1 ms, 0.5ms, and 2.0 ms) are shown, whereof the solutions for the smaller
two time steps almost coincide (red dashed line and blue crosses), and the solution for
the largest time step size (h“M™ = 2.0ms) depicts significant deviations and oscillatory
behaviour.
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Figure 6.10: Model behaviour for different time step sizes of the continuum-mechanical model,
hCMM - The solutions for the smaller two time steps almost coincide (red dashed line and blue

crosses), while the solution for the largest time step size shows a non-physical, oscillatory be-
haviour. Previously published in [111].
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Moreover, within this framework the active stresses determined in the half-sarcomere
models are homogenised and included in the continuum-mechanical constitutive equation.
The homogenisation is required for computational efficiency. A skeletal muscle model that
would use the same number of elements for the bioelectrical and the mechanical problem
does no longer require any homogenisation, however, this approach results in a computa-
tional model that is no longer feasible for any practical application. The homogenisation
process has little effect on the convergence behaviour of the mechanical problem, as has
been demonstrated by Rohrle et al. [220]. In Rohrle et al. [220], the number of embedded
fibre models remained constant, while the number of 3D mechanical elements was suc-
cessively refining until homogenisation is no longer required. The investigation showed
very good convergence properties if compared to the mechanical-only problem, see Réhrle
et al. [220].

Performance Analysis

To analyse the parallel performance of the computational framework, a simple geometric
model is considered. A cubic geometry with 2 cm edge length is generated and discretised
using eight tri-quadratic/tri-linear Lagrange finite elements, cf. Appendix[D.3l A uniform
fibre direction parallel to an edge of the cube is defined, and a total of 400 muscle fibres
are evenly distributed in the cubic geometry. Each fibre is discretised using 60 linear
Lagrange finite elements. At each discretisation point of the 1D muscle fibre meshes, the
fast-twitch version of the model of Shorten et al. [240] is solved.

First, the muscle is passively stretched in fibre direction by 20 % to reach the optimal
fibre stretch of )\;m = 1.2. Under isometric conditions (the muscle specimen is fixed at
the optimal length), a 100 Hz tetanic stimulation is applied to the central half-sarcomere
model of all fibres in the model. To analyse the speed-up in a parallel environment, the
described model is executed on 1, 2, and 4 processors. A speed-up of 2.18 is achieved
when going from 1 to 2 processors, while a speed-up of 1.95 is achieved when comparing
2 to 4 processors. Further, the simulations are repeated using only 36 fibres instead of
400. In this case, speed-ups of 1.44 and 1.50 are achieved, when increasing the number
of processors from 1 to 2 and from 2 to 4, respectively. Table lists the timing results
and speed-up factors for a Intel® Xeon® Processor E5520 and 8 GB of RAM.

36 fibres 400 fibres
# of procs | time [s| speed-up [-] | time [s] speed-up [-]
1 10004.32 177759.11
2 6940.91 1;33 81360.24 %éig
4 4625.88 ' 41763.99 )

Table 6.4: Execution time in seconds and resulting speed-up for 1, 2, and 4 processors. Previously
published in [111].

In the example with 400 fibres, the solution of the bioelectrical model dominates the
total computing time. Here, a speed-up factor of 2.18 occurs, which exceeds the theoret-
ically achievable value of 2. This can be explained by a significantly higher number of
cache misses on 1 processor than on multiple processors, as the size of the bioelectrical
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model for each processor scales down proportionally to the number of processors. (Ghost
elements do not exist and no communication between the processors is required in the
bioelectrical model.) The other end of the spectrum is marked by the example using only
36 fibres, i.e., 3 x 3 fibres per 3D element, leading to a one-by-one correspondence between
the number of Gaufl points in the plane perpendicular to the fibres and the number of
embedded fibres. (The 3D elements use 3 x 3 x 3 Gaufs points.)

Note that the discretisation for the mechanics is independent of the number of embedded
fibres and is identical in both cases. In the case of 36 fibres, the speed-up factors are rather
poor, since the solution of the continuum-mechanical problem claims a larger fraction of
the total computing time. The poor scaling of the continuum-mechanical model is due
to the few 3D elements. Together with the ghost elements required for the mechanical
model, each processor has to compute (i) 8 finite elements when 1 processor is used, (ii) 8
finite elements when 2 processors are used, and (iii) 6 finite elements when 4 processors are
used. (All elements that share a surface with an actual element of the domain are ghost
elements.) For practical applications, however, finer discretisations of the continuum-
mechanical model are desirable since they provide a better approximation of the muscle’s
geometry and a higher accuracy. Furthermore, including more muscle fibres within the
chemo-electro-mechanical model is preferable for more realistic muscle simulations.

6.3.3 Investigating Different Muscle Fibre Arrangements

While previous sections investigated the general behaviour of the multiscale computational
model, this section presents a specific application of the chemo-electro-mechanical muscle
model. To this end, differences in the muscle contraction and force generation that result
from the arrangement of the muscle fibres in the muscle are investigated. The results
presented in this section have previously been published in Heidlauf & Rohrle [111].

Introduction

The fascicles in parallel-fibred muscle are aligned with the muscle’s line of action and
run almost the entire length of the muscle |[159]. The fascicles either consist of long
fibres spanning the entire length of the fascicles (in the following termed “spanning-fibred
muscle”), or they are composed of several shorter in-series arranged fibre compartments
(in the following termed “series-fibred muscle”), cf. Heron & Richmond [115], Young et al.
[277]. The fibre compartments in series-fibred muscle can either be separated by tendinous
inscriptions, as, for example, in cat and human semitendinosus muscle, or the muscle
fibres are arranged in short overlapping arrays, see Loeb et al. [159], Paul [202], Woodley
& Mercer [276].

The advantages and disadvantages of series-fibred and spanning-fibred muscle arrange-
ments on the force generation have not yet been systematically analysed. Experiments
provide only limited information on which effects are due to the fibre arrangement and
which effects are due to other anatomical or physiological properties, e. g. the muscle ge-
ometry. Mathematical models instead can be used to investigate the influence of a specific
property on the overall behaviour. Previous modelling works focused on the influences
of the muscle geometry and the fibre direction on the force generation [229,288]. In this
section, the presented chemo-electro-mechanical skeletal muscle model is used to com-
pare series-fibred and spanning-fibred muscles. The aim of this comparison is to reveal
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differences in the mechanical behaviour of the different muscle fibre arrangements.

Loeb et al. [159] hypothesize that there exists a stability problem in spanning-fibred
muscles when the AP propagation time exceeds the twitch rise time of a single sarcomere.
This implies that sarcomeres located at a long fibre’s neuromuscular junction produce
their peak twitch force before sarcomeres located at the fibre’s ends are activated, and
hence, activated sarcomeres might shorten against non-activated parts of the fibre [159].
As a result, mechanical instabilities and damage might occur [159], since sarcomeres
located at the fibre ends might be passively stretched to beyond myofilament overlap, a
state, from which the sarcomere can not independently recover through activation. It
has therefore been suggested that the AP propagation time might impose a limit on
the fibre length [159]. In series-fibred muscle, a similar stability problem is believed to
exist when activation of series-arranged compartments is unbalanced or asynchronous,
i.e., if muscle fibres in an activated compartment shorten against fibres in non-activated
compartments [159, 216].

Methods

In all of the following numerical experiments, a rectangular cuboid with dimensions
12c¢m x 2cm x 2cm is considered. The fascicle direction is assumed to be aligned with
the cuboid’s long edge. To mimic series-fibred skeletal muscle arrangements, the long
side of the muscle specimen is subdivided into compartments of equal length. The mus-
cle fibres in adjacent compartments are aligned end-to-end and do not interdigitate with
each other. As in real muscle, electrical activation from one muscle fibre to adjacent ones
does not occur, neither between adjacent compartments nor in lateral direction within a
compartment. The neuromuscular junction of each muscle fibre is assumed to be located
in the middle of the respective fibre. All half-sarcomeres are assumed to be of type II.
The mechanical behaviour of the chemo-electro-mechanical muscle model is investigated
for simultaneously stimulating all muscle fibres. Before stimulating the muscle specimen,
it is passively stretched to the optimal length ()\;pt =1.2, (%" = 2.4 ym).

Results

First, fixed-end contractions and shortening contractions at 10 % of the maximum short-
ening velocity at f; = 50Hz and 100 Hz are considered. A muscle model with fibres that
span the entire length of the fascicles (referred to as SPA) and a model consisting of four
fibre compartments in series (referred to as SER-/) are compared to each other. The
resulting nominal stresses are depicted in Figure [6.11l Fixed-end contractions predict
differences of almost up to 80 % between the different muscle fibre arrangements. The
largest differences occur at the beginning of the contraction, i.e., during the first twitch
but decline rapidly to approximately 10 % and less. Moreover, the results show that the
initial differences are less pronounced in shortening contractions independent of the stim-
ulation frequency. At f; = 50 Hz, twitches tend to be more fused for model SPA than for
model SER-/. This applies to both fixed-end and shortening contractions. Completely
fused twitches are observed for both models for f; = 100 Hz.

Independent of the stimulation frequency, model SER-/ shows higher peak forces than
model SPA in fixed-end and shortening contractions. At f, = 100 Hz, the maximum force
of model SER-/ is 3.29% and 6.61 % higher than the maximum force of model SPA in
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Figure 6.11: Comparison of a spanning-fibred muscle model (SPA) and a series-fibred muscle
model consisting of four in-series arranged fibre compartments (SER-4) stimulated with (a, b)
fs = 100 Hz and (c, d) fs = 50 Hz in (a, c) fized-end and (b, d) shortening contractions at
v = 0.1 vz, and their differences in percent. Figure previously published in [111].

fixed-end and shortening contractions, respectively. The observed decrease after reaching
the maximal value in all simulations with f; = 100 Hz is due to fatigue, which is contained
in the half-sarcomere model of Shorten et al. [240)].

The results reveal that the largest differences between spanning-fibred and series-fibred
muscle models occur during the first twitch in fixed-end contractions. Hence, fixed-end
single twitch experiments are further investigated in the following. The aim is to reveal
a potential relation between the twitch shape and the fibre length. In addition to the
model with spanning fibres (termed SPA), muscle specimens consisting of two, four, six,
and twelve fibre compartments of equal length are considered. The series-fibred models
are termed SER-2, SER-/, SER-6, and SER-12 indicating the respective number of com-
partments. Furthermore, two different scenarios are considered. In the first scenario, all
fibres in all compartments receive a stimulus at the same time to simulate a coordinated
single twitch contraction. The second scenario appeals to the model with six in-series
arranged compartments, in which only the fibres within the first compartment are stimu-
lated. (Note that the choice which of the compartments is stimulated does not influence
the resulting reaction forces.) This model is referred to as SER-6a.
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Figure 6.12: Distribution of the membrane potential (Vy, in [mV]) and contraction-induced
deformation during single twitch contractions of models SPA (t = 22 ms after stimulation), SER-2
(t =10ms), SER-6 (t = 5ms), and SER-12 (t = 2ms) (from top to bottom). Previously published
in [111].

Figure shows the distribution of the membrane potential and the contraction-
induced deformation of the muscle in the different models of the first scenario. Further,
Figure[6.13]demonstrates that the twitch rise time of a muscle depends on the length of its
muscle fibres, i. e., the twitch rise time increases with increasing muscle fibre length. Thus,
model SER-12 has the lowest twitch rise time of 17.2 ms, while the maximum twitch rise
time occurs in model SPA, where the peak stress occurs 38.2ms after stimulation. The
computed AP propagation speed of the models is 2.186m/s. In model SPA, where the
AP propagates 6 cm from the motor end-plates to each end of the fibres, this propagation
speed yields an AP propagation time of 27.45 ms. In comparison, a half-sarcomere model
considered in isolation shows a twitch rise time of 16.1 ms. Hence, the AP propagation
time in model SPA exceeds the twitch rise time of a single half-sarcomere. In other words,
the sarcomeres located at the motor end-plates reach their peak twitch force before the
sarcomeres located at the ends of the fibres are activated.

While the twitch rise time increases, the peak twitch stress of the muscle model decreases
with increasing muscle fibre length. In detail, the peak twitch stresses are 0.82N/cm?
and 0.98N/cm? in models SPA and SER-12, respectively, which corresponds to an in-
crease of 19.4%. Integrating the area below the stress curve over 200 ms, i.e., to a point
where the active stress has declined and only passive stress components remain, yields
84.95N-ms/cm? and 83.25 N-ms/cm? for models SPA and SER-12, respectively. Further,
deducting from the total stresses the respective passive stresses, which are due to the
initial stretch to the optimal length, the peak twitch force obtained in model SER-6a is
6.5 times smaller than the peak twitch force of model SER-6.
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Figure 6.13: Comparison of single twitch contractions in a spanning-fibred model and in series-
fibred models with different fibre lengths and number of compartments. The reader is referred to
the text for model definitions. Previously published in [111].

Besides the contraction-induced stresses, changes in local sarcomere length during fixed-
end single twitch contractions are analysed. The aim is to investigate if activation-induced
stretches of passive sarcomeres to beyond myofilament overlap occur. The resulting max-
imum and minimum sarcomere lengths are reported in Table [6.5]

Min. sarcomere length Max. sarcomere length

SER-12 2.39 pm 99.59 % 241 pm 10041 %

SER-6 2.26 pm 93.96 % 2.54 ym 105.95 %
SER-/ 216 um  90.05%  2.63um  109.68%
SER-2 2.03 pm 84.52 % 2.64 pm 109.84 %
SPA 1.81um  75.49%  2.66um  111.02%

SER-6a 1.74 um 72.51% 258 um  107.38%

Table 6.5: Minimum and mazimum sarcomere lengths in fized-end single twitch contractions
absolute and in percent of their length prior to stimulation, i.e., Egpt = 2.4pum. Previously
published in [111].

Considering the first scenario, the shortest and largest sarcomere lengths of 1.81 pm and
2.66 um, respectively, occur for model SPA. Changes in sarcomere length decrease with
an increasing number of in-series fibre compartments. In the second scenario, a minimum
sarcomere length of 1.74 ym is observed for model SER-6a.

Discussion

First, the computational results obtained for the different muscle fibre arrangements are
discussed, before using this data to analyse its implications on stability. The presented
model predicts the largest differences between series-fibred and spanning-fibred muscles
in the rise time, shape, and peak force of single twitches. During sustained contractions,
twitches tended to fuse at lower stimulation frequencies in spanning-fibred muscles, while
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series-fibred muscles showed higher peak forces. Since the basic descriptions of passive and
active material behaviour are identical in the different models, the observed differences
in the force responses must result from the differences in the muscle fibre arrangement.
Although the same half-sarcomere model is used in all simulations, single twitches are
more dispersed in muscle models with longer fibres, which can be explained by longer AP
propagation times. Experimentally observed differences in the twitch shape in different
fibres of the same twitch type might therefore be largely governed by the fibre length.
This might partially explain the different twitch shapes observed in different species.
For example, the twitch rise time in mouse soleus muscle consisting purely of type-I
fibres is approximately 35 ms [240], while 90 ms are observed in human type-I MUs |76].
Further, the simulations demonstrated that a fascicle consisting of end-to-end terminating
fibres does functionally not perform like a single muscle fibre of equivalent length, as
hypothesized by Lieber & Fridén [157].

According to Harris et al. [101], long fibres are less efficient than short fibres since
sarcomere shortening cannot be well synchronised along the length of a fibre. Harris et al.
[101] speculate that a twitch in a long fibre will produce much less force than a more
synchronous contraction of the sarcomeres. The presented results confirm that the peak
twitch force in spanning-fibred muscle is lower than in series-fibred muscle of the same
length, however, it is also more dispersed, such that the stress induced through a single
twitch integrated over time is similar in series-fibred and spanning-fibred muscles. This
can be attributed to the fact that the number of sarcomeres contributing to the active
force is identical in both models. The non-activated parts of the fibres behave as series
elastic elements, i. e., they store contractile energy. It is believed that the minor differences
observed in the integrated stress values stem from local changes in sarcomere length due
to the F-¢ relation and from different sarcomere contraction velocities due to the F-v
relation. At this point, however, one has to bear in mind that the modelling assumption
of hyperelastic passive material behaviour neglects viscous effects, which exist in passive
muscle, see Hoyt et al. [122], Van Loocke et al. [267].

The model further predicts that the peak force exerted by a synchronous activation
of all in-series arranged compartments exceeds the product of the number of in-series
arranged compartments and the peak force produced when stimulating only the fibres in
one compartment. This might be explained by the fact that an additional series com-
pliance is introduced through inactive compartments against which the activated fibres
contract [25]. It is hypothesized that the effect will be more pronounced at shorter muscle
lengths than at the optimal length (at which the numerical experiments are carried out),
cf. Mutungi & Ranatunga [183], or in muscles with passive forces appearing only at long
muscle length (see further below).

Changes in sarcomere length due to the contraction of activated parts of the fibres
against non-activated parts are reported for spanning-fibred and series-fibred muscle mod-
els. Fixed-end single twitch contractions, in which the fibres of all compartments are
simultaneously activated, show that changes in sarcomere length increase with increasing
fibre length. Shorter sarcomere lengths are only observed if one out of six compartments is
activated (model SER-6a). This is not surprising as the five non-activated compartments
act as series elastic elements. Comparing the extreme values of the sarcomere length
with Figure reveals that the range of sarcomere lengths of the numerical experi-
ments is limited to a rather narrow region with considerable filament overlap. Mutungi &
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Ranatunga [183| report experimental sarcomere length changes in fixed-end single twitch
contractions that are considerably smaller than those found in the present numerical inves-
tigations. The difference can be explained based on the fact that Mutungi & Ranatunga
[183] simultaneously stimulated the entire fibre bundle using plate electrodes, and hence,
almost all sarcomeres shortened concurrently against a small region at the fibre ends.

The fact that the model predicts rather small changes in sarcomere length during fixed-
end single twitch contractions might be explained by the following considerations. A
resting sarcomere length of 2.0 um [61] is assigned to the model’s stress-free reference
configuration (A\y = 1). Thus, the longest observed sarcomere length of 2.66 um corre-
sponds to a local fibre stretch of Ay = 1.33. Comparing this value with the F'-¢ relation
in Figure [6.9h, one observes that considerable passive forces start to appear at this fibre
stretch. This can be explained by the fact that at every instant in time, the contractile
forces in the activated parts of the muscle need to be matched by the stretch-induced
passive forces in the non-activated, in-series arranged parts. Sarcomere length changes
will therefore be more pronounced in muscles with passive forces appearing at long muscle
length.

A limitation of the model is that it does not include tendons. Since tendinous tissue is
much stiffer than passive muscle tissue [103], the series compliance added to the system
by including tendons is considered to be small. Therefore, the effect of neglecting tendons
in this study is expected to have a minor effect on the force generation and the sarcomere
length changes.

The study of compartmentalisation is particularly interesting with regard to analysing
stability issues. The model results demonstrate that activated parts of a muscle can con-
tract against non-activated parts. It has been hypothesized that in long spanning-fibred
muscle, in which the AP propagation time exceeds the twitch rise time, activation-induced
stresses might stretch non-activated sarcomeres to beyond myofilament overlap potentially
leading to instabilities [159]. Loeb et al. [159] therefore speculate that the twitch rise time
might impose a limit on the length of the muscle fibres. The presented results, however,
demonstrate that a muscle model, in which the AP propagation time exceeds the twitch
rise time of a single sarcomere, does not necessarily show any instabilities. In series-fibred
muscle a similar stability problem is believed to exist when activation of series-arranged
compartments is unbalanced or asynchronous, i.e., if muscle fibres in an activated com-
partment shorten against fibres in non-activated compartments [159,216]. This instability
was not observed either in the numerical experiments (model SER-6a) using the presented
model settings.

The fact that instabilities are observed neither in the spanning-fibred model nor in the
series-fibred model might be due to the fact that in the present model passive forces appear
already at short muscle length. According to Hawkins & Bey [102], this corresponds to
the behaviour of rat TA muscle, which shows even at full activation a monotonically
increasing isometric F-¢ relation, cf. Figure [6.9h. The passive stiffness of the muscle
tissue might therefore prevent an overextension of non-activated sarcomeres. However,
in muscles with passive forces appearing at long muscle length, sarcomere extensions to
beyond myofilament overlap might be possible, and this might lead to stability problems
and damage [159].






7 A Multiscale Model of the
Neuromuscular System

The previous chapter introduced a multiscale model of skeletal muscle. Assuming sim-
plified stimulations, this model was used to simulate idealised muscle contraction. To
simulate more realistic muscle contractions, this chapter enhances the multiscale muscle
model to a model of the neuromuscular system.

7.1 Overview of the Multiscale Model of the
Neuromuscular System

To simulate the behaviour of the neuromuscular system, the multiscale muscle model of
Chapter [ is coupled to the model of the motor neuron pool of Negro & Farina [186],
which has been described in Section [£.2. Furthermore, the model of the neuromuscular
system is coupled to the EMG model of Section [5.4], to simulate muscle contractions and
the EMG signal under isometric and non-isometric conditions. The resulting model of
the neuromuscular system is schematically shown in Figure [[.1

motor neuron pool (ODE)

MU discharge times tf-MUf

multiscale muscle model

muscle fibre model

half-sarcomere (ODE) Y diffusion eqn. (1D PDE)
i
ls, s ‘ v
continuum-mechanical deformed geometry @
model (3D PDE)

Vi, x

EMG model (3D PDE)

Figure 7.1: Overview of the multiscale model of the neuromuscular system. Each box indicates
a model part. The couplings between the parts are indicated through arrows together with the
transferred information.

To determine the discharge times of each MN, the biophysical model of Negro & Farina

[186] is solved, cf. Section and Appendix The coupling of the MN pool model to
the muscle model is unidirectional, i.e., the flow of information between the models only

143
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occurs from the model of the MN pool to the muscle model. Therefore, theoretically, one
could precompute the motor unit recruitment and firing times independent of the muscle
model. However, in order to integrate in the framework proprioceptors, such as muscle
spindles and Golgi tendon organs, which provide the MN pool with information about
the state of the muscle, at a later time, the model of the MN pool is integrated in the
framework and is not solved decoupled from the muscle model. To realise the integrated
formulation, the MN model of Negro & Farina [186] is coupled to the half-sarcomere model
that is located at the neuromuscular junction (e.g. at the middle of each fibre).

The MU discharge times are used to drive the multiscale chemo-electro-mechanical mus-
cle model. The multiscale model predicts the actively generated force and the deformation
of the muscle, see Chapter [0 for details.

In Section [5.4], the bidomain model has been proposed to simulate EMG signals. Here,
this technique is further developed to take into account the activation-induced deformation
of the tissue to accurately predict the EMG signal also under non-isometric conditions.
To this end, the EMG model requires information about the deformed geometry, @, in
addition to the membrane potential, V,,, cf. Figure[Z.Il The modifications required in the
EMG model are explained in detail in the following section.

7.2 Modelling Electromyographic Signals Under
Non-Isometric Conditions

Following the monodomain approximation (see Section[(.2)), the equations for determining
the EMG signals are decoupled from the multiscale muscle model. Thus, the multiscale
model and the extracellular bidomain equation can be solved successively.

Following the approach of Section [5.4] the nodes of the 1D muscle fibre meshes, which
are used for the solution of the monodomain equation, are connected to form a 3D mesh
of linear Lagrange finite elements, see Figure [[.2l This fine-spaced 3D mesh is used to
discretise the extracellular bidomain equation and to compute the EMG signal.
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Figure 7.2: A 2D schematic representation of the 8D problem highlighting the use of the different
meshes for the different subproblems of the multiscale model. First, the geometry of the muscle is
discretised using 3D quadratic Lagrange finite elements (black mesh). This mesh is used for the
solution of the continuum-mechanical model. Embedded in these 3D finite elements are 1D muscle
fibre meshes (red, left), used for the solution of the monodomain equation. FEach finite element
node point of the 1D muscle fibre meshes requires the solution of the biophysical half-sarcomere
model (blue). Connecting the nodes of the 1D meshes yields a fine-spaced 3D finite element mesh
(right) for solving the extracellular bidomain equation. Previously published in [178].
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The multiscale skeletal muscle model takes into account the mechano-electric feedback
by applying the deformation of the 3D muscle geometry to the 1D muscle fibre meshes, cf.
Section The computation of the EMG takes advantage of the same technique, i.e.,
the solution of the extracellular bidomain equation accounts for the tissue deformation.
Similar to the monodomain equation, the extracellular bidomain equation either can be
solved on the actual configuration, or it can be solved in the reference configuration
by pulling back the geometric quantities. Following the approach of Section [6.2.2] the
extracellular bidomain equation reads in the reference configuration

Div (J (¢} + o) Grad¢.) = —Div (Jo) GradV,,), (7.1)

where 6% = F' o, FI~' and ¢ = F~' o, F' ™! are the referential conductivity tensors
of the intracellular and the extracellular domains, respectively. In this work, however,
the EMG is computed on the deformed (actual) configuration, where the nodal positions
of the fine-spaced 3D mesh (Figure right) are updated in every step. Here, the step
size of the EMG model is taken in accordance with the time step size of the continuum-
mechanical model.

7.3 Applications of the Multiscale Model of the
Neuromuscular System

Two examples are presented in the following, demonstrating the capability of the pro-
posed model of the neuromuscular system. While the first example considers an idealised
geometry, the second example simulates the tibialis anterior muscle.

7.3.1 Isometric and Non-Isometric Contractions of a Rectangular
Cuboid

Introduction and Methods

For the simulation, the cuboid geometry and the MU fibre distribution of the example of
Section is adopted. While the formulation in Section is restricted to isometric
conditions, the chemo-electro-mechanical model can simulate any kind of contraction and,
additionally, allows to predict the generated force.

Two scenarios are considered. In the first scenario, the cuboid muscle specimen is fixed
at both ends to simulate a fixed-length contraction. In the second scenario, only one end
of the muscle specimen is fixed, while deformation of the other end is left unconstrained
to simulate a non-isometric contraction. Furthermore, in both scenarios, displacement at
two further non-parallel faces of the specimen is constrained in the direction perpendicular
to the respective face (symmetry boundary conditions). For the computation of the bio-
electrical fields, homogeneous Neumann (no-flow) boundary conditions are applied. Note
that in the non-isometric case, the force-length and force-velocity relations are omitted
to obtain larger deformations of the muscle specimen.
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Results

To drive the model of the neuromuscular system, a constant mean synaptic current of
0.005 A /em? superimposed by two GauRian-distributed high-frequency oscillating signals
(see Negro & Farina [186] for details) is applied to the MN model of Negro & Farina |186].
The resulting discharge times are shown in Figure [[3h, together with the generated
nominal stresses. The nominal stresses are computed from the reaction forces of the muscle
model of the first scenario (fixed-length contraction). Due to the small number of MUs
included in the simulation, the generated stresses are accompanied by large fluctuations.
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Figure 7.3: (a) Motor unit discharge times and induced nominal stresses during a fized-length
contraction, and (b) total length of the specimen during a mon-isometric muscle contraction in
the cuboid example.

If only one end of the specimen is fixed (as in the second scenario), the contraction
induces a deformation of the muscle specimen. This is shown in Figure [[.3b, where the
total length of the cuboid is plotted versus the time. According to Figure [[.3b, the
specimen shortens significantly in the beginning of the simulation, but little changes are
observed at later simulation times.

Following this, Figure shows the action potentials propagating along the muscle
fibres and the resulting sSEMG signals at the beginning of the simulation (0-26 ms) for the
non-isometric contraction. The contraction-induced deformation of the cuboid is clearly
visible.

Discussion

In contrast to previous models of the EMG, the proposed multiscale chemo-electro-
mechanical can take into account the tissue deformation. This allows to predict, for
example, the effect of changes in the local fibre orientation or a shift of the innervation
zone with respect to the skin surface on the sEMG signal, cf. DeFreitas et al. [48], Nishi-
hara et al. [192], Piitulainen et al. [206].

Further, while previous models of the EMG are restricted to isometric conditions, the
present approach allows to study the EMG also during non-isometric contractions. This
enhances significantly the applicability of EMG models. For example, lengthening con-
tractions of skeletal muscles require a neural activation strategy that is different from that
during isometric contractions, see Enoka [64]. Using the presented framework, recruitment
and rate coding strategies based on neurophysiological hypotheses can be tested and the



7.3 Applications of the Multiscale Model of the Neuromuscular System 147

—82 Vi [mV] 33 -5 b0 [mV] 15

Figure 7.4: Deformation, muscle fibre APs, and the resulting sEMG signals at times t = 0-12ms
(left, from top to bottom) and t = 1/-26'ms (right) in steps of size 2ms.
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simulation results can be compared to EMG recordings during lengthening contractions.
This might help to reveal the neural strategy underlying lengthening contractions.

7.3.2 Modelling the Tibialis Anterior Muscle

Although the finite element method allows for arbitrary geometries, the examples pre-
sented in the previous sections were all based on simplified geometries. This section
demonstrates that the proposed model is capable of simulating muscle contractions and
EMG signals also for non-trivial, realistic geometries. To this end, the human TA muscle
is con%red. Some of the results of this section have previously appeared in Mordhorst
et al. |-

Introduction and Methods

The geometry of the TA and the fat/skin tissue is based on the visible human male
dataset ] The TA’s bipennate muscle fibre directions are based on DT-MRI data .
The geometry of the muscle without the fat /skin tissue has previously been used, see @
@,. |. For the discretisation of the 3D geometry of the muscle and the subcutaneous
tissue 39 tri-quadratic/tri-linear Lagrange finite elements are used. To reduce complexity
and computational time, only 2700 muscle fibres are considered. The 1D muscle fibres
are discretised using 140400 linear Lagrange finite elements and 144 000 nodes. Each of
these nodes is associated with a biophysical half-sarcomere model of Shorten et al. M]

The muscle fibres are grouped into 10 MUs. The general assumption that a muscle
typically consists of many type-I and few type-IT MUs [@] is reflected within the model
by choosing the first six MUs to use the slow-twitch parametrisation, while the other four
MUs (MUs 7-10) use the fast-twitch parametrisation of the cell model of Shorten et al.
M] Note that the different parametrisations of the biophysical half-sarcomere model
lead to different AP propagation velocities, which are also observed in real muscles and
significantly influence the sEMG. Further, following Fuglevand et al. @], an exponential
distribution of the innervation number was assumed, where the largest MU had 100 times
as many fibres as the smallest MU. The MU fibre distribution is depicted in Figure [7.5]
where a different colour is chosen for each MU.

Figure 7.5: The geometry of the TA and the surrounding fat/skin tissue. Additionally, the
(randomly assigned) MU fibre distribution is illustrated, where the colours of the fibres display
the 10 MUs. The resulting EMG signals are simulated based on the superficial TA and adjacent
fat/skin layer, i. e., the region highlighted with bold black lines. Previously published in .

Y

While the MU territories in real muscles are spatially confined to small regions within
the muscle’s cross-sectional area, this model assumes a random distribution of the fibres.
This assumption is made to simplify the model setup and is not due to any framework-
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inherent limitations. An algorithm to distribute the MU fibres within the muscle volume
can be found in Rohrle et al. [221]].

The MU discharge times are adopted from the example in Section[5.4.2l These discharge
times have been determined using the biophysical MN model of Negro & Farina [186],
and are depicted in Figure 5.1Tb. To model the innervation zone, a Gaufian distribution
around the middle of the fibres with a standard deviation of two nodes was assigned to the
stimulation point. The maximum deviation was 7 nodes, which corresponds to a 0.56 cm
wide spread of the innervation zone. To simulate a fixed-length contraction, all finite
element nodes at the proximal and distal ends of the muscle are fixed in the mechanical
model.

While the activation-induced contraction of the TA is based on the entire muscle and
the surrounding fat/skin tissue, the subsequent EMG computation is only based on the
superficial part of the TA covered by a layer of fat and a layer of skin tissue (black lines
in Figure [CH). Along the superficial TA, the thickness of the fat and the skin layer
varies slightly, i.e., the fat layer has a thickness of approximately 6 mm and the skin layer
thickness is approximately 1.5 mm. Due to its larger distance to the skin surface, the
deep TA is considered to have a minor contribution to the SEMG signal. It is, however,
noteworthy that the presented modelling approach is not limited to the superficial part
of the TA. The TA’s superficial part contains 900 embedded fibres. The finite element
mesh for the computation of the EMG consists of 47908 elements. The conductivities in
Table are used for computing the EMG signal.

Results

Figure shows for six selected times the distribution of the membrane potential along
the muscle fibres and the contraction-induced deformation of the TA muscle and the
surrounding tissue.

The resulting sSEMG signal at the skin covering the superficial part of the TA muscle
is visualised in Figure [(.7] for five different times.

Since the TA is a pennate muscle, the generated EMG signal is different from the one
shown in the previous section, where the fibres are parallel to the skin. Due to the fi-
bre angle, no pronounced propagation of the potential at the surface can be detected.
Rather, the signals propagating along the fibres towards the surface lead to an increase
in the surface potential. In agreement with the findings of Barbero et al. |9], the SEMG
of the simulated pennate muscle is dominated by the end-of-fibre effect and the extinc-
tion of the AP. While these experimental findings are qualitatively reflected by the model
results, they make a quantitative comparison difficult. This likewise holds for the me-
chanical deformation. Experiments using ultrasound together with EMG measurements
are performed, for example, by Hodges et al. [L19], Ruiz-Mufioz & Cuesta-Vargas [226]
to study the relation between the EMG signal and architectural parameters, such as the
pennation angle. As expected from the experimental findings of Hodges et al. [119], the
pennation angle increases during the simulated isometric contraction. However, while the
model considers the isolated TA, the experiments are performed in vivo including interac-
tions of the TA with adjacent tissue, which makes further comparisons within the scope
of this work impossible.
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Figure 7.6: Membrane potential distribution along each muscle fibre and contraction-induced
deformation of the TA muscle and surrounding fat/skin tissue for siz selected times. The black
lines refer to the reference (undeformed) configuration.
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Figure 7.7: The sEMG signal over the superficial TA together with the underlying membrane
potential along each muscle fibre for five selected times. The black lines refer to the reference
(undeformed) configuration.
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Discussion

Due to the complexity of the multiscale model and its associated computational cost,
the number of muscle fibres that can currently be included in a simulation on a normal
desktop PC using a single processor is limited to a few thousand. The human TA consists
of about 250000 fibres [105], and thus, only about 1% of the fibres can currently be
simulated. However, there exists a large potential for parallelisation (cf. Section and
Heidlauf & Rohrle [109]) and model reduction techniques to decrease the computational
load and/or allow to include a more realistic number of fibres in the simulations.

Although strategies have been employed to reduce the computational complexity of the
model, the computing time is still high for the presented model. On a normal desktop
PC (Intel® Core™ i5-3470 CPU, single processor, 3.2 GHz, and 32 GB of memory) the
solution of the chemo-electro-mechanical model on the TA (2700 fibre meshes, each of
which required the solution of more than 50 biophysical half-sarcomere models, yielding
more than 7.5-10° degrees of freedom (DOFs) for the bioelectrical problem) required about
3h to simulate 0.2ms. The computation of the corresponding EMG was about 15 min.
It is, however, noteworthy that about 90 % of the EMG computing time is spent on file
I/0O, and only 10 % is required for the actual computation of the EMG signal. This is due
to the fact that the membrane potential and the extracellular potential distributions are
currently stored in ASCII files, which have to be written out and read in for each time
step. A more sophisticated implementation that eliminates the cumbersome I/O of the
membrane potential and the nodal positions is feasible, since the entire model is solved
within a single framework (OpenCMISS). This, however, has not been realised yet. Since
the application of the model is currently limited by the computation time, this issue has
to be addressed in the future.

With regard to simulating muscle behaviour under realistic conditions, one also has to
raise the question if it is actually necessary to simulate every single fibre of a muscle.
Due to the fact that in reality the diameter of a muscle fibre is limited by the time the
AP takes to propagate along the T-tubules, it might be possible to accurately simulate
muscle contractions and the EMG using fewer “meta-fibres” representing parts of muscle
units, cf. Fuglevand et al. |77].

While it might be possible to simulate realistic muscle contractions using “meta-fibres”,
the number of MUs included in a contraction significantly affects the force output. For
example, Rohrle et al. [221] demonstrated that a smoother force response is generated,
when including more MUs in the simulation. Due to the computational complexity of the
model, only 10 MUs are considered here. This reduced set of MUs can not accurately
represent the 450 MUs of the human TA muscle.

Previous models of the EMG are not restricted by their computation times. However,
these models cannot take into account arbitrary fibre architectures. Further, existing
models are not capable of predicting changes in the EMG signal or the AP shape and
propagation velocity that are due to the mechanical deformation of the tissue or due to
underlying biophysical processes such as membrane fatigue.



8 Summary, Discussion, and
Outlook

8.1 Summary

The aim of this thesis was the biophysical simulation of the chemo-electro-mechanical
processes of the neuromuscular system leading to muscle contraction and force generation.
To this end, different approaches have been followed. First, a novel, biophysical model
of the neuromuscular system arose from coupling a detailed biophysical model of the
excitation-contraction coupling in skeletal muscle fibres to a biophysical, Hodgkin-Huxley-
type model of the motor neuron pool that predicts motor unit recruitment and rate coding.

Further, to simulate electrical signals propagating through muscle and subcutaneous
tissue, the biophysical muscle model was linked to bioelectrical field equations. This
formulation intrinsically accounts for changes in the amplitude and propagation velocity
of the action potential, which might result, for example, from membrane fatigue. Based
on this approach, the intramuscular and surface EMG signals have been predicted.

Furthermore, during isometric and non-isometric skeletal muscle contractions, the
EMG has been simulated using a multiscale chemo-electro-mechanical model, taking
into account the contraction-induced tissue deformation. The multiscale, chemo-electro-
mechanical skeletal muscle model resulted from incorporating a biophysical description
of half-sarcomere-based active stresses within a continuum-mechanical constitutive equa-
tion. Being based on a finite-deformation theory, the continuum-mechanical description
allows prediction of contraction-induced and externally applied tissue deformations as
well as the overall muscle force generation. To demonstrate the capabilities of the re-
sulting multiscale and multiphysics framework, the model was used to reveal differences
in the contractile behaviour and the force response that result from the muscle fibre ar-
rangements. Moreover, using the biophysical model of the motor neuron pool to drive the
multiscale chemo-electro-mechanical muscle model, voluntary skeletal muscle contractions
have been simulated. In particular, a model of the human TA muscle demonstrated the
geometric flexibility of the finite element-based formulation.

The following list summarises novel aspects provided by this work to the field of mod-
elling the neuromuscular system.

e The detailed biophysical model of the excitation-contraction coupling of Shorten
et al. [240] has been extended to a representation of the different muscle units
within a skeletal muscle.

e A partial reparametrisation of the model of Shorten et al. [240] has been proposed
to simulate human muscles.

e The resulting muscle model has been used to reveal that doublet potentiation is
caused by an increase in the myoplasmic calcium concentration, which results from
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the superposition of residual calcium from the first stimulus and the calcium released
in response to the second stimulus.

To simulate non-isometric contractions, the muscle model of Shorten et al. [240| has
been extended to account for cooperative effects and a distortion dependence.

A novel model of the neuromuscular system that is biophysical in all main parts
has been developed. To this end, the muscle model of Shorten et al. [240] has been
coupled to the Hodgkin-Huxley-type model of the motor neuron pool of Negro &
Farina [186].

It has been demonstrated through numerical examples that the monodomain model
is a valid approximation to the more complex bidomain model in the context of
modelling the AP propagation in skeletal muscle tissue.

Following this, a biophysical description of the AP propagation along skeletal muscle
fibres based on the monodomain model has been proposed. The model has been
used to investigate the effect and origin of membrane fatigue on the amplitude and
propagation velocity of APs along muscle fibres.

A novel, biophysical model of the EMG has been proposed. This model is based
on a Hodgkin-Huxley-type description of the membrane electrophysiology and the
bidomain/monodomain model. A major advantage of the biophysical description
is that it intrinsically accounts for physiological properties, such as changes in the
amplitude and AP propagation velocity, rather than prescribing these effects as part
of the model constitution.

A continuum-mechanical constitutive equation for skeletal muscle modelling has
been developed. It has been demonstrated that the proposed formulation is flexible
enough to accurately represent the passive behaviour of different skeletal muscles.
The description of the active part of the constitutive model is based on the biophys-
ical model of Shorten et al. [240] and includes the force-length and force-velocity
relations at the microscopic half-sarcomere level. Parameters of the proposed con-
stitutive model for the passive and nerve-activated response of skeletal muscle have
been identified using experimental data of the literature.

The resulting multiscale and multiphysics model has been implemented in the open-
source software library OpenCMISS taking advantage of a distributed-memory paral-
lelisation, the CellML API, and staggered solution schemes. The fully coupled, bidi-
rectional implementation accounts for both electro-mechanic and mechano-electric

feedbacks.

The multiscale muscle model has been used to reveal differences in the contractile
behaviour and force generation that result from the arrangement of the muscle fibres
within the muscle.

To simulate voluntary contractions, the multiscale skeletal muscle model has been
coupled to the model of the motor neuron pool of Negro & Farina [186]. This
yielded a novel multiscale, geometrical model of the neuromuscular system. Using
the resulting model, muscle contractions and the EMG have been simulated under
isometric and non-isometric conditions. In contrast to previous works, this model
can take into account the contraction-induced deformation of the tissue.
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8.2 Discussion and Outlook

Many aspects of the presented work have already been discussed (cf. Sections 5] B3], and
[6.3]), and this section only highlights a few points. The presented modelling framework
unifies several component models to an integrated description of the coordinated action
of the neuromuscular system. The resulting integrated model is biophysical in all main
parts. The biophysical representation provides many advantages over phenomenological
descriptions, as it is based on the underlying anatomy and physiology of the modelled
system. The major advantage of the detailed biophysical description is that it allows
to investigate internal quantities (e.g. intermediate quantities of a signaling pathway).
Many of these internal quantities (e.g. the concentration of certain organic molecules)
can now be experimentally determined using, for example, NMR (nuclear magnetic reso-
nance) spectroscopy. This allows to further parametrise and validate biophysical models.
Properly parametrised and validated biophysical models can be used, for example, to in-
vestigate pathological conditions. This is not possible using phenomenological models, as
these models commonly do not include internal quantities.

Moreover, combining for the first time, a biophysical description of the motor neuron
pool and a multiscale continuum-mechanical skeletal muscle model, the framework can be
used to investigate problems that cannot be studied with existing models. For example,
novel neurophysiological control mechanisms can be tested, which, in addition to the size
principle, take into account the biomechanical efficiency.

Due to the fact that the multiscale chemo-electro-mechanical model is based on an inte-
grated, fully coupled formulation, the model accounts for bidirectional couplings, such as
the ones occurring from the combination of electro-mechanic and mechano-electric feed-
backs. Thus, in addition to the contraction-induced deformation of the muscle tissue, the
model takes into account changes in the bioelectrical properties of the volume conductor
and the force-generating capabilities of the muscle that result from tissue deformation.
This is in contrast to previous multiscale skeletal muscle models [219-221]. These models
are based on a look-up table containing precomputed solutions to the bioelectrical field
equations that are utilised when solving the mechanical model. The bidirectional coupling
also allows to include proprioceptors within the framework at a later time.

Within the presented multiscale framework, the description of the active contractile be-
haviour is completely determined at the microscopic half-sarcomere level. This approach
is in contrast to previous continuum-mechanical skeletal muscle models [16, [220] that in-
clude the active force-length and the active force-velocity relations at the macroscale. The
purely macroscopic approach implies the assumption of an averaged sarcomere length and
an averaged sarcomere velocity, and hence, these models cannot represent local changes
in the sarcomere length and shortening velocity. Moreover, due to the fact that both the
force-length and the force-velocity relations can be attributed to properties at the sar-
comere level, they should be modelled at the microscale. In detail, the length dependence
of the active force is due to changes in the overlap of thick and thin filaments within
the sarcomeres 89|, while the velocity dependence is attributed to a lower tension of the
cross bridges that reattach in a shortened state and an increased cross-bridge detachment
rate [205, 258]. In the presented multiscale model, the length and velocity of individual
half-sarcomeres are only restricted by the overall length and velocity of the entire mus-
cle, which depend on the mechanical boundary conditions. This is an advantage of the
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multiscale model compared to the half-sarcomere model and also motivates the multi-
scale model. Following this, the model can be used, for example, to study the effect of
sarcomere inhomogeneities on the muscle force generation.

Further, being based on the bioelectrical field equations, the multiscale model can pre-
dict intramuscular and surface-EMG signals. While previous models of the EMG were
limited to isometric conditions, the present multiscale model can simulate the intramus-
cular and sEMG during any kind of contraction. By taking into account the contraction-
induced deformation of the tissue, the model can investigate the influence of the relative
movement of muscle fibres with respect to the electrode at the skin surface on the EMG
signal under fixed-length and non-isometric conditions. This might lead to more accurate
signal interpretations. Moreover, being based on a biophysical description, the model can
predict changes in the EMG signal that result, for example, from biophysical processes
such as membrane fatigue, rather than prescribing these effects as part of the model
constitution, as in previous, phenomenological models of the EMG.

Validation of the presented multiscale chemo-electro-mechanical muscle model is, of
course, a challenging task. Individual parts of the model, such as the biophysical de-
scriptions of the motor neuron pool and the half-sarcomeres, have been adopted from
literature. These models have previously been validated, at least, under certain idealised
conditions. Furthermore, the bioelectrical field equations are commonly used in the field
of biosignal processing, for example, for modelling the electrical activity of the heart.
Although the entire active behaviour of the multiscale muscle model is determined at
the microscopic half-sarcomere level, the multiscale and multiphysics model can predict
macroscopic force-length and force-velocity relations. Furthermore, the presented multi-
scale chemo-electro-mechanical muscle model predicts both the generated force and the
corresponding EMG signal. This provides a unique opportunity to validate the multiscale
model by simultaneously measuring muscle forces and EMG signals in an experimental
setup. This, however, is beyond the scope of this work.

For a further validation and application of the model, the computing time has to be sig-
nificantly reduced. Although staggered solution schemes and parallelisation techniques are
used within the multiscale framework, the application of the model is currently strongly
limited by its enormous computational cost. Within the multiscale modelling framework,
the solution of the biophysical half-sarcomere models takes by far most of the computing
time. Thus, one has to carefully consider how much biophysical detail is required for a
specific problem. If biophysical details are unimportant, one might be able to use a phe-
nomenological cell model instead of a biophysical one, which might dramatically decrease
the solution time. If biophysical details are important, model reduction techniques might
be applied to decrease the computational cost, while preserving biophysical detail. While
this is beyond the scope of the present work, this issue should be addressed in the future.

Another limitation of the chemo-electro-mechanical muscle model results from its mul-
tiscale character. Being based on continuum theory, the multiscale approach relies on the
assumption of scale separation. This means that the macroscopic structure (the muscle) is
several orders of magnitude larger than the microstructural elements of which the macro-
scopic structure is composed. If this property is satisfied, the macroscopic behaviour can
be described statistically by the properties of the microstructural elements. In human
muscles, the length of the muscle fibres, however, is often of the same order of magnitude
than the length of the whole muscle. This is not unique for skeletal muscle, but applies to
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many biological tissues. Nevertheless, continuum theory is commonly used in the field of
biomechanics, and little research focusses on this issue. In the context of bone, limitations
of the application of continuum theory have been discussed by Harrigan et al. [100].

Due to the modular structure of the presented multiscale and multiphysics framework,
extending the model and/or replacing individual parts, when necessary, is straightfor-
ward. A few possible extensions of the model are discussed in the following. The model of
the excitation-contraction coupling in the muscle fibres does not include a representation
of the cell metabolism. Biophysical models of the metabolism in skeletal muscle fibres,
however, exist, and these models can potentially be integrated into the biophysical half-
sarcomere model and can be coupled to the existing description of metabolic fatigue. Fur-
thermore, within the multiscale skeletal muscle model, the microscopic formulation of the
cell metabolism could potentially be coupled to the macroscopic continuum-mechanical
balance of energy.

Further, depending on the type of contraction, afferent signals were estimated to account
for up to 50 % of the input to spinal cord motor neurons. The presented chemo-electro-
mechanical model of the neuromuscular system does not currently include a description
of proprioceptors. Since models of muscle spindles and Golgi tendon organs exist in the
literature [173, [174|, these models can be integrated into the multiscale and multiphysics
computational framework to explicitly account for afferent inputs to the motor neurons.
This might contribute to a more realistic representation of the synaptic input to the motor
neuron pool.






A Additional Continuum-Mechanical
Details

A.1 Natural Basis Representation

A.1.1 Covariant and Contravariant Basis

At any position x in the 3D physical space, two basis systems can be derived from a set
of general curvilinear coordinates 0¥ with & = 1,2,3. The covariant (natural) basis, ay,

and the contravariant (dual) basis, a*, are given by
_ 0= (6%) k. 008 (@)
ark; = W 5 and a ‘= 8w . (A].)

While neither the vectors of the covariant basis nor the vectors of the contravariant basis
are necessarily orthogonal to each other, the vectors of the different bases satisfy the
conditions a* || a; x a,, with cyclic rotations of k,I,m = 1,2,3 [162]. Following this,
one can conclude that, in the special case of orthonormal basis vectors, the covariant and
contravariant basis vectors coincide with each other and result in a common Cartesian
coordinate system, i.e., a; = a* =: e;,.

Equation ([A.T)) defines the natural basis vectors in the actual configuration. Similarly,
covariant and contravariant basis vectors can be defined in the reference configuration

according to

0X(6%)

hy = and h* = M.

ook’ ' 0X
Using the basis vectors of the reference and actual configurations, the deformation
gradient tensor can be expressed in terms of the natural bases, yielding the relations

(A.2)

F=a,®h", FT =hf®a;, Fl=h,®ad", F''=a"*@h,. (A3)

Of course, all quantities that can be derived from the deformation gradient tensor, such
as, for example, the deformation and strain measures of Section [3.4.1] can similarly be
expressed using the natural bases, see Markert [162] for details.

A.1.2 Covariant and Contravariant Transport Operations

Transport operations are required to relate quantities of the reference configurations to
their counterparts in the actual configuration, and vice versa. Although in orthonormal
basis systems, the covariant and contravariant basis vectors coincide, it is essential to
distinguish between covariant and contravariant quantities at this point, since they obey
different transport operations.
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Following the transport of line elements (3:28]);, the deformation gradient has the prop-
erty to map covariant vectors of the reference configuration to covariant vectors of the
actual configuration. Based on this, the inverse of the deformation gradient must obey
the property of mapping covariant vectors of the actual configuration back to covariant
vectors of the reference configuration. On the basis of these properties, the operations

n, = Fmy, and my = Fln,, (A.4)

are known as covariant push-forward and pull-back operations, where m, and n, denote
covariant vectors of the reference and actual configurations, respectively. Furthermore,
the contravariant push-forward and pull-back operations are introduced via

n' = F''m!, and m’ = Fi'n’, (A.5)

where m! and n'’ denote contravariant vectors of the reference and the actual configu-
rations, respectively. Similar to the transport operations for vectors in (A.4) and (A5,
transport operations can also be introduced for higher-order tensors. The covariant push-
forward and pull-back operations for second-order tensors are given by

N,=FM,F", and M, =F'N,F'*, (A.6)

where N, and M, are covariant tensors of the reference and the actual configurations,
respectively. Analogously, the contravariant push-forward and pull-back operations read

N = F"'M'F*, and M' = F'N'F. (A.7)

Therein, M* and N* denote contravariant tensors of the reference and the actual con-
figurations, respectively. The transport operations for fourth-order tensors are omitted
here, but can be found, for example, in the appendix of Markert [162].

A.2 Thermodynamic Considerations

The formulation of a constitutive equation has to satisfy certain requirements to be ther-
modynamically consistent. These basic thermodynamic principles are given by the re-
quirements of determinism, equipresence, and local action, as well as material frame in-
difference, universal dissipation, and material symmetry. These concepts are only briefly
discussed here for the sake of completeness, since the material models for the passive
mechanical behaviour of muscle and subcutaneous tissue used within this work are known
to satisfy the basic thermodynamic principles. For more details, the reader is referred to
Wang & Truesdell [273| and references therein.

A.2.1 Determinism, Equipresence, and Local Action

The principles of determinism and equipresence state that the set of uniquely defined,
undetermined response functions, R = {¢, T'}, where 1) denotes the Helmholtz free en-
ergy, can depend on the entire set of process variables, V, i.e., R = R(V). Further,
the principal of local action requires that the set of process variables only consists of
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local values. Assuming isothermal conditions, the set of process variables is given by
YV ={F, Grad F, M,, X}, cf. [140]. This choice of process variables allows to consider
local inhomogeneities in the material behaviour based on their position in the reference
configuration. This is important to distinguish, for example, muscle tissue from subcu-
taneous tissue. Within this work, the same energy function is used to describe passive
muscle and subcutaneous tissue. A difference in the mechanical behaviour of these ma-
terials is obtained by the assignment of different material parameters. Therefore, the
referential position vector, X, can directly be omitted from the set of process variables.
Furthermore, a structural tensor M, is included in the set of process variables to charac-
terise non-isometric material behaviour. Due to the fact that an evaluation of the entropy
inequality always yields the independence of the response functions of the second deforma-
tion gradient, Grad F', the process variables of the Helmholtz free energy, v, are a priori
constitutively assumed to be

w = w(FaMa)' (A8)

A.2.2 Material Frame Indifference

The principle of material frame indifference is also known as the principle of objectivity
as it states that the constitutive equations have to be independent of the position of the
observer. Following this, the constitutive equations have to be invariant under rigid-body
rotations of the actual configuration.

Scalar quantities are always invariant with respect to rotations. Further, the structural
tensor, M, is defined by quantities of the reference configuration. Hence, it is not af-
fected by rotations of the actual configuration. The deformation gradient, however, is not
invariant to rigid-body rotations, and hence, it is not a suitable quantity for the formula-
tion of constitutive equations that satisfy the requirement of material frame indifference.
Using the polar decomposition of the deformation gradient (B:29), a more suitable for-
mulation of the constitutive equations can be based on the right stretch tensor, which is
a quantity of the reference configuration. Moreover, since the right Cauchy-Green defor-
mation tensor and the Green-Lagrangean strain tensor are also quantities of the reference
configuration, the Helmholtz free energy can equally well be defined with respect to these
quantities, i.e.,

VU, M,) = 9(C, M) = P(E,M,). (A.9)

For the sake of simplicity, different Helmholtz free energy functions are denoted by the
same symbol ¢ in Equation ([A.9)).

A.2.3 Universal Dissipation

The principle of universal dissipation states that the entropy inequality, which results from
the combination of the balance of entropy and the second law of thermodynamics, has to
be satisfied by all thermodynamic admissible processes. In this work, (passive) viscous
effects are neglected and the passive muscle tissue is assumed to behave hyperelastically.
Hyperelastic materials are characterised by fully reversible material behaviour, i.e., no
dissipative effects are observed, and the entropy production vanishes. Following this,
the evaluation of the entropy inequality for hyperelastic materials yields the well-known
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relation between the 2"¢ Piola-Kirchhoff stress tensor and the Helmholtz free energy

S = 2p)=—. A.10
E Po aC ( )

Next, a strain energy density defined per unit reference volume W is introduced. The
strain energy describes the elastic potential or the stored elastic energy of the material.
From this strain energy, the 2"! Piola-Kirchhoff stress tensor can be derived according to

oW

A.2.4 Material Symmetry

Like other works, this work assumes an isotropic mechanical behaviour of the subcuta-
neous tissue and a transversely isotropic material behaviour of muscle tissue, cf. e. g. Bol
et al. [19], Morrow et al. [181], Nie et al. [189], Takaza et al. [256], Van Loocke et al. [268].
[sotropic and transversely isotropic material behaviours are the simplest cases within the
group of material symmetries. Isotropic behaviour means that the mechanical response
of the material under consideration is completely independent of the orientation of the
material sample. In contrast, a transversely isotropic material has a single preferred direc-
tion, such that the response of the material also depends on the orientation of the sample.
This implies that the stored energy of the anisotropic material does not only depend on
the deformation, but also on the orientation of the material sample.

The fact that the same material behaviour can be observed for certain orientations of
the material sample motivates the introduction of symmetry groups. Mathematically, this
requires the invariance of the formulation with respect to an orthogonal transformation
of the referential coordinates. Due to the fact that isotropic behaviour is insensible to all
orthogonal transformations, the structural tensor of this class of materials is given by

M, =1, (A.12)

and the argument can be neglected in the formulation of the strain energy.

Further, the behaviour of a transversely isotropic material is insensible to inversion,
reflection with respect to a plane normal to the fibre direction, to reflections with respect
to any plane that is parallel to the fibre direction, to arbitrary rotations about the fibre
direction, and 180-degree rotations about any axis that is perpendicular to the fibre
direction, as well as any combinations thereof. To mathematically represent the material
symmetries of transversely isotropic materials, one introduces a referential unit vector ag
that points in the preferred direction. Using this vector, the structural tensor is given by

Ma = a,0®a,0’ (A13)
and obeys the properties

M, = MT, M, = MM, and trM, = 1. (A.14)
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A.2.5 Theory of Invariants

The theory of invariants is derived from the idea that the formulation of the strain energy
function should be independent of the choice of the coordinate system. Since the strain
energy in (A.9), depends on the second-order tensors C and M,, and since any tensor
is defined with respect to a specific coordinate system, the formulation in ([A.9]); cannot
be independent of the coordinate system. Instead, the strain energy function should be
formulated in terms of basic scalar invariants, which are independent of the coordinate
system.

Since the structural tensor for isotropic materials equals the identity tensor, it can be
omitted from the list of arguments. The remaining dependency of the energy on the right
Cauchy-Green deformation tensor can be expressed by the deformation tensor’s basic
invariants

J=1trC, JJ = trC?, JIJ = tr C?, (A.15)

where C? denotes the tensor product C'C'. Instead of the basic invariants (A13), similarly
the eigenvalues or the principal invariants of the right Cauchy-Green deformation tensor
([E8) can be used, as these sets are all related to each other. As commonly done in finite
elasticity, the strain energy is defined based on the principal invariants, i.e.,

W(C) = W(I,1I,1II) . (A.16)

In the case of transversely isotropic material behaviour, the energy function depends on
the right Cauchy-Green deformation tensor and on the structural tensor. In addition to
the basic invariants of the right Cauchy-Green deformation tensor, the basic invariants of
the structural tensor are computed, which are all equal to unity, cf. Equations (A.14]) and
(A.15)). Furthermore, mixed invariants are introduced that depend on both tensors. Due
to the properties of the structural tensor (A.14)), several of the mixed invariants coincide,
and only two distinct mixed invariants remain, which are given by

IV =tr(M,C) = (ay®ay)’ C =ay-F'Fay = Fay-Fa, = a-a,

) ) (A.17)

V =tr(M,C?) = ag-C”ay.
Herein, IV = )\fc is the squared fibre stretch in the direction of the mapped fibre orientation
a = Fa,, where \; = |a| denotes the fibre stretch (length). The mixed invariant V' has
no direct physical meaning. Following this, the strain energy function of a transversely
isotropic material can be given by

W(C, M,) = W(I,II,II,IV,V). (A.18)

A.2.6 Further Physical and Mathematical Requirements

Besides the above discussed restrictions on strain energy functions, further mathematical
and physical restrictions apply. First, based on the physical observation that an infinite
elongation of a material or the compaction of a mechanical body to a single point requires
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an infinite amount of energy, one postulates that

W — oo

F
{det 0, (A19)

(|1F|2 + ||cof F|la + det F) — o0,

where ||(+)||2 denotes the 2-norm (or Euclidean norm).

Furthermore, the combination of polyconvexity and coercivity of the strain energy func-
tion guarantees that a unique solution to the variational problem exits, see e.g. Balzani
[8] and references therein. The condition of coercivity sets a lower limit for the energy cor-
responding to a given deformation. Without explicitly defining coercivity here, a stored
energy function that is composed of positive additive terms will automatically satisfy the
coercivity condition provided that at least one additive term is coercive [§]. Following this,
the strain energy functions considered in this work are coercive due to the fact that the
part of the strain energy describing the passive isotropic behaviour (the Mooney-Rivlin
material) is known to be coercive.

Further, a strain energy function is said to be polyconvex if and only if W(F') =
o(F, cof F,det F') is convex with respect to each of the principal minors F', cof F', and
det F separately. This condition is satisfied if the second derivatives of the energy function
with respect to the principal minors are positive definite, i.e.,

_Pe
OF ® OF

D*p
J(cof F') ® O(cof F)

P
J(det F')?

(G®G) >0, (G®G) >0, >0,

where G # 0 denotes an arbitrary second-order tensor. According to Balzani [§], the
condition of convexity in 1D can be written in terms of the following inequality:

QO(%)\fJ + (1 — %))\ﬂg) S %()0<)\f,1) + (1 — %)(p()\f,Q) with 2 c (O, 1), )\f,l 7£ )\f,Q .

This relation can be geometrically interpreted. Plotting the strain energy versus the fibre
stretch, a convex energy is characterised by the fact that no point on a straight line
that connects two points on the curve, can denote a lower energy than the strain energy
corresponding to the same fibre stretch.

Finally, with regard to the reference configuration, a suitable form of the strain energy
has to conform two further requirements. First, due to the fact that the reference con-
figuration is assumed to be stress-free in continuum mechanics, the extra stresses in (6.3))
have to vanish for F = I. Note that the penalty term in (6.3), which results from the in-
compressibility constraint, is not affected by this condition, since identical normal stresses
do not cause a deformation of an incompressible material. Furthermore, the normalisa-

tion condition requires that the stress-free reference configuration is also energy free, i.e.,
W(F =1)=0.



B The Motor Neuron Model

The motor neuron model of Negro & Farina [186] is described by the following ODEs [39]:

d 8‘/7761[ d d d s
8VT'{SL S S S
Cr =5t = =03 (Vi = 1) = ge (Vi = Vid) = Lin. (B.2)
Lion = gnam®h (V5 — Eng) + gyn* (VS — Ex) + Grs @ (Vi — Ex) (B.3)
om 13-V? (V5 —40)
— = 0.32 m 1—m) — 0.28 = :
ot exp{(13—-V3)/5} — 1 (1=m) exp{ (Vs —40)/5} — 1 "
(B.4)
88—7; — 0.128 (exp{ (17— V;2)/18}) (1 —n) — 4 (exp{(40 - V;2)/5} +1) "' n,
(B.5)
Oh 15— V3
— = 0.032 m 1—h) —05 10— V;2)/40}) b, (B.6
% — 3.5 (exp{(55 — V2)/4} + 1) "' (1 — q) — 0.025¢. (B.7)

Furthermore, for the conductances and the capacitances, the following relations apply:

Rily R;l,\—! 2mryly 27yl
= 2( ) ! = ) .= ) B.8
go o + o 91 Ri g1 R (B.8)
gne = 30-27mrgly, g = 4-27rsly, Jrs = 16-27r,l,, (B.9)
Cl = 2mrqlyCy, Cs = 2mrglyChppy. (B.10)

The material parameters of the model are provided in Table for the dendritic and
somatic compartments (indicated by subscripts d and s).
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166 Chapter B: The Motor Neuron Model

Symbol Description Value (small-large)
Chn membrane specific capacitance 1 uF /cm?
R; cytoplasmic resistivity 70Qcm
R specific resistance of dendritic membrane 14.4-6.05 kQ cm?
R specific resistance of somatic membrane 1.15-0.65 k2 cm?
lg dendritic compartment length 0.55-1.06 cm
lq somatic compartment length 77.5-113 um
rq dendritic compartment radius 20.75-46.25 ym
T somatic compartment radius 38.75-56.5 pm
En, sodium equilibrium potential 120 mV
Ex potassium equilibrium potential -10mV
Ey leakage Nernst voltage 0 mV

Table B.1: Material parameters of the motor neuron model.



C Comparing the Monodomain
Model and the Bidomain Model

To numerically demonstrate that the monodomain model and the bidomain model lead
to similar results for intracellular and extracellular conductivity tensors with equal
anisotropy ratios, different test cases are employed. The first test case considers isotropic
conductivity tensors (both conductivity tensors have an anisotropy ratio of 1). The con-
ductivities (in mS/cm) for this test case are given by

10
01

10

}ek@)el, o, = 6.7[ }ek@)el. (C.1)

Therein, e; denotes a basis vector of an orthonormal basis. The model setup is the same
as the one used in Section B.3.11

Based on the isotropic conductivity tensors in (C.Il), Figure[C.Th shows the distribution
of the membrane potential in the 2D domain 0.37 ms after stimulation has been applied at
node (z1,25) = (9,9). The depicted distribution has been computed using the bidomain
model. For the same time step, Figure shows the difference between the bidomain
model and the monodomain model.

a) 0 Vi [mV] (bidomain) b) 0 Difference [mV] <106
40
9 9 -4
8 20 8 -5
7 0 7 -6
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5 5 -8
4 -40 4 0
3 60 35 10
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1 -80 1 11
1 2 3 4 5 6 7 8 9 10 1 4 5 6 7 8 9 10
To T2

Figure C.1: Distribution of (a) the bidomain-based membrane potential (in mV), and (b) the
difference between the bidomain model and the monodomain model (in mV) for isotropic conduc-
tivities. Here, the results are shown 0.37ms after node (x1,z2) = (9,9) has been stimulated.

The choice of isotropic conductivities is reflected in the isotropic propagation of the
membrane potential. Similar to the membrane potential, the error plot shows a symmetric
distribution. The maximum difference at one node within the entire simulation time is
9.21 - 107> mV and occurs at the beginning of the simulation at a node close to the
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168 Chapter C: Comparing the Monodomain Model and the Bidomain Model

stimulation point. Based on the symmetric distributions and the similarity of the results
of the monodomain and the bidomain models, one can conclude that the monodomain
model is a valid approximation to the bidomain model for isotropic conductivities.

The second test case considers anisotropic conductivity tensors satisfying the condition
of equal anisotropy ratios (both conductivity tensors have an anisotropy ratio of 10). The
conductivities (in mS/cm) for this test case are given by

1 0
0 0.1

1 0

o, = 8.93[ 0 01

}ek@)el, o, = 6.7[ }ek@)el. (C.2)

Based on the anisotropic conductivity tensors in (C.2)), Figure shows the distri-
bution of the membrane potential in the 2D domain of the bidomain model 0.28 ms after
stimulation has been applied at node (x1,22) = (9,9). For the same time step, Figure[C.2b

depicts the difference between the bidomain model and the monodomain model.

a) " Vi [mV] (bidomain) b) Difference [mV] <106

NeJ
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Z1

NN W e Ot
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Figure C.2: Distribution of (a) the bidomain-based membrane potential (in mV), and (b) the
difference between the bidomain model and the monodomain model (in mV) for anisotropic con-
ductivity tensors with equal anisotropy ratios of 10. Here, the results are shown 0.28ms after
node (z1,2z2) = (9,9) has been stimulated.

For the anisotropic conductivities, there is no symmetry in the membrane potential dis-
tribution. Due to the higher conductivity in x;-direction, the action potential propagates
faster in this direction. Similar to the case of isotropic conductivities and as expected for
conductivity tensors with equal anisotropy ratios, the difference between the monodomain
and bidomain models is very small. The maximum difference at one node within the entire
simulation time is 1.55- 10~*mV and occurs at the beginning of the simulation at a node
close to the stimulation point. The numerical results confirm the theoretical finding that
the monodomain model is a valid approximation to the bidomain model for anisotropic
conductivities with equal anisotropy ratios. If the condition of equal anisotropy ratios of
the intracellular and extracellular conductivity tensors is not satisfied, one has to investi-
gate the quality of the approximation, cf. Section [5.3.1l If, in addition to the membrane
potential, the extracellular potential is of interest, one has to solve either the bidomain
equation or successively the monodomain equation and the extracellular bidomain equa-
tion (cf. e.g. Section [(.4)).



D Weak Forms

D.1 Weak Form of the Monodomain Equation

For the numerical treatment of the monodomain equation (5.19)), first the Godunov oper-
ator splitting (5.23)) is applied to separate the nonlinear reaction term from the diffusion
term. Due to the fact that Equation (5:23)); only consists of coupled ODEs, no spatial
discretisation is required for this part. To discretise the diffusion term using finite ele-
ments, the weak form of Equation (5.23), is derived by following the procedure described
in Section B.Il To this end, Equation (5.23), is first multiplied by a test function §V and
integrated over the domain. Using the Gaufian integral theorem, the weak form of the
transient diffusion equation (5:23), yields

k+1 _ /*
/ Vo |78 SV dv — _/ Ocff orad V,, - grad 6V dv +/ qoVda. (D.1)
QM h QM A, Ch, oaM

Therein, ¢ = (A,, C,,) ! o.sr grad V,,,-n denotes the Neumann boundary conditions. Since
the weak form (D.I)) contains no derivatives of the membrane potential of higher order
than one, it is sufficient to use linear Lagrange finite elements, cf. Zienkiewicz et al. [286].

For the time-discrete representation, the implicit (backward) Euler method is employed.
To this end, the membrane potential on the right-hand side of (D.I)) is chosen to be at
the new time level, i.e., V;, = VF*+1

D.2 Weak Form of the Extracellular Bidomain
Equation

Following the procedure described in Section 3.1} the weak form of the extracellular bido-
main equation is obtained in the form

—/ (o; + o) grad ¢, - grad do dv + / g 00 da =
QM QM (D2)

/ o;gradV,, - graddpdv — / qv opda.
QM HOM

Therein, J¢ denotes the test function, and ¢, = (o;+0.) grad ¢.-n and ¢y = o; grad V,,-n
are the Neumann boundary conditions for the extracellular potential and the membrane
potential, respectively. Linear Lagrange finite elements are used for the spatial discreti-
sation of the weak form of the monodomain equation.
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Further, the generalised Laplace equation (5.11)) in the electrically inactive fat and skin
tissue reads in its weak form

—/ o, grad ¢, - grad ¢ dv —|—/ G opda = 0, (D.3)
QB P

QB

where ¢, = o,grad ¢, - n denotes the Neumann boundary condition for the potential in
the subcutaneous tissue.

Since time derivatives do not occur in the extracellular bidomain equation (5.9) or the
generalised Laplace equation (5I1I), no temporal discretisation is required. The extra-
cellular bidomain equation is solved for the extracellular potential for each membrane
potential distribution that results from the solution of the time-discrete monodomain
equation.

D.3 Weak Form of the Continuum-Mechanical Model

For the sake of convenience, this section reviews the governing equations of the continuum-
mechanical model. Assuming quasi-static conditions and negligible body forces, the bal-
ance of momentum reduces to

divT = 0. (D.4)

Therein, T = J ' FSFT, and the 2" Piola-Kirchhoff stress tensor is given by S =
—pJC™' + 8Sg, see Section for details. The hydrostatic pressure, p, has been intro-
duced into the system as an undetermined Lagrange multiplier to incorporate the incom-
pressibility constraint, cf. Section To compute the value of this additional unknown,
a further equation is required, since the vector-valued balance of momentum is needed to
determine the three components of the current position vector (or, in a displacement for-
mulation, the displacement vector). The additional equation is derived from the balance
of mass for incompressible materials in the reference configuration and is given by

J—1=0. (D.5)

Introducing the vector-valued and scalar-valued test functions du and dp, respectively,
the weak forms of the balance of momentum and the incompressibility condition are
obtained as

—/T-gradéudv—i—/ t-dudae = 0,
Q o9

(D.6)
/(J—l)épdv =0,
Q

with the Neumann boundary conditions ¢ = Tn, and Q = QM U QP. The system of
equations resulting from the finite element discretisation of the linearised version of (D.6))

reads
K; KOH} m - m (D.7)

Therein, x and p are the nodal values of the position vector in the actual configuration
and the nodal values of the hydrostatic pressure, and f contains the discrete Neumann
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boundary conditions. The system of equations (D.7) is solved monolithically.

To avoid instabilities resulting from the fact that the hydrostatic pressure does not
explicitly appear in the incompressibility constraint, finite element formulations have to
be used that satisfy the LBB condition (Ladyzhenskaya-Babugka-Breezi or inf-sup con-
dition), cf. e.g. Fortin & Brezzi [75]. In this work, so-called Taylor-Hood elements are
employed that use quadratic Lagrange shape functions for the position unknowns and
linear Lagrange shape functions for the pressure unknowns, cf. Figure [D.1]

nodal degrees of freedom
® position and pressure

e position

Figure D.1: 10-noded tetrahedral and 27-noded hexahedral Taylor-Hood elements.
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