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Deutshsprahige Zusammenfassung

Motivation

Das neuromuskuläre System wird im Allgemeinen de�niert als �die Muskeln des Körpers

zusammen mit den Nerven, die diese innervieren� [146℄. Die Aufgabe des neuromuskulären

Systems ist die Bewegung des Körpers, die nur durh das Zusammenspiel von speziellen

Nervenzellen (Motoneuronen) und den Muskeln des Körpers (Skelettmuskeln) ermögliht

wird. Funktionsstörungen des neuromuskulären Systems beeinträhtigen folglih die Moto-

neurone, die peripheren Nerven, die Muskelfasern und die neuromuskulären Endplatten

(die Stelle, an der die Nerven und Muskelfasern aufeinander tre�en). Zu den häu�geren

Funktionsstörungen des neuromuskulären Systems zählen periphere Neuropathien, ver-

shiedene Muskeldystrophien, entzündlihe und andere Myopathien sowie Störungen der

neuromuskulären Signalübertragung [44, 62, 63℄. Viele dieser Funktionsstörungen sind

shwerwiegend oder sogar tödlih. Bei der spinalen Muskelatrophie vom Typ I zum

Beispiel tritt der Tod bereits im Kindesalter ein, aber auh andere Funktionsstörungen des

neuromuskulären Systems verlaufen tödlih [62℄. Erkrankungen des neuromuskulären Sys-

tems sind oft erblih bedingt, sie können aber auh durh eine abnormale Immunreaktion

oder eine genetishe Mutation hervorgerufen werden.

Emery folgerte aus seiner umfassenden Literaturübersiht [62℄, dass mindestens ein-

er von 3500 der Weltbevölkerung von einer beeinträhtigenden, vererblihen Erkrankung

des neuromuskulären Systems betro�en ist. Laut MaIntosh et al. [161℄ ist allein et-

wa jeder dreitausendste Mann von der Muskeldystrophie des Typs Duhenne, einer X-

hromosomal-rezessiv vererblihen Funktionsstörung, betro�en. Diese Muskeldystrophie

wird durh einen Mangel an dem Membranprotein Dystrophin hervorgerufen und resul-

tiert in einer fortshreitenden Muskelshwähung, die zum Tod führt. Andere, weniger

häu�ge Formen von Muskeldystrophien werden durh andere Proteindefekte verursaht

(eine Übersiht �ndet sih in Emery [63℄). Um eine Dystrophie zu diagnostizieren und

neurogene Ursahen einer Muskelshwähe auszushlieÿen, stellt die Elektromyographie

eine wihtige Methode dar [63℄.

Bis heute können Dystrophien niht geheilt werden, und auh für andere neuro-

muskuläre Funktionsstörungen gibt es oft kein wirksames Heilmittel. Da Erkrankungen

des neuromuskulären Systems häu�g genetish bedingt sind, könnten in Zukunft gen-

tehnishe Veränderungen und eine Stammzellentherapie zu einer e�ektiven Behand-

lung führen, aber auh ein wirksames Medikament könnte entdekt werden [63℄. Bisher

jedoh können nur Symptome behandelt werden, um die Lebensqualität der Betro�e-

nen zu verbessern. Zur e�ektiven Behandlung von Symptomen und für die Entwiklung

eines wirksamen Medikaments ist ein umfassendes Verständnis der Physiologie des neuro-

muskulären Systems Voraussetzung. Um dies zu Erlangen, ist es zwekmäÿig zunähst

das gesunde System zu studieren, bevor pathologishe Bedingungen, wie sie bei neuro-

muskulären Funktionsstörungen auftreten, untersuht werden.

ix
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Da biophysikalishe Gröÿen experimentell oft nur shwer oder überhaupt niht be-

stimmt werden können (vor allem in Menshen und in vivo), können mathematishe

Modelle verwendet werden, um fehlende Daten zu generieren. Der Vorteil der mathe-

matishen Modellierung liegt vor allem auh darin, dass Daten in einer kontrollierten

Umgebung bestimmt werden können, was in Experimenten häu�g unmöglih ist. Ex-

istierende Modelle des neuromuskulären Systems haben zu einem verbesserten Verständ-

nis der Physiologie beigetragen [76, 104℄. Diese Modelle basieren jedoh zumindest zum

Teil auf einer phänomenologishen Beshreibung, die den biophysikalishen Prozessen des

betrahteten Systems niht nahempfunden ist. Da die phänomenologishe Beshreibung

die Anwendung und die Vorhersagefähigkeit dieser Modelle maÿgeblih einshränkt, wer-

den detaillierte, biophysikalishe Modelle von Skelettmuskeln und der zugehörigen Mo-

toneurone benötigt, um das neuromuskuläre System besser zu verstehen. Die vorliegende

Arbeit befasst sih folglih mit der Entwiklung von Methoden und Modellen für die bio-

physikalishe Simulation des hemoelektromehanishen Verhaltens des neuromuskulären

Systems.

Stand der Forshung, Zielsetzung und Vorgehensweise

Bei der Modellierung biologisher Systeme kann ganz allgemein zwishen phänomenologis-

hen und biophysikalishen Modellen untershieden werden. Phänomenologishe Modelle

basieren auf experimentell ermittelten Eingangs-/Ausgangsbeziehungen und sind oft ein-

faher, weniger rehenaufwändig und auf weniger Parameter angewiesen als entsprehende

biophysikalishe Modelle. Beshränkt auf den Bereih, in dem die Modellparameter an ex-

perimentelle Daten angepasst wurden, können phänomenologishe Modelle das Verhalten

des Systems akkurat wiedergeben. Ein vollständiges Verständnis der zugrundeliegenden

Physiologie kann mit phänomenologishen Modellen jedoh niht erreiht werden. Im

Gegensatz dazu bauen biophysikalishe Modelle auf den vorhandenen Kenntnissen der

Physiologie des entsprehenden Systems auf und können daher als in-silio Labor verwen-

det werden, um das Verhalten des betrahteten Systems unter normalen und patholog-

ishen Bedingungen zu untersuhen.

Dem Aufbau des neuromuskulären Systems entsprehend konzentrieren sih die ex-

istierenden mathematishen Modelle entweder auf die Krafterzeugung in den Muskelfasern

oder auf die Kontrolle der Muskeln durh das koordinierte Verhalten der Motoneurone

als Ensemble. Betrahtet man zunähst die Motoneurone, lassen sih phänomenologishe

und biophysikalishe Modelle in der Literatur �nden. Zum Beispiel wurden von Fuglevand

et al. [76℄ und Hekman & Binder [104℄, basierend auf der Beziehung zwishen synap-

tisher Erregung eines Motoneurons und der Frequenz mit der das Motoneuron Aktions-

potentiale (kurzzeitige Depolarisierungen des Membranpotentials einer Zelle, die verwen-

det werden, um Informationen zwishen vershiedenen Teilen des Körpers auszutaushen)

abfeuert [29℄, phänomenologishe Modelle entwikelt. Diese werden häu�g zum Testen

von neurophysiologishen Hypothesen oder zur Interpretation von experimentellen Daten

verwendet, siehe z. B. [10, 142, 143, 180℄. Eine wihtige Einshränkung von phänomenol-

ogishen Motoneuronenmodellen ist jedoh, dass sie es niht erlauben synaptishe und

gemeinsame Eingangssignale an die Motoneurone zu berüksihtigen. Biophysikalishe

Motoneuronenmodelle sind von dieser Einshränkung niht betro�en, da sie Eingangs-

signale auf der Ebene der Zellmembran einbinden. In �integrate-and-�re�-Modellen [1, 73℄
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zum Beispiel bindet ein Motoneuron synaptishe Ströme von vershiedenen Quellen ein,

was zu einem Anstieg seines Membranpotentials führt. Wenn das Membranpotential einen

bestimmten Shwellenwert erreiht, wird angenommen, dass das Motoneuron ein Ak-

tionspotential abfeuert, und sein Membranpotential wird zurük auf den Ruhewert gesetzt.

Die komplexen, biophysikalishen Prozesse, die zum Ö�nen und Shlieÿen von ver-

shiedenen spannungsgesteuerten Ionenkanälen während eines Aktionspotentials führen,

wurden zuerst von Alan L. Hodgkin und Andrew F. Huxley [120℄ beshrieben. Basierend

auf dieser Darstellung wurden zunehmend komplexere, biophysikalishe Modelle der Moto-

neurone entwikelt (siehe z. B. Cisi & Kohn [39℄, Cushing et al. [41℄, Powers et al. [208℄),

die zusätzlihe Ionenströme und/oder eine höhere Anzahl an Kompartimenten berük-

sihtigen.

Um Motoneurone zu simulieren, übernimmt die vorliegende Arbeit das Zwei-

kompartimentemodell von Negro & Farina [186℄, das auf der Beshreibung von Cisi &

Kohn [39℄ basiert. Interessanterweise berüksihtigt dieses biophysikalishe Motoneuro-

nenmodell bereits von sih aus das Hennemanshe Gröÿenprinzip der sequentiellen Rekru-

tierung [112, 113℄ (kleine Motoneurone mit niedrigem Erregungsshwellenwert werden vor

gröÿeren Motoneuronen mit höherem Erregungsshwellenwert rekrutiert) und die �onion-

skin�-Eigenshaft [46, 47℄ (für ein bestimmtes Level an synaptisher Erregung feuern Mo-

toneurone mit niedrigerem Erregungsshwellenwert mit einer höheren Frequenz als Mo-

toneurone mit hohem Erregungsshwellenwert).

Die von den Motoneuronen abgefeuerten Aktionspotentiale lösen in den Muskelfasern

die Krafterzeugung aus. Zur Simulation der Krafterzeugung wurden vershiedene Ansätze

verfolgt. Hekman & Binder [104℄ zum Beispiel shlugen, basierend auf dem Eingangs-/

Ausgangsverhalten von Muskelfasern (der Kraft-Frequenz-Beziehung), ein phänomenol-

ogishes Modell vor. Besonders populär ist die analytishe Formulierung von Fuglevand

et al. [76℄, die die Impulsantwort eines kritish gedämpften Systems zweiter Ordnung ver-

wendet, um die Muskelzukung zu beshreiben. Dieses vereinfahte Kraftmodell wurde

von mehreren Wissenshaftlern übernommen und erweitert, siehe z. B. Cisi & Kohn

[39℄, Dideriksen et al. [50, 51, 52℄.

Während diese Modelle auf einer stationären Eingangs-/Ausgangsbeziehung basieren

und auf isometrishe Bedingungen beshränkt sind, sind die sogenannten Hill-Modelle

niht von diesen Einshränkungen betro�en. Hill-Modelle basieren auf der Beshreibung

von Arhibald V. Hill von 1938 [117℄ und sind wahrsheinlih die häu�gste Darstellung des

mehanishen und kinematishen Muskelverhaltens, siehe z. B. Günther et al. [92�94℄, van

Ingen Shenau et al. [133℄, Pandy [198℄, Siebert et al. [242, 243℄, Till et al. [261℄, Zaja [282℄.

Hillshe Muskelmodelle sind phänomenologishe Formulierungen der makroskopishen

Muskelphysiologie, bei der eine längenabhängige, passive Kraft (Spannungs-Dehnungs-

Beziehung in Abwesenheit von neuronaler Stimulation) mit einer Kraft superponiert wird,

die von der neuronalen Aktivierung des Muskels herrührt und von der Muskellänge und

Kontraktionsgeshwindigkeit abhängt. Aufgrund ihrer Einfahheit, dem relativ geringen

Rehenaufwand und der geringen Anzahl an Parametern, werden Hill-Modelle häu�g

zur Interpretation von experimentellen Daten oder zur Beshreibung von Bewegungen

und Kräften im Rahmen von Mehrkörpersimulationen verwendet, siehe z. B. Rupp et al.

[227℄, Siebert et al. [241℄.

Sowohl die Hillshen als auh die analytishen Muskelmodelle, die die Impulsantwort

verwenden, um die Muskelzukung darzustellen, weisen signi�kante Nahteile auf, da



xii Deutshsprahige Zusammenfassung

sie alle strukturellen und funktionellen Eigenshaften eines Muskels auf nur wenige Pa-

rameter reduzieren. Zum Beispiel beshreiben die Hillshen Modelle das Muskelverhal-

ten an einem einzigen Punkt durh Feder- und Dämpfungskonstanten und ein einzelnes

Aktivierungsniveau. Die berehnete Muskelkraft wird dann entlang einer vorgegebenen

Wirkungslinie aufgebraht. Darüber hinaus vernahlässigen diese vereinfahten, auf rein

phänomenologishen Ansätzen basierenden Modelle Nihtlinearitäten in der Kraftantwort,

die aus der zurükliegenden Aktivierung resultieren, vgl. z. B. [76, 204, 230℄.

Die Erkenntnis, dass Hill-Modelle für Muskeln mit komplexer Geometrie nur un-

genaue Ergebnisse liefern (vgl. z. B. Röhrle & Pullan [222℄), führte zur Entwiklung

von kontinuumsmehanishen Modellen, die auf der Theorie der �niten Deformationen

beruhen, siehe z. B. [16, 167, 222, 229, 288℄. Um das kontraktile Verhalten von Herz-

und Skelettmuskeln in einem kontinuumsmehanishen Modell zu beshreiben, wurden

häu�g Hill-Modelle verwendet, siehe z. B. Göktepe et al. [88℄, Johansson et al. [135℄, Ko-

ji et al. [147℄, Pelteret & Reddy [203℄. Während kontinuumsmehanishe Modelle kom-

plexe Muskelfaserverteilungen [15℄, eine lokal variierende Aktivierung und eine dynamish

bestimmte Wirkungslinie [222℄ berüksihtigen können, sind die gewonnenen Erkennt-

nisse doh beshränkt auf rein mehanishe, makroskopishe Aspekte der Krafterzeugung.

Eine detailliertere Beshreibung des kontraktilen Verhaltens in einem volumetrishen

Muskelmodell kann durh den Einsatz von Mehrskalenmodellen erreiht werden, die die

Kontinuumsmehanik mit kinetishen Zellmodellen koppelt.

Das erste biophysikalishe, kinetishe Zellmodell wurde von Andrew F. Huxley [128, 129℄

entwikelt. Dieses Modell basiert auf der Filamentgleittheorie, die 1953/1954 gleihzeitig,

jedoh unabhängig voneinander, von Andrew F. Huxley und Ralph Niedergerke [130℄ sowie

Hugh E. Huxley und Jean Hanson [99, 132℄ vorgeshlagen wurde. Das kinetishe Modell

von Huxley [128℄ untersheidet zwishen Querbrüken im gebundenen und gelösten Zus-

tand und wurde später auf Verteilungsfunktionen generalisiert, die Populationen von ver-

shiedenen biohemishen Zuständen als Funktion von Bindungslänge und Zeit darstellen,

siehe z. B. [280, 281℄. Der Vorteil dieser biophysikalishen Modelle liegt darin, dass sie di-

rekt auf der mikroskopishen Struktur und den molekularen Mehanismen der Kontraktion

basieren. Ihre mathematishe Beshreibung führt jedoh zu einem Satz von gekoppelten

partiellen Di�erentialgleihungen. Um die komplizierte Lösung von partiellen Di�eren-

tialgleihungen zu vermeiden, wurden Approximationen entwikelt, die als gewöhnlihe

Di�erentialgleihungen in der Zeit formuliert werden können, siehe z. B. der Ansatz von

Zahalak [280℄. Dieser Ansatz wurde von Gielen et al. [83℄ verwendet, um das kontraktile

Verhalten in einem kontinuumsmehanishen Mehrskalenmodell zu beshreiben.

Ferner wurde im Kontext von kinetishen Zellmodellen von Razumova, Campell und

Kollegen ein Modell der Querbrükendynamik entwikelt, das drei vershiedene Zustände

der Querbrüken (ein gelöster und zwei gebundene Zustände) berüksihtigt, und an-

nimmt, dass die Kraft in einem Sarkomer proportional zum Produkt aus der Anzahl der

Querbrüken im jeweiligen gebundenen Zustand und ihrer durhshnittlihen Verzerrung

ist [36, 37, 214, 215℄. Obwohl dieses Modell durh relativ simple gewöhnlihe Di�erential-

gleihungen beshrieben werden kann, reiht es aus, um die wesentlihen Charakteristiken

von Muskelkontraktionen zu beshreiben [214℄.

Neben den biophysikalishen Beshreibungen der Querbrükendynamik wurden auh

biophysikalishe Modelle von anderen Teilen des komplexen Signalwegs von der elek-

trishen Stimulation zur Krafterzeugung in Muskelfasern entwikelt. Zum Beispiel shlu-
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gen Adrian & Peahey [2℄, basierend auf dem Hodgkin-Huxley-Formalismus [120℄, ein

elektrophysiologishes Modell der Muskelfasermembran vor. Dieses Modell wurde später

von Wallinga et al. [272℄ auf ein Multikompartimentemodell erweitert, das Ionenströme

über das Sarkolemm und die T-Tubulemembran einer Muskelfaser berüksihtigt. Um den

gesamten Signalweg von der Erregung zur Kontraktion einer Muskelfaser zu beshreiben,

koppelte Shorten et al. [240℄ eine vereinfahte Version des elektrophysiologishen Mem-

branmodells von Wallinga [272℄ an ein Modell des Kalziumausstoÿes aus dem sarkoplas-

matishen Retikulum [217℄, ein Modell der intrazellulären Kalziumdynamik [12℄ und eine

Erweiterung des Modells der Querbrükendynamik von Razumova et al. [214℄. Darüber

hinaus beinhaltet das Modell von Shorten et al. [240℄ eine Beshreibung der metabolishen

Ermüdung.

Ein groÿer Vorteil des Modells von Shorten et al. [240℄ ist, dass es die zugrunde liegende

Physiologie sehr gut abbildet. Im Gegensatz zu phänomenologishen Modellen berük-

sihtigt diese biophysikalishe Beshreibung nihtlineare E�ekte in der Kraftentwiklung,

die zum Beispiel aus der zurükliegenden Aktivierung resultieren, und erlaubt darüber

hinaus eine detaillierte Analyse von pathologishen Bedingungen. Obwohl das Modell von

Shorten et al. [240℄ viele Details des Signalwegs von der Erregung zu Kontraktion bein-

haltet, unterliegt es mehreren Limitationen. Zum Beispiel betrahten Shorten et al. [240℄

nur idealisierte Stimulationen des gesamten Muskels bei konstanter Frequenz. Auÿerdem

kann das Modell nur isometrishe Kontraktionen beshreiben.

Aus diesem Grund erweitert die vorliegende Arbeit das Modell von Shorten et al. [240℄

auf nihtisometrishe Kontraktionen. Auÿerdem wird das Modell von Shorten et al. [240℄

auf eine Beshreibung der Muskelfasern der vershiedenen motorishen Einheiten eines

Muskels erweitert. Eine motorishe Einheit bezeihnet hierbei ein Motoneuron zusammen

mit allen Muskelfasern, die von diesem Motoneuron innerviert werden. Um willkürlihe

Kontraktionen zu simulieren, wird das resultierende Muskelmodell mit dem Motoneuro-

nenmodell von Negro & Farina [186℄ gekoppelt. Dies führt zu einem neuen, integrierten

Modell des neuromuskulären Systems, das in all seinen Hauptteilen biophysikalish ist.

Röhrle und Kollegen koppelten das Modell des Signalwegs von der Erregung zur Kon-

traktion von Shorten et al. [240℄ mit bioelektrishen Feldgleihungen und einem kon-

tinuumsmehanishen Konstitutivgesetz, um die Ausbreitung von Aktionspotentialen

entlang von Muskelfasern bzw. die Krafterzeugung und Deformation des Muskels zu

simulieren [219�221, 223℄. Um willkürlihe Muskelkontraktionen zu simulieren, verwen-

deten Röhrle et al. [221℄ das phänomenologishe Motoneuronenmodell von Fuglevand

et al. [76℄, um ihr mehrskaliges, hemoelektromehanishes Muskelmodell anzuregen. Das

Modell von Röhrle und Kollegen berüksihtigt die Rekrutierung und Frequenzmodula-

tion von motorishen Einheiten, die biophysikalishen Prozesse, die von der elektrishen

Stimulation zur Kontraktion führen, sowie die Ausbreitung von Aktionspotentialen im

Muskelgewebe und überwindet somit viele der Einshränkungen von anderen kontinu-

umsmehanishen Modellen. Zum Beispiel beinhaltet das Modell von Hernández-Gasón

et al. [114℄ nur eine phänomenologishe Beshreibung der zellulären Prozesse und ignoriert

biophysikalishe Prinzipien der Ausbreitung des Aktionspotentials und der Querbrüken-

dynamik. Ferner verwenden Fernandez et al. [74℄ ein Motoneuronenmodell um ein Ak-

tionspotential gleihzeitig in allen Muskelfasern zu erzeugen, wobei die Tatsahe, dass

motorishe Einheiten in Skelettmuskeln unabhängig voneinander aktiviert werden, ver-

nahlässigt wird. Sowohl in Fernandez et al. [74℄ als auh in Böl et al. [22℄ breitet sih



xiv Deutshsprahige Zusammenfassung

das Aktionspotential im dreidimensionalen Muskelgewebe aus, anstatt entlang einzelner

Muskelfasern, wie in Skelettmuskeln. Ferner verwenden beide Modelle eine rein phänome-

nologishe Beshreibung des Zusammenhangs zwishen dem Aktionspotential und der

Krafterzeugung.

Obwohl das hemoelektromehanishe Modell von Röhrle und Kollegen viele physiol-

ogishe Eigenshaften des neuromuskulären Systems berüksihtigt, unterliegt es struk-

turbedingten Einshränkungen, die die Erweiterung zu einem voll gekoppelten Modell, das

neuronale Aktivierung, Krafterzeugung und Rükkopplungsmehanismen beinhaltet, niht

erlauben. Der limitierende Faktor ist hierbei, dass die zellulären Gleihungen nur einseitig

an das mehanishe Modell gekoppelt sind. Genauer gesagt wird das elektrohemishe Ver-

halten einzelner Muskelfasern vorberehnet und in einer Nahshlagetabelle gespeihert.

Im mehanishen Modell werden die zellulären Variablen, die mit der Krafterzeugung

zusammenhängen, in ein detailliertes dreidimensionales Modell kopiert und homogenisiert,

um den Spannungstensor zu berehnen. Das Vorberehnen des zellulären Verhaltens war

notwendig, um den Rehenaufwand zu reduzieren, da das ursprünglihe Simulationspro-

gramm (CMISS) auf einer veralteten seriellen Implementierung basiert, die Datenstruk-

turen verwendet, die niht unbedingt für eine Parallelisierung geeignet sind. Diese For-

mulierung erlaubt es niht Änderungen in der Muskelfasergeometrie, wie z. B. eine Län-

genänderung, zu berüksihtigen, die aus der Kontraktion resultiert. Ferner betrahteten

Röhrle und Kollegen nur isometrishe Kontraktionen, was das Vernahlässigen der Kraft-

Geshwindigkeits-Beziehung rehtfertigte.

Die vorliegende Arbeit präsentiert ein voll gekoppeltes, mehrskaliges, hemoelektro-

mehanishes Modell für die Simulation von Muskelkontraktionen unter isometrishen und

nihtisometrishen Bedingungen. Dieses Modell basiert auf der Open-Soure-Software-

Bibliothek OpenCMISS [26℄, die konzipiert wurde, um maximale Flexibilität und Ef-

�zienz zu erreihen. Ermögliht wird dies durh den Einsatz neuartiger Datenstruk-

turen wie FieldML [38℄, den Zugang zu Modellbibliotheken durh die Verwendung von

CellML [82, 107, 158, 188℄ und einer Distributed-Memory-Implementierung, die Rehen-

e�zienz gewährleistet und es somit ermögliht groÿe Rehenbeispiele auszuführen. Die

neuen Bibliotheken und Datenstrukturen bilden die Basis, um Finite Elemente Netze

mit vershiedener Dimension innerhalb eines Modells zu kombinieren. Dies erlaubt es

zum Beispiel innerhalb eines Modells nulldimensionale Ansätze für das zelluläre Verhal-

ten, eindimensionale Ansätze für die Ausbreitung des Aktionspotentials und dreidimen-

sionale Ansätze für strukturmehanishe Untersuhungen miteinander zu koppeln. Die

präsentierte Implementierung ermögliht eine starke und wehselseitige Kopplung zwis-

hen dem elektrohemishen und dem mehanishen Verhalten (elektromehanishe und

mehanoelektrishe Rükkopplung, siehe Nash & Pan�lov [185℄). Zusätzlih ermögliht

es eine spätere Erweiterung des Modells um Propriozeptoren, die den mehanishen Zus-

tand des Muskels in neuronale Signale übersetzen, um die Frequenzmodulation der Mo-

toneurone an die vorliegenden Bedürfnisse anzupassen (sensorishe Rükkopplung), siehe

Heidlauf et al. [108℄.

Wenn in existierenden kontinuumsmehanishen Muskelmodellen die neuronale Kon-

trolle berüksihtigt wurde, wurden dafür phänomenologishe Modelle eingesetzt, siehe

z. B. Röhrle et al. [221℄. Im Gegensatz dazu koppelt die vorliegende Arbeit das präsen-

tierte Mehrskalenmodell mit dem biophysikalishen Motoneuronenmodell von Negro &

Farina [186℄, um willkürlihe Muskelkontraktionen zu simulieren. Dies führt zu einem in-
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tegrierten, mehrskaligen und multiphysikalishen Modell des neuromuskulären Systems.

Andere Erweiterungen oder der Austaush von Modellkomponenten, wie z. B. das zel-

luläre Modell, sind aufgrund der modularen Organisation des Programms relativ einfah

durhführbar.

Da das entwikelte mehrskalige Muskelmodell die elektrophysiologishen Vorgänge in

der Zellmembran und die Ausbreitung des Aktionspotentials entlang der Muskelfasern

beshreibt [240, 272℄, kann es zur Simulation von elektromyographishen (EMG) Sig-

nalen verwendet werden. EMG Signale spiegeln die elektrishe Aktivität eines Muskels

wider. Ihre hohe klinishe Relevanz kann darauf zurükgeführt werden, dass EMG Sig-

nale relativ einfah in vivo gemessen werden können. Ein groÿer Nahteil von EMG

Signalen ist jedoh, dass sie shwer zu interpretieren und analysieren sind [70℄. Math-

ematishe Modelle haben daher groÿes Potential die Signalinterpretation zu verbessern.

Im Gegensatz zu vorherigen EMG Modellen, die die Form des Aktionspotentials und

seine Ausbreitungsgeshwindigkeit vorgeben (siehe z. B. Farina & Merletti [71℄, Farina

et al. [72℄, Lowery et al. [160℄, Merletti & Parker [168℄, Mesin [169℄), berüksihtigt der

vorgestellte, auf dem Hodgkin-Huxley-Formalismus basierende Ansatz Änderungen in der

Form und Ausbreitungsgeshwindigkeit des Aktionspotentials, die zum Beispiel durh

Membranermüdung hervorgerufen werden. Darüber hinaus berüksihtigt keins der ein-

skaligen EMG Modelle die Deformation des Gewebes, was bedeutet, dass diese Modelle

auf isometrishe Bedingungen beshränkt sind, vgl. Mesin et al. [171℄. Das präsentierte

mehrskalige und multiphysikalishe Modell ist von diesen Einshränkungen niht betrof-

fen und kann Muskelkontraktionen und EMG Signale unter isometrishen und nihti-

sometrishen Bedingungen simulieren. Darüber hinaus erlaubt es der vorgestellte Ansatz

beliebige Muskelgeometrien, komplexe Muskelfaserarhitekturen und beliebige Heterogen-

itäten zu berüksihtigen.

Die mathematishe Formulierung des mehrskaligen Muskelmodells führt zu partiellen

Di�erentialgleihungen, die mit der Finiten Elemente Methode approximiert werden

[123, 286℄. Da der integrierte Ansatz o�ensihtlih zu rehenintensiven Modellen führt,

müssen Optimierungsstrategien betrahtet werden. Zum Beispiel werden vershiedene Fi-

nite Elemente Netze für das bioelektrishe und das kontinuumsmehanishe Modell ver-

wendet, aber auh �Operator-Splitting�-Tehniken und gesta�elte Lösungsansätze werden

vorgestellt, die es erlauben vershiedene Zeitshritte für die Lösung der vershiedenen Teil-

systeme zu verwenden.

Im Rahmen der kontinuumsmehanishen Muskelmodellierung wurde unlängst von

mehreren Forshern eine multiplikative Zerlegung des Deformationsgradiententensors

vorgeshlagen, um das passive und aktiv kontraktile Verhalten von Muskeln zu

beshreiben, siehe z. B. Murtada et al. [182℄, Rossi et al. [224, 225℄, Shari�majd & Stålhand

[239℄, Stålhand et al. [246, 247℄. (Ursprünglih wurde diese Zerlegung für die Beshrei-

bung von elastoplastishem Materialverhalten entwikelt [154℄.) Während dieser Ansatz

zunähst in Bezug auf eine thermodynamish konsistente Formulierung vorteilhaft er-

shien, haben Rossi et al. [224℄ gezeigt, dass thermodynamishe Konsistenz auh möglih

ist, wenn der klassishe Ansatz verwendet wird, bei dem konstitutiv eine Superposition des

passiven und aktiven Spannungstensors (oder der Verzerrungsenergie) angenommen wird,

siehe auh Gizzi et al. [86℄. Die kontinuumsmehanishe Formulierung in der vorliegenden

Arbeit folgt deshalb dem klassishen Ansatz.

Die vorliegende Arbeit widmet sih der mathematishen Beshreibung und Simu-
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lation von Prozessen des neuromuskulären Systems, die zur Muskelkontraktion und

Krafterzeugung führen. Während diese Prozesse detailliert behandelt werden, ist die

Beshreibung des passiven Muskelgewebes relativ einfah gehalten und basiert auf

einer makroskopishen, kontinuumsmehanishen Formulierung. Genauer gesagt wird

angenommen, dass das passive Muskelgewebe sih transversal isotrop, hyperelastish

und inkompressibel verhält. Ansätze, die in der Beshreibung des passiven Materialver-

haltens zwishen Muskelfasern und extrazellulärem Bindegewebe untersheiden, sind

eingeshränkt durh Unsiherheiten in den Materialparametern und einem zusätzlihen

Rehenaufwand [237, 238, 271℄. Darüber hinaus vernahlässigt die vorliegende Arbeit

viskoelastishe E�ekte in der Beshreibung des passiven Materialverhaltens [24, 267, 269℄.

Eine teilweise Rehtfertigung für dieses Vorgehen ist gegeben durh die Arbeit von Tian

et al. [260℄, die zeigt, dass die viskosen E�ekte in passivem Muskelgewebe relativ gering

sind.

Gliederung der Arbeit

Zunähst gibt Kapitel 2 einen Überblik über die Anatomie und Physiologie des neuro-

muskulären Systems, d. h. eines Muskels und der zugehörigen Motoneurone. Beleuhtet

wird vor allem die hierarhishe Struktur des Muskels, da die Kraft aus Kontraktion

auf der mikroskopishen Ebene des Halbsarkomers erzeugt wird, aber eine Deformation

des gesamten Muskels bedingt. Da sih die vorliegende Arbeit mit der biophysikalishen

Modellierung des neuromuskulären Systems befasst, erfolgt auÿerdem eine detaillierte

Beshreibung der Physiologie. Während klassisherweise zuerst die Anatomie gefolgt von

der Physiologie eingeführt wird, übernimmt die vorliegende Arbeit ein modernes Mantra

der Biologie, das besagt, dass die Struktur die Funktion bedingt, und behandelt beide

Themen gleihzeitig.

Das Ziel von Kapitel 3 ist es die mathematishen und kontinuumsmehanishen Grund-

lagen einzuführen, die im Verlauf der weiteren Arbeit benötigt werden. Das Kapitel präsen-

tiert zunähst eine Einführung in die numerishe Lösung von Di�erentialgleihungen.

Darüber hinaus gibt das Kapitel eine allgemeine Einführung in die Kontinuumsmehanik,

welhe in Kapitel 6 auf den speziellen Fall der Muskelmodellierung angepasst wird.

Kapitel 4 präsentiert biophysikalishe Zellmodelle von Motoneuronen und Muskelfasern.

Zunähst werden das klassishe Hodgkin-Huxley-Modell und das Modell von Negro & Fa-

rina [186℄ vorgestellt. Letzteres wird in der vorliegenden Arbeit zur Beshreibung des Ver-

haltens der Motoneurone verwendet. Im Anshluss daran wird das biophysikalishe Modell

des Signalwegs von der Erregung zur Kontraktion in den Muskelfasern von Shorten et al.

[240℄ präsentiert. Dieses Modell wird erweitert, um nihtisometrishe Kontraktionen zu

simulieren und um das Verhalten der vershiedenen motorishen Einheiten eines Muskels

zu beshreiben. Ein Modell des neuromuskulären Systems, das in allen wesentlihen Teilen

biophysikalish ist, entsteht durh die Kopplung des Muskelmodells mit dem Motoneu-

ronenmodell von Negro & Farina [186℄. Um das Potential des kombinierten Ansatzes

zu demonstrieren, wird exemplarish der erste dorsale Interosseusmuskel des Menshen

simuliert.

Eine Erweiterung der Formulierung von Kapitel 4 um räumlihe Dimensionen erlaubt

es in Kapitel 5 die Ausbreitung von Aktionspotentialen durh das Muskelgewebe zu

beshreiben. Die Ausbreitung von Aktionspotentialen entlang von Muskelfasern wird hier-
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bei mit Hilfe des Monodomain-Modells dargestellt. Das Monodomain-Modell wird vom

allgemeineren, jedoh komplexen Bidomain-Modell abgeleitet, welhes ein Kontinuums-

ansatz für die Beshreibung von elektrish erregbaren Geweben darstellt. Numerishe

Experimente belegen, dass die Monodomain-Vereinfahung für die präsentierten Anwen-

dungen gültig ist. Darüber hinaus wird die Formulierung der Ausbreitung von Aktionspo-

tentialen auf eine biophysikalishe Beshreibung des EMG Signals erweitert. Mehrere nu-

merishe Beispiele demonstrieren die Vorteile dieses Modells gegenüber anderen EMG

Modellen. Einige dieser Bespiele wurden bereits in Mordhorst et al. [178℄ gezeigt.

Kapitel 6 führt ein mehrskaliges, hemoelektromehanishes Muskelmodell ein, das

auf der Theorie der �niten Deformationen der Kontinuumsmehanik basiert. Unter Ver-

wendung geeigneter Konstitutivannahmen wird ein kontinuumsmehanisher Spannungs-

tensor hergeleitet, der geeignet ist das passive und aktive Verhalten von Muskeln zu

repräsentieren. Die Beshreibung des passiven Verhaltens des Muskelgewebes erfolgt hi-

erbei makroskopish als transversal isotropes, hyperelastishes und inkompressibles Ma-

terial. Die Formulierung des aktiv kontraktilen Teils basiert auf der biophysikalishen,

zellulären Beshreibung des Signalwegs von der Erregung zur Kontraktion (eingeführt in

Kapitel 4), welhes, wie in Kapitel 5 beshrieben, wiederum an das Monodomain-Modell

gekoppelt ist.

Die numerishe Behandlung des hemoelektromehanishen Muskelmodells führt zu

einem mehrskaligen Berehnungsmodell, dessen numerishe Lösung rehentehnish

anspruhsvoll ist. Deshalb präsentiert Kapitel 6 neben dem mehrskaligen Bereh-

nungsmodell auh geeignete Optimierungsstrategien, die zuvor bereits in Bradley

et al. [26℄ und Heidlauf & Röhrle [109℄ dargestellt wurden. Darüber hinaus wird

das mehrskalige Berehnungsmodell verwendet, um Untershiede in der Muskelkontrak-

tion und Krafterzeugung aufzuzeigen, die aus einer untershiedlihen Anordnung der

Muskelfasern resultiert. Hierfür werden Muskelmodelle mit parallel zueinander angeord-

neten Muskelfasern miteinander verglihen, wobei sih die Muskelfasern entweder über die

gesamte Länge des Muskels erstreken oder intrafaszikulär enden. Die Ergebnisse dieser

Studie wurden bereits in Heidlauf & Röhrle [111℄ verö�entliht.

Um das Verhalten des gesamten neuromuskulären Systems zu simulieren, wird das

mehrskalige Muskelmodell in Kapitel 7 mit dem Motoneuronenmodell von Negro & Farina

[186℄ gekoppelt. Basierend auf dem resultierenden Modell und dem Ansatz zur Simulation

von EMG Signalen (Kapitel 5) werden Simulationen durhgeführt, die gleihzeitig die

Muskelkrafterzeugung, die Deformation des Muskelgewebes und das EMG Signal während

isometrishen und nihtisometrishen Kontraktionen vorhersagen.

Shlieÿlih liefert Kapitel 8 eine abshlieÿende Diskussion und Vorshläge für poten-

tielle Anwendungen der vorgestellten Methoden sowie Weiterentwiklungen des präsen-

tierten Modells. Zusätzlihe mathematishe und mehanishe Details werden im Appendix

dargestellt.





Abbreviations

Symbol Desription

0D zero-dimensional (ODE model, no spatial dependeny)

1D/2D/3D one-/two-/three-dimensional

Ca2+ alium ation

Cl− hloride anion

K+
potassium ation

Mg2+ magnesium ation

Na+ sodium ation

Pi inorgani phosphate

F -ℓ fore-length

F -v fore-veloity

ACh aetylholine

ADP adenosine diphosphate

AHP afterhyperpolarisation potential

AP ation potential

ATP adenosine triphosphate

BDF bakward di�erentiation formula

CoV oe�ient of variation

DHPR dihydropyridine reeptor

EDL extensor digitorum longus

EMG eletromyographi

EPSP exitatory postsynapti potential

FDI �rst dorsal interosseous

FEM �nite element method

IPSP inhibitory postsynapti potential

ISI interspike interval

MN motor neuron

MU motor unit

MUAP motor unit ation potential

NDF numerial di�erentiation formula

ODE ordinary di�erential equation

PDE partial di�erential equation

RyR ryanodine reeptor

sEMG surfae eletromyographi

SR saroplasmi retiulum

TA tibialis anterior

XB ross-bridge

XF ross-�bre
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Conventions

General Conventions

( q ) plaeholder for arbitrary quantities

a, b, . . . or φ, ψ, . . . salars (zero-order tensors)

a, b, . . . or φ, ψ, . . . vetors (�rst-order tensors)

A, B, . . . or Φ, Ψ, . . . seond-order tensors

Operators

grad ( q ) =
∂

∂x
( q ) spatial gradient w. r. t. the atual position vetors

Grad ( q ) =
∂

∂X
( q ) spatial gradient w. r. t. the referential position vetors

div ( q ) =
∂

∂x
· ( q ) divergene operator w. r. t. the atual position vetors

Div ( q ) =
∂

∂X
· ( q ) divergene operator w. r. t. the referential position vetors

rot ( q ) =
3

E[grad ( q )]T rotation operator w. r. t. the atual position vetors

Rot ( q ) =
3

E[Grad ( q )]T rotation operator w. r. t. the referential position vetors

cof ( q ) = det ( q ) ( q )T−1
ofator operator

tr ( q ) = ( q ) · I trae operator

det ( q ) determinant operator

( q )−1
inverse tensor

( q )T transposed tensor

Indies

( q )B body domain

( q )I musle-body interfae

( q )M musle domain

( q )d dendrite ompartment

( q )s soma ompartment, sarolemma

( q )t T-tubule membrane

( q )i intraellular domain

( q )e extraellular domain

xxi
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Symbols

Symbol Unit Desription

dv [m

3
℄ atual volume element

dV [m

3
℄ referential volume element

ℓS [µm℄ saromere length

ℓ0S, ℓ
opt
S [µm℄ resting and optimal saromere lengths

fs [Hz℄ stimulation frequeny

fℓ(ℓS) [ � ℄ normalised isometri ative fore-saromere length relation

f0, f
′

[1/ms℄ XB-attahment rate, XB-detahment rate (from the A1 state)

f̄ [1/ms℄ XB-attahment rate of an isometri ontration

gi, ḡi [mS/m

2
℄ ondutane per unit area to ion speies i, maximum value

g0 [1/ms℄ XB-detahment rate (from the A2 state)

ḡ [1/ms℄ XB-detahment rate if no neighbour is in the A2 state

h0, h
′

[1/ms℄ power stroke forward rate and bakward rate

h [ms℄ time step size

hODE [ms℄ time step size of the ellular model

hDEQ [ms℄ time step size of the di�usion equation

hCMM

[ms℄ time step size of the ontinuum-mehanial model

p [N/m

2
℄ hydrostati pressure

t [ms℄ time

v, v
max

[m/ms℄ veloity and maximum shortening veloity

x0 [µm℄ average distortion indued through the power stroke

x1, x2 [µm℄ average distortions in the pre-/post-power stroke states

A1, A2 [µM℄ XB onentrations in pre-/post-power stroke states

Am [1/m℄ membrane spei� apaitane

B [N℄ half-saromere-based ative fore of Razumova et al. [214℄

B
iso

[N℄ isometri half-saromere-based ative fore of [214℄

Cm [µF/m2
℄ membrane spei� apaitane

CaRF [ � ℄ alium reovery funtion

Ei [mV℄ Nernst or equilibrium potential of ion speies i
F , F

iso

[N℄ (isometri) half-saromere-based ative fore

F
MUi

[N℄ ative fore of motor unit i
Im [µA/m2

℄ total urrent �ow aross the ell membrane

I
ion

[µA/m2
℄ sum of the ioni urrents rossing the ell membrane

Ii [µA/m2
℄ urrent density of ion speies i

I, II, III [ � ℄ �rst, seond, and third prinipal invariants

IV, V [ � ℄ fourth and �fth (mixed) invariants

J [ � ℄ Jaobian determinant

N [ � ℄ number of motor units in a pool

Ne [ � ℄ number of elements in a �nite element mesh

Pmax

[N/m

2
℄ maximum isometri nominal stress

T
tot

[ � ℄ total number of XBs in a saromere

TPRF [ � ℄ twith peak reovery funtion

Vm [mV℄ membrane potential
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Vetors

Symbol Unit Desription

a [ � ℄ vetor of length λf pointing in the atual �bre diretion

a0 [ � ℄ referential unit vetor pointing in �bre diretion

b [m/ms

2
℄ mass-spei� aeleration (e. g. gravitation)

b0, c0 [ � ℄ referential unit vetors normal to the �bre diretion

da [m

2
℄ oriented atual area element

dA [m

2
℄ oriented referential area element

dks [N℄ inremental fore element

dx [m℄ atual line element

dX [m℄ referential line element

e1, e2, e3 [ � ℄ (Cartesian) orthonormal basis vetors

n [ � ℄ atual surfae normal vetor

n0 [ � ℄ referential surfae normal vetor

t [N/m

2
℄ tration vetor

u [m℄ displaement vetor

x [m℄ position vetor in the atual on�guration

X [m℄ position vetor in the referene on�guration

Seond and Higher-Order Tensors

Symbol Unit Desription

A [ � ℄ Almansian strain tensor

B [ � ℄ left Cauhy-Green deformation tensor

C [ � ℄ right Cauhy-Green deformation tensor

E [ � ℄ Green-Lagrangean strain tensor

F [ � ℄ (material) deformation gradient tensor

I [ � ℄ seond-order identity tensor

Ma [ � ℄ Referential strutural tensor assoiated w/ the �bre diretion

Mb, Mc [ � ℄ Referential strutural tensors assoiated w/ the XF diretions

P [N/m

2
℄ �rst Piola-Kirhho� stress tensor

R [ � ℄ proper orthogonal rotation tensor

S [N/m

2
℄ seond Piola-Kirhho� stress tensor

SE [N/m

2
℄ seond Piola-Kirhho� extra stress tensor

T [N/m

2
℄ Cauhy or true stress tensor

TE [N/m

2
℄ Cauhy extra stress tensor

U , V [ � ℄ right and left streth tensors

3

E [ � ℄ Rii permutation tensor (third-order fundamental tensor)
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Calligraphi Letters

Symbol Unit Desription

B [ � ℄ material body

P [ � ℄ material point

W [J/m

3
℄ volume-spei� strain energy funtion

Greek Letters

Symbol Unit Desription

γ [ � ℄ normalised, saromere-based ative stress

γ̄ [ � ℄ homogenised, normalised, saromere-based ative stress

η [kg/s

2
℄ sti�ness of one ross bridge

ϑ [ � ℄ level of distortion dependene

λf [ � ℄ �bre streth (length)

λoptf , λ0f [ � ℄ optimal and initial �bre strethes

ν [ � ℄ in�uene of ooperative e�ets

ρ [g/m

3
℄ atual mass density

ρ0 [g/m

3
℄ referential mass density

φi [mV℄ intraellular potential

φe [mV℄ extraellular potential

φo [mV℄ potential of the body region

Γ [ � ℄ domain boundary of the material body

Ω [ � ℄ domain of the material body

νi [ � ℄ orthonormal �bre oordinate system

σi [mS/m℄ intraellular ondutivity tensor

σe [mS/m℄ extraellular ondutivity tensor

σo [mS/m℄ ondutivity tensor of the body region

σeff [mS/m℄ e�etive ondutivity tensor

τ [N/m

2
℄ Kirhho� stress tensor

χ [ � ℄ motion or plaement funtion



1 Introdution

1.1 Motivation

The Amerian Heritage Medial Ditionary [146℄ de�nes the neuromusular system as

�the musles of the body together with the nerves supplying them�. Only the interplay

of speialised nerve ells alled motor neurons and the skeletal musles (i. e., musles of

the body) enables movement of the body, whih is the task of the neuromusular system.

Following this, neuromusular disorders are diseases that impat the motor neurons, the

peripheral nerves, the musle �bres, and the neuromusular juntions (the loation where

nerves and musles ome together). Among the more ommon disorders of the neuromus-

ular system are peripheral neuropathies, various musular dystrophies, in�ammatory and

other myopathies, and neuromusular transmission disorders [44, 62, 63℄. Many of these

disorders are serious or even fatal. For example, hildren a�eted by type-I spinal mus-

ular atrophy do not survive beyond the �rst few years of life, and some other disorders

also lead to premature death [62℄. Neuromusular diseases are often geneti, but they an

also result from an abnormal immune response or a geneti mutation.

Emery onluded from his omprehensive literature survey [62℄ that at least one in 3500

of the population is a�eted by a disabling inherited neuromusular disease. Moreover,

aording to MaIntosh et al. [161℄, Duhenne musular dystrophy, a X-linked reessive

inherited disorder, a�ets one in 3000 males. This musular dystrophy is aused by

the absene of the musle membrane protein dystrophin and results in a progressive

weakening of the skeletal musles that leads to death. Other, less ommon forms of

musular dystrophies are aused by other protein defets, see Emery [63℄ for an overview.

For the diagnosis of a dystrophy and to exlude neurogeni auses of a musle weakness,

eletromyography is an important method [63℄.

As yet, there is no ure for any of the dystrophies, and there exists frequently no

e�aious remedy for other neuromusular disorders either. Sine neuromusular diseases

are often geneti, advanes in gene manipulation and stem-ell therapy might lead to an

e�etive treatment in the future, although the disovery of an e�etive drug treatment

is also possible [63℄. However, for now, the fous is on providing improvements in the

patients' quality of life by reduing symptoms [63℄. Obviously, both the development of

tehniques required for this purpose and the design of an e�etive drug are onditional

to having a omprehensive understanding of the physiology of the neuromusular system.

To this end, it is pertinent to �rst investigate the physiology of the healthy system, before

studying pathologial onditions ourring in neuromusular disorders.

Due to the fat that many biophysial quantities are di�ult or even impossible to

determine experimentally, in partiular, in human subjets and in vivo, mathematial

models an be used to generate missing data. In this respet, mathematial modelling

has the advantage of generating data in a ontrolled environment, whih is usually impos-

sible in experiments. Existing models of the neuromusular system ontributed to further

1



2 Chapter 1: Introdution

the knowledge of the physiology of the neuromusular system [76, 104℄. However, these

models are based on phenomenologial desriptions that do not mimi the biophysial

proesses of the underlying system. The phenomenologial desription signi�antly limits

their appliation and their preditive apabilities, for example, with respet to patholog-

ial onditions. To gain a better understanding of the physiology of the neuromusular

system, detailed biophysial models of the skeletal musles and the motor neurons inner-

vating them need to be developed. So, the thesis at hand is onerned with the develop-

ment of methods and tools for the biophysial simulation of the hemo-eletro-mehanial

behaviour of the healthy neuromusular system.

1.2 Sope, Aims, and State of the Art

In general, one an distinguish between phenomenologial and biophysial approahes

when modelling biologial systems. Being based on experimentally determined input-

output relations, phenomenologial models are often simpler, omputationally more e�-

ient, and rely on fewer parameters than their biophysial ounterparts. Within the range

in whih the model's parameters have been �tted to experiments, phenomenologial mod-

els an aurately reprodue the system's behaviour. However, phenomenologial models

annot provide a full understanding of the underlying physiology. In ontrast, biophysial

models are built on the existing knowledge of the physiology of the respetive system,

and hene, they an be used as an in-silio laboratory to investigate the behaviour of the

modelled system under normal and pathologial onditions.

Based on the onstitution of the neuromusular system, existing mathematial mod-

els either fous on the generation of fore in the musle �bres or the musle's ontrol

through the oordinated operation of the motor neurons as an ensemble. Drawing at-

tention �rst to the motor neuron pool, phenomenologial and biophysial models have

been proposed in the literature. For example, based on the relation between the synapti

input to a motor neuron and its output disharge rate [29℄, Fuglevand et al. [76℄ and

Hekman & Binder [104℄ developed phenomenologial models that are frequently used

for the testing of neurophysiologi hypotheses or for interpreting experimental data, see

e. g. [10, 142, 143, 180℄. An important limitation of phenomenologial desriptions of the

motor neuron behaviour, however, is that they do not allow the integration of synapti

or ommon inputs to motor neurons. Conversely, biophysial models of motor neurons

do not su�er from this limitation, sine they perform the integration at the motor neuron

membrane level. For example, in integrate-and-�re models [1, 73℄, the motor neurons

integrate synapti urrents from di�erent soures, whih yields an inrease in their mem-

brane potential. When the membrane potential reahes a ertain threshold, the motor

neuron is assumed to disharge an ation potential (AP, a short depolarisation of a ell's

membrane potential used to transmit information between di�erent parts of the body)

and the neuron's membrane potential is reset to its resting value.

The omplex biophysial proesses leading to the opening and losing of di�erent

voltage-gated ion hannels in the neuron's membrane during an AP were �rst desribed

by Alan L. Hodgkin and Andrew F. Huxley [120℄ based on their experiments on the giant

axon of the squid. Expanding this desription with respet to the number of onsidered

ioni urrents and/or ompartments, progressively more omplex models of motor neurons

have been developed, see e. g. Cisi & Kohn [39℄, Cushing et al. [41℄, Powers et al. [208℄.
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To simulate the motor neuron pool, this work adopts the biophysial model of Negro

& Farina [186℄, whih builds on the desription of the motor neurons by Cisi & Kohn

[39℄. This two-ompartment, Hodgkin-Huxley-type model balanes biophysial details

and omputational performane. Interestingly, the biophysial desription of the motor

neuron behaviour inherently aounts for the size priniple of motor neuron reruitment of

Henneman et al. [112, 113℄ (small, low-threshold motor neurons are reruited before larger

motor neurons with higher exitation threshold) and the �onion-skin� property [46, 47℄ (for

a ertain level of synapti input to the motor neuron pool, low-threshold motor neurons

have higher disharge rates than high-threshold motor neurons).

The APs generated by the motor neurons trigger the fore generation in the skeletal

musle �bres. For the simulation of the fore generation, di�erent approahes have been

followed. For example, Hekman & Binder [104℄ proposed a phenomenologial model

based on the input-output behaviour of musle units (the musle �bres innervated by a

single motor neuron) during an isometri ontration (the fore-frequeny relation). One

of the most popular models is the analytial formulation of Fuglevand et al. [76℄, whih

uses the impulse response of a ritially damped, seond-order system to represent the

twith fore. This simpli�ed musle unit fore model has been adopted and enhaned by

several researhers, see e. g. Cisi & Kohn [39℄, Dideriksen et al. [50, 51, 52℄.

While these models are based on steady-state input-output relations and are limited to

isometri onditions, the so-alled Hill-type models do not su�er from these limitations.

Hill-type models are based on the desription of Arhibald V. Hill in 1938 [117℄, and they

are probably the most ommon representation of a musle's mehanial and kinemati be-

haviour, see e. g. Günther et al. [92�94℄, van Ingen Shenau et al. [133℄, Pandy [198℄, Siebert

et al. [242, 243℄, Till et al. [261℄, Zaja [282℄. Hill-type models are phenomenologial formu-

lations of the marosopi musle physiology that superpose a length-dependent passive

fore (stress-strain relation in the absene of neural stimulation) with a fore that results

from the neural ativation of the musle (in the following termed ative fore) and depends

on the musle's length and ontration veloity. Due to their simpliity, omputational

e�etiveness, and the low number of involved parameters, Hill-type musle models are

ommonly used to interpret experimental data or desribe movement and fores of (parts

of) the musular system within the framework of multibody dynamis, see e. g. Siebert

et al. [241℄ and Rupp et al. [227℄.

Both Hill-type models and analytial models that use the impulse response to represent

the twith fore exhibit signi�ant drawbaks, sine they lump together all funtional and

strutural properties of a musle to a few parameters. For example, Hill-type models are

desribed at a point in spae through spring onstants, damper properties, and one ativa-

tion level, and the alulated musle fore ats along a prede�ned line of ation. Moreover,

these simpli�ed approahes neglet nonlinearities in the fore response of musle units,

whih are due to their ativation history, for example, fatigue, post-tetani potentiation,

doublet potentiation, and serial dependene of twith responses, f. [76, 204, 230℄. Fur-

thermore, these models are based on purely phenomenologial approahes.

Based on the �nding that Hill-type models inaurately predit musle fores in om-

plex geometries (f. e. g. Röhrle & Pullan [222℄), ontinuum-mehanial models based

on the �nite-elastiity theory have been proposed, see e. g. [16, 167, 222, 229, 288℄. To

desribe the ontratile behaviour of skeletal and ardia musles within a ontinuum-

mehanial framework, Hill-type models were employed by Göktepe et al. [88℄, Johansson
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et al. [135℄, Koji et al. [147℄, Pelteret & Reddy [203℄, and others. While ontinuum-

mehanial models an take into aount omplex musle �bre distributions [15℄, regional

ativation properties, and a dynamially generated line of ation [222℄, they restrit their

�ndings purely to marosopi mehanial aspets of musle fore generation. To ahieve

a more detailed desription of the ontratile behaviour within a volumetri musle model,

multisale models linking ontinuum mehanis to ellular kinetis an be used.

The �rst biophysial ellular kinetis model was developed by Andrew F. Hux-

ley [128, 129℄ based on the sliding �lament theory, whih was proposed simultaneously but

independently in 1953/1954 by Andrew F. Huxley and Ralph Niedergerke [130℄ and Hugh

E. Huxley and Jean Hanson [99, 132℄. The kineti model of Huxley [128℄ distinguishes

between ross-bridges in the attahed and detahed states, and it was subsequently gener-

alised to distribution funtions representing populations of various biohemial states as

funtions of bond length and time, see e. g. [280, 281℄. These biophysial models have the

advantage of being diretly based on the musle's mirosopi struture and the moleu-

lar mehanisms of ontration. However, their mathematial formulation leads to a set of

oupled partial di�erential equations (PDEs). To avoid the omplexity of solving PDEs,

approximations an be formulated in terms of ordinary di�erential equations (ODEs) in

time, see, for example, the distributed moments approah of Zahalak [280℄. The approah

of Zahalak [280℄ was used by Gielen et al. [83℄ to desribe the ontratile behaviour within

a ontinuum-mehanial musle model.

Further, in the ontext of ellular kinetis models, Razumova, Campell, and o-workers

proposed a ross-bridge dynamis model [36, 37, 214, 215℄ that onsiders three distint

ross-bridge states (two attahed and one detahed) and assumes that the fore in a

saromere is proportional to the produt of the number of ross-bridges in eah attahed

state and their average distortion. Although the ODEs desribing this model are relatively

simple, the model is su�ient to reprodue key harateristis of musle ontration [214℄.

Besides biophysial desriptions of ross-bridge dynamis, biophysial models of other

parts of the omplex signaling pathway from eletrial stimulation to fore generation in

skeletal musle �bres have been developed. For example, based on the Hodgkin-Huxley

formalism, Adrian & Peahey [2℄ proposed a model of the membrane eletrophysiology of

musle �bres. This model was extended by Wallinga et al. [272℄ to a multiompartment

model of the ioni urrents rossing the T-tubule membrane and the sarolemma of a

musle �bre. To simulate the entire exitation-ontration pathway in musle �bres,

Shorten et al. [240℄ oupled a simpli�ed version of Wallinga's model of the membrane

eletrophysiology [272℄ to a model of alium release from the saroplasmi retiulum [217℄,

a model of intraellular alium dynamis [12℄, and an extended version of the ross-bridge

dynamis model of Razumova et al. [214℄. Furthermore, the model of Shorten et al.

[240℄ inludes a desription of metaboli fatigue based on the aumulation of inorgani

phosphate in the saroplasm.

A major advantage of the model of Shorten et al. [240℄ is that it losely represents

the underlying physiology. In ontrast to phenomenologial models, this biophysial de-

sription an represent history-dependent and other nonlinear e�ets, provide insights

into the omplex signaling pathway from eletrial ativation to fore generation, and

allows a detailed analysis of pathologial onditions. Although inluding many details of

the exitation-ontration pathway, the model of Shorten et al. [240℄ is limited in several

respets. For example, Shorten et al. [240℄ onsidered only idealised, onstant-frequeny
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stimulations of entire musles under isometri onditions.

Following this, the work at hand extends the model of Shorten et al. [240℄ to non-

isometri onditions. Moreover, the present work enhanes the model of Shorten et al.

[240℄ to a desription of the musle units within a musle taking into aount their di�erent

mehanial behaviours. To simulate voluntary ontrations, the resulting musle model

is oupled to the model of the motor neuron pool of Negro & Farina [186℄. This yields a

novel, integrated model of the neuromusular system that is biophysial in all main parts.

Previously, the model of the exitation-ontration pathway of Shorten et al. [240℄ has

been oupled to bioeletrial �eld equations and a ontinuum-mehanial onstitutive

equation by Röhrle and o-workers [219�221, 223℄ to simulate the propagation of APs

along musle �bres and the fore generation and deformation of musle, respetively. The

resulting multisale hemo-eletro-mehanial musle model has been linked to the phe-

nomenologial motor neuron model of Fuglevand et al. [76℄ to ontrol the simulated musle

ontrations, see [221℄. Aounting for motor unit reruitment and rate oding, the bio-

physial proesses leading from eletrial exitation to ontration, and the propagation

of APs within the musle tissue, the model of Röhrle and o-workers overomes many of

the limitations of other ontinuum-mehanial musle models. For example, Hernández-

Gasón et al. [114℄ inlude a phenomenologial desription of the ellular proesses and

ignore biophysial priniples of AP propagation and ross-bridge dynamis. Further, Fer-

nandez et al. [74℄ use a neuron model to simultaneously generate an AP in all musle

�bres negleting the fat that motor units (the musle unit together with their orre-

sponding motor neuron) in skeletal musle are ativated independently of eah other. In

both Fernandez et al. [74℄ and Böl et al. [22℄ the AP propagates anisotropially through

the three-dimensional (3D) musle tissue instead of along single musle �bres as in skeletal

musle. Moreover, both models use purely phenomenologial desriptions to relate the

AP to fore generation.

Although the hemo-eletro-mehanial model of Röhrle and o-workers inludes many

physiologial properties of the neuromusular system, it has framework-inherent limi-

tations that do not allow an extension to a fully oupled framework embraing neural

inputs, fore generation, and feedbak mehanisms. The major limitation is that the el-

lular equations are only oupled unidiretionally to the mehanial model. In detail, the

eletro-hemial behaviour of single musle �bres is preomputed and stored in a look-up

table. Within the mehanial model, the ellular variables assoiated with fore gen-

eration are opied into a detailed 3D strutural model and homogenised to ompute the

resulting stress tensor. The hoie of preomputing the ellular behaviour has been hosen

to redue the overall omputational ost. This was neessary as the original framework

(CMISS) is based on serial legay ode, appealing to data strutures not neessarily suit-

able for parallelisation. This formulation does not allow to onsider geometrial variations

of the musle �bres, suh as, for example, a length hange, resulting from the ontration.

Therefore, Röhrle and o-workers onsidered only isometri ontrations, whih provided

justi�ation for negleting the fore-veloity relationship.

The thesis at hand presents a fully oupled, multisale, hemo-eletro-mehanial sim-

ulation framework for skeletal musle modelling under isometri and non-isometri ondi-

tions. This framework is based on the open-soure software library OpenCMISS

1

[26℄, whih

1

An Open-soure software library for Continuum Mehanis, Image analysis, Signal proessing and System

identi�ation.
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was designed to ahieve maximal �exibility and e�ieny through the use of new data

strutures suh as FieldML [38℄, aess to well-established model repositories via CellML

[82, 107, 158, 188℄, and a distributed-memory foundation for omputational e�ieny and

exeuting large problems. The new libraries and the data struture provide the basis

for ombining di�erent mesh regions with di�erent dimensionality within one framework,

for example, zero-dimensional (0D) models for the ellular behaviour, one-dimensional

(1D) models for the AP propagation, and 3D models for the mehanial analysis. This

allows for a strong and bidiretional oupling of the eletro-hemial model on the one

hand and the mehanial model on the other hand (eletro-mehani and mehano-eletri

feedbaks, f. Nash & Pan�lov [185℄). Additionally, this will allow the integration of pro-

prioeptors, whih translate the mehanial state of the musle into neural signals that

in�uene the rate modulation of the motor neurons (sensory feedbak), in the framework

at a later point in time, see Heidlauf et al. [108℄.

If neural ontrol has been onsidered in previous ontinuum-mehanial musle mod-

els, a phenomenologial desription of the motor neurons was employed, see e. g. Röhrle

et al. [221℄. In ontrast, to simulate voluntary musle ontrations, this work ouples the

multisale musle model to the biophysial motor neuron model of Negro & Farina [186℄.

This yields an integrated multisale and multiphysis model of the neuromusular system.

Further extensions of the model and substitution of model omponents, e. g. the ellular

model, are straightforward due to the modular organisation of the framework.

Sine the developed multisale skeletal musle model ontains a desription of the mem-

brane eletrophysiology and the AP propagation along musle �bres [240, 272℄, it an be

used to simulate eletromyographi (EMG) signals. EMG signals re�et the eletrial

ativity of a skeletal musle. Their strong linial relevane an be explained by the fat

that EMG signals an be measured in vivo in a relatively easy way. One of the major

drawbaks of EMG signals is that they are hard to interpret and analyse [70℄. Thus, math-

ematial models have a great potential to improve signal interpretation. In ontrast to

previous, phenomenologial EMG models, whih presribe the AP shape and propagation

veloity (see e. g. Farina & Merletti [71℄, Farina et al. [72℄, Lowery et al. [160℄, Merletti &

Parker [168℄, Mesin [169℄), the presented biophysial Hodgkin-Huxley-type approah an

aount for hanges in the amplitude and propagation veloity of the AP that result, for

example, from membrane fatigue. Moreover, none of the existing single-sale and single-

physis EMG models takes into aount tissue deformation, and hene, these models are

restrited to isometri onditions, f. Mesin et al. [171℄. The proposed multisale and mul-

tiphysis model is not subjet to suh restritions and an simulate musle ontrations

and the EMG under isometri and non-isometri onditions. Moreover, the presented

approah allows to onsider arbitrary geometries, omplex musle �bre arhitetures, and

di�erent heterogeneities.

The mathematial formulation of the multisale musle model leads to PDEs that are

approximated using the �nite element method (FEM), see [123, 286℄. Furthermore, it is

obvious that the integrated approah leads to a omputationally expensive model. Hene,

optimisation strategies have to be onsidered. For example, di�erent �nite element meshes

for the bioeletrial and the ontinuum-mehanial models, as well as operator-splitting

tehniques and staggered solution shemes allowing to use di�erent time step sizes for the

solution of the di�erent subsystems are employed.

Within the framework of ontinuum mehanis, reently, some researhers proposed a
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multipliative split of the deformation gradient tensor (initially developed in the �eld of

elasto-plastiity, see Lee [154℄) to desribe the ative (ontratile) and passive behaviours

of musle, f. e. g. Murtada et al. [182℄, Rossi et al. [224, 225℄, Shari�majd & Stålhand [239℄,

Stålhand et al. [246, 247℄. At �rst, this approah was believed to have ertain advantages

with respet to a thermodynamially onsistent formulation, but Rossi et al. [224℄ showed

that thermodynami onsisteny is also possible when using the more lassial approah

of onstitutively assuming a superposition of passive and ative stress tensors (or strain

energies), f. also Gizzi et al. [86℄. Following this, the ontinuum-mehanial model in

this work is based on the more lassial formulation.

The work at hand is devoted to the mathematial desription and simulation of the pro-

esses of the neuromusular system leading to musle ontration and fore generation.

While these proesses are onsidered in detail, the desription of the passive musle tis-

sue is relatively simple and is based on a marosopi ontinuum-mehanial formulation.

In detail, the passive musle tissue is assumed to behave transversely isotropi, hypere-

lasti, and inompressible. Approahes distinguishing musle �bres and the extraellular

onnetive tissue in the passive material desription are limited by material-parameter un-

ertainties and an additional omputational omplexity [237, 238, 271℄. Besides lumping

together musle �bres and extraellular onnetive tissue, the presented passive material

desription neglets visoelasti e�ets [24, 267, 269℄. Partial justi�ation for doing so is

given by Tian et al. [260℄, who demonstrated that the visous e�ets in passive musle

tissue are rather small.

1.3 Overview

First, Chapter 2 reviews the basi anatomy and physiology of the neuromusular system,

i. e., a motor neuron pool and its assoiated skeletal musle. In partiular, the hierarhial

struture of the musle is of interest, as the ontratile fore is generated at the mirosopi

half-saromere level, but it auses a deformation of the entire musle. Further, sine this

work is onerned with the biophysial modelling of the neuromusular system, a detailed

desription of the physiology is provided. While lassial works often �rst introdue the

anatomy followed by the physiology of a system, this work adopts a modern mantra of

biology stating that struture ditates funtion and overs both topis simultaneously.

The objetive of Chapter 3 is to introdue the mathematial and ontinuum-mehanial

onepts required in the remainder of the thesis. The hapter presents a brief introdution

to numerial methods for the solution of di�erential equations. This is followed by a

general introdution to ontinuum mehanis, whih will be further spei�ed in Chapter 6

to the speial ase of skeletal musle modelling.

Chapter 4 presents biophysial ellular models for motor neurons and skeletal musle

�bres. First, the lassial Hodgkin-Huxley model and the model of Negro & Farina [186℄

are reviewed. The latter is used in this work to desribe the behaviour of a motor neuron

pool. Next, the biophysial model of the exitation-ontration oupling in skeletal musle

�bres of Shorten et al. [240℄ is presented, extended to non-isometri ontrations, and

augmented to a desription of the musle units within a musle. Coupling the resulting

musle unit model and the motor neuron model of Negro & Farina [186℄ yields a model

of the neuromusular system that is biophysial in all main parts. The human �rst

dorsal interosseous musle is exemplarily simulated to demonstrate the apabilities of the
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ombined approah.

Expanding the formulation of Chapter 4 by spatial dimensions, the propagation of

eletrial signals through the musle tissue is overed in Chapter 5. To simulate the

propagation of APs along musle �bres, the monodomain model is employed. The mono-

domain model is derived from the more general but omplex bidomain model, whih is a

ontinuum approah for the desription of eletrially exitable tissues. Numerial exper-

iments reveal that the monodomain approximation is valid for the presented appliations.

Furthermore, the formulation of the AP propagation is extended to a biophysial desrip-

tion of EMG signals. The advantages of this model over previous models of the EMG are

demonstrated in several numerial examples, some of whih have already been presented

in Mordhorst et al. [178℄.

Chapter 6 introdues a multisale, hemo-eletro-mehanial skeletal musle model that

is based on the �nite-elastiity theory of ontinuum mehanis. Based on appropriate

onstitutive assumptions, a ontinuum-mehanial stress tensor is derived that is apable

of representing passive and ative skeletal musle behaviour. The passive behaviour of

the musle tissue is modelled marosopially as a transversely isotropi, hyperelasti,

and inompressible material. The formulation of the ative ontratile part relies on

the biophysial ellular desription of the exitation-ontration oupling (introdued in

Chapter 4), whih in turn links to the monodomain model as desribed in Chapter 5.

The numerial treatment of the hemo-eletro-mehanial musle model yields a mul-

tisale omputational model, whose numerial solution is omputationally hallenging.

Thus, Chapter 6 presents the multisale omputational framework as well as appropri-

ate optimisation strategies, whih have previously been desribed in Bradley et al. [26℄

and Heidlauf & Röhrle [109℄. Moreover, the multiphysis model is used to investigate

di�erenes in the musle ontration and fore generation arising from the musle �bre

arrangement. To this end, parallel-�bred musle models, in whih the musle �bres either

span the entire length of the musle or terminate intrafasiularly, are ompared to eah

other. The results of this study have previously appeared in Heidlauf & Röhrle [111℄.

To simulate the behaviour of the entire neuromusular system, Chapter 7 ouples the

multisale skeletal musle model to the model of the motor neurons of Negro & Farina

[186℄. Based on the resulting model of the neuromusular system and the approah to

simulate EMG signals (Chapter 5), simulations are arried out prediting simultaneously

musle fore generation, musle tissue deformation, and the EMG signal during isometri

and non-isometri ontrations.

A �nal disussion is provided in Chapter 8 inluding suggestions for potential applia-

tions of the presented methods as well as further developments of the presented modelling

framework. Further, for the sake of onveniene, the Appendix provides additional math-

ematial and mehanial details.



1.4 List of Publiations 9

1.4 List of Publiations

Researh leading to the results presented in this thesis has previously been published in

the following artiles, some of whih are still under review.

Peer-Reviewed Journal Artiles

C. P. Bradley, A. Bowery, R. Britten, V. Budelmann, O. Camara,

R. Christie, A. Cookson, A. F. Frangi, T. Gamage, T. Heidlauf, S. Krittian,

D. Ladd, C. Little, K. Mithraratne, M. Nash, D. Nikerson, P. Nielsen,

Ø. Nordbø, S. Omholt, A. Pashaei, D. Paterson, V. Rajagopal, A. Reeve,

O. Röhrle, S. Safaei, R. Sebastián, M. Steghöfer, T. Wu, T. Yu, H. Zhang &

P. J. Hunter. OpenCMISS: a multi-physis & multi-sale omputational infrastruture

for the VPH/Physiome projet. Progress in Biophysis and Moleular Biology 107, p.

32�47, 2011

T. Heidlauf & O. Röhrle. Modeling the hemoeletromehanial behavior of skeletal

musle using the parallel open-soure software library OpenCMISS. Computational and

Mathematial Methods in Mediine 2013, p. 1�14, 2013

T. Heidlauf & O. Röhrle. A multisale hemo-eletro-mehanial skeletal musle

model to analyze musle ontration and fore generation for di�erent musle �ber ar-

rangements. Frontiers in Physiology 5, p. 1�14, 2014

M. Mordhorst, T. Heidlauf & O. Röhrle. Prediting eletromyographi signals un-

der realisti onditions using a multisale hemo-eletro-mehanial �nite element model.

Interfae Fous 5, p. 1�11, 2015

K. Kupzik, H. Stark, R. Mundry, F. T. Neininger, T. Heidlauf & O. Röhrle.

Reonstrution of musle fasile arhiteture from iodine-enhaned miroCT images: a

ombined texture mapping and streamline approah. Journal of Theoretial Biology 382,

p. 34�43, 2015

O. Röhrle, V. Neumann & T. Heidlauf. The Role of Parvalbumin, Saroplasmati

Retiulum Calium Pump Rate, Rates of Cross-Bridge Dynamis, and Ryanodine Re-

eptor Calium Current on Peripheral Musle Fatigue: a Simulation Study. Journal of

Musle Researh and Cell Motility, under review

T. Heidlauf, T. Klotz, C. Rode, E. Altan, C. Bleiler, T. Siebert &

O. Röhrle. A multi-sale ontinuum model of skeletal musle mehanis prediting fore

enhanement based on atin-titin interation. Biomehanis and Modeling in Mehanobi-

ology, under review

J. Fernandez, J. Zhang, T. Heidlauf, M. Sartori, T. Besier, O. Röhrle &

D. Lloyd. Multisale Modelling, Data-Model Fusion and Integration of Organ Physiol-

ogy in the Clini: Musuloskeletal. Interfae Fous, under review

M. Mordhorst, T. Streker, D. Wirtz, T. Heidlauf & O. Röhrle. POD-

DEIM redution of dynami skeletal musle models Journal of Computational Siene,

under review



10 Chapter 1: Introdution

Book Chapters

O. Röhrle, M. Sprenger, E. Ramasamy & T. Heidlauf. Multisale skeletal musle

modeling: From ellular level to a multi-segment skeletal musle model of the upper limb.

Computer Models in Biomehanis, p. 103�116, 2013

Peer-Reviewed Conferene Proeedings

T. Heidlauf, F. Negro, D. Farina & O. Röhrle. An integrated model of the

neuromusular system. 6

th
International IEEE/EMBS Conferene on Neural Engineering

(NER) 2013, p. 227�230, 2013

Non-Reviewed Conferene Proeedings

T. Heidlauf & O. Röhrle. A geometrial model of skeletal musle. Proeedings in

Applied Mathematis and Mehanis 12, p. 119�120, 2012

T. Heidlauf & O. Röhrle. On the treatment of ative behaviour in ontinuum musle

mehanis. Proeedings in Applied Mathematis and Mehanis 13, p. 71�72, 2013

M. Mordhorst, T. Heidlauf & O. Röhrle. Mathematially modelling surfae EMG

signals. Proeedings in Applied Mathematis and Mehanis 14, p. 123�124, 2014



2 Anatomial and Physiologial

Fundamentals

This hapter introdues the anatomy and physiology of the neuromusular system, i. e., the

struture and funtion of the skeletal musles and the nerves supplying them. Due to their

omplexity, only a brief overview of the anatomy and physiology of the neuromusular

system is given here. The reader is referred to the literature for more details. An elaborate

desription of the nervous system and its omponents, the neurons, an be found, for

example, in Kandel et al. [139℄. MaIntosh et al. [161℄ give full aount on the anatomy and

physiology of skeletal musles and provides some details on the motor neurons (MNs). The

motor unit as the funtional unit of the neuromusular system has reently been reviewed

by Hekman & Enoka [105, 106℄. The mehanisms involved in human movement, from

neural ontrol to musle mehanis, are omprehensively desribed in Enoka [65℄. With

regard to theoretial and mathematial desriptions, the reader is referred to Keener &

Sneyd [144, 145℄, Tukwell [264℄, and Herzog [116℄.

2.1 Summary

This setion summarises brie�y the proesses of the neuromusular system leading to fore

generation. The following setions then explain the anatomy and physiology of MNs and

musles in more detail.

Nerves are ord-like bundles of nervous tissue. They are made up of nerve �bres that

onnet the entral nervous system with other parts of the body [146℄. In the ontext

of this work, espeially those nerve ells (neurons) are of interest that are known as

motor neurons. This is due to the fat that motor neurons innervate skeletal musles.

Skeletal musles onsist of parallel-aligned musle �bres that are embedded in a matrix

of extraellular onnetive tissue. Eah musle �bre is a long, ylindrial, biologial ell.

The ell body (or soma) of a MN is loated in the spinal ord, whih is part of the entral

nervous system. There, the MN reeives signals from other neurons, suh as those of the

motor ortex of the brain. Depending on the reeived signals, the MN itself might generate

ation potentials (eletrial signals of short duration), whih are transmitted along the

MN's axon (nerve �bre) to the musle. At its end, the axon branhes profusely, with eah

end linking to a musle �bre. The AP of the neuron is transmitted to the musle �bre at

a site alled neuromusular juntion. Starting from the neuromusular juntion, the AP

propagates along the length of the musle �bre. The propagating signal triggers the release

of alium ions from an intraellular alium storage alled saroplasmi retiulum (SR).

The released alium binds, amongst others, to the troponin-tropomyosin regulatory unit.

When two alium ions are bound to the regulatory unit, it undergoes a onformational

hange that allows myosin heads to attah to atin binding sites. Myosin and atin

are proteins within so-alled thik and thin �laments, respetively. The thik and thin

11
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�laments are strutural omponents within a saromere, whih is the basi ontratile

unit in a musle �bre. The proess of binding, bending, and unbinding of the myosin

head is alled ross-bridge yling. As a result, the thik �lament moves relative to the

thin �lament, whih indues the ontration and fore generation in the musle �bres.

2.2 Basi Anatomy of the Motor Unit

The entity of a MN and all the musle �bres innervated by that MN is alled motor

unit (MU). The MU is onsidered the funtional unit of a skeletal musle, sine its MN

stimulates all musle �bres belonging to the MU onjointly, and these �bres ontrat

simultaneously in response to the stimulation. Depending on the size of a musle and

the task assigned to it, the number of its MUs ranges from about one hundred to several

thousand. In the human tibialis anterior (TA) musle, about 300 000 musle �bres are

innervated by approximately 450 MNs.

The group of musle �bres innervated by a single MN is referred to as a musle unit.

The musle unit is not loally onentrated in one part of the musle, but distributes over

a part of the musle's ross-setional area and interdigitates with other musle units. The

number of �bres in a musle unit, i. e., the number of �bres innervated by a single MN,

is ommonly referred to as the innervation number and an vary from tens to thousands,

often within a single musle. For example, in the human TA musle the innervation

number ranges from 50 to 12 000 [105℄. The human TA musle, as all other musles,

onsists of many small and few large MUs, suh that the average innervation number (the

ratio of the total number of musle �bres and the number of MUs in a musle) is about

600. The ombination of many parallel-arranged MUs and the wide range in innervation

number allows a single musle to exert a huge spetrum of outputs, ranging from preise

movements to large fores. This spetrum of outputs is ontrolled through the oordinated

ation of the MUs.

The MNs innervating a musle are usually lustered into an elongated motor nuleus

within the ventral horn of the spinal ord that may extend over one to four spinal ord

segments [139℄. The MNs reeive synapti input from various soures, suh as from the

motor ortex via the ortiospinal pathway, the brain stem and other desending pathways,

as well as from neighbouring motor nulei, spinal ord interneurons, and a�erent neurons.

These signals a�et the neuron's membrane potential, whih is desribed in detail in the

next setion.

2.3 The Cell Membrane of Exitable Cells

The ell membrane, known as sarolemma, is formed by phospholipids. Phospholipids

have a globular head that is hydrophili (attrated to water) and two fatty aid tails that

are hydrophobi (repelled by water) [211℄. Given an aqueous environment suh as that

in the human body, phospholipids have the property of forming a bilayered struture,

where the lipid's hydrophili heads form the inner and outer boundary of the membrane,

while the lipid's hydrophobi tails are pointing towards the interior of the membrane, f.

Figure 2.1.
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Embedded in the sarolemma are many types of large protein strutures, for example,

several di�erent types of reeptors and transport proteins. Some of these proteins are

apable either of atively transporting spei� ions from one side of the membrane to the

other (transport proteins, ion pumps) or providing hannels through whih ertain ions

an move (ion hannels). Passage through ion hannels is governed by their opening and

losing in response to hemial or eletrial signals. The ations of transport proteins and

ion hannels enable the ell to establish a resting membrane potential and shape APs,

both of whih are disussed in the following setions.

2.3.1 Resting Membrane Potential

The sarolemma's low permeability to ions enables the ell to have a hemial omposition

in the ytosol (the solution in a biologial ell) di�erent to the �uid surrounding the ell.

In exitable ells, there is a surplus in the onentration of potassium (K+
) ations in the

ytosol, and a surplus of sodium (Na+) and alium (Ca2+) ations as well as hloride
(Cl−) anions in the extraellular matrix. These di�erenes in the ioni onentrations are

sustained by the ell membrane and its embedded ion pumps and hannels. Most relevant

in establishing the resting potential is the Na+-K+
pump, whih transports three Na+

ions out of the ell and two K+
ions in, at the ost of one adenosine triphosphate (ATP).

Further, Na+-Ca2+-exhangers, exhanging three Na+ ions from the extraellular spae

for one Ca2+ ion from the intraellular spae, ensure a very low Ca2+ ion onentration

in the ytosol in the resting state. Cl− is not atively transported but an move through

so-alled leakage hannels that remain open all the time. Leakage hannels are seletively

permeable to either Cl− or K+
ions.

K+
ations leak out of the ell along their onentration gradient leaving behind rela-

tively immobile anions. This leads to a net negative harge inside the ell with respet to

the ell outside, i. e., a potential di�erene aross the membrane arises. At the so-alled

equilibrium potential the outward �ux of K+
ions due to their onentration gradient is

balaned by an inward �ux of K+
ions due to the negative eletrial harge of the ell

inside. The equilibrium potential Ei of ion speies i, with i = {K, Na, Cl, Ca}, an be

determined using the Nernst equation:

Ei =
RT

zi F
ln

[ i ]o
[ i ]i

. (2.1)
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Therein, R is the universal gas onstant, T is the absolute temperature, and F denotes

the Faraday onstant. Furthermore, zi is the harge of the ion, and [ i ]i and [ i ]o denote
the ion's intraellular and extraellular onentrations, respetively.

As the equilibrium potential is di�erent for di�erent ion speies, the resting membrane

potential of a ell onsists of the ontributions of all involved ions. The resting poten-

tial an be determined using the Goldman-Hodgkin-Katz equation and is de�ned as the

weighted average of the equilibrium potentials of the involved ions, where the relative

permeability of the membrane to the spei� ion speies is used as weight, f. e. g. Ma-

Intosh et al. [161℄. Commonly, only K+
, Na+, and Cl− ions are onsidered. Sine the

ell membrane is muh more permeable to K+
and Cl− than to Na+, the resting mem-

brane potential is lose to the equilibrium potentials of K+
(−90mV, all values given at

physiologial temperature) and Cl− (−85mV) but slightly shifted towards the equilib-

rium potential of Na+ (+75mV). This results in a ell's resting potential of about −70 to
−80mV, with a negative voltage inside the ell as ompared to the ell outside.

2.3.2 Ation Potentials

In the resting state, the ell membrane is relatively impermeable to Na+ ions. If, due to

a stimulus, the membrane beomes more permeable to Na+ ions, a strong Na+ ion in�ux

ours. This urrent is driven by the di�erene between the membrane potential and

the equilibrium potential of Na+ and is partiularly strong as Na+ is far away from its

equilibrium potential. The resulting hange in the membrane potential towards the equi-

librium potential of Na+ is alled depolarisation, sine the membrane potential beomes

less negative. If the depolarisation is strong enough, i. e., the membrane potential exeeds

a ertain threshold value (approximately−55mV), voltage-gated ion hannels open, whih
allows for a large inward �ux of Na+ ions and an outward �ux of K+

ions. Due to the

dominating Na+ �ux, the membrane potential hanges towards the equilibrium potential

of Na+ resulting in an inversion of the membrane voltage. The raised membrane voltage

auses the voltage-gated Na+ hannels to lose, and the still ongoing K+
outward �ux re-

polarises the membrane potential, whih hanges again towards the equilibrium potential

of K+
(repolarisation). When the membrane potential is repolarised, the voltage-gated

K+
hannels lose, and the resting membrane potential is restored. This short (2�5ms)

event, in whih the eletrial potential of the ell is inverted and restored again, is known

as ation potential. Figure 2.2 shows the typial ourse of an AP. In neurons, a short-

lasting drop in the membrane potential below the resting membrane potential ours at

the end of the repolarisation proess. This drop is alled afterhyperpolarisation. The

afterhyperpolarisation potential (AHP) inhibits the development of subsequent APs by

inreasing the amount of stimulus required to reah the threshold value for AP generation.

It is noteworthy that the atual onentrations ofNa+ andK+
hardly hange throughout

the AP, and a ell an �re many thousands of APs without atively pumping Na+ out of

the ell or K+
into it. This is important, sine neurons transmit information only through

the AP disharge frequeny, and not through the magnitude of the AP, whih is similar

for eah disharge.

In exitable ells, APs are used to transmit signals between di�erent parts of the ell.

The mehanism is as follows. The urrents �owing loally into the ell during an AP

spread out along the length of the ell. This yields a depolarisation of the potential of ad-



2.3 The Cell Membrane of Exitable Cells 15

PSfrag replaements

ell outside

ell inside

hydrophili head

hydrophobi tail

lipid bilayer

ion hannel

Time [ms℄

M

e

m

b

r

a

n

e

P

o

t

e

n

t

i

a

l

[

m

V

℄

resting

potential

depolarisation

repolarisation

afterhyperpolarisation

5 10 15 20 25 30 35 40
−100

−80

−60

−40

−20

0

20

40

Figure 2.2: The ation potential.

jaent pathes of the ell membrane. If the depolarisation is strong enough, voltage-gated

Na+ hannels open, and the AP is reprodued in this neighbouring path. Subsequent

reprodutions of the AP on suessive pathes result in a wave-like propagation of the

AP along the membrane of an exitable ell. Note that voltage-gated Na+ hannels fall

into an inative state after losing for a short period of time, whih ensures that the AP

moves only in one diretion.

APs propagate along musle �bres at a speed of 2�10m/s [157, 159℄. This is relatively

slow ompared to AP propagation speeds of up to 100m/s found in neurons [127℄. The

fast AP propagation speeds in neurons result from an insulating myelin sheath that is

wrapped around the nerve �bres, f. Setion 2.4.1.

APs are assigned di�erent tasks in neurons and musle �bres. Neurons transmit sig-

nals between di�erent parts of the body, while in musle �bres, the AP triggers internal

proesses that eventually lead to fore generation.

2.3.3 Synapses, Exitatory and Inhibitory Postsynapti Potentials

Synapses are onnetions between ells, at whih signals are transmitted from a neuron

to another ell, whih does not neessarily have to be a neuron. The following desription

of synapses is restrited to hemial synapses, whih are present in the neuromusular

system, and our either between neurons or between MNs and musle �bres. Besides

hemial synapses, eletrial and immunologial synapses exist in the human body.

Chemial synapses pass information unidiretionally, i. e., at a ertain synapse, signals

are exlusively transmitted from a signal-passing, presynapti neuron to a signal-reeiving,

postsynapti ell. At the synapse, both the presynapti and postsynapti ells ontain

speialised strutures that enable signal transmission. In the presynapti ell, the synapti

bouton (axon terminal) ontains neurotransmitters enlosed in synapti vesiles. When an

AP, whih propagates along the membrane of the presynapti ell, reahes the synapse, the

membrane depolarisation auses Ca2+ hannels to open. The resulting inward �ux of Ca2+

ions inreases the Ca2+ onentration in the ell immediately, sine the intraellular Ca2+

onentration is kept at a very low level during the resting state. The rise in intraellular
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Ca2+ onentration auses a release of neurotransmitter into the narrow spae between

the presynapti and postsynapti ells alled synapti left. The neurotransmitter binds

to reeptors embedded in the membrane of the postsynapti ell, whih either open ligand-

gated ion hannels (in both neurons and musle �bres) or ativate intraellular signaling

pathways (only in neurons).

Assuming, �rst, that the presynapti ell is a MN, and the postsynapti ell is a musle

�bre, the neurotransmitter is aetylholine (ACh), and the synapse is alled neuromus-

ular juntion. The neuromusular juntion is a huge synapse, and an AP disharged by

the presynapti MN always auses an AP in the postsynapti musle �bre. (Exluded

are pathologial ases, whih are not within the sope of this thesis.) Due to this one-

to-one relation between motor neuron APs and musle APs, the term motor unit ation

potential (MUAP) is ommonly used. Following the release of ACh from the MN at the

neuromusular juntion, the ACh moleules bind to ACh reeptor hannels in the ell

membrane of the musle �bre, whih, in response, beome permeable to Na+ ions. An

inward urrent arried by positive-harged Na+ ions develops, whih auses a depolarisa-

tion of the membrane potential, and an AP is generated at the musle �bre membrane.

The musle AP propagates along the length of the musle �bre, from the neuromusular

juntion towards the ends of the �bre.

If the presynapti and postsynapti ells are neurons, the situation is more om-

plex. First, it is assumed that the input is an ionotropi signal. In this ase, the

neurotransmitter-binding reeptors open ligand-gated hannels. Depending on the re-

leased neurotransmitter and the type of ion hannel ativated, the resulting hange in the

postsynapti potential is exitatory or inhibitory. If the opened hannel is, for example,

a Na+ hannel, the resulting inward �ux of Na+ ions will depolarise the membrane of the

postsynapti neuron, i. e., an exitatory postsynapti potential (EPSP) is generated. In

general, the amplitude of the EPSP resulting from a single presynapti AP is not su�-

ient to exeed the threshold potential, however, postsynapti potentials an overlap and

summate, both in spae (from di�erent nearby synapses) and time (subsequent signals

at the same synapse). The most ommon exitatory neurotransmitter in MNs is gluta-

mate. In ontrast, if the ativated hannel is a K+
hannel, an outward �ux of K+

ions

will hyperpolarise the postsynapti neuron's membrane, and an inhibitory postsynapti

potential (IPSP) is generated. The most ommon inhibitory neurotransmitters in MNs

are GABA and glyine.

If the input, however, is neuromodulatory, the neurotransmitter-binding reeptors will

ativate intraellular signaling pathways to ontrol the state of exitability of the postsy-

napti neuron. This is often realised through persistent inward urrents that raise or lower

the membrane potential relative to the previous resting membrane potential, and an last

for hours. The resting membrane potential in MNs should therefore not be onsidered as

a stati quantity, but rather as one that is onstantly adjusted through neuromodulatory

input to MNs [106℄.
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2.4 Neurons

The key harateristi of neurons, i. e., their ability to transmit signals between di�erent

parts of the body, has been desribed in previous setions. This setion provides detailed

information on the neural struture and the physiology of the MN pool.

2.4.1 The Struture of a Neuron

A neuron onsists of three parts: the ell body or soma, the dendrites, and the axon (nerve

�bre). Some details of the neuron's struture are shown in Figure 2.3. Dendrites are thin

strutures arising from the ell body that extend and branh extensively. Dendrites largely

enhane the surfae area of neurons and often aount for 95% of a neurons surfae. Sine

the dendrites aount for most of the neuron's surfae area, the majority of synapses from

other neurons onnet there, and hene, the dendrites reeives the most neural input.

While a neuron has typially many dendrites, it only has a single axon. The axon, a

long, slender, ylindrial-shaped extension, arises from the ell body at a site alled axon

hillok. At the axon hillok, where the density of ion hannels is very high, APs are

generated, whih then propagate along the length of the axon towards its end. At its

end, the axon branhes profusely and eah branh ends in a synapse. Depending on the

kind of neuron, the synapse onnets to, for example, another neuron or a musle �bre.

The axon of neurons is overed with myelin sheaths, whih are, in the peripheral nervous

system, produed by Shwann ells. The purpose of the myelin sheaths is to inrease the

propagation speed of APs in the axon by insulating it from ions in the surrounding �uid.

The exhange of ions aross the sarolemma during an AP, as desribed in Setion 2.3.2,

an only take plae at the sites between the myelin sheaths alled nodes of Ranvier. This

phenomenon is known as saltatory ondution and largely aelerates the AP propagation,

f. e. g. Huxley & Stämpeli [131℄. Note that multiple slerosis, an in�ammatory disease,

in whih parts of the nervous system loose their ability to ommuniate, is aused by a

pathologial loss of the myelin sheaths that insulate axons in the brain and spinal ord.
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2.4.2 Types of Neurons

Di�erent types of neurons are distinguished. Neurons that ondut signals from the

periphery towards the entral nervous system, e. g. sensory neurons, are referred to as

a�erent neurons. Neurons that arry impulses away from the entral nervous system,

e. g. motor neurons, are referred to as e�erent neurons. Further, spinal ord interneurons,

e. g., Renshaw ells, Ia and Ib inhibitory neurons (IaIN, IbIN), form a onnetion between

other nearby neurons. These spinal ord neurons and other neurons, suh as those of the

brain are not onsidered in this thesis.

2.4.3 The Physiology of the Neural System

The term motor unit pool refers to all MUs in a musle. Analogously, the term motor

neuron pool denotes the entity of the neurons that subserve a single musle. The eletrial

properties of MNs and their size vary aross a MN pool. Typially, a MN pool onsists

of many small, low-threshold MNs and few large, high-threshold MNs, f. e. g. Powers &

Binder [207℄. Note that the size of the MN is proportional to the size of its orresponding

musle unit, i. e., small MNs innervate few musle �bres, while large MNs innervate large

musle units onsisting of many �bres.

The MN pool is subjet to signals of di�erent soures, viz. ortial input, a�erent sig-

nals, e. g. from musle spindles, and signals from interneurons and Renshaw ells. Motor

neurons integrate all the exitatory and inhibitory signals that they reeive from presy-

napti neurons. This auses hanges in their membrane potential. One the input is

large enough suh that the MN exeeds its threshold potential, an AP is disharged. The

fat that a neuron either disharges an AP or not, but nothing in between, is known as

all-or-none priniple and results from the existene of a threshold potential, i. e., if and

only if the threshold potential is exeeded, then the neuron will disharge an AP.

Mehanisms of Reruitment and Rate Coding

It is not ompletely understood how the MN pool in the entral nervous system operates

as an ensemble to ontrol the fore that is exerted by a skeletal musle. In general,

to vary this fore, the entral nervous system has two options: (i) reruitment, i. e.,

altering the number of ative MUs, and (ii) rate oding, i. e., hanging the frequeny of

eletrial impulses driving the MUs. It is generally aepted that MUs follow an orderly

reruitment aording to Henneman's size priniple [112, 113℄, that is, from the smallest

MU (the smallest MN innervating the fewest musle �bres) to the largest MU (the largest

MN innervating the largest musle unit). However, there is some evidene that the size

priniple might not be the only priniple applied. Butler & Gandevia [34℄, for example,

postulate the idea that also the biomehanial e�ieny needs to be taken into aount.

An inreased synapti input to the MN pool will not only result in an inrease of the

number of reruited MUs, but it will also inrease the disharge rate of all MUs that have

already been reruited. Following this, the small, low-threshold MUs always disharge

APs at a higher frequeny than larger, higher-threshold MUs independent of the synapti

input to the MN pool. This property is known as onion skin property, f. De Lua and

o-workers [46, 47℄.
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2.5 Skeletal Musle

Skeletal musles are omposed of musle �bres that are mehanially oupled to eah

other by a network of extraellular onnetive tissue. The extraellular onnetive tissue

is omposed of mainly ollagen and elastin, and it is hierarhially organised in di�erent

strutures alled endomysium, perimysium, and epimysium. The endomysium is a dense

sheath of ollagen �bres that envelops eah musle �bre and is onneted to the basement

membrane, whih is part of the musle �bre's ell membrane. The perimysium divides the

musle into bundles of �bres, alled fasiles. Its tough and relative thik struture keeps

the individual �bres together, and provides the pathway for the major blood vessels and

nerves running through the musle. The musle as a whole is oated by the epimysium,

whih is a partiularly tough woven network of thik ollagen �bres. The epimysium

separates musles from eah other and is onneted to the perimysium, f. Figure 2.4.
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Figure 2.4: Shemati representation of the struture of a skeletal musle.

The onnetive tissue serves several funtions. Besides holding the �bres together and

giving the musle its shape, it ontains the blood vessels and nerves, whih are neessary

for the supply of the musle �bres. Further, the onnetive tissue resists exessive streth-

ing of the musle and distributes fores to minimise damage to the musle �bres. The

elastiity of the elastin and the wavy ollagen bundles enable the musle belly to regain

its shape when external fores are removed. Furthermore, the extraellular onnetive

tissue plays a key role in the fore transmission from the musle �bres to the tendons, see

e. g. Huijing [124, 125℄, Monti et al. [177℄, Street [252℄, Street & Ramsey [253℄, Yuesoy

et al. [278, 279℄.

2.5.1 Skeletal Musle Arhiteture

Although all skeletal musles are made up of the same omponents, viz. musle �bres

and extraellular onnetive tissue, they ome in di�erent forms and sizes depending on

their spei� task. The musles in the human body range from very small, onsisting of

only a few hundred musle �bres, to very large, onsisting of more than a million �bres.

Depending on the arrangement of their fasiles, musles are lassi�ed in distint forms.

In parallel-�bred musles, for example, the fasiles run from tendon to tendon and are

aligned with the musle's fore-generating axis. If the diretions of the fasiles form an

angle to the musle's line of ation, the musle is alled pennate, and the fasiles attah

to aponeuroses, whih run along eah side of the musle. Pennate musles an exhibit
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larger fores than parallel-�bred musles of the same volume due to their higher e�etive

or physiologial ross-setional area (PCSA), i. e., the ross-setional area perpendiular

to the fasile diretion. However, the pennation angle dereases the amount a musle

an shorten as well as its ontration veloity. While the diretion of the musle �bres is

determined by the fasile diretion, in large mammalian skeletal musles, musle �bres

might not span the entire length of the fasile, but they an also be arranged in series and

terminate intrafasiularly, see e. g. Heron & Rihmond [115℄, Loeb et al. [159℄, Rihmond

et al. [216℄, Young et al. [277℄, and Setion 6.3.3.

The Struture of a Skeletal Musle Fibre

Musle �bres are long, ylindrial-shaped ells with a diameter of approximately 50�

80µm. The most prominent strutures within the musle �bres are the myo�brils, whih

are parallel-aligned, rod-shaped units that are made up of repeating setions alled sar-

omeres. The saromere, or more preise the half-saromere, is the basi ontratile unit of

a musle �bre. It ontains thik �laments, whih onsist primarily of the protein myosin,

and thin �laments, whih onsist primarily of the protein atin. The thik �laments are

ross-onneted by a �ne, �lamentous struture at one end of the half-saromere, alled

M-dis. The thik �lament's other end is onneted to titin �laments, whih are �ne

and very elasti, and link the thik �lament to a struture at the other end of the half-

saromere alled Z-dis, see Figure 2.5. The titin �laments at as a moleular spring and

keep the thik �lament in its position. A hexagonal lattie of thin �laments surrounds

eah thik �lament. The thik and thin �laments interat via ross-bridges (XBs), i. e.,

myosin moleular heads, that an attah to a neighbouring thin �lament. The length of

a saromere is about 2µm.
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and titin �laments as well as the Z-diss and M-dis. [Figure modi�ed from Sameerb at

http://en.wikipedia.org/ with permission℄

Passive Behaviour of Skeletal Musle Tissue

Passive musle tissue exhibits transversely isotropi material behaviour [181, 189, 256℄.

The response of the passive musle tissue is attributed to both the extraellular onnetive

tissue and the myo�laments, espeially titin, within the saromeres of the musle �bres, see

Prado et al. [209℄. While it is often assumed that musle tissue is sti�er in �bre diretion
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(see e. g. [181℄), Takaza et al. [256℄ and Nie et al. [189℄ report a more ompliant material

behaviour in the �bre diretion ompared to the ross-�bre diretions. Further, passive

musle tissue exhibits slightly visoelasti behaviour, see e. g. [24, 122, 156, 267, 269℄,

and due to its high ontent of water, it is ommonly onsidered to behave inompressible

within the physiologial range [19, 85, 256, 268℄.

2.5.2 Musle Fibre Contrations

The omplex signaling pathway leading from eletrial exitation of a musle �bre to its

ontration is known as exitation-ontration oupling.

Exitation-Contration Coupling

The exitation-ontration oupling in skeletal musle �bres, together with the most

prominent strutures of the musle �bre, is shematially represented in Figure 2.6.

The AP, generated at the neuromusular juntion, not only propagates along the length

of a musle �bre, but it is also onduted from the surfae to the interior of the �bre by

numerous, hannel-like invaginations of the sarolemma alled T-tubules. Embedded in

the membrane of the T-tubules are dihydropyridine reeptor (DHPR) hannels that are

sensitive to hanges in the membrane potential. The DHPR hannels are mehanially

linked via protein strutures to the ryanodine reeptors (RyR) in the membrane of the

SR. The SR is an extensive network of hannels in the musle �bres that stores large

amounts of alium (Ca2+), and the RyR is a Ca2+ hannel onsisting of four subunits.

An AP entering the T-tubules ativates the DHPR hannels, whih will then indue the

opening of the RyR in the membrane of the SR. When the RyR opens, large amounts

of Ca2+ will leave the SR and enter the ytosol, following their onentration gradient,

sine the free onentration of Ca2+ in the ytosol is kept at a very low level in the resting

state.

Ca2+ ions play a key role in musle ontration. One released into the ytosol, Ca2+

binds to troponin C, whih is part of the troponin-tropomyosin regulatory unit. The

binding of two Ca2+ ions to troponin C yields a onformational hange in the troponin

moleule that removes the bloking tropomyosin from the thin �laments. This enables

the formation of a XB onnetion between the thik and thin �laments in the saromeres.

The ontratile, fore-produing step is alled power stroke and an be �gured as a

bending mehanism of the myosin heads, whih moves the thik and thin �laments relative

to eah other (sliding �lament theory). The energy required for a power stroke is provided

by the hydrolysis of one ATP moleule per myosin head. Sine eah XB ats as an

individual moleular motor, i. e., an independent fore generator, the fore developed

during a ontration depends on the number of simultaneous interations between myosin

heads and atin �laments per half-saromere (ross-bridge theory).

Length and Veloity Dependene of the Ative Fore

The maximum isometri fore a saromere an exert depends on the number of possible

XB onnetions between the thik and thin �laments, whih is primarily governed by the

regions of overlap between the thik and thin �laments, i. e., by the length of the sarom-

ere. Figure 2.7a shows the experimentally determined fore-saromere length relation of
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Figure 2.6: Shemati representation of the exitation-ontration oupling in a musle �bre.

[Courtesy of Verena Neumann℄



2.6 The Motor Unit 23

Gordon et al. [89℄, a passive stress-strain relation, and their superposition. Figure 2.7b

depits the regions of overlap between the thik and thin �laments at 5 seleted points of

Figure 2.7a.
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Figure 2.7: (a) Normalised passive, ative, and total isometri fores. The ative isometri fore

exerted by a saromere depends on (b) the region of overlap between the thik and thin �laments.

Further, the fore that a musle �bre an generate, depends on the �bre's ontration

veloity, i. e., the faster the �bre shortens, the less fore it an exert [117℄. During length-

ening ontrations, the generated fore exeeds the isometri fore, f. Figure 2.8. Note

the kink at the transition from shortening to lengthening ontrations [141℄.
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Figure 2.8: The in�uene of the ontration veloity on the fore generation of a skeletal musle.

2.6 The Motor Unit

Sine eletrial ativation from one musle �bre to adjaent ones is not observed in skele-

tal musle, eah �bre must have its own neuromusular juntion. While it is generally

assumed that eah �bre is innervated by exatly one MN, there is some eletrophysiolog-

ial evidene that a few doubly innervated �bres (�bres with multiple motor endplates

and polyneuronal innervation) also exist, see e. g. Lateva et al. [152℄, MGill & Lateva
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[164℄. Further, while all musle �bres belonging to one MU have similar properties, the

ontratile and metaboli properties of di�erent musle units vary heavily.

2.6.1 Properties of Motor Units

The di�erenes observed in the ontratile and metaboli properties of skeletal musle

�bres inspired the distintion of di�erent MU types. To this end, MUs have been lassi�ed

based on their speed of ontration, the handling of intraellular Ca2+ ions, or their

resistane to fatigue during prolonged ontrations. For example, musle �bres an be

lassi�ed based on the expression of ertain isoforms of the myosin heavy hain, whih

determines the rate of XB yling, and hene, the speed of ontration. Moreover, based

on their metaboli properties, aerobi type-I (slow-twith) �bres an be distinguished

from their fast-twith ounterparts (type-II �bres), whih, in addition to the oxidation

of fats and arbohydrates, use an anaerobi metabolism. Based on a ertain stimulation

protool, Burke et al. [30℄ distinguished slow-twith units (type S) and fast-twith units

(type F). The group of type-F units was further split into fatigue-resistant (type FR) and

fast-fatigable (type FF) units [30℄.

In general, the smallest MUs, whih are reruited �rst, exert the smallest fores, exhibit

the slowest speed of ontration, and show the least amount of fatigue. Conversely, the

largest MUs, whih are reruited last, exert the largest fores, have the highest speed of

ontration, and are most a�eted by fatigue. However, the physiologial properties of hu-

man MUs do not luster into disrete groups, but rather exhibit a ontinuous distribution

from one extreme to the other [57℄.

2.6.2 Types of Contrations

The most simple ontration is a single twith, whih is the musle unit's response to

a single AP disharged by the MN. The shape of a twith an be well desribed by the

impulse response to a ritially damped seond-order system, f. Fuglevand et al. [76℄.

The total duration of a musular AP, from depolarisation to the point where the resting

state is restored, is about 2�5ms. In ontrast, the duration of a twith from the �rst

rise to omplete relaxation varies from about 200ms to more than 500ms depending on

the MU type. Thus, if subsequent stimulations are applied before the atively generated

twith fore of the �bre returned to its initial value, a summation of the resulting twithes

is observed (fused twithes). Obviously, the inrease in fore following subsequent stimu-

lations is not unlimited, but after a number of stimulations, a peak fore is reahed. The

value of the peak fore depends on the stimulation frequeny � it inreases with rising fre-

queny up to a ertain optimal frequeny, beyond whih, no further inrease in fore an

be generated. This form of ontration is referred to as tetani ontration. Peak �ring

frequenies during isometri ontrations of human musles are approximately 45Hz [76℄.

While single twithes and stimulations with onstant frequenies are ommonly applied

in experimental protools, atual trains of MN disharges ontain a ertain degree of vari-

ation in the interstimulus interval (time between two suessive MN disharges). During

isometri ontrations, the ratio of the standard deviation of the interstimulus interval

to its mean is about 10�30%. This relation holds for a wide range of mean disharge

frequenies.



3 Mathematial and Mehanial

Prerequisites

Before introduing the basi onepts of ontinuum mehanis, this hapter reviews some

of the fundamentals of solving di�erential equations. This is required due to the fat that

the mathematial desription of biophysial models in general, and the models proposed

in this work in partiular, is arried out in terms of di�erential equations. Sine analytial

solutions to these di�erential equations are ommonly not available, numerial methods

are required to approximate the solution. This work uses the �nite element method

for the numerial treatment of the spatial derivatives ourring in partial di�erential

equations. As the very ommon (Bubnov-)Galerkin method and Lagrange �nite elements

are employed, the desription of the spatial disretisation is kept rather brief. If the

di�erential equation is a transient PDE, the spatial disretisation yields a set of oupled

ordinary di�erential equations in time, whih have to be treated appropriately. Following

this, �rst, the treatment of the spatial derivatives is overed, before disussing numerial

methods for solving ODEs. Sine some of the presented models are desribed by sti�

ODEs, whih impose ertain restritions on the numerial solution sheme, the disussion

on ODE solvers is more elaborate.

3.1 Finite Element Method for the Spatial

Disretisation of Partial Di�erential Equations

For the sake of onveniene, a linear, vetor-valued PDE of seond order in spae and �rst

order in time is exemplarily onsidered. The equation is given by

ẏ(t,x)− div
(

c(x) grady(t,x)
)

= 0 , (3.1)

where t ∈ [0, T ] is the time, x ∈ Ω ⊂ R
d
denotes the spatial position vetor, y ∈

[0, T ]×Ω → Rd
is the vetor-valued unknown funtion, c(x) is a parameter, grad ( q ) and

div ( q ) denote the gradient and divergene operators, respetively, and the superimposed

dot denotes a time derivative. Furthermore, for an initial-boundary-value problem, the

de�nition of appropriate initial and boundary onditions is required:

initial onditions: y(t0,x) = y0(x) ∈ Rd ,

Dirihlet boundary onditions: y(t,x) = ȳ(t) on ∂ΩD ,

and Neumann boundary onditions: Λ(t,x)n(t,x) = g(t,x) on ∂ΩN ,

(3.2)

where n(t,x) denotes the outward-oriented unit normal vetor, and Λ(t,x) =
c(x) grady(t,x). The number of spatial dimensions of the problem is denoted by

25
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d ∈ {1, 2, 3}. Further, Ω denotes the domain of the problem, and ∂ΩD
and ∂ΩN

are the Dirihlet and Neumann parts of the domain boundary, ∂Ω, respetively, with
∂Ω = ∂ΩD ∪ ∂ΩN

and ∂ΩD ∩ ∂ΩN = ∅.

3.1.1 The Weak Form

In this work, the FEM (see e. g. Hughes [123℄, Zienkiewiz et al. [285, 286℄) is used to treat

the spatial derivatives in Equation (3.1). To this end, Equation (3.1) is �rst multiplied

by an arbitrary test funtion δy(x) and then integrated over the domain, Ω. This yields
the so-alled weak form, whih is given by

∫

Ω

(

ẏ(t,x) − div
(

c(x) grady(t,x)
)

)

· δy(x) dv = 0 , (3.3)

where dv represents an in�nitesimal volume element of the domain. Pointwise satisfation

of the strong form (3.1) is still given by the integral form (3.3) due to the fat that the

hoie of the test funtion is arbitrary. In detail, hoosing δy = δ(x − xi), where δ( q )
denotes the Dira delta funtion, subsequently for all points xi ∈ Ω of the domain, yields

again the strong form (3.1).

Next, applying integration by parts and the Gauÿian integral theorem to Equation (3.3)

yields after some tensor algebra a weak form suitable for applying the FEM, viz.:

∫

Ω

ẏ(t,x)·δy(x) dv +
∫

Ω

c(x) grady(t,x)·grad δy(x) dv =

∫

∂Ω

g(t,x)·δy(x) da ,
(3.4)

where da represents an in�nitesimal surfae element. Due to the fat that the Neumann

boundary term quite naturally ours in the weak form (3.4), the assoiated type of

boundary ondition (Neumann boundary ondition) is also alled natural boundary on-

dition. It is furthermore noteworthy that the order of PDE (3.1) has been redued from

two to one, as only �rst-order spatial derivatives our in its weak form (3.4). Further,

all solutions of the strong form (3.1) are also solutions to Equation (3.4).

3.1.2 The Finite Element Method

The FEM relies on approximating the domain, suh that it an be subdivided into several

smaller, non-overlapping parts alled �nite elements, i. e.,

Ω ≈ Ωh =
Ne
⋃

e=1

Ωe . (3.5)

Therein, Ωh
denotes the approximated domain, whih an be represented by Ne �nite

elements of element domain size Ωe. De�ning eah �nite element by Ni nodal points

yields a total of Nn ≤ NeNi nodes in the �nite element mesh. A disrete representation

of the ontinuous PDE (3.4) is obtained by approximating the unknown and test funtions
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by

y(t,x) ≈ yh(t,x) = ȳh(t,x) +

Nn
∑

i=1

ϕi(x) yi(t) ,

δy(x) ≈ δyh(x) =

Nn
∑

i=1

ψi(x) δyi .

(3.6)

Therein, ȳh(t,x) denotes the disrete version of the Dirihlet boundary onditions.

Furthermore, yi(t) are the time-dependent nodal degrees of freedom, and ϕi(x) =
diag[ϕi,1(x), . . . , ϕi,d(x)] and ψi(x) = diag[ψi,1(x), . . . , ψi,d(x)] represent the global basis
funtions for the approximation of the unknown and test funtions, respetively, when us-

ing Lagrange �nite elements. Following the (Bubnov-)Galerkin approah, the same basis

funtions are used to approximate the unknown and test funtions, i. e., ϕi(x) ≡ ψi(x).
The deoupling of the temporal and spatial dependenies of the unknown funtion in

Equation (3.6)1 is obtained by introduing the basis funtions, whih have not yet been

further spei�ed. (The subsript 1 in the notation (3.6)1 refers to the �rst equation

in (3.6).)

Conveniently, the basis funtions are hosen to have ompat (loal) support. Moreover,

the basis funtions an be onstruted by so-alled shape funtions that are de�ned on

a simple referene element using a loal oordinate system. Thus, the element integrals

arising when inserting the approximations (3.6) into the weak form (3.4) an be mapped to

the referene element using the Jaobian determinant, where they an be evaluated using

a method that is suitable for numerial implementation, suh as, for example, Gauÿian

quadrature. For the sake of brevity, a detailed presentation of these steps is omitted here

but an be found in any FEM textbook, see e. g. [123, 286℄.

Evaluating the resulting equation for eah �nite element and assembling the resulting

element matries to global matries �nally yields a set of oupled ODEs of the form

D ẏ(t) + Ky(t) = g(t) , (3.7)

where D and K are the global damping and sti�ness matries (dimension Nn × Nn),

respetively, y(t) is the global vetor of unknown nodal values, and g(t) is the global right-
hand side vetor (dimension Nn × 1), whih ontains the Neumann boundary onditions.

3.2 Numerial Methods for Ordinary Di�erential

Equations

Sine analytial solutions to nonlinear ODEs or oupled sets of ODEs, whih, for exam-

ple, arise from the spatial disretisation of a transient PDE, are ommonly not available,

numerial methods are used to approximate the solution of the governing ODEs. Nu-

merial methods for the integration of ODEs is a researh �eld on its own, and a general

presentation of these methods is beyond the sope of this thesis. Instead, a brief disus-

sion is provided, whih fouses on a partiular group of ODE integrators that will, in the

subsequent setions, be used for the solution of sti� ODE systems arising from the math-

ematial desription of biophysial models of the neuromusular system. Further reading

on numerial methods for the solution of ODEs an be found, for example, in Asher &
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Petzold [4℄, Gupta et al. [95℄, Hairer et al. [97℄, Hairer & Wanner [98℄, Press [210℄, and

Shwarz [231℄.

The ODEs onsidered in this work an mathematially be represented by �rst-order,

nonlinear systems of equations of the form

ẏ(t) = f(t, y(t)) , y(t0) = y0 ∈ R
k . (3.8)

Therein, y(t) denotes the vetor of unknown funtions, y0 denotes the vetor of given

initial values, and f is a vetor-valued, potentially non-linear funtion of t and y(t). The
dimension of the problem denoted by k ≥ 1 depends on the spei� model under onsid-

eration.

3.2.1 Introdution

Numerial methods for the solution of ODEs often approximate the time derivative in

Equation (3.8) by a trunated Taylor series. A Taylor series an be used to represent an

unknown funtion value as an in�nite sum of terms that are determined from the value

and derivatives of the (su�iently smooth) funtion at a di�erent point:

yn+1 = yn +
h

1!
y′n +

h2

2!
y′′n + . . . =

∞
∑

j=0

hj

j!
y(j)n . (3.9)

Therein, yn = y(tn), y
(j)
n = djy/dtj|t=tn , h = tn+1 − tn denotes the time step size, and

tn = t0 + nh (n = 0, 1, . . . ). In the following, the Taylor series (3.9) is onsidered up to

the �rst-order derivative, and the remaining terms are lumped together in O(h2) making

use of the big-O notation. Solving the resulting equation for the derivative term yields

dy

dt

∣

∣

∣

∣

t=tn

= ẏ(tn) =
yn+1 − yn

h
+ O(h) . (3.10)

Approximating Equation (3.10) by negleting the higher-order terms and inserting the

resulting approximation in the ODE system (3.8), yields the expliit forward Euler sheme,

yn+1 = yn + h f(tn, yn) . (3.11)

Similarly, a Taylor series an be used to represent yn by yn+1 and its derivatives. Neglet-

ing the higher-order terms, this yields the impliit bakward Euler sheme

yn+1 = yn + h f(tn+1, yn+1) . (3.12)

Sine the negleted terms are proportional to h, the forward and bakward Euler methods

are �rst-order aurate, i. e., p = 1, where p denotes the order of auray. The order

of a numerial method is a measure of how well it approximates the exat solution of

the problem. Note that (3.11) represents an expliit proedure for the evaluation of the

unknown values yn+1. In ontrast, the vetor of unknown values yn+1 is additionally

impliitly ontained in the right-hand side of (3.12). Expliit methods are muh simpler

to implement and are often more e�ient than impliit methods, however, their stability
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often depends ruially on the time step size. Impliit methods, on the other hand, require

the solution of a system of equations in eah time step. Moreover, if f is a nonlinear

funtion of y, the solution of (3.12) yields a root-�nding problem, whih has to be solved

using an appropriate method. To this end, a modi�ed Newton method (see Setion 3.3)

is used in this work.

3.2.2 Linear Multistep Methods

The forward and bakward Euler methods are one-step methods, i. e., to approximate the

solution yn+1 at time tn+1, only values from the previous step yn at time tn are onsidered.
In ontrast, a multistep method of order k takes into aount the information of the last

k time steps, e. g., a multistep method of order 3 uses information from time levels tn−2,

tn−1, and tn to ompute yn+1.

Approximating the derivative in (3.8) by y′n+1 ≈ − 1
h

∑k
j=0 āj yn+1−j (f. Brayton et al.

[27℄), the general form of a k-step linear multistep method is given by

k
∑

j=0

aj yn+1−j = h

k
∑

j=0

bj f(tn+1−j, yn+1−j) (k ≥ 1) , (3.13)

with oe�ients aj and bj , where a0 6= 0. Without loss of generality, one ommonly

hooses a0 = 1. If b0 = 0, Equation (3.13) denotes an expliit method, otherwise the

method is impliit. The oe�ients are hosen suh that the order of the resulting method

is maximal, see Shwarz [231℄ for details. Note that a k-step linear multistep method

requires k initial values, of whih only one (y(t0) = y0) is given. To determine the other

initial values, one-step methods an be used, whih, however, have to be at least of the

same order p as the multistep method to ahieve an overall method of order p. In the

following some partiularly popular expliit and impliit linear multistep methods are

presented in detail.

Adams-Bashforth, Adams-Moulton, and Adams-Bashforth-Moulton Methods

Using the general form for linear multistep methods (3.13), the expliit Adams-Bashforth

(b0 = 0) and impliit Adams-Moulton methods (b0 6= 0) are obtained when hoosing

a0 = 1, a1 = −1, and aj = 0 for all other values. This yields

yn+1 − yn = h

k
∑

j=0

bj f(tn+1−j , yn+1−j) (k ≥ 1) . (3.14)

As demonstrated in Shwarz [231℄, the k-step Adams-Bashforth and Adams-Moulton

methods are of order p = k and p = k+1, respetively. The methods of Adams-Bashforth

are very popular as they only require a single funtion evaluation per time step, sine

all other values have previously been determined. Note that the �rst-order, one-step

Adams-Bashforth method is equivalent to the expliit Euler method (3.11).

To avoid the umbersome solution of an impliit equation in eah step when using

the Adams-Moulton methods, an Adams-Bashforth method is ombined with an Adams-

Moulton method to give a preditor-orretor method. The resulting methods are alled
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Adams-Bashforth-Moulton methods, are expliit, and read

y
{p}
n+1 − yn = h

k
∑

j=1

bpj f(tn+1−j, yn+1−j) ,

yn+1 − yn = h
(

bc0 f(tn+1, y
{p}
n+1) +

k
∑

j=1

bcj f(tn+1−j, yn+1−j)
)

.

(3.15)

Therein, y
{p}
n+1 is the preditor value, and bpj and bcj are the oe�ients of the preditor

and orretor step, respetively. The ombination of them-step Adams-Bashforth method

(order p = m) and the m-step Adams-Moulton method (order p = m+1) yields a method

of order p = m + 1. A method of the same order but with higher auray is obtained

when ombining them+1-step Adams-Bashforth method with them-step Adams-Moulton

method [231℄.

Some of the ODE systems presented in this work are solved using Matlab's

1

build-in

solver ODE113. ODE113 is a multistep variable-order PECE (Predit-Evaluate-Corret-

Evaluate) Adams-Bashforth-Moulton solver. Further details on this solver are given

in Shampine & Gordon [235℄.

As it is the ase for all expliit methods, preditor-orretor methods are very ine�ient

for the solution of sti� problems. The most popular linear multistep methods for the

solution of sti� ODEs are the so-alled bakward di�erentiation formulas.

Bakward Di�erentiation Formulas

The bakward di�erentiation formulas (BDFs), whih are also known as Gear's methods,

are impliit linear multistep methods. The k-step BDF is derived by di�erentiating the

polynomial that interpolates the previous k values of y and setting the derivative at tn+1

to fn+1 [4℄. The family of k-step BDFs an be represented in the general form

k
∑

j=0

aj yn+1−j = h b f(tn+1, yn+1) (k ≥ 1) . (3.16)

BDFs are A-stable for k ≤ 2, A(α)-stable for 3 ≤ k ≤ 6, and beome unstable for k > 6
(not zero-stable), see Setion 3.2.3 for related de�nitions of stability. The auray of a

k-step BDF is of order p = k. The values of the oe�ients aj and b 6= 0 for all stable

BDFs are provided in Asher & Petzold [4℄. Note that the �rst-order, one-step BDF is

equivalent to the impliit Euler method (3.12). Further details on BDFs an be found,

for example, in Gupta et al. [95℄.

1

http://www.mathworks.om/produts/matlab/
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Numerial Di�erentiation Formulas

The numerial di�erentiation formulas (NDFs) are a lass of modi�ed BDFs. The NDFs

are given by

k
∑

j=0

aj yn+1−j = h b f(tn+1, yn+1) +
κ

b
γk (yn+1 − y

(0)
n+1) (1 ≤ k ≤ 6) , (3.17)

wherein γk =
∑k

j=1 1/j are additional oe�ients, and κ denotes a salar parameter. The

values of κ an either be hosen to maximise the A(α)-stable region for 3 ≤ k ≤ 5 at the

prie of redued e�ieny or to maximise the e�ieny while reduing the stability, f.

Shampine & Reihelt [234℄. For k = 6, the A(α)-stable region of BDFs and NDFs is so

small that often only orders up to k = 5 are used [95℄. Furthermore, y
(0)
n+1 denotes the

initial guess for the modi�ed Newton iteration, whih is found by an extrapolation of the

values yn, yn−1, . . . , yn−k+1, f. Shampine & Reihelt [234℄.

Some of the ODE systems presented in this work are sti�. In this ase, their solution

is approximated using Matlab's build-in solver ODE15s. ODE15s is an impliit, mul-

tistep, variable-order solver based on the NDFs. Further details on this solver and its

implementation are given in Shampine & Reihelt [234℄ and Shampine et al. [236℄.

3.2.3 Convergene, Stability, and Sti�ness

The previous setions mentioned the terms onvergene, stability, and sti�ness. Sine

these terms have not been disussed yet, they will be brie�y explained in this setion.

The interested reader is referred to Asher & Petzold [4℄, Gupta et al. [95℄, and Shwarz

[231℄ for more in-depth details.

A numerial method is alled onvergent if it is both onsistent and zero-stable. A

method is onsistent if the loal trunation error (the error ommitted by one step of the

method) approahes zero faster than the step size, when onsidering the limit h → 0.
Multistep methods are onsistent if they are at least of order p = 1. Further, a linear

multistep method is alled zero-stable if, within a given time interval, the error of the

approximated solution that is indued by a perturbation in the initial values, does not

depend on the time step size.

A numerial method is said to be stable if errors in the approximation are damped

out or are at least not ampli�ed in subsequent steps of the method. The stability of

many methods depends on the time step size. Expliit methods, suh as, for example, the

Adams-Bashforth methods, have very small regions of absolute stability. Impliit meth-

ods have in general larger regions of absolute stability, but not all impliit methods are

A-stable. A method is alled A-stable if the region of absolute stability of the method

ontains the omplex left half-plane for the model problem y(t) = λ y(t) with λ ∈ C. Im-

pliit multistep methods an only be A-stable if their order is at most 2 (seond Dahlquist

barrier). For example, the �rst-order bakward Euler method and the seond-order trape-

zoidal rule are A-stable, f. Dahlquist [42℄. Impliit multistep methods of order greater

than 2 are often A(α)-stable. In this ase, the region of absolute stability does not ontain
the entire omplex left half-plane but only a setor with opening angle 2α. The values of
α of all stable BDF methods and further details an be found in Hairer & Wanner [98℄.
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A sti� equation is a di�erential equation for whih ertain methods lead to numerial

instabilities, unless the step size is hosen extremely small. While it is di�ult to formulate

a preise de�nition of sti�ness, the main idea is that the equation inludes some terms

that an lead to rapid variations in the solution. Note that A-stable methods do not

exhibit the mentioned instabilities.

3.3 Newton's Method

In Setion 3.1, for the sake of onveniene, a linear PDE was assumed, whih yielded

the linear spae-disrete equation (3.7). For a nonlinear system of equations, the disrete

form an be represented by

k(y) = 0 , (3.18)

where k denotes the generalised sti�ness vetor that nonlinearly depends on the vetor of

unknowns. Note that, for larity, the index denoting the time step (if any) is omitted in

this derivation. For transient equations, the following proedure has to be arried out in

eah time step.

The solution of Equation (3.18) orresponds to a root �nding problem, whih is onve-

niently arried out using an iterative method, suh as, for example, Newton's method. To

this end, �rst the solution inrement ∆yi+1 := yi+1 − yi is introdued, where yi denotes

the approximate solution of the i-th iteration step. The approximate solution of iteration

step i+1 is then obtained by subsequently solving a linear system of equations for the

solution inrement, followed by an update of the approximate solution, i. e.,

Ji ∆yi+1 = −k(yi) , and yi+1 = yi + ∆yi+1 . (3.19)

Therein, Ji denotes the Jaobian matrix of the i+1-st iteration step, whih is given by

Ji =
∂k(y)

∂y

∣

∣

∣

∣

y=yi

. (3.20)

For Newton's method the omputation of the Jaobian matrix and the steps in (3.19)

have to be repeated until a ertain tolerane is met. A simpli�ed version of Newton's

method is obtained when the Jaobian matrix is not omputed in every iteration, but a

omputed Jaobian matrix is reused in a number of subsequent iteration steps.

To solve the linear system of equations (3.19)1 for the respetive solution inrement, the

Jaobian matrix is ommonly not inverted but an appropriate (diret or iterative) solver is

employed. Typial diret solvers are the LU deomposition, the Cholesky deomposition

for symmetri positive de�nite matries, or some speial method for sparse matries, whih

arise, for example, from the FEM. For larger systems, iterative methods are ommonly

more e�ient. Typial iterative solvers are, for example, the Jaobi method, the Gauÿ-

Seidel method, Krylov subspae methods suh as the onjugate gradient (CG) method or

the generalised minimal residual (GMRES) method, or multigrid methods. The interested

reader is referred to Press [210℄ for details.



3.4 Continuum-Mehanial Fundamentals 33

3.4 Continuum-Mehanial Fundamentals

Continuum mehanis provides a onvenient and �exible framework for modelling and

simulating the deformation behaviour of a mehanial body as well as the stress and

strain distributions that our within suh a body if it is subjeted to a load. Being

derived from general balane relations, ontinuum mehanis an be applied to many

di�erent problems. Among the numerous appliations in the �eld of biomehanis, skeletal

musle modelling is just one example. Due to the fat that the physiologial working

range of many musles involves hanges in length of 50% and more [32℄, a ontinuum-

mehanial skeletal musle model must be based on the theory of �nite deformations.

Therefore, a brief introdution to �nite-deformation ontinuum mehanis is provided

in the following. For more details, the interested reader is referred to Bonet & Wood

[23℄, Gurtin [96℄, Holzapfel [121℄, Truesdell & Noll [263℄, among many others.

3.4.1 Kinemati Relations

This setion presents the kinemati relations required to desribe the nonlinear deforma-

tion of a body B, whih is de�ned as the onneted manifold of material points P.

Motion of a Body

In ontinuum mehanis, the motion or plaement funtion χ assigns a material point

with position X in the referene (undeformed) on�guration at time t0 to a position in

the atual (deformed) on�guration x at time t, f. Figure 3.1, i. e.,

x = χ(X, t) . (3.21)

The displaement vetor, u, is given by the di�erene of the position of a material point

in the atual on�guration and its position in the referene on�guration, i. e., u = x−X.

The �rst and seond material time derivatives of the plaement funtion are the veloity

and the aeleration �elds, ẋ and ẍ, respetively, whih are given by

ẋ =
dχ(X, t)

dt
, and ẍ =

d2χ(X, t)

dt2
. (3.22)

It is important to note that any physial quantity an be de�ned in the Lagrangean
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and in the Eulerian framework. In the Lagrangean framework, the physial quantities

are expressed with respet to the referential oordinates, while in the Eulerian setting,

the physial quantities are de�ned with respet to the spatial (atual) oordinates. The

possibility to express quantities in the Eulerian representation requires the existene of

the inverse of the plaement funtion. The unique plaement funtion an be uniquely

inverted if the Jaobian, J , does not vanish. This yields the following relation

X = χ−1(x, t) if J := det
∂χ

∂X
6= 0 , (3.23)

where det ( q ) denotes the determinant operator. Following the Lagrangean setting, whih

is ommonly used in solid mehanis, the material time derivatives in (3.22) are equal

to their partial time derivatives. In ontrast, in the Eulerian framework, whih is often

onveniently used for �uid-mehanial problems, the material time derivatives in Equation

(3.22) ontain, in addition to the loal time derivative, a onvetion term that arises due

to the fat that the derived funtion also impliitly depends on the time through the

spatial oordinates, whih themselves are funtions of time, i. e., x = x(t). In detail, the

material time derivatives of a salar-valued funtion Ψ(x, t) and a vetor-valued funtion

Ψ(x, t) in the Eulerian framework are given by

Ψ(x, t) =
∂Ψ

∂t
+ gradΨ · ẋ , and Ψ(x, t) =

∂Ψ

∂t
+ (gradΨ) ẋ . (3.24)

Herein, the gradient operator grad ( q ) = ∂( q )/∂x denotes the derivative with respet to

the spatial variables, whereas Grad ( q ) = ∂( q )/∂X denotes the derivative with respet

to the referential oordinates. Moreover, the dot in (3.24)1, ( q ) · ( q ) indiates a salar

produt. Note that in the mathematial sense, the material time derivative equals the

total time derivative.

As ommon in solid mehanis, the Lagrangean desription is onveniently used in the

following. Thus, the (material) deformation gradient tensor F is de�ned as the derivative

of the plaement funtion with respet to the material oordinates, i. e.,

F :=
∂χ(X, t)

∂X
=

∂x(X, t)

∂X
= Gradx(X, t) . (3.25)

In the undeformed referene on�guration at time t0 withX = χ(X, t0), the deformation

gradient equals the seond-order identity tensor, i. e., F (t0) = I with det F (t0) = 1.
This and the fat that physially meaningful deformations prohibit the ompation of

the material body to a single mathematial point (det F = 0, f. also Equation (3.23)),

require that a ontinuous deformation proess satis�es

J = det F > 0 . (3.26)

Based on this result, one an onlude that the inverse of the deformation gradient exists,

whih is given by

F−1 =
∂χ−1(x, t)

∂x
=

∂X

∂x
= gradX . (3.27)

It follows diretly from its de�nition that the deformation gradient tensor is a dimension-

less quantity.
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Ating as basi kinemati quantity, the deformation gradient plays a key role in �nite-

deformation ontinuum mehanis. This beomes more lear when the transport theorems

for di�erential line, area, and volume elements are onsidered, whih are given by

dx = F dX , da = (cof F ) dA , dv = (detF ) dV . (3.28)

Thus, the deformation gradient itself maps referential line elements dX to atual line

elements dx, its ofator cof F := (det F )F T−1
transports referential area elements dA to

area elements of the atual on�guration da, and its determinant relates volume elements

of the referene on�guration dV to volume elements of the atual on�guration dv. Note
that area elements are de�ned as vetor-valued quantities using the normal vetor n,

i. e., da = n(x, t) da and dA = n0(X, t) dA, where, in general, the normal vetors in

the referene and atual on�gurations do not oinide, i. e., n(x, t) 6= n0(X, t). In

fat, a relation between the normal vetors of the referene and atual on�gurations

known as Nanson's formula results from Equation (3.28)2 and is given by n(x, t) da =
J F T−1n0(X, t) dA.

Deformation and Strain Measures

To haraterise the deformations and strains in a body, it is onvenient to derive suitable

deformation and strain measures from the deformation gradient. To this end, �rst a

unique polar deomposition of the deformation gradient is introdued, namely

F = R U = V R , (3.29)

where R denotes the rotation tensor, and U and V are the right (or material) and left (or

spatial) streth tensors, respetively. Note that the rotation tensor is a proper orthogonal

tensor with RTR = RRT = I and det R = 1, and the streth tensors K ∈ {U ,V }
are symmetri, positive-de�nite tensors, i. e., K = KT

and aTK a > 0 for any non-

zero vetor a. Based on the polar deomposition (3.29), the right and left Cauhy-Green

deformation tensors, C and B, respetively, are introdued aording to

C := F TF = UTRTRU = U U , B := F F T = V RRTV T = V V . (3.30)

The meaning of the right and left Cauhy-Green deformation tensors is most easily appre-

iated when expressing the square of line elements of the atual on�guration by referential

line elements and vie versa, i. e.,

dx · dx = (F dX) · (F dX) = dX · F TF dX = dX ·C dX ,
dX · dX = (F−1dx) · (F−1dx) = dx · F T−1F−1 dx = dx ·B−1 dx .

(3.31)

Mapping referential line elements to atual line elements, the deformation gradient must

be a two-�eld tensor with its �rst basis in the atual and its seond basis in the referene

on�guration. Furthermore, the �rst basis of the deformation gradient tensor is ovariant,

while its seond basis is ontravariant. Covariant and ontravariant basis vetors as well as

ovariant and ontravariant transport operations (push-forward and pull-bak operations

between the referene and the atual on�gurations for ovariant and ontravariant vetors

and tensors) are brie�y desribed in Appendix A.1, and more omprehensively disussed
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in Markert [162℄. From the square of line elements (3.31), one an further onlude

that the right, ontravariant and left, ovariant Cauhy-Green deformation tensors are

entirely de�ned in the referene on�guration and in the atual on�guration, respetively.

Moreover, using the de�nitions of the right and left Cauhy-Green deformation tensors

(3.30), one an see that the right and left streth tensors are also single �eld tensors,

where U (suh as C) is entirely de�ned in the referene on�guration, and V (suh as

B) is entirely de�ned in the atual on�guration. Sine the right and left streth tensors

are single �eld tensors, the polar deomposition (3.29) reveals that the rotation tensor

is a two-�eld tensor suh as the deformation gradient, whih transports vetors from the

referene on�guration to the atual on�guration.

Based on these results, it is interesting to further investigate the transport theorem for

di�erential line elements. To this end, the polar deompositions (3.29) are inserted into

Equation (3.28)1 to give

dx = R (U dX) = V (R dX) . (3.32)

The �rst part of Equation (3.32) an be interpreted as a streth of the line element in the

referene on�guration, followed by a rotation of the strethed line element to the atual

on�guration. Further, the seond part of Equation (3.32) denotes a rotation of the line

element from the referene on�guration to the atual on�guration, followed by a streth

that is arried out in the atual on�guration.

Furthermore, relations between the right and left deformation and streth tensors an

be followed from Equations (3.29) and (3.30), suh that

U = RTV R , V = RURT ,
C = RTBR , B = RCRT .

(3.33)

It is noteworthy that the di�erent deformation and streth tensors are not related to

eah other through the push-forward and pull-bak operations of (A.6) and (A.7) of Ap-

pendix A.1, but through the rotation tensor. In fat, both the ontravariant push-forward

of the right Cauhy-Green deformation tensor as well as the ovariant pull-bak of the

left Cauhy-Green deformation tensor yield the seond-order identity tensor.

Equations (3.31) reveal that the deformation measures haraterise the squares of line

elements. Thus, it is onvenient to introdue strain measures relating the squares of

line elements of the atual on�guration to the squares of line elements of the referene

on�guration, i. e.,

dx · dx − dX · dX =

=

{

dX ·C dX − dX · dX = dX · (C − I) dX =: dX · 2E dX ,

dx · dx− dx ·B−1dx = dx · (I −B−1) dx =: dx · 2Adx .

(3.34)

Therein, E and A are the Green-Lagrangean and the Almansian strain tensors, respe-

tively. It follows diretly from their de�nitions

E =
1

2
(C − I) , and A =

1

2
(I −B−1) , (3.35)
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that the Green-Lagrangean strain tensor desribes strains in the referene on�guration,

while the Almansian strain tensor is de�ned in the atual on�guration. Furthermore,

both presented strain tensors are ontravariant, and hene, are related to eah other

through the ontravariant transport operations in (A.7) of Appendix A.1. Moreover,

as an be diretly followed from their de�nitions, all presented deformation and strain

measures are dimensionless quantities. Besides the Green-Lagrangean and the Almansian

strains, further strain measures an be de�ned, f. Truesdell & Noll [263℄. These, however,

are not required in the present work.

3.4.2 Stress Measures

Strains an be interpreted as a relative movement of neighbouring material partiles of

a ontinuous body, while stresses an be understood as internal fores that these neigh-

bouring partiles exert on eah other. Stresses and strains are related to eah other sine

a strain in the body indues a stress, and vie versa. The relation between stress and

strain an, for example, be observed when ompressing elastially a linear spring. The

spring reats to the applied deformation by exerting a resistane to the deformation that

is proportional to the applied deformation. The resistane to the deformation and the

deformation itself an be measured by means of stresses and strains, respetively. Sine

stresses are de�ned as fores per area, their physial dimension is fore per unit area.

The onept of a stress tensor goes bak to Cauhy, who introdued his lemma and

theorem in 1823. Cauhy's lemma states that the tration vetors at a material point on

di�erent sides of a surfae, whih notionally divides the material body into two piees,

have the same value but opposite diretions, i. e.,

t(x, t,n) = −t(x, t,−n) , (3.36)

where t is the tration vetor and n denotes the outward-oriented normal vetor of the

atual on�guration. The surfae tration vetor is not a usual �eld funtion sine it

depends in addition to position and time on the orientation of the normal vetor. In

order to replae the tration vetor by a more onvenient quantity, i. e., a proper �eld

funtion, Cauhy introdued his theorem, whih reads

t(x, t,n) = T (x, t)n(x, t) , (3.37)

where T denotes the Cauhy stress tensor. Due to the fat that the Cauhy stress relates

inremental surfae fore elements dkS of the atual on�guration to atual area elements,

i. e.,

dkS = t da = T n da = T da , (3.38)

the Cauhy stress is also alled true stress and is obviously a quantity of the atual

on�guration.

Two further stress measures, namely the Kirhho� (or weighted) stress and the 1

st
Piola-

Kirhho� (or nominal or engineering) stress, an be introdued by applying the transport

theorem for area elements (3.28)2 to relate the atual area element to its referential oun-

terpart, i. e.,

dkS = T da = T (cof F ) dA = T (det F )F T−1 dA = τ F T−1 dA = P dA . (3.39)
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While the Kirhho� stress tensor τ (x, t) := (det F )T is ompletely de�ned in the a-

tual on�guration, the 1

st
Piola-Kirhho� stress P (x, t) := (det F )T F T−1

is a two-�eld

tensor, in whih the seond basis was pulled-bak to the referene on�guration by a o-

variant transport. Thus, the 1

st
Piola-Kirhho� stress relates an atual fore element to

a referential area element.

The interpretation of the 1

st
Piola-Kirhho� stress as a partial pull-bak of the Kirhho�

stress tensor inspires the de�nition of the 2

nd
Piola-Kirhho� stress. Thus, the 2

nd
Piola-

Kirhho� (or referene) stress is obtained by also pulling the �rst basis of the Kirhho�

stress to the referene on�guration using a ovariant transport, i. e.,

S(X, t) := F−1τ F T−1 = F−1P = (det F )F−1 T F T−1 . (3.40)

Obviously, the 2

nd
Piola-Kirhho� stress is entirely de�ned in the referene on�gura-

tion, and, similar to the Kirhho� stress, it has no diret physial interpretation. From

Equation (3.40) one an follow that the Kirhho� and the 2

nd
Piola-Kirhho� stresses

are related to eah other through ovariant push-forward and pull-bak operations for

seond-order tensors. Indeed, all of the presented stresses are ovariant. It is furthermore

noteworthy that if the Cauhy stress is symmetri, the Kirhho� and the 2

nd
Piola-

Kirhho� stresses are also symmetri, while the 1

st
Piola-Kirhho� stress is not. Further

stress measures an be de�ned, whih are, however, not relevant in this work.

The introdution of stress and strain measures of the referene and atual on�gura-

tions inspires the onept of onjugate variables. To this end, salar produts between

(ovariant) stresses and (ontravariant) strains of the same on�guration are omputed

aording to

S ·E = (F−1F )S ·E (F−1F ) = (F S F T ) · (F T−1EF−1) = τ ·A , (3.41)

yielding the onjugate pair of the referene on�guration, {S,E}, and the onjugate pair

of the atual on�guration, {τ ,A}.

3.4.3 Balane Relations

Being based on physial observations, the balane relations are axiomatially introdued

within a ontinuum-mehanial framework. For a mehanial body B the balane relations

ombine information given for the body (e. g. motion or deformation) with in�uenes

originating from outside the body (e. g. ontat or gravitational fores).

In general, the balane relations are introdued as an equation for the entire mehanial

body in a global sense. However, in ontinuum mehanis, one is partiularly interested

in loal relations that are valid for eah material point of the mehanial body. To this

end, loal balane relations valid for the material point are dedued from their global

ounterparts. Moreover, the balane relations an either be formulated in the referene

on�guration or in the atual on�guration � the latter are presented in this setion.

In general, mehanial and thermodynamial balane relations an be introdued. The

mehanial balane relations are the balane of mass, the balane of momentum, and the

balane of angular momentum. The thermodynamial balane relations are the balane of

energy and the balane of entropy. The balane of energy is an important relation when

taking into aount temperature e�ets, whih are not onsidered in this work. Further,
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the balane of entropy in onjuntion with the seond law of thermodynamis, whih

states that the entropy prodution in a losed system an never be negative, are used

to formulate thermodynami-sound onstitutive equations. Similar to Hill-type musle

models, this work assumes a priori a superposition of the ative and passive stress on-

tributions. Further, negleting visous e�ets, the passive behaviour of the musle tissue

is modelled as an hyperelasti material. For hyperelasti materials, the result of the eval-

uation of the seond law of thermodynamis is well known. Following this, instead of

expliitly introduing the thermodynamial balane relations, their results are diretly

adopted in this work.

Balane of Mass

The balane of mass states that, in a losed system, the mass of a body does not hange

in time. This diretly yields the global form of the balane of mass

d

dt

∫

B

ρ dv = 0 , (3.42)

where ρ denotes the (mass) density. To derive the loal form of the balane of mass,

�rst, the time derivative is arried out, whereby one has to keep in mind that the atual

volume element depends on the time. Inserting the time derivative of the volume element,

(dv)′ = (div ẋ) dv, and dropping the integral yields the loal form of the mass balane,

ρ̇ + ρ div ẋ = 0 . (3.43)

Balane of Momentum

The balane of momentum states that the hange in time of the momentum of the body

equals the sum of the fores ating on the mehanial body at the viinity and from the

distane. In terms of mathematis, this yields the global momentum balane

d

dt

∫

B

ρ ẋ dv =

∫

∂B

T nda +

∫

B

ρb dv . (3.44)

Therein, ρb denotes the supply term, whih is usually the volume-spei� gravitational

fore. To derive the loal form of the momentum balane, one �rst arries out the time

derivative on the left-hand side of (3.44). To simplify the result, the time derivative of the

volume element and the loal mass balane (3.43) are used. Next, the divergene theorem

(or Gauÿ's theorem) is applied to transform the surfae integral into a volume integral.

Finally, the integration an be dropped. This yields the loal balane of momentum

ρ ẍ = div T + ρb . (3.45)

Equation (3.45), also known as Cauhy's �rst law of motion, is the most important relation

in ontinuum mehanis.
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Balane of Angular Momentum

Within the balane of angular momentum (moment of momentum), the hange in time of

the body's angular momentum is balaned with the moments ating on the body evoked

by internal and external fores with respet to the same arbitrary referene point. This

yields the global balane of angular momentum

d

dt

∫

B

(x × ρ ẋ) dv =

∫

∂B

(x × T )nda +

∫

B

(x × ρb) dv . (3.46)

Following the same proedure as before and inserting the loal forms of the mass and

momentum balanes, (3.43) and (3.45), respetively, Equation (3.46) yields the loal form

of the balane of angular momentum (Cauhy's seond law of motion), viz.

0 = I × T . (3.47)

Using the de�nition of the axial vetor,

A
t := 1

2

3

E T T = 1
2
I × T , where

3

E denotes

the third-order Rii tensor, the loal balane of angular momentum (3.47) yields the

symmetry of the Cauhy stress tensor

T = T T . (3.48)

Note that, aording to Setion 3.4.2, the symmetry of the Cauhy stress implies the

symmetries of the Kirhho� and 2

nd

Piola-Kirhho� stresses.



4 Biophysial Cell Modelling of the

Neuromusular System

The aim of this hapter is to establish a novel model of the neuromusular system that is

biophysial in all main parts. To this end, a biophysial model of the motor neuron pool

is oupled to a biophysial model of the musle units.

An important property of neurons and musle ells alike is the eletrial exitability of

their ell membrane, f. Setion 2.3. Biophysial models of ellular membrane dynamis

that desribe the �ow of ions rossing the sarolemma are often based on the Hodgkin-

Huxley formalism. Therefore, this hapter presents the lassial Hodgkin-Huxley model

in Setion 4.1. An extension of this desription to a two-ompartment model is presented

in Setion 4.2 by reviewing the model of a motor neuron pool of Negro & Farina [186℄.

Setion 4.3 desribes the model of the exitation-ontration oupling in skeletal musle

�bres of Shorten et al. [240℄ and its extension to non-isometri ontrations. Further, the

model of Shorten et al. [240℄ is extended to a desription of the motor units of a musle.

To simulate the entire neuromusular system, Setion 4.4 ouples the resulting model of

the musle units to the model of the MN pool of Negro & Farina [186℄. Representative

simulations demonstrate the apaity of the integrated model.

4.1 The Hodgkin-Huxley Model of the Membrane

Eletrophysiology

In a series of papers published in 1952, Hodgkin and Huxley investigate the �ow of eletri

urrent through the ell membrane of the giant axon of a squid. They were awarded the

Nobel Prize in Physiology or Mediine in 1963 for their disovery of the ioni mehanisms

in the ell membrane during an ation potential. In a summary paper [120℄, the authors

develop a mathematial desription of the membrane behaviour based on their experi-

mental results. Their key idea was to model the membrane of eletrially exitable ells

as an eletrial iruit and to represent urrents �owing through a large population of ion

hannels based on voltage-dependent gating properties [187℄. The form of this desription

has been used as the basis for almost all other ioni urrent models of exitable tissues.

The Hodgkin-Huxley model is brie�y presented here, as it builds the foundation for the

MN model and the model of the skeletal musle membrane used in this work.

Cell membranes are seletively permeable to (harged) ions, and onsequently they are

able to separate eletrial harges. In the ontext of modelling, this an be represented

by assigning a apaitane to the ell membrane. The law of apaitane states that

the eletri harge of a apaitor equals the voltage di�erene aross the apaitor times

its apaitane. Taking the time derivative of the law of apaitane, the membrane

apaitane, Cm, times the temporal hange of the membrane potential, Vm, equals the

41
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(negative) sum of the ioni urrents rossing the membrane, I
ion

:

Im = Cm
∂Vm
∂t

+ I
ion

= 0 , (4.1)

where Im denotes the total urrent �ow aross the ell membrane. The Hodgkin-Huxley

model onsiders urrents through sodium and potassium hannels, I
Na

and IK , respe-
tively, and a leakage urrent IL representing the natural permeability of the membrane

to, for example, Cl− ions. Further, a urrent I
stim

is onsidered that allows to stimulate

the model from outside:

I
ion

= I
Na

+ IK + IL − I
stim

. (4.2)

Note that, by onvention, a positive sign indiates an outward urrent with the exeption

of I
stim

, where a positive sign indiates an inward urrent. Based on Ohm's law, the

membrane urrent of a given ion type i, with i ∈ {Na, K, L}, is proportional to the

membrane's ondutane for this ion speies and to a driving fore in the form of the

di�erene between the membrane potential and the ion's equilibrium potential, Ei:

Ii = gi (Vm − Ei) , (4.3)

where gi denotes the ondutane per unit area for ion speies i and is the inverse of the re-
sistane. While the leakage ondutane, gL, is assumed to be onstant, the ondutanes

for the potassium and sodium hannels depend on the membrane potential:

gK = ḡK n
4 , g

Na

= ḡ
Na

m3 h . (4.4)

Therein, ḡK and ḡ
Na

denote the maximum values of the respetive ondutanes, and n,m,

and h are gating variables resembling probabilities assoiated with the potassium hannel

ativation, sodium hannel ativation, and sodium hannel inativation, respetively [120℄.

The evolution equations of the gating variables are based on �rst-order kinetis and an

either be expressed using relaxation time onstants (f. [120℄), or take the form

∂ω

∂t
= αω(Vm) (1− ω) − βω(Vm)ω , (4.5)

for ω ∈ {n,m, h}. The dependene of the forward and bakward reation rates ηω ∈
{αω(Vm), βω(Vm)}, respetively, on the membrane voltage an be generalised using the

form

ηω =
aω + bω Vm

cω + dω exp
(

Vm+eω
fω

) , (4.6)

with onstants aω, bω, cω, dω, eω, and fω [187℄. For the sake of brevity, further details are

omitted here but an be found, for example, in [120, 187℄. Figure 4.1a shows the eletrial

iruit used in the Hodgkin-Huxley model to represent the ell membrane. Furthermore,

parameters for the Hodgkin-Huxley model are summarised in Table 4.1.

In Figure 4.1b the Hodgkin-Huxley model is used to simulate a train of APs at a

disharge rate of 50Hz. For this simulation, a stimulating urrent of I
stim

= 20µA/cm2
is

applied for 0.5ms at times t = 0, 20, . . . , 80ms. Initial onditions are listed in Table 4.2.
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Figure 4.1: Hodgkin-Huxley model. (a) Eletrial iruit equivalent to the model. Resistors

with an arrow indiate voltage-dependent ondutanes. The membrane potential, Vm, equals the

di�erene between the intraellular potential, φi, and the extraellular potential, φe. The driving

fores in the model are the di�erenes between the membrane potential and the orresponding

equilibrium potentials, whih are represented by batteries. (b) Simulated train of APs due to

external stimuli at t = 0, 20, 40, 60, 80ms.

Cm ḡ
Na

ḡK ḡL E
Na

EK EL

1.0µF/m2
120.0mS/m

2
36.0mS/m

2
0.3mS/m

2
40.0mV -87.0mV -64.387mV

Table 4.1: Parameters for the Hodgkin-Huxley model.

Vm n m h
-75.0mV 0.325 [ � ℄ 0.05 [ � ℄ 0.6 [ � ℄

Table 4.2: Initial onditions for the Hodgkin-Huxley model.

The Hodgkin-Huxley model an also be driven by applying a lower, long-lasting stimu-

lation urrent. For example, an output disharge rate of approximately 50Hz as in Figure

4.1b, an be ahieved by onstantly applying I
stim

= 4.1µA/cm2
to the MN model. This

type of stimulation is more realisti, as MNs reeive permanently synapti input of varying

intensity form di�erent soures. This is ommonly simulated by superimposing a mean

input urrent with noisy signals representing, for example, synapti noise, f. Setion 4.2.3.

Hodgkin-Huxley-type models are ommonly formulated as systems of nonlinear ODEs

for Vm and the gating variables m, n, and h, f. Equations (4.1) and (4.5), respetively.

Making use of the abstrat representation for ODEs (3.8), y = [Vm, m, n, h]
T ∈ R4

. The

model of Hodgkin & Huxley [120℄ onsists of a single ompartment and onsiders ioni

urrents for sodium and potassium as well as a leakage urrent. Based on the same

formalism, more detailed models have been proposed in the literature. These models

typially distinguish more ioni urrents, and/or subdivide the modelled membrane into

multiple ompartments, whih are oupled to eah other, see e. g. [2, 232, 272℄. Further

information on the Hodgkin-Huxley model and its variants an be found, for example, in

Nelson [187℄, Noble [194℄, and in a ritial review of Meunier & Segev [172℄.



44 Chapter 4: Biophysial Cell Modelling of the Neuromusular System

4.2 Modelling Motor Neurons and the Motor Neuron

Pool

Based on the Hodgkin-Huxley formalism, Cisi & Kohn [39℄ proposed a ompartmental

model for the simulation of spinal ord MNs. The number of simulated ompartments for

eah MN is limited to two in order to balane the biologial realism and the omputational

load [39℄. In detail, the dendrites are lumped together in one ompartment. The seond

ompartment represents the soma. Somati APs are assumed to propagate along the

axon, whih is not modelled expliitly, and are transferred to the musle �bres at the

neuromusular juntions. To be able to solve Equation (4.5) analytially, Cisi & Kohn

[39℄ approximate the time ourses of the reation rates (4.6) by retangular pulses. Negro

& Farina [186℄ disard this approximation and solve the ODEs for the gating variables

(4.5) using funtions of the form (4.6) provided by Traub & Miles [262℄. This model of

Negro & Farina [186℄ and its parametrisation are adopted in this work for the simulation

of spinal ord MNs.

4.2.1 Mathematial Desription of the Motor Neuron Model

The MN model of Cisi & Kohn [39℄ distinguishes the membrane potential in the dendrites

and in the soma, V d
m(t) and V

s
m(t), respetively, given by

Cd
m

∂V d
m

∂t
= −Id

ion

(V d
m)− IdC(V

d
m, V

s
m) , Cs

m

∂V s
m

∂t
= −Is

ion

(V s
m)− IsC(V

d
m, V

s
m) . (4.7)

The two equations are linked to eah other through oupling urrents IdC and IsC , where
IsC = −IdC due to the onservation of eletri harge. Further, in Equation (4.7), Id

ion

and Is
ion

are the ioni urrents rossing the membrane of the dendrites and the soma,

respetively. For the dendrites only a leakage urrent IdL is onsidered, while for the soma

a leakage urrent IsL, a sodium urrent I
Na

, a fast and a slow potassium urrent, I
Kf

and

I
Ks

, respetively, and an external urrent I
stim

are onsidered:

Id
ion

= IdL , Is
ion

= IsL + I
Na

+ I
Kf

+ I
Ks

− I
stim

. (4.8)

Cisi & Kohn [39℄ redued the number of ioni urrents to a minimum that still enabled the

reprodution of a reasonably large set of neuronal properties. The slow potassium urrent,

for example, has been inluded to inorporate the afterhyperpolarisation, whih impedes

the generation of subsequent APs, f. Setion 2.3.2. The eletrial iruit orresponding

to the MN model of Cisi & Kohn [39℄ is depited in Figure 4.2.

Similar to the approah of Hodgkin & Huxley [120℄, the desription of the ioni urrents

is based on Ohm's law, i. e., the urrents equal a ondutane times a potential di�erene,

i. e.,

IdL = gdL (V
d
m − EL) , IsL = gsL (V

s
m − EL) ,

IdC = gC (V d
m − V s

m) , I
Na

= g
Na

(V s
m − E

Na

) ,

I
Kf

= g
Kf

(V s
m −EK) , I

Ks

= g
Ks

(V s
m −EK) .

(4.9)

Therein, EL, ENa

, and EK are the equilibrium (or Nernst) potentials, gC denotes the

(onstant) oupling ondutane, gdL and gsL are the (onstant) dendriti and somati
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Figure 4.2: Equivalent eletrial iruit of the motor neuron model. Resistors with an arrow

indiate voltage-dependent ondutanes. The dendriti membrane potential, V d
m, equals the dif-

ferene between the dendriti intraellular potential, φd
i , and the extraellular potential, φe. The

somati membrane potential, V s
m, equals the di�erene between the somati intraellular potential,

φs
i , and the extraellular potential, φe. The driving fores in the model are the di�erenes between

the membrane potentials and the orresponding equilibrium potentials, whih are represented by

batteries.

leakage ondutanes, respetively, g
Na

is the sodium hannel ondutane, and g
Kf

and

g
Ks

represent the fast and slow potassium hannel ondutanes, respetively. To model

the membrane potential dependene of g
Na

, g
Kf

, and g
Ks

gating variables m, n, h, and q
are introdued, together with the maximum ondutanes, ḡ

Na

, ḡ
Kf

, and ḡ
Ks

:

g
Na

= ḡ
Na

m3 , g
Kf

= ḡ
Kf

n4 , g
Ks

= ḡ
Ks

q2 h . (4.10)

The evolution of the gating variables, ω ∈ {m, n, h, q}, is given by Equation (4.5) using

the respetive forward and bakward reation rates given in Equation (4.6). Together

with the equations for the dendriti and somati membrane potentials (4.7), this yields

a nonlinear system of six oupled ODEs. Using the abstrat representation of (3.8),

y = [V d
m, V

s
m, m, n, h, q]

T ∈ R6
. A omplete desription of the mathematial equations

of the MN model of Negro & Farina [186℄ is inluded in Appendix B.

4.2.2 Motor Neuron Pool Modelling

To simulate the behaviour of a MN pool, eah MN is desribed by the equations given

above. Note that the equations for one MN an be solved independently of all other

MNs, sine the modelled MNs are not oupled to eah other or do exhange information.

The MNs of a pool are only related to eah other through synapti input omponents

ommon to several MNs and the assigned MN parameters, e. g. the exitation threshold.

As desribed in Setion 2.4.3, MN exitation thresholds are distributed aross a MN pool,

whereat many low-threshold MNs and few high-threshold MNs are found, f. e. g. Powers

& Binder [207℄, Thomas et al. [259℄. The MN model of Negro & Farina [186℄ aounts for

this distribution by speifying extreme values for the eletrial and geometrial properties

of the MNs in a pool, and interpolating exponentially between these extreme values to
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�nd the properties of a given MN. To do so, it is onvenient to number the MNs in

the pool in an ordered sequene, e. g., starting from the MN with the lowest exitation

threshold (MN number 1) to the highest-threshold MN (MN number N , with N being the

number of MNs in the pool). Let δl and δu denote the lower and upper extreme values of

a property, respetively. Following Negro & Farina [186℄, the orresponding value of the

i-th MN with i ∈ {1, . . . , N} is determined from

δi = δl +
δu − δl
100

exp
(

ln (100)
i

N

)

. (4.11)

The extreme values of the eletrial (soma- and dendrite-spei� resistanes) and geomet-

rial properties (length and diameter of soma and dendrite) used in the interpolation are

adopted from Cisi & Kohn [39℄ and are provided in Appendix B. It is noteworthy that

due to the assigned parameter ranges, a size-ordered MN reruitment pattern is observed,

when applying a ommon stimulation urrent to the entire MN pool [39℄. This behaviour

is also experimentally observed, f. Henneman et al. [112, 113℄. Further parameters suh

as equilibrium potentials and membrane apaitane (f. Appendix B) are also adopted

from Cisi & Kohn [39℄, who based their model on a broad range of experimental data

available from the literature.

4.2.3 Input to Motor Neurons

Spinal ord MNs onstantly reeive exitatory and inhibitory postsynapti inputs from

various soures, for example, from the motor ortex via the ortiospinal trat, from the

brain stem, from a�erent neurons, and from interneurons. Due to the temporal and spatial

summation of these postsynapti potentials, the MN's membrane potential is permanently

subjet to random �utuations [35℄. To aount in the model for these �utuations, the

synapti input urrent to eah MN ontains noise omponents. Furthermore, omponents

in the input signal an be di�erent for eah MN or ommon to (parts of) the MN pool

depending on the origin of the input. In detail, a ortial input urrent I
CI

, ommon to

the entire MN pool, is onsidered. This input onsists of two parts, a mean omponent

Im
CI

and a noise omponent In
CI

. The �utuating omponent, In
CI

, is modelled as oloured

Gauÿian noise (bandwidth 0.5�40Hz), f. [186℄. Gauÿian white noise refers to a random

signal with zero mean, onstant power spetral density, and Gauÿian (normal) amplitude

distribution. Further, a seond ommon input omponent I
SI

is onsidered represent-

ing, for example, signals from the brain stem, interneurons and a�erent neurons. This

omponent is modelled as band-limited (0�100Hz) Gauÿian white noise [186℄. Addition-

ally, an independent signal I
IN

for eah MN is onsidered representing synapti noise,

whih is modelled as band-limited (0�100Hz) Gauÿian white noise [186℄. The spei�

forms of the omponents are hosen based on literature data, f. Negro & Farina [186℄.

The synapti input signal for eah MN is a linear ombination of these omponents, i. e.,

I
stim

= (Im
CI

+ In
CI

)+ I
SI

+ I
IN

. Note that the independent noise omponent, the seondary

ommon input omponent, and the �utuating ortial omponent ontain positive and

negative values, representing exitatory and inhibitory signals, and variations from the

mean ortial input, respetively.
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4.2.4 Behaviour of the Motor Neuron Model

To demonstrate the basi behaviour of the MN model,Matlab's build in solver ODE113

is employed to approximate the solution to the governing di�erential equations using

optimised time steps within intervals of 1ms. Figure 4.3a shows a single AP of a high-

threshold MN. Figure 4.3b depits a low-threshold MN disharging a train of APs in

response to an input signal as desribed in Setion 4.2.3.
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Figure 4.3: (a) Simulated single AP of a high-threshold motor neuron. (b) Simulated train of

APs of a low-threshold MN.

The following examples demonstrate the behaviour of a MN pool by onsidering 100

MNs with geometrial and eletrial properties aording to Equation (4.11). The simu-

lation time is 10 s, and the sampling rate in all simulations is 1000/s. In the �rst example,

a onstant mean ortial input urrent of Im
CI

= 0.005µA/cm2
is hosen for all MNs. Fur-

ther, also ommon to all MNs of the pool are input omponents In
CI

and I
SI

(zero mean,

standard deviation SD=0.00074). Individual to eah MN is the synapti noise ompo-

nent I
IN

(zero mean, SD=0.0021). All input omponents are modelled as desribed in

Setion 4.2.3. Figure 4.4a shows the oe�ient of variation (CoV, de�ned as the ratio of

the standard deviation and the mean multiplied by 100%) of the input signal for eah

MN in the pool.

Due to the applied input signal, 85 out of the pool's 100 MNs are reruited. The

disharge rates of nine seleted MNs are depited in Figure 4.4. Figures 4.4b and 4.4d

show the temporal mean of the disharge rate and the CoV of the interspike interval (ISI),

respetively, of all ative MNs.

The average disharge rate of most MNs in the simulation ranges from 10�16Hz for

the applied synapti input signal (f. Figure 4.4b), whih ompares well to experimentally

determined MN disharge rates at low fore and EMG levels, f. e. g. Bellemare et al.

[13℄, Farina & Falla [69℄. While the CoV of the input signal is approximately 44.5%

for all MNs, f. Figure 4.4a, the CoV of the ISI is around 20% for most MNs, and

only inreases for larger MNs disharging few APs, see, for example, MN number 81 in

Figure 4.4. The CoV of the ISI for isometri ontrations of human musles generally

ranges from 10 to 30%, f. Nordstrom et al. [195℄.
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Figure 4.4: Input-output behaviour of the motor neuron model. (a) Coe�ient of variation of

the input signal. The mean of the input signal is 0.005µA/m2
for all MNs. (b) Temporal mean

of the disharge rate for all 85 ative MNs. () Disharge rates of nine seleted MNs of a pool

onsisting of 100 MNs. The numbers of the depited MNs are displayed in the legend. (d) CoV

of the interspike interval for all ative MNs.

The seond example illustrates the behaviour of the MN model for synapti input signals

of di�erent magnitude. To do so, an input sale fator θs ∈ [0, 10] is introdued. Similar to

the previous example, the onsidered MN pool onsists of 100 MNs, the simulation time is

10 s, the sampling rate is 1000/s, and a mean input urrent of Im
CI

= 0.005µA/cm2
(before

saling) is applied. Two senarios, alled WN and NN, are onsidered. In senario WN it

is assumed that the individual synapti noise inreases when ortial input is inreased,

while the amplitude of the �utuations in the ortial signal and the amount of seondary

input remain at the same level. Hene, the synapti input urrent is modelled by I
stim

=
θs I

m
CI

+In
CI

+I
SI

+
√
θs IIN, where the individual input omponents are modelled as desribed

in Setion 4.2.3. Note that this synapti input urrent is not neessarily physiologial. In

reality the �utuations in the ortial signal and the amount of seondary input to MNs

might also inrease with inreasing mean ortial input. The seond senario, alled NN,

is inluded to demonstrate the e�et of �utuations in the synapti input to MNs. To

do so, only the mean omponent of the ortial input is onsidered, while all �utuating

omponents are exluded, i. e., I
stim

= θs I
m
CI

.
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Figure 4.5: Mean disharge rates for eah MN in a pool of 100 MNs, and for varying synapti

input urrent strengths. Colour bars on the right indiating disharge rates in Hz also apply to

(a). (a,b) Average MN disharge rates, when �utuations are present in the synapti input to

MNs (senario WN). () The average CoV of the ISI of all ative MNs versus the input sale

fator for senario WN. (d) Average MN disharge rates, when no �utuations are present in

the synapti input to MNs (senario NN).

For senario WN Figures 4.5a and 4.5b depit for di�erent ombinations of input sale

fator and MN number the disharge rates averaged over the 10 s simulation time as

surfae plot and as ontour plot, respetively. For omparison, Figure 4.5d shows the

ontour plot of the disharge rates for senario NN. Figure 4.5 plots for senario WN the

CoV of the ISI averaged over all ative MNs versus the input sale fator.

Although not neessarily physiologi, the spei� form of the synapti input urrent of

senario WN has been hosen suh that the CoV of the ISI of the MN disharges is ap-

proximately 20% for a wide range of input sale fators, f. Figure 4.5. The value of 20%

has been hosen in agreement with data of isometri ontrations of human musles. For

example, Nordstrom et al. [195℄ reported 10�30% for isometri ontrations in humans.

In the model, the CoV of the ISI exeeds 30% only for very low input sale fators and

for input sale fators ranging from 4 to 6, whih is beyond the physiologial range (see

further below). For low input sale fators, and hene low synapti inputs, many MNs

are just reruited. The inreased CoV of the ISI at low synapti inputs orresponds to

the experimental observation that the variability in the ISI of a MN is marked lose to
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its reruitment and delines with an inrease in ontration intensity, f. Duhateau &

Enoka [57℄ and referenes therein.

The mean disharge rates due to existing or non-existing �utuations in the synapti

input to MNs are only similar for low inputs, f. Figures 4.5b and 4.5d. In detail, for

θs ≤ 2.5 the mean and standard deviation of the di�erene between the disharge rates of

the two senarios are 1.92Hz and 2.37Hz, respetively. The maximum di�erene in this

region is 11Hz, and is observed for MN numbers 78, 88, 90, and 91 and for sale fators

ranging from 1.4 to 2.5. The mean disharge rates are generally higher when �utuations

are onsidered in the input signal to MNs for θs ≤ 2.5. For input sale fators ranging from
2.5 to 4, di�erent behaviours are observed for the di�erent senarios. When �utuations

are not onsidered in the input signal (senario NN ), low- and medium-threshold MNs

stop disharging APs, while the MN disharge rates in senario WN further inrease. A

derease in the disharge rates is observed in senario WN only for even higher synapti

inputs (θs > 4). The observed behaviour that MNs stop disharging APs at higher

injeted urrents an also be observed in the Hodgkin-Huxley model (result not shown).

In experiments, however, this behaviour is not observed. Instead, MN disharge rates

reah a plateau, f. Duhateau & Enoka [57℄. It should be noted though, that the range

of input sale fators onsidered here largely exeeds the physiologial range of synapti

inputs to MNs (physiologial range: θs ≤ 3, i. e., θs I
m
CI

≤ 0.015µA/cm2
). Comparing

the mean disharge rates of the two senarios, one an onlude that �utuations in the

input signal not only introdue variability in the ISI of the MN disharge rates but also

in�uene to a large extent the mean MN disharge rates averaged over the 10 s simulation

period. This observation an potentially be explained by nonlinearities in the MN spiking

proess.

Further, the exponential distribution of parameters is re�eted in the shape of the

ontour plot. This an be observed, for example, in Figure 4.5b at an input sale fator of

three. Here, the majority of MNs (those with lower MN numbers) disharge APs at a rate

of 30 to 40Hz, and few MNs with higher MN number disharge APs at lower frequenies.

The mean disharge rates of 30 to 40Hz for θs ≈ 3 ompare well to the peak disharge

rates observed in human non-ballisti isometri ontrations, whih typially range from

20 to 50Hz, f. Bellemare et al. [13℄. Note that muh higher instantaneous disharge

rates (>100Hz) are observed in human musles at the onset of ballisti ontrations, f.

e. g. Duhateau & Baudry [56℄, Duhateau & Enoka [57℄, Farina & Falla [69℄. Ballisti

ontrations are haraterised by high MN disharge rates, brief ontration times, and

high rates of fore development [283℄. Further, the form of the MN disharge rates implies

that most MNs of the pool are reruited at relatively low synapti inputs. Therefore, at

low synapti input levels, and hene low fore levels, fore ontrol relies mainly on the

reruitment of MUs, while at high synapti input levels, and hene high fore levels,

rate modulation remains as the mehanism for varying the fore. This behaviour is in

agreement with experimental observations, f. Duhateau & Enoka [57℄.

It is furthermore noteworthy that, when using the presented MN model, high-threshold

MUs annot reah very high disharge rates, sine at the required synapti input levels

(θs>8), low-threshold MNs have already stopped disharging, f. Figure 4.5. From a phys-

iologial point of view, this behaviour is not reasonable, as high-threshold MNs innervate

fast-twith musle units, whose twithes only fuse at high disharge rates. The atual

behaviour of the MN pool at high synapti inputs remains still unresolved. Aording
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to Duhateau & Enoka [57℄, this is largely due to tehnial fators limiting the ability

to reord the maximal disharge rate of high-threshold MUs, and to follow low-threshold

MUs over the full range of ontration fores.

4.3 Modelling the Subellular Behaviour of Skeletal

Musles

The signaling pathway from eletrial exitation to ontration and fore generation in

skeletal musles (see Setion 2.5.2) is extremely omplex and to date not ompletely un-

derstood [161℄. Due to this omplexity, most researh groups speialise on a ertain aspet

of the exitation-ontration oupling rather than trying to apture the entire pathway.

This might explain why a large number of mathematial models exist in the literature

desribing biophysially a ertain omponent involved in the exitation-ontration ou-

pling, but hardly any model has been proposed that represents the entire signaling path-

way. An exeption is the model of Shorten et al. [240℄, whih ombines several models

of omponents to desribe the subellular proesses leading from eletrial ativation to

ross-bridge yling and isometri fore generation in skeletal musle ells.

The main advantage of the model of Shorten et al. [240℄ is that it resembles losely the

atual ellular biohemial events leading to fore generation in skeletal musle �bres, i. e.,

the model inludes desriptions of the membrane eletrophysiology, alium dynamis,

and XB yling [240℄. The model was validated using slow-twith and fast-twith skeletal

musles of mie at di�erent stimulation frequenies. Due to its biophysial basis, the

model an help to further the understanding of the physiology of skeletal musles, and it

an be applied to investigate pathologial onditions.

4.3.1 Mathematial Desription of the Skeletal Musle Model

To represent subellular proesses in skeletal musles, the present work adopts the model

of Shorten et al. [240℄. To model the omplex nonlinear signaling pathway leading from

eletrial stimulation to fore generation in a skeletal musle �bre, Shorten et al. [240℄

ombine several models of omponents of the exitation-ontration pathway representing

(a) the Hodgkin-Huxley eletrophysiology of ation potentials via urrents in the sar-

olemma and T-tubules, f. Adrian & Peahey [2℄, Wallinga et al. [272℄,

(b) intraellular Ca2+ release from the saroplasmi retiulum in response to membrane

depolarisation through ryanodine reeptor Ca2+ release hannels, f. Ríos et al. [217℄,

() alium dynamis, i. e., the binding of Ca2+ to parvalbumin, adenosine triphosphate,

troponin, and in the SR to alsequestrin, f. Baylor & Hollingworth [12℄,

(d) fore generation via ross-bridge yling, f. Campbell et al. [36, 37℄, Razumova

et al. [214, 215℄, and

(e) the ellular mehanisms behind musle fatigue on the basis of phosphate dynamis.

Figure 4.6 shematially depits an overview of the model of Shorten et al. [240℄, indiating

the individual model omponents (a�e, see above) and their interations. Additional

details will be provided in the following setions.
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Figure 4.6: Shemati representation of the model of Shorten et al. [240℄, indiating its ompo-

nents and their interations. Therein, (a) indiates the model of the membrane ioni urrents,

(b) is the Ca2+ release model, () denotes the Ca2+ dynamis model, (d) is the model of the XB

dynamis, and (e) shows the fatigue model.

The model of Shorten et al. [240℄ onsists of 56 oupled ODEs desribing the tempo-

ral hanges of the unknowns y = [yT
mem

, yT
CaR

, yT
CaD

, yT
XB

, yTp ]
T ∈ R56

. The omplete

mathematial desription of the model is omitted here but an be found in the appendix

of Shorten et al. [240℄. In the following, a brief summary of eah omponent model is

provided. For more details, the interested reader is referred to Shorten et al. [240℄ and

the literature ited therein.

Membrane Eletrophysiology

Based on the Hodgkin-Huxley formalism, a two-ompartment model of membrane ele-

trophysiology is utilised, f. Wallinga et al. [272℄ and Adrian & Peahey [2℄. The model

distinguishes ioni urrents rossing the sarolemma (supersript s) and the T-tubule

membrane (supersript t), Is
ion

and I t
ion

, respetively, whih are given by

Is
ion

= Is
Na

+ Is
DR

+ Is
IR

+ Is
Cl

+ Is
NaK

, I t
ion

= I t
Na

+ I t
DR

+ I t
IR

+ I t
Cl

+ I t
NaK

. (4.12)

Both urrents onsist of the sum of the individual urrents through sodium hannels

(Is
Na

, I t
Na

), delayed reti�er (Is
DR

, I t
DR

) and inverse reti�er potassium hannels (Is
IR

, I t
IR

),

hloride hannels (Is
Cl

, I t
Cl

), and Na+-K+
pumps (Is

NaK

, I t
NaK

). Based on Ohm's law,

an aess urrent between the T-tubule spae and the extraellular spae is introdued

oupling the two ompartments to eah other:

IT =
V s
m − V t

m

Ra
. (4.13)

Therein, Ra denotes the aess resistane at the T-tubule entrane, and V s
m and V t

m are

the potential di�erenes aross the sarolemma and the T-tubule membrane, respetively.

Figure 4.7a shows shematially the individual urrents rossing the sarolemma and the

T-tubule membrane.
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Figure 4.7: (a) The musle membrane eletrophysiologial model. Shown are ioni urrents

rossing the sarolemma (supersript s) and the T-tubule membrane (supersript t) through

sodium hannels (Is
Na

, It
Na

), delayed reti�er (Is
DR

, It
DR

) and inverse reti�er potassium hannels

(Is
IR

, It
IR

), hloride hannels (Is
Cl

, It
Cl

), and Na+-K+
pumps (Is

NaK

, It
NaK

), as well as the aess

urrent (urrent between the T-tubules and the extraellular spae, Iac
Na

, IacK ). (b) The alium

dynamis model. Ca2+ binds to troponin, parvalbumin, and ATP in the ytosol, as well as to

alsequestrin in the saroplasmi retiulum.

Both the urrents rossing the sarolemma and the aess urrents ontribute to hanges

in the sarolemma's membrane potential, i. e.,

Cs
m

∂V s
m

∂t
= − Is

ion

(t, V s
m) − IT . (4.14)

Being based on the Hodgkin-Huxley formalism, the ioni urrents for the sodium han-

nels, delayed reti�er and inverse reti�er potassium hannels, and hlorides hannels are

omputed as desribed in Setion 4.1. The omponent model desribing the membrane

eletrophysiology aounts for 18 of the 56 ODEs of the model of Shorten et al. [240℄,

i. e., y
mem

∈ R18
. Further details are omitted here but an be found in Adrian & Peahey

[2℄, Shorten et al. [240℄, Wallinga et al. [272℄.

Intraellular Calium Release and Calium Dynamis

Inoming APs enter the T-tubule and depolarise the T-tubule membrane ensuring a si-

multaneous ativation of all saromeres in the ross-setion of a musle �bre. Changes

in the T-tubule membrane potential are sensed by the dihydropyridine reeptor. The

dihydropyridine reeptor in the T-tubule membrane is linked to the RyR omplex in the

membrane of the SR, whih, upon ativation, enables the release of Ca2+ ions.

The intraellular release of alium from the SR to the ytosol is desribed by a ten-

state model originally proposed by Ríos et al. [217℄, i. e., y
CaR

∈ R10
. In the model, the

RyR omplex onsists of a Ca2+ hannel and four voltage sensors, whih are ativated by

the T-tubule membrane potential. Eah sensor an be in an ativated or a deativated

state, and the Ca2+ hannel an be losed or open. The rate at whih the Ca2+ hannel

opens (loses) inreases with the number of voltage sensors in the ativated (deativated)

state.
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The released Ca2+ ions in the ytosol bind to bu�ers suh as parvalbumin and ATP

along with troponin on the myo�laments to enable XB dynamis. This is desribed by

�rst-order kinetis. For example, for the binding of Ca2+ to ATP,

Ca2+ + ATP
k
on−−⇀↽−−
k
o�

CaATP , (4.15)

this yields the following di�erential equations:

∂[Ca2+]

∂t
= k

o�

[CaATP]− k
on

[Ca2+][ATP] ,

∂[ATP]

∂t
= k

o�

[CaATP]− k
on

[Ca2+][ATP] ,

∂[CaATP]

∂t
= k

on

[Ca2+][ATP]− k
o�

[CaATP] .

(4.16)

Therein, square brakets indiate onentrations.

After being transported bak to the SR via Ca2+-ATPase, the Ca2+ ions bind to alse-

questrin. Intraellular magnesium ions (Mg2+) ompete with Ca2+ for parvalbumin and

ATP binding sites. The Ca2+ transport model is depited in Figure 4.7b. The al-

ium dynamis model onsiders two ytosol ompartments, one lose to the SR and one

further away. Considering alium dynamis in both ompartments separately, the al-

ium dynamis model aounts for 18 ODEs to the biophysial musle model [240℄, i. e.,

y
CaD

∈ R18
.

Fore Generation via Cross-Bridge Dynamis

The binding of two Ca2+ ions to troponin C leads to a onformational hange in the

troponin moleule that removes the bloking tropomyosin from the atin �lament, whih

allows the myosin heads to attah to the atin binding sites to form XBs.

An eight-state model of XB dynamis in skeletal musle based on the generi models

of Razumova, Campbell, and o-workers [36, 37, 214, 215℄ is employed. The eight-state

model an be expressed using seven ODEs, as the onentration of XBs in the eighth

state an be algebraially determined from the onentration of the seven other states

and the total number of XBs available for XB yling, i. e., y
XB

∈ R
7
. Figure 4.8a shows

shematially the XB-yling sheme. In six of the eight states XBs are detahed with

either zero, one, or two Ca2+ ions bound to troponin (denoted by indies 0, 1, and 2,

respetively), and tropomyosin in either the bloking (B) or non-bloking (D) position.

Only when two Ca2+ ions are bound to troponin, the tropomyosin blok an be removed

(B2 → D2 ), and the detahed XB an move to a state in whih the myosin head is

attahed. Two attahed states are distinguished � the pre-power stroke state, A1, and the

post-power stroke state, A2. The transition from the A1 to the A2 state represents the

power stroke, i. e., the fore produing step. The onentrations of XBs in the detahed

state D2 and the attahed states A1 and A2 are denoted by the respetive quantity in
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square brakets and are derived from the following di�erential equations:

∂[D2]

∂t
= konT [Ca2+] [D1] − ko�T [D2] + kon

Ca

[B2] − ko�
Ca

[D2]−
− f0 [D2] + f ′ [A1] + g0 [A2] ,

∂[A1]

∂t
= f0 [D2] − f ′ [A1] + h′ [A2] − h0 [A1] ,

∂[A2]

∂t
= −h′ [A2] − h0 [A1] − g0 [A2] .

(4.17)

Therein, [Ca2+℄ denotes the onentration of alium ions, konT and ko�T are the rate oef-

�ients for the binding and unbinding of Ca2+ to troponin, respetively, and kon
Ca

and ko�
Ca

denote the rate oe�ients for swithing between the bloking and the non-bloking state

of the regulatory unit when two Ca2+ ions are bound to troponin. Further, f0, f
′, h0, h

′, g0
are reation rate oe�ients for XB yling, where the forward attahment is governed by

f0, the forward power stroke is governed by h0, and XB detahment (from the post-power

stroke state) is governed by g0, f. Figure 4.8a. Primes indiate the orresponding reverse

reations, whereat the index ( q )0 is omitted. For the sake of brevity, the di�erential equa-

tions for the other states are omitted here but an be found in the appendix of Shorten

et al. [240℄.
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Figure 4.8: (a) The ross-bridge dynamis model. When two Ca2+ ions are bound to troponin,

and the tropomyosin regulatory unit is removed, XB yling is enabled. The states in whih the

tropomyosin regulatory unit is in the bloking position and the non-bloking position are denoted

by B and D, respetively. Indies 0, 1, 2 indiate the number of Ca2+ ions bound to troponin.

A1 and A2 are the attahed pre-power stroke and attahed post-power stroke states, respetively.

f0, f
′, h0, h

′
and g0 are reation rate oe�ients for the XB yling. Previously published in [111℄.

(b) The phosphate dynamis model. Pi is produed during XB yling and is transported to the

SR, where it preipitates with Ca2+.

In the XB dynamis model of Razumova et al. [214℄, the fore generated through XB

yling is represented as the produt of the sti�ness of all parallel XBs and their average

distortion, i. e., the XBs are modelled as parallel aligned linear springs. Under isometri

onditions, only the XBs in the post-power stroke state bear loads with their distortion

being indued through the power stroke, f. Figure 4.9. Razumova et al. [214℄ model the

fore produed during an isometri ontration, B
iso

, as proportional to the onentration

of XBs in the post-power stroke state and the average distortion indued by the power
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stroke, x0:
B
iso

(t, fs) = η T
tot

[A2] x0 , (4.18)

Therein, η is the sti�ness of a single XB, and T
tot

denotes the total number of XBs available

for XB yling, whih is assumed to be onstant under isometri onditions. Note that

under isometri onditions, hanges in the onentrations of XBs in the di�erent states

exlusively depend on the time (ativation history) and stimulation frequeny, fs, at whih
neural APs are delivered to the musle �bres, i. e., B

iso

= B
iso

(t, fs). Due to the fat that
the onentration of XBs in the post-power stroke state does not vanish in the resting

state (assumed at t = t0), the ative fore in the model of Razumova et al. [214℄ does

not vanish for no ativation (fs = 0). In order to have a vanishing ative fore for no

ativation, the ative fore in this work is de�ned as

F (t, fs) = B
iso

(t, fs) − B
iso

(t0, 0) . (4.19)
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Figure 4.9: The average distortion x0 indued through the power stroke in an isometri on-

tration. In the pre-power stroke state, A1, the ross-bridge is attahed to the myosin binding

site (small �lled irle) and does not experiene an elasti distortion. The power stroke onverts

the A1 to the A2 state by transduing hemially stored energy into mehanial energy, whih is

stored in the elastially distorted XBs. Note that the length of the saromere does not hange

during the isometri ontration. Previously published in [111℄.

The model of Shorten et al. [240℄ was designed for the simulation of isometri musle

ontrations. An extension of the model to non-isometri onditions will be presented in

Setion 4.3.4.

Fatigue via Phosphate Dynamis

The aumulation of phosphate (Pi) is believed to be the primary mehanism behind

metaboli fatigue [240℄. Pi is formed from the energy-providing reation of ATP to adeno-

sine diphosphate (ADP) during SR Ca2+ pumping and XB yling when weakly bound

XBs isomerise into strongly bound XBs. The aumulation of phosphate has been pro-

posed to slow XB yling by dereasing XB isomerisation, whih results in a dereased

proportion of XBs in the fore-produing state.

The model of Shorten et al. [240℄ only onsiders the Pi prodution during XB yling but

not the Pi prodution that results from the pumping of Ca2+ into the SR. The produed

Pi an passively be transported into the SR, where it an preipitate with Ca2+. Thereby,
the amount of Ca2+ that is released from the SR during ativation dereases, and, as a

result, less troponin regulatory units an be removed from their bloking state. With

more regulatory units in the bloking state, less ative fore an be generated through
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XB yling. In summary, sustained musle ontration auses an aumulation of Pi ions,
whih slow-down musle ontration through feedbak. The phosphate transport model

is shown in Figure 4.8b and aounts for three ODEs in the model of Shorten et al. [240℄,

i. e., yp ∈ R3
.

4.3.2 Parametrisation

Shorten et al. [240℄ provide two parametrisations for their musle model � one parametri-

sation to simulate mouse soleus musle, and one to simulate mouse extensor digitorum

longus (EDL) musle. Both parametrisations are based on experimental data of mainly

mie and rats taken from the literature. Unfortunately, not all parameters ould be taken

from a single soure and not even all parameters were available for a single speies. It

is assumed that the parameters are ompatible and that the model is also appliable to

other mammals due to idential underlying biophysis.

Soleus musle in many speies has the highest portion of slow-twith musle �bres of

all musles, reahing up to 100% in some animals suh as guinea pig and at, f. Ariano

et al. [3℄, Burke et al. [31℄. For rat soleus musle, Soukup et al. [244℄ and Augusto

et al. [5℄ report that almost all �bres are of type I. Therefore, it is assumed that the

parametrisation of the mouse soleus musle of Shorten et al. [240℄ an be identi�ed with

a slow-twith (type-I) musle �bre. In ontrast to the soleus musle, the EDL musle

is omposed of mainly fast-twith �bres. For example, Bobina et al. [17℄ and Soukup

et al. [244℄ found only 4-6% type-I �bres within the EDL musle of the rat. Further,

Augusto et al. [5℄ report that mouse and rat EDL musles predominantly onsist of type-

II �bres. Thus, the parametrisation for the mouse EDL musle of Shorten et al. [240℄ is

assumed to be onsistent with a fast-twith (type-II) musle �bre. Only 30 out of the 105

parameters of the model of Shorten et al. [240℄ are di�erent in the two parametrisations.

They inlude, amongst others, parameters desribing the membrane eletrophysiology,

the alium dynamis, and the XB dynamis.

Aording to Hekman & Enoka [106℄, the mehanial properties of the musle units

math the eletrial properties of their orresponding MNs. For example, the duration of

the neuronal AHP duration and the duration of the twith in the orresponding musle

unit are positively orrelated, f. e. g. Gardiner & Kernell [80℄, Meehan et al. [166℄. In

general, the MNs with low reruitment threshold innervate musle units with high on-

tration times (slow-twith units), while MNs with high reruitment threshold innervate

musle units with low ontration times (fast-twith units). The properties of human

MUs, however, do not luster into disrete groups of type-I and type-II �bres but are

distributed ontinuously within a MU population [106℄. Thus, to realistially simulate a

human musle, a desription of the mehanial behaviour of eah musle unit is required.

The methodology to extend the model of Shorten et al. [240℄ to a desription of the in-

dividual musle units of a musle is presented in the following. To this end, the human

�rst dorsal interosseous (FDI) musle is representatively simulated. This hand musle

omprises approximately 120 MUs [106℄.

Many of the parameters of the model of Shorten et al. [240℄ annot be determined and

few are readily available for the MUs of the human FDI musle. Thus, it is assumed

that the basi priniples of the subellular proesses are similar in di�erent mammalian

musles, and that the reation rates determining these proesses are omparable in mie
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and humans. Aordingly, the parameters of Shorten et al. [240℄ are adopted. To aount

for the slower XB dynamis in human ompared to mouse (f. Campbell et al. [37℄), the

reation rates in the XB dynamis model of Razumova et al. [214℄ are adjusted. The

values originally proposed by Razumova et al. [214℄ are adopted for the simulation of the

slowest MU in the human FDI musle. These values orrespond to 0.1-times the values

used in Shorten et al. [240℄ for the mouse soleus musle. Aordingly, the XB dynamis

rate onstants for the mouse EDL musle [240℄ are multiplied by a fator of 0.1 for the

simulation of the fastest MU in the human FDI musle. The resulting XB dynamis

reation rate onstants are summarised in Table 4.3.

f0 [ms

−1
℄ f ′

[ms

−1
℄ h0 [ms

−1
℄ h′ [ms

−1
℄ g0 [ms

−1
℄

slow twith 0.05 0.5 0.008 0.006 0.004

fast twith 0.15 1.5 0.024 0.018 0.012

Table 4.3: Reation rates for the ross-bridge dynamis model of the human FDI musle. Here,

f0 denotes the rate of XB attahment, f ′
is the rate of pre-power stroke XB detahment, h0

denotes the forward rate of the power stroke, h′ is the reverse rate of power stroke, and g0 is the

rate of post-power stroke XB detahment.

The XB dynamis rate onstants determine, among others, the shape of a single twith,

f. Campbell et al. [36℄. Based on the parameters given in Table 4.3, Figures 4.10a and

4.10 depit normalised twithes of a slow-twith MU and a fast-twith MU, respetively.

Instead of omparing the simulated twithes to experimental data, they are ompared

to the impulse responses of a ritially damped, seond-order system, whih has been

proposed by Fuglevand et al. [76℄ to simulate the twith shape. Fuglevand et al. [76℄ build

their model on a wide range of experimental data. The twith rise times (ontration

times) are set as idential in the two models for this omparison. They are 93.7ms and

30.5ms for the slow-twith and the fast-twith MUs, respetively. The half-relaxation

times (time elapsed from peak twith fore to 50% of this value) for the slow-twith

and fast-twith models are 155.6ms (proposed biophysial model) and 159.2ms (impulse

response; 2.3% relative di�erene), and 44.5ms (proposed biophysial model) and 51.1ms

(impulse response; 12.9% relative di�erene), respetively. The largest relative di�erenes

between the two models ours in the beginning of the rise of the MU twithes. Therefore,

Figures 4.10b and 4.10d highlight the initial phases of the twith shapes. Note the delayed

and hene more physiologial rise of the MU twithes in the proposed biophysial model.

A major advantage of the biophysial desription ompared to phenomenologial relations

is that quantities of the modelled signaling pathway an be investigated. To illustrate this,

Figures 4.10b and 4.10d additionally depit the orresponding intraellular free alium

onentrations as predited by the proposed biophysial model.

The mehanial properties of MUs are distributed ontinuously aross the motor

pool [105, 106℄. Thus, it is assumed that the parameters of a musle unit an be determined

from the parameter sets of the slowest MU and the fastest MU. Sine data are available

for the ontration times of the individual MUs, this property is a onvenient measure

for the distribution of the musle unit parameters aross the pool, f. [76, 106, 266℄. The

frequeny distribution based on ontration time (time elapsed from stimulation to peak

twith fore) is nonlinear aross a MU pool, i. e., small MUs have ontration times that
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Figure 4.10: Twith fores in the proposed model (blue solid line) and the model of Fuglevand

et al. [76℄ (red dashed line). (a,) Comparison of normalised twith fores of (a) a slow MU

(ontration time: 93.7ms) and of () a fast MU (ontration time: 30.5ms), and their relative

di�erenes (grey line). (b,d) First 100ms of the normalised twith fores of (b) a slow MU and

of (d) a fast MU, and orresponding myoplasmi free alium onentration (green line) in the

proposed model.

vary over most of the range of observed values, while intermediate and large MUs are gen-

erally fast ontrating and exhibit little variation in ontration time [76℄. Similarly to the

approah hosen for the parameters of the MN model, an exponential distribution aross

the MU pool, f. Equation (4.11), is �rst applied. However, the resulting distribution of

ontration times is not in agreement with experimental �ndings. Linear interpolation

of the parameter sets generates a muh more realisti distribution of ontration times

aross the MU pool, f. Figure 4.11a. Note that although the parameter sets are linearly

interpolated, the distribution of ontration times aross the MU pool is learly nonlinear.

Additionally, Figure 4.11a shows the distribution of ontration times used in the model of

Fuglevand et al. [76℄. Parameters for this simulation are diretly adopted from Fuglevand

et al. [76℄, i. e., the ontration time of the slowest MU is set to 90ms and a three-fold

range in ontration times is assigned. The maximum relative di�erene between the

two models is 14.4%. For the majority of MUs, the proposed biophysial model predits

shorter ontration times than the model of Fuglevand et al. [76℄. This is in aordane

with the experimental �ndings of Van Cutsem et al. [266℄.
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The inrease in fore from slow-twith to fast-twith MUs primarily depends on the

MU innervation number [106℄. Slow-twith and fast-twith mammalian musle �bres do

not show signi�ant di�erenes in generated ative stresses [106℄. Further, only minor

di�erenes in musle �bre diameters are observed. Assuming that the model of Shorten

et al. [240℄ represents a single musle �bre, the predited twith fores should be approx-

imately equal for the di�erent model parametrisations. However, the MU fore model

predits approximately four times larger twith fores for a slow-twith �bre than for a

fast-twith �bre. Using a least-squares �t, a straight line is approximated to the distri-

bution of maximum twith fores of single musle �bres aross the MU pool. Dividing

the �bre fore of eah MU by the orresponding value of the approximated line yields a

muh more uniform distribution of the single-twith fores aross the MU pool. To take

into aount the MU innervation number, the resulting single �bre fores are multiplied

by an exponential funtion, as in Fuglevand et al. [76℄, to obtain physiologial MU fores.

Therefore, the MU fore is given by

F
MUi

= Fi exp
(

ln (rf)
i

N

)

, (4.20)

where F
MUi

denotes the fore of the i-th MU, Fi is the single �bre fore, rf is the range of
twith fores, and N is the number of MUs in the pool, i. e., N = 120 for the human FDI.

Although MU fore summation is nonlinear at low fore levels (f. Clamann & Shelhorn

[40℄), the simulated MU fores are linearly summed up to obtain the total musle fore,

F , i. e.,

F =
N
∑

i=1

F
MUi

. (4.21)

Based on the linear interpolation of the parameters of the musle unit fore model,

Figure 4.11 ompares the distribution of maximum twith fores aross the MU pool to the

distribution obtained from the model of Fuglevand et al. [76℄. In the model of Fuglevand

et al. [76℄, the maximum twith fore of the slowest MU is set to 1 [AU℄ (arbitrary unit)

and the range in twith fore is set to 100 [76℄. As the same exponential distribution in

the MU innervation number is used in both models, the twith-fore distribution shows

good agreement. A maximum di�erene of 6.3% is observed.

4.3.3 Behaviour of the Isometri Skeletal Musle Model

In the following, a number of representative simulations are presented to demonstrate the

apability of the proposed musle model.

Response to Trains of Disharges with Constant Frequeny

Previous examples foused on the properties of isolated twithes. From a physiologial

point of view, it is more relevant to investigate the e�et of multiple subsequent stim-

uli under onditions leading to fused twithes. Figure 4.12a shows the simulated fore

response of the slowest musle unit to trains of stimuli at 5, 10, 20, 40, and 50Hz. Addi-

tionally, Figure 4.12a depits the fore response of the same musle unit using the model

of Fuglevand et al. [76℄ with a 20Hz stimulation frequeny. As expeted for slow-twith,

low-fore musle units, a high resistane to fatigue is observed, see Burke et al. [30℄. The
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Figure 4.11: Basi twith properties in the proposed biophysial model (blue solid line) and

in the model of Fuglevand et al. [76℄ (red dashed line) for a MU pool onsisting of 120 MUs.

(a) Contration times. (b) Maximum twith fores.

slow-twith musle unit reahes full fore output at stimulation rates of approximately

50Hz. The model of Fuglevand et al. [76℄ reahes its maximum fore at a stimulation

frequeny of 20Hz. The ratio of twith fore to maximum tetani fore (twith-tetanus

ratio) of the biophysially modelled musle unit is 0.07 (at 50 Hz stimulation frequeny).

Figure 4.12b shows the simulated fore responses of the fastest musle unit to trains of

stimuli at 10, 20, 40, 50, and 100Hz. The fore output learly shows sag, i. e., a derease

of the fore. Burke et al. [30℄ used the property to develop sag to di�erentiate fast-twith

from slow-twith musle units. Slow-twith musle units do not develop sag. For the

fast-twith musle unit, the model reahes full fore output at a stimulation frequeny

of approximately 100Hz. The twith-tetanus ratio is 0.12 (determined at 50Hz stimu-

lation frequeny before the fore dereases). In addition, Figure 4.12b shows the fore

response of the model of Fuglevand et al. [76℄ due to a 50Hz stimulation frequeny. At this

stimulation frequeny the model of Fuglevand et al. [76℄ reahes full fore output. Sine

Fuglevand et al. [76℄ do not model fatigue, no fore derease is observed. The twith-

tetanus ratio in the model of Fuglevand et al. [76℄ is 0.11 for all MUs. The frequeny

of tetani ontrations for the omputation of the twith-tetanus ratios of the proposed

model is hosen as 50Hz, sine MU disharge rates inrease with inreasing exitatory

synapti input up to a ertain value beyond whih the disharge rate does not further

inrease. Experimentally determined peak disharge frequenies in human MUs during

isometri ontrations are approximately 45Hz [76℄.

While Figure 4.12 ompares the behaviour of the proposed model only to the referene

model [76℄, Shorten et al. [240℄ also validated their model to fore responses at di�erent

stimulation frequenies. Moreover, the reader is referred to Shorten et al. [240℄ for more

sustained ontrations demonstrating further e�ets of fatigue on the fore in the model.

As demonstrated by the fatiguing fast-twith MUs, nonlinearities in the fore response

due to the ativation history are an important feature of the proposed model. In the

following a seond nonlinearity of the model is disussed in detail.
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Figure 4.12: Fore responses to stimulation trains at various frequenies of (a) the slowest MU

and (b) the fastest MU of a pool of 120 MUs. Additionally, for the same MUs in the model

of Fuglevand et al. [76℄ the frequeny leading to maximum tetani fore in eah ase is plotted

(traes indiated by (ref)).

Doublet Potentiation

It is well known that two onseutive stimuli with a short interstimulus interval yield

ontratile fores that are larger than twie the twith fore (nonlinear sum) [137℄. This

e�et is termed doublet potentiation. Doublets are frequently observed at the onset of

MU �ring, i. e., at the reruitment of a MU, espeially during ballisti ontrations [49℄.

Doublet potentiation has been attributed to an enhaned free alium onentration in

the myoplasm resulting from the summation of residual alium due to the �rst stimulus

and the alium release due to the seond stimulus [58, 59, 137℄. The higher onentration

of free alium allows the formation of a larger number of XBs that ontribute to the fore

as independent motors, f. Huxley [128℄.

Using the musle unit fore model, doublets are simulated for interstimulus intervals

ranging from 5ms to 500ms in 5ms steps. Figure 4.13a shows for the slowest musle

unit the twith responses due to a single stimulus (thik line) and due to a seletion of

doublet stimulations (thin lines). Figure 4.13b shows the twith peak reovery funtion

(TPRF ) for the doublets. To alulate the TPRF, �rst, the fore response of the singlet,

Fs(t), is subtrated from the fore response of a doublet, Fd(t), and then, the ratio of

the maximum value of the resulting funtion and the maximum value of the singlet is

determined, i. e.,

TPRF =
max [Fd(t)− Fs(t)]

max [Fs(t)]
. (4.22)

As the proposed model ontains a desription of alium release and dynamis, it is used

to investigate if doublet potentiation is aused by an enhaned free alium onentration

in the myoplasm. Figure 4.13 shows for a singlet (thik line) and for the doublets (thin

lines) depited in Figure 4.13a the respetive myoplasmi alium onentrations for a

slow-twith musle unit. Furthermore, a alium reovery funtion (CaRF ) is introdued.

The CaRF is de�ned as the ratio of the di�erene of the integrated alium onentrations

of a doublet and the singlet and the baseline-orreted, integrated alium onentration
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of the singlet, i. e.,

CaRF =

∫ te
t0
Fd(t) dt −

∫ te
t0
Fs(t) dt

∫ te
t0
Fs(t) dt − Fs(te)(te − t0)

. (4.23)

Therein, t0 is the time of stimulation of the �rst stimulus and te denotes a time at whih

the alium onentration resumed again its baseline value (te = 1000ms). Figure 4.13d

plots the alium reovery funtion versus the interstimulus interval. Equivalently to

Figure 4.13, Figure 4.14 shows the same quantities for a fast-twith musle unit.
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Figure 4.13: Doublet stimulations in a slow-twith MU. (a) The normalised fore of a singlet

(thik line) and a seletion of doublets with di�erent ISIs (thin lines; for ISIs up to 100ms the ISI

is inreased in steps of 10ms, after 100ms in steps of 50ms). (b) Twith peak reovery funtion

for doublets with ISI ranging from 5ms to 500ms in 5ms steps. () Myoplasmi free alium

onentrations of a singlet (thik line) and the doublets (thin lines) shown in (a). (d) Calium

onentration reovery funtion (see text for de�nition) for doublets with ISI ranging from 5ms

to 500ms in 5ms steps.

Figures 4.13 and 4.14 demonstrate that the proposed model is able to reprodue a

marked enhanement in the fore response when two onseutive stimuli with a short

interstimulus interval are applied. It is remarkable that no parameter optimisation is

required to evoke the doublet potentiation. Further, the simulations suggest that the

fore enhanement is in fat due to an inreased alium onentration, whih results
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Figure 4.14: Doublet stimulations in a fast-twith MU. (a) The normalised fore of a singlet

(thik line) and a seletion of doublets with di�erent ISIs (thin lines; for ISIs up to 100ms the ISI

is inreased in steps of 10ms, after 100ms in steps of 50ms). (b) Twith peak reovery funtion

for doublets with ISI ranging from 5ms to 500ms in 5ms steps. () Myoplasmi free alium

onentrations of a singlet (thik line) and the doublets (thin lines) shown in (a). (d) Calium

onentration reovery funtion (see text for de�nition) for doublets with ISI ranging from 5ms

to 500ms in 5ms steps.

from the summation of residual alium due to the �rst stimulus and the additional

alium injetion due to the seond stimulus. Considering the evolution of the alium

onentrations and the alium reovery funtion of the fast-twith MU (Figures 4.14

and 4.14d), the model furthermore predits that the fore enhanement is due to a raised

peak alium onentration and is not due to an inreased total amount (integrated values)

of alium. Experimentally determined doublet potentiations of whole musle are muh

larger than those predited by the model, see, for example, Kamavuako & Farina [137℄.

It is possible that the additional fore inrease is related to the musle-tendon omplex,

i. e., the system is already under tension when the seond stimulus is applied. Moreover,

Nishikawa et al. [193℄ measured 20% higher doublet potentiations in the soleus musle

of wild type mie, than in the mdm (musular dystrophy with myositis) mouse, with a

779 base-pair deletion in the N2A region of the titin gene. Based on these experiments,
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Nishikawa et al. [193℄ hypothesized that the alium ativation of titin ontributes to the

ative fore generation. Hill-type or 3D ontinuum-mehanial musle models need to be

developed to investigate this phenomenon in more detail.

4.3.4 Extension to Non-Isometri Contrations

Due to the fat that the original model of Shorten et al. [240℄ is limited to isometri

onditions, it is extended in this setion to simulate non-isometri ontrations of skeletal

musle. To this end, hanges in myo�lament overlap are inorporated, and a distortion

dependene and ooperative e�ets are added to the XB-dynamis omponent model [214℄

within the model of the exitation-ontration oupling of Shorten et al. [240℄.

Inorporating the Fore-Saromere Length Relation

The fore that an be exerted by a half-saromere depends on the number of XB on-

netions between the atin and myosin �laments, f. Setion 2.5.2 and Huxley [128℄. The

number of possible XB onnetions in turn depends on the �lament overlap and hene on

the saromere length, see Gordon et al. [89℄. Based on analytial onsiderations of the

�lament overlap, Campbell et al. [37℄ proposed a pieewise linear relation between the

saromere half-length and the number of possible XB onnetions. The relation is de-

pited in Figure 4.15a (green dashed line) assuming a diret relation between the number

of possible XB onnetions and the isometri ative fore at full ativation. Experiments

on single saromeres, however, suggest a steeper deline of the fore on the asending

limb of the ative fore-length (F -ℓ) urve at saromere lengths below 1.7µm and no

ative fore prodution at lengths below 1.27µm [89℄. This is attributed to an interation

of the myosin �lament with the Z-disks at low saromere lengths. The red solid line in

Figure 4.15a shows the experimentally determined relation between the saromere length

and the isometri ative fore at full ativation. The present work uses a fourth-order

polynomial, f. Figure 4.15a (dot-dashed blue line), given by

fℓ(ℓS) = max
{

−1.2 ℓS
4 + 11.5 ℓS

3 − 41.7 ℓS
2 + 67.6 ℓS − 40.3, 0

}

. (4.24)

Therein, ℓS denotes the saromere length and fℓ(ℓS) is the normalised isometri ative

fore-length relation at full ativation. The polynomial in (4.24) is symmetri with respet

to the optimal saromere length ℓoptS = 2.4µm [32℄, and an be seen as an approxima-

tion to the experimentally determined fore-saromere length relation, where the largest

deviations our at very long saromere lengths. In this work, the behaviour at very

long saromere lengths plays a minor role sine the passive sti�ness of the musle tis-

sue prevents for the most part suh saromere lengths, f. Setion 6.3.3. Note that the

fourth-order polynomial in (4.24) is a generi desription of a musle's F -ℓ behaviour,
f. [287℄. This approximation an be easily replaed by a di�erent F -ℓ urve that was

�tted to experimental data of a spei� musle. The advantage of using a losed-form

polynomial rather than a pieewise linear funtion is the smooth transition between the

di�erent regions leading to improved omputational e�ieny.

To aount for length hanges in the model during a ontration, the approah proposed

by Campbell et al. [37℄ is followed. At this, average distortions (or elasti deformations)

of XBs in a saromere are introdued into the XB-dynamis omponent model. The
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Figure 4.15: (a) Normalised relation between the number of possible XB onnetions and sar-

omere length. Saromere denotes the atual relation determined from length-lamp experiments.

Campbell denotes the relation proposed by Campbell et al. [37℄. This work uses the fourth-order

polynomial denoted by Polynomial (f. Equation (4.24)). (b) Normalised fore-veloity relations

for di�erent ombinations of ν and θ. Figure previously published in [111℄.

average elasti deformations among XBs in the pre-power and post-power stroke states

are denoted by x1 and x2, respetively, and are shematially represented in Figure 4.16.
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Figure 4.16: Average distortions (a) x1 and (b) x2 indued through �lament sliding during

non-isometri ontrations on the ross-bridges in the A1 and A2 states, respetively. Figure

previously published in [111℄.

While the average distortion indued by the power stroke, x0, is assumed to be onstant,

x1 and x2 aount for distortions entering and leaving due to XB yling and for distortions

imposed by shearing between thik and thin �laments [37℄. From the distortional balanes,

Campbell et al. [37℄ derived the following ODEs:

∂x1
∂t

= −
(

f0
[D2]

[A1]
+ h′

[A2]

[A1]

)

x1 + h′
[A2]

[A1]
(x2 − x0) +

ℓ̇S
2
,

∂x2
∂t

= −h0
[A1]

[A2]

(

x2 − (x1 + x0)
)

+
ℓ̇S
2
,

(4.25)

where ℓ̇S denotes the saromere ontration veloity.

Further, the atively generated fore is proportional to the produt of the sti�ness of
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all parallel XBs and their average distortions [37, 214℄, i. e.,

B(t, fs, ℓ̇S) = η T
tot

(

[A1] x1 + [A2]x2
)

. (4.26)

In Equation (4.26), [A1] and [A2] depend only on the stimulation frequeny, fs, while x1
and x2 are funtions of fs and ℓ̇S. Note that in the original XB-dynamis model [36, 37,

214, 215℄ the number of XBs in a ertain state is given in absolute values, while here, in

ompliane with the model of Shorten et al. [240℄, onentrations are used. Hene, in the

equations for the ative fore (4.18) and (4.26), the onentrations are multiplied by the

number of possible attahment sites. To aount for the resting onentrations of XBs in

the pre-power and post-power stroke states as well as the F -ℓ relation, the ative fore is
de�ned as

F (t, fs, ℓS, ℓ̇S) = fℓ(ℓS)
[

B(t, fs, ℓ̇S) − B(t0, 0, 0)
]

. (4.27)

The F -ℓ relation dominates the ative behaviour of skeletal musles under isometri

onditions at a spei�ed level of stimulation. Under non-isometri onditions, the fore-

veloity relation (F -v), i. e., the dependene of the fore on the shortening or lengthening

veloity, has to be onsidered additionally.

Inorporating the Fore-Veloity Relation

To reprodue the hyperboli F -v relation of Hill [117℄, Razumova et al. [214℄ introdue two

modi�ations into their four-state XB-dynamis model: (i) Considering nearest-neighbour

ooperative e�ets within the forward rate of XB attahment, f0, i. e., inreased XB-

attahment probabilities due to neighbouring XBs in the fore-bearing state, and (ii) in-

orporating a distortion dependene in the XB-detahment rate, g0, lead to the following

rules within the XB-dynamis model [214℄:

f0 = f̄
(

1 +
[A1]

T
tot

[

exp
(x1
x0

(ν − 1)
)

− 1
]

+
[A2]

T
tot

[

exp
(x2
x0

(ν − 1)
)

− 1
]

)

,

g0 = ḡ exp
(

ϑ(x2 − x0)
2
)

,

(4.28)

where ḡ is the XB-detahment rate of an isometri ontration, and ϑ ontrols the distor-

tion dependene. Further, f̄ is the forward rate of XB attahment if no neighbour is in

the fore-bearing state, and ν ontrols the in�uene of the ooperative e�ets.

To show that the extended model exhibits a F -v relation as musles �bres do, the

sensitivity of the model to the newly introdued parameters ν and ϑ is analysed. To

do so, in-silio experiments using the fast-twith version of the extended model at a

stimulation frequeny of fs = 100Hz are arried out. For di�erent presribed onstant

veloities, the orresponding normalised ative fores are omputed at optimal saromere

length.

For onstant rate oe�ients f0 and g0 (ϑ = 0, ν = 1), the model predits a linear F -v
relation, f. Figure 4.15b. When onsidering nearest-neighbour ooperative e�ets in f0
(ϑ = 0, ν = 3.4), the model is able to predit a hyperboli relation for shortening on-

trations, but unreasonable high fores our for lengthening ontrations. The distortion

dependene in g0 (ν = 3.4, ϑ = 1000, 2000) mainly in�uenes lengthening ontrations.

In the next example, three shortening ontrations are simulated to demonstrate the

in�uene of the F -ℓ and the F -v relations on the ative fore pro�les. To this end,
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the extended model is stimulated at a frequeny of 100Hz. After 500ms of isometri

ontration at the optimal length, the �bre shortens at a onstant presribed veloity.

Three di�erent veloities are onsidered: 5, 10, and 15% of the maximum shortening

veloity, vmax.

Figure 4.17 shows the evolution of the normalised ative fores (top) and the saromere

length (ℓS, bottom). The pro�les show, for the �rst part, whih is idential for all three

traes, an inrease in the ative fore due to the stimulation. After 500ms, when the fore

approximately saturates and the shortening starts, the model shows an instantaneous drop

of the fore, whih is due to the shortening veloity. As expeted, the magnitude of the

drop inreases with the shortening veloity, f. Figure 4.15b. The model further predits

a derease in the fore, whih is due to the F -ℓ relation. In detail, as the saromere

shortens along the asending limb of the F -ℓ relation (from the optimal length towards

smaller saromere lengths, f. Figure 4.15a), the region of �lament overlap redues, and

hene, the fore dereases.
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Figure 4.17: Evolution of the normalised ative fore of the extended model for three di�erent

shortening veloities at a stimulation frequeny of 100Hz (top). The shortening ontration is

preeded by an isometri ontration of 500ms duration at optimal length. Additionally, the

atual saromere length (ℓS) is shown for eah of the fore pro�les (bottom). Figure previously

published in [111℄.
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4.4 Modelling of the Neuromusular System

The numerial experiments presented in the previous setions foused on the behaviour

of a MN pool (Setion 4.2) or the behaviour of a musle unit under idealised onditions

(Setion 4.3). In this setion, the musle unit fore model is oupled to the MN model of

Negro & Farina [186℄ to establish an integrated model of the neuromusular system that

is biophysial in all its main parts. Figure 4.18 provides an overview of the integrated

model, where the disharge trains predited by the MN model are used to drive the musle

unit fore model (f. Setion 4.4.1 for details).
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Figure 4.18: Shemati representation of the struture of the biophysial model of the neuromus-

ular system. The disharge trains (indiated by the vertial bars above the arrows) predited by

the motor neuron model are used to drive the musle unit fore model. The input to the oupled

model is the synapti input to the motor neurons, and the output of the model is the musle fore,

whih is the sum of the MU fores.

Without loss of generality, the following setions onsider representatively the human

FDI musle. The presented simulations are hosen to demonstrate the apaity of the

integrated model to be applied to many senarios, suh as, for example, physiologial and

pathologial tremor.

4.4.1 Coupling the Motor Neuron Model and the Musle Unit

Fore Model

The skeletal musle model of Shorten et al. [240℄ is mathematially represented by a

system of sti�, nonlinear ODEs. Its numerial solution requires a muh smaller time

step than the solution of the ODEs desribing the MN model. Further, in this thesis,

proprioeptors that generate a�erent signals are not onsidered expliitly, and thus, the

�ow of information is unidiretional from the MN model to the musle model. Hene,

the MN model and the MU fore model are not integrated into a single model that is
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solved with a ommon time step. Instead, the models are solved suessively. For eah

MN disharge, a stimulating urrent of 150µA/m2
and 0.5ms duration is applied to

the orresponding musle unit model. This stimulation leads to a musle �bre membrane

depolarisation and the orresponding fore generation [240℄. Both models are implemented

in Matlab. For the integration of the MN model, the Adams-Bashforth-Moulton solver

ODE113 is used, while ODE15s for sti� di�erential equations is used to solve the musle

unit model.

It is noteworthy that the MN model and the musle unit fore model an also be

integrated into a single framework and solved onurrently. Suh an approah is neessary

when proprioeptors are onsidered, and hene, the musle unit fore model feeds bak to

the MN model. Proprioeptors, suh as e. g. musle spindles and Golgi tendon organs, are

sensory organs providing the entral nervous system with information about the state of

the musles. Although proprioeptors an be onsidered as a part of the neuromusular

system, they are not expliitly modelled in this work. If, however, a ertain appliation

requires a more detailed desription of a�erent signals, models of proprioeptors [173, 174℄

an be integrated in the presented models of the neuromusular system.

4.4.2 Linear Ramp Inrease and Derease

Comparing Di�erent Models

An advantage of the deoupled approah is that individual parts of the model an easily

be replaed. This provides the basis to quantify the e�et that eah model part has on the

behaviour of the whole system. Following this idea, the next ase study ompares parts

of the proposed model of the neuromusular system to the orresponding parts of the

model of Fuglevand et al. [76℄. Similarly to the proposed model, the model of Fuglevand

et al. [76℄ onsists of a MN model to determine the MN disharge times and a musle unit

fore model to predit the fore. In ontrast to the proposed model, however, the model

of Fuglevand et al. [76℄ is a ompletely phenomenologial approah. In the following, the

model of the neuromusular system of Fuglevand et al. [76℄ is termed referene model.

An isometri ontration of the human FDI musle is exemplarily simulated. The e�e-

tive synapti input and the exitation funtion used as input to the MN model of Negro

& Farina [186℄ and the referene model, respetively, are hosen to have a ramp pro�le.

To this end, the mean input �rst linearly inreases up to a peak value. Symmetrially,

after reahing the peak value, the mean input dereases linearly to zero with the same

slope. The peak value of the input funtions is hosen suh that all 120 MUs of the FDI

are just reruited.

The MN disharge times predited by the biophysial model of Negro & Farina [186℄

are used to drive the proposed biophysial musle unit fore model and the musle unit

fore model of the referene model. Similarly, the MN disharge times predited by the

MN part of referene model are used to drive both musle unit fore models.

Figure 4.19a shows the exitation funtion that is used as input to the MN part of the

referene model. The disharge rates of twelve seleted MNs as predited by this model

are depited in Figure 4.19. Based on these disharge rates, Figures 4.19e and 4.19g show

the resulting fores of these twelve musle units (di�erent olours) and the total musle

fore (thik blak line) of the fore part of the referene model [76℄ and the musle unit

fore part of the proposed model, respetively. Note that although the simulated fores
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are in arbitrary units (AU), the fores are omparable, sine the twith fores are similar

in the two musle models, f. Figure 4.11b.

Figure 4.19b shows a representative synapti input funtion that is used to drive the MN

model of Negro & Farina [186℄. The ramp-shaped synapti input is ommon to all MNs

and an be assoiated with an idealised ortial input to the motor nuleus. The ramp

pro�le is superimposed by independent synapti noise (Gauÿian distributed, bandwidth

0�50Hz) for eah individual MN. The standard deviation of the independent synapti

noises is seleted to generate a oe�ient of variation of the interstimulus interval of

approximately 15% when a steady level of synapti urrent equal to the peak value of the

ramp is simulated. The resulting disharge rates of twelve seleted MNs as predited by

this model are depited in Figure 4.19d. Based on these MN disharge rates, Figures 4.19f

and 4.19h show the resulting fores of these twelve musle units (di�erent olours) and the

total musle fore (thik blak line) of the referene model [76℄ and the proposed musle

unit fore model, respetively.

The predited disharge rates demonstrate that both MN models aount for Henne-

man's size priniple of reruitment [112, 113℄, i. e., the number of reruited MUs inreases

with inreasing mean synapti input. Further, both models show the �onion-skin� prop-

erty [46, 47℄, i. e., earlier-reruited low-threshold MNs have for a ertain level of synapti

input higher disharge rates than later-reruited high-threshold MNs. Figures 4.19 and

4.19d suggest that the model of Negro & Farina [186℄ predits higher disharge rates than

the MN model of Fuglevand et al. [76℄. This behaviour, however, is not observed for the

entire MN pool as shown in Figure 4.20. In fat, for the largest MUs, whih ontribute the

highest fores, the MN model of Fuglevand et al. [76℄ predits higher mean disharge rates

than the model of Negro & Farina [186℄. This might explain the fat that the referene

model predits higher fores for the disharge rates of Figure 4.19, f. Figure 4.19e, than

for those in Figure 4.19d, f. Figure 4.19f.

The di�erene between the fores of the referene model and the proposed model, f. Fig-

ures 4.19f and 4.19h, respetively, are less pronouned for the disharge rates predited

by the model of Negro & Farina [186℄ shown in Figure 4.19d. This an potentially be

explained by the fat that fore saturation in the proposed model only ours at disharge

rates above 50Hz, whih do not our in this simulation, f. Figure 4.19d.

In�uene of the Rate of Change of the Input

Similar to the previous example, a ramp-shaped mean synapti input funtion is applied

to the model of Negro & Farina [186℄. While the peak synapti input is idential in all

simulations, di�erent slopes are onsidered. In detail, the mean synapti input rises from

zero to its maximum value in 4, 2, and 1 s and dereases afterwards bak to zero within

the same times. The resulting disharge rates are used as input to the proposed musle

unit fore model.

The fore responses for twelve seleted MUs (di�erent olours) and the total resulting

fore (thik blak line) are shown in Figures 4.21a�4.21 for three di�erent slope values.

Figure 4.21d ompares the total fores of the three di�erent slopes. Although the peak

synapti input is the same for all ases, the maximum total fores of the simulations with

medium and high slopes are 8.2% and 18.2% higher, respetively, than the total fore

ahieved with the lowest slope.

Although the peak synapti input is idential for the di�erent ramps, the integrated
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Figure 4.19: Comparison of the proposed model and the referene model [76℄. (a) Ramp-shaped

exitation funtion used as input to the referene model. () MN disharge rates of twelve seleted

MNs as predited from the referene model. The fore predited by (e) the referene musle unit

fore model and (g) the proposed musle unit fore model for the MN disharge rates in ().

(b) Ramp-shaped e�etive synapti urrent used as input to the proposed MN model. (d) MN

disharge rates predited by the proposed MN model. The fore predited from the musle unit

fore part of (f) the referene model and (h) the proposed model for the MN disharge rates in (d).
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Figure 4.20: Comparison of the mean disharge rates for eah motor neuron in the model of

Negro & Farina [186℄ (blue line) and in the model of Fuglevand et al. [76℄ (red line).
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Figure 4.21: Behaviour of the model for slow and fast synapti inputs. Fores generated by a

subgroup of individual MUs and total fore (blak thik line) for (a) slow, (b) medium veloity,

and () fast ramp ontrations. (d) Comparison between the three total fore pro�les generated

by simulations (a�).

model shows a nonlinear behaviour, whereat a higher slope in the mean synapti input

urrent yields a higher peak fore. Note that in reality an inrease in the rate of hange of
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a voluntary ontration also auses a hange in the neural drive to the musle. However,

this is not inluded in the model, and the predited di�erenes in the fore response are

entirely due to the musle unit model. Therefore, the results of the ramp example annot

diretly be ompared to experimental data of voluntary ontrations. Nonlinearities in

the fore response that are independent of hanges in the neural drive are known from

experiments, e. g., in the ontext of postativation potentiation [11, 176℄ or early depres-

sion and potentiation, whih our when two or more stimuli are applied with a short

interstimulus interval, f. [200, 249, 250℄ and Setion 4.3.3. In phenomenologial models

of skeletal musle, these nonlinearities are often negleted (f. e. g. Fuglevand et al. [76℄),

whih might lead to inaurate model preditions.

4.4.3 Fore Variability

To on�rm the physiologial behaviour of the proposed model, the oe�ient of variation

of the simulated fore is alulated for di�erent net synapti input levels. The simulated

input is a steady level of urrent ommon to all MNs with an additional independent

Gauÿian noise in the bandwidth 0�50Hz. The standard deviation is simulated as a fun-

tion of the mean urrent in order to generate a oe�ient of variation of the interstimulus

interval of approximately 15% for all synapti input levels. Figure 4.22 shows the simu-

lated results, whih are in good agreement with the experimental �ndings of Moritz et al.

[180℄.
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Figure 4.22: Coe�ient of variation of the fore versus mean fore. Simulated data are shown

as blak rosses. Best �t f(x) to the data points is shown as red line.

A funtion of the form

f(x) =
a

xb
+ c , (4.29)

with oe�ients a, b, and c is used to approximate the omputed pairs of mean fore (x)
and oe�ient of variation of the fore (f(x)). Using a least-squares �tting algorithm,

the oe�ients a, b, and c are determined as 0.78, 0.58, and 1.80, respetively.

Besides the ortial input [153℄, ommon input signals are delivered to the motor nuleus

by a�erent neurons [134℄, brain stem neurons [148℄, and other pathways. Synapti input

omponents ommon to the MN population generate orrelations between MN spike trains
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that are transmitted unaltered to the fore output, f. Farina et al. [73℄.

The aim of the next example is to investigate the e�ets of ommon synapti input

omponents on the modelled fore output. Two ases are onsidered. In the �rst ase, the

noise in the synapti input to the MNs is ompletely independent (no ommon synapti

input other than the ortial input). In the seond ase, 50% of the noise in the synapti

input is ommon to all MUs. Di�erent levels of exitation, i. e., 5% and 50%, are simulated

for both ases. The independent noise and the ommon synapti noise have both Gauÿian

distribution and a bandwidth of 0�50Hz.

Figure 4.23 shows the fore output for the di�erent senarios (left olumn) and the

orresponding power spetra of the fore output (right olumn). In both ases, the intro-

dution of the shared noise inreases signi�antly the fore osillations as demonstrated

by the inrease of the power spetrum of the fore in all frequenies. The power spe-

trum of a signal desribes how the variane of the signal is distributed over the frequeny

omponents into whih the signal may be deomposed. It indiates the portion of a sig-

nal's power (energy per unit time) falling within given frequeny bins. Furthermore, the

oe�ient of variation of the interstimulus interval and the oe�ient of variation of the

fore are listed in Table 4.4 for the di�erent senarios.

ommon 5% exitation 50% exitation

synapti noise CoV-ISI CoV-fore CoV-ISI CoV-fore

0% 15.98% 7.34% 16.91% 3.44%

50% 12.10% 14.35% 12.14% 6.82%

Table 4.4: The oe�ient of variation of the interstimulus interval (CoV-ISI) and the oe�ient

of variation of the fore (CoV-fore) for 5% and 50% exitation without ommon synapti noise

and with 50% ommon synapti noise.

Considering the variation in fore �utuations aross a large range of mean synapti

inputs, the present model predits a hyperboli relation between the oe�ient of variation

of the fore and the mean fore. While the predited fore �utuations agree well with the

experimental �ndings of Burnett et al. [33℄, Galganski et al. [79℄, and Laidlaw et al. [149,

150℄, the oe�ients of variation in the simulated fore are approximately twie as large as

those reported by Moritz et al. [180℄. If, furthermore, input omponents that are ommon

to all MNs but di�erent from the mean ortial input (e. g. a�erent inputs) are inluded

in the input urrents, the modelled oe�ient of variation of the fore will even further

inrease. However, while Moritz et al. [180℄ measured exponentially dereasing oe�ients

of variation of the interstimulus interval for eah MU from an average of 30% to 13%

as fore inreased, an approximately onstant oe�ient of variation of the interstimulus

interval of about 15% is assumed in the proposed model. Furthermore, Moritz et al.

[180℄ reported that the maximal disharge rates of MNs aross the pool inreases with

reruitment threshold, while the present model predits a dereasing maximal disharge

rate, whih is in agreement with the �ndings of De Lua & Hostage [46℄, De Lua et al.

[47℄, Duhateau & Hainaut [60℄, and Tanji & Kato [257℄. In summary, the behaviour of

the proposed biophysial model of the neuromusular system is in agreement with the

existing experimental data.
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Figure 4.23: Total fore (left olumn) and power spetrum (right olumn) of the fore variability

example. (a, b) 5% exitation, no ommon synapti input; (, d) 5% exitation, 50% ommon

synapti input; (e, f) 50% exitation, no ommon synapti input; (g, h) 50% exitation, 50%

ommon synapti input.
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4.4.4 Tremor

This ase study demonstrates the ability of the proposed model to simulate physiologial

and pathologial onditions. This is done by inluding a narrow frequeny band around 8

Hz of ommon synapti noises in the synapti input to the MNs resembling tremor. The

aim of this ase study is to use the proposed biophysial model to quantify the in�uene

of ommon synapti noise, whih resembles physiologial tremor, on the fore output.

The mean synapti input urrent is set to 5 nA and the standard deviation of the total

synapti noise (ommon and independent) is �xed at 1 nA in all ases. Three ases with

di�erent proportions of ommon synapti noise (25%, 35%, and 45% of the total synapti

noise) are onsidered.

Figure 4.24a shows the power spetrum of the ommon synapti noise omponents for

the three ases. For eah ase, the level of oherene is estimated from pairs of MU spike

trains and is depited in Figure 4.24b. Furthermore, a short segment of the total fore

responses is shown in Figure 4.24.

Table 4.5 lists for eah of the three ases the mean disharge rate, the mean oe�ient

of variation of the interstimulus interval, and the oe�ient of variation of the fore. To

quantify the sensitivity of these quantities with respet to the amount of ommon synapti

input, a linear regression is arried out. The slopes of the linear regression lines are −1.5
(R2 = 0.998), 2.7 (R2 = 0.72), and 20.35 (R2 = 0.97) for the mean disharge rates, the

mean oe�ients of variation of the interstimulus interval, and the oe�ients of variation

of the fore, respetively.

ommon noise Mean Disharge Rate CoV-ISI CoV-fore

25% 10.63Hz 16.89% 10.25%

35% 10.47Hz 17.45% 11.71%

45% 10.33Hz 17.43% 14.32%

Table 4.5: Mean disharge rate, mean oe�ient of variation of the interstimulus interval (CoV-

ISI), and the oe�ient of variation of the fore (CoV-fore) for the tremor example with inreas-

ing amplitude of the ommon synapti noise.

With inreasing ommon synapti noise, the level of oherene estimated from pairs

of MN spike trains inreases signi�antly. Furthermore, linear regression demonstrates

that the mean disharge rate and the mean oe�ient of variation of the interstimulus

interval do not hange signi�antly with the amount of ommon synapti noise, while

the oe�ient of variation of the fore inreases signi�antly with the amount of ommon

synapti noise (approximately 10-times higher slope of the linear regression line).

4.5 Disussion

A novel model of the neuromusular system, whih is biophysial in all main parts has been

presented. The new model arose from oupling the MN model of Negro & Farina [186℄

to the model of the exitation-ontration oupling in skeletal musle �bres of Shorten

et al. [240℄. In ontrast to previous, biophysial models, the proposed model aounts for

nonlinearities in the fore response that result from the ativation history.
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Figure 4.24: Tremor example. (a) Power spetrum of the motor neuron input when 25% (dark

blue), 35% (light blue), and 45% (magenta) of the total synapti noise is ommon to all motor

neurons. (b) Coherene estimated from MU �ring times. The dashed line shows the 95% on�-

dene level. () Total simulated fores when 25% (top), 35% (middle), and 45% (bottom) of the

total synapti noise is ommon to all motor neurons.

To aount for the di�erent ontratile properties of the musle units in a MU pool,

the slow-twith and fast-twith parametrisations of Shorten et al. [240℄ were linearly in-

terpolated. While this simple approah is su�ient to reprodue a frequeny distribution

of ontration times that is similar to experimental data, it is justi�ed to assume that the

linear interpolation yields an oversimpli�ation ompared to the atual parameter distri-

bution. In fat, ertain properties of musle units are not ontinuously distributed, but

an be lassi�ed into disrete groups, suh as, for example, the myosin heavy hain iso-
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forms. Moreover, the musle unit model of Shorten et al. [240℄, whih has been validated

for mouse musles, has been applied to simulate human musle. To this end, only the re-

ation rates within the XB dynamis model have been modi�ed. While this simpli�ation

was neessary due to a lak of experimental data of human subellular properties, one

an easily imagine that other reation rates in human musles also di�er from those in

mouse musles. To summarise, while the proposed model losely resembles the underlying

biophysial proesses of the neuromusular system leading to fore generation, there exist

signi�ant unertainties regarding its parameters.

Wherever appliable, the behaviour of the proposed model has been ompared to the

model of Fuglevand et al. [76℄. The model of Fuglevand et al. [76℄ has been hosen as

referene, due to the fat that it is build on a broad range of experimental data. Although

the shape of the single twith is similar in both models, there are signi�ant di�erenes

in the generated musle fores, when a ramp-shaped synapti input is applied to the

motor nuleus. This also applies when reombining the individual parts (MNs and musle

units, see Figure 4.19) of the two models. It would be very interesting to see, whih of

the ombinations yields the most aurate result, when ompared to experimental data.

Unfortunately, this omparison is not possible at this point, sine, to date, it is not possible

to ompletely deompose the neural drive to musles (e. g. from the EMG) or to preisely

extrat the individual MU fores from the total fore.

Due to its simpli�ed, phenomenologial formulation, the model of Fuglevand et al. [76℄

annot be applied to more omplex examples, and thus, no omparison with the proposed

model an be performed. Although a quantitative analysis is not possible in eah ase, the

qualitative behaviour of the proposed model is in agreement with experimental �ndings.

In onlusion, the presented examples demonstrate the apabilities of the proposed

model to simulate di�erent senarios of normal and pathologial onditions.





5 Propagation of Eletrial Signals

Through Biologial Tissues

The previous hapter demonstrated that many properties of the neuromusular system

an be modelled using a desription that is independent of the spatial omponents of the

underlying system. Many other interesting appliations, however, depend on the spatial

dimensions of the musulo-skeletal system. Spatial dimensions of the tissue are essential,

for example, for simulating the propagation of eletrial signals through biologial tissues.

In skeletal musle the propagation of ation potentials along musle �bres indues the

ontration, and the resulting eletrial potentials an be measured at the skin surfae

using a surfae eletromyograph.

The aim of this hapter is to extend the musle model of Chapter 4 to take into aount

the spatial dimensions of the musle. To this end, a desription of the ellular membrane

eletrophysiology (e. g. the Hodgkin-Huxley model [120℄ or the model of Shorten et al.

[240℄) is linked to a propagation equation. This is shematially represented in Figure 5.1.

membrane eletrophysiology

musle �bre model

propagation equation

Vm

Figure 5.1: Overview of the model of a musle �bre. The model of the membrane eletrophysi-

ology is oupled to the propagation equation through the membrane potential, Vm.

In brief, the previous hapter desribed the rise and fall of the AP by solving

Im = Cm
∂Vm
∂t

+ I
ion

, (5.1)

for Im = 0, f. Equations (4.1), (4.7), and (4.14). Considering spatial omponents of the

musle tissue, however, urrent an also �ow from one point of the ell membrane to an-

other point, and hene, the total urrent aross the membrane does not neessarily vanish

loally [185℄. Based on this onsideration, Hodgkin & Huxley [120℄ proposed the able

equation to simulate the propagation of APs along a 1D struture. Although Hodgkin &

Huxley [120℄ onsidered the giant axon of the squid, the able equation is equally applia-

ble to musle �bres [211℄. In this work, the able equation will be introdued as a speial

ase of the more general bidomain equations, whih will be derived in the following.

81



82 Chapter 5: Propagation of Eletrial Signals Through Biologial Tissues

5.1 The Bidomain Model

Based on the simulation of the AP propagation in the heart [211℄, Röhrle et al. [220℄

suggested to use the bidomain equations to model the spreading of the hange of the

membrane potential in skeletal musle tissue. The bidomain model is a ontinuum ap-

proximation of the eletrophysiology of exitable biologial tissues. The model desribes

how urrents from one region of a ell interat with other regions [211℄.

In eletrially ative biologial tissue, suh as musle, the bidomain model onsiders

two interpenetrating domains representing the intraellular spae (i. e., the musle ells

or �bres) and the extraellular spae (i. e., the spae surrounding the �bres). Sine the

bidomain model is a ontinuum model, these two spaes oexist at eah point of the

musle region, ΩM
, at all times. The intraellular and extraellular domains an interat

with eah other through urrents rossing the ell membrane, Im. Further, eah domain

is assigned its own ondutivity tensor and its own potential. The ondutivities in the

intraellular domain and the extraellular domain are denoted by σi and σe, respetively,

and the intraellular potential and the extraellular potential are denoted by φi and φe,

respetively. A shemati representation of the bidomain model is given in Figure 5.2.

����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������

PSfrag replaements

ell outside

ell inside

hydrophili head

hydrophobi tail

lipid bilayer

ion hannel

Time [ms℄

Membrane Potential [mV℄

resting

potential

depolarisation

repolarisation

afterhyperpolarisation

synapse

dendrite

nuleus

axon hillok

axon

soma

myelin sheath

Shwann ell

bone

perimysium

blood vessel

musle �bre

tendon

epimysium

endomysium

fasile

Time [ms℄

Membrane Potential [mV℄

Time [s℄

Membrane Potential [mV℄

MN Number [ � ℄

CoV of the Input [%℄

Mean Disharge Rate [Hz℄

Time [s℄

M

N

N

u

m

b

e

r

[

-

℄

I

n

p

u

t

S



a

l

e

F

a



t

o

r

[

-

℄

Disharge Rate [Hz℄

Time [ms℄

Normalised Fore [�℄

Relative Di�erene [%℄

MU Number [�℄

Contration Time [ms℄

Time [ms℄

Fore [AU℄

Hz

Hz

Hz

Hz

Hz

Hz

Hz (ref)

Hz (ref)

Interstimulus Interval [ms℄

Interstimulus Interval [ms℄

Normalised Fore [�℄

Twith Peak Reovery Funtion [�℄

Calium Conentration [ M℄

[Ca ℄ Reovery Funtion [�℄

Normalised Fore [�℄

Interstimulus Interval [ms℄

Interstimulus Interval [ms℄

Normalised Fore [�℄

Twith Peak Reovery Funtion [�℄

Calium Conentration [ M℄

[Ca ℄ Reovery Funtion [�℄

Normalised Fore [�℄

MU Fore [AU℄

Total Fore [ AU℄

MU Disharge Rates [Hz℄

Input Current [nA℄

Exitation [%℄

MU Number [�℄

Mean Disharge Rate [Hz℄

Time [s℄

MU Fore [AU℄

Total Fore [ AU℄

MU Disharge Rates [pps℄

Input Current [nA℄

Exitation [%℄

Mean Fore [%℄

CoV of the Fore [%℄

Fore [AU℄

Power Spetrum [AU℄

Time [s℄

Fore [AU℄

Frequeny [Hz℄

Coherene

Power Spetrum [AU℄

body

φo σo

ΩB

ΓB

extraellular spaeφe σe

intraellular spae

φi σi

ΩM

ΓM

ΓI

membrane

Ibody

Im

Figure 5.2: Shemati representation of the bidomain model. The bidomain model distinguishes

between the eletrially inative body region, ΩB
, and the eletrially ative musle region, ΩM

.

At eah point of the musle region the intraellular (subsript i) and extraellular (subsript e)

domains oexist at all times. While the intraellular and the extraellular domains of the musle

region interat with eah other through urrents rossing the ell membrane, Im, musle-body

interations are onsidered through urrents between the extraellular domain of the musle region

and the body region, Ibody. The reader is referred to the text for further details.

Besides the eletrially ative musle tissue, the bidomain model allows to onsider

eletrially inative tissues in the body region, ΩB
, representing, for example, skin and

subutaneous fat tissue. While there is no diret interation between the intraellular

domain of the musle region and the body region, the extraellular domain of the musle

region an interat with the body region through a urrent Ibody rossing the musle-

body interfae, ΓI := ∂ΩM ∩ ∂ΩB
. Further, the ondutivity tensor and potential in

the body region are denoted by σo and φo, respetively. Negleting the ondutivity of

the surrounding air and other adjaent tissues (e. g. bone), there is no urrent rossing

the outer surfae of the body region, ΓB := ∂ΩB\ΓI
, or the outer musle boundary,

ΓM := ∂ΩM\ΓI
.
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5.1.1 Derivation of the Bidomain Equations

Several formulations of the bidomain equations exist, whih di�er in the dependent vari-

ables used. The formulation presented here, whih an also be found, for example, in

Pullan et al. [211℄, is in terms of the extraellular potential, φe, and membrane potential,

Vm := φi − φe . (5.2)

This formulation has the advantage that it an interfae in a straightforward manner with

the ell models presented in Chapter 4, as these also rely on the membrane potential.

Desribing an eletri �eld problem, the bidomain equations an be derived from

Maxwell's equations, given by

div e =
υ

ǫ0
, rote = −∂b

∂t
,

div b = 0 , rot b = µ0

(

q + ǫ0
∂e

∂t

)

.

(5.3)

Therein, e denotes the eletri �eld density, b is the magneti �ux density, q is the urrent

density, and υ denotes the eletri harge density. Further, ǫ0 and µ0 are the permittivity

and permeability of free spae, respetively, and rot ( q ) represents the rotation or url

operator. In addition to Maxwell's equations, a balane equation is employed to ensure

ontinuity of urrent, i. e.,

∂υ

∂t
= − div q + Sυ , (5.4)

where Sυ denotes a urrent soure. Commonly, quasi-stati onditions are assumed for

musle tissue, sine the frequenies of the generated eletri and magneti �elds are rel-

atively low (less than 100Hz), f. e. g. Mesin [169℄. Following this assumption, the time

derivatives in Equations (5.3) and (5.4) an be negleted [211℄. For Maxwell's equations

this yields a deoupling of the eletri �eld and the magneti �eld. Sine for the deriva-

tion of the bidomain equations only the eletri �eld is required, the equations for the

magneti �eld are not further onsidered. This yields the following equations

div e =
υ

ǫ0
, rot e = 0 , div q = Sυ . (5.5)

Considering �rst the eletrially ative musle region, in the absene of other soures, the

urrent entering the extraellular domain must be equal to the urrent that leaves the

intraellular domain. Furthermore, urrents between the intraellular and extraellular

domains have to ross the musle ell membrane, and hene, the urrent soure equals

the total urrent rossing the membrane multiplied by the surfae-area-to-volume ratio

1

,

Am, i. e.,

− div qi = div qe = Am Im . (5.6)

1

Negleting the lateral surfae areas, a ylindrial-shaped �bre with length l and radius r has a surfae-

area-to-volume ratio of

Am =
2 π r l θm

π r2 l
=

2 θm
r

,

where a membrane folding fator θm is inluded to aount for the roughness of the �bre surfae that

an inrease the e�etive membrane area by a fator of ten, f. DiFraneso & Noble [53℄.
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Ohm's law states that the urrent density equals the ratio between the eletri �eld

density and the resistivity. Using instead of the resistivity, its inverse, the ondutivity,

Ohm's law reads

q = σ e , (5.7)

where σ is the ondutivity tensor. Furthermore, Equation (5.5)2 states that the eletri

�eld density is url free, and hene, it an be derived from a salar potential �eld, φ, i. e.,

e = − gradφ , (5.8)

where the minus sign ensures that urrent �ows from regions of higher potential to regions

of lower potential. Combining Equations (5.6), (5.7), and (5.8), and using the de�nition of

the membrane potential (5.2), the seond bidomain equation is found, whih, in rearranged

form, is given by

div
(

(σi + σe) gradφe

)

= − div (σi gradVm) ∀x ∈ ΩM . (5.9)

Inserting the de�nition of the urrent rossing the ell membrane (5.1) into the urrent

balane (5.6), and again using the de�nition of the membrane potential (5.2) to eliminate

the intraellular potential yields the �rst bidomain equation

div (σi gradVm) + div (σi gradφe) = Am

(

Cm
∂Vm
∂t

+ I
ion

)

∀x ∈ ΩM . (5.10)

Equations (5.9) and (5.10) are a system of two oupled partial di�erential equations.

The �rst bidomain equation (5.10) relates hanges in the membrane potential and the

extraellular potential to urrents rossing the ell membrane. From a mathematial

point of view, Equation (5.10) is a paraboli PDE in the membrane potential that links

to a system of ODEs, ẏ = f(t, y), required to determine the ioni urrents rossing the ell

membrane, i. e., I
ion

= I
ion

(t, Vm), where Vm is an entry of y that depends on other entries

of y. The seond bidomain equation (5.9) relates hanges in the membrane potential to

hanges in the extraellular potential. Equation (5.9) is an ellipti PDE that is solved for

the extraellular potential.

Inserting Equation (5.7) into Equation (5.5)3 and assuming that there exists no urrent

soure in the eletrially inative body region yields a generalised Laplae equation that

desribes the potential distribution in the body region, i. e.,

div (σo gradφo) = 0 ∀x ∈ ΩB . (5.11)

Note that the body region has only one domain, whih orresponds to the extraellular

domain of the musle region. This is due to the fat that there are no ative ellular

responses but only passive eletri properties in the eletrially inative body region.

Analytial solutions to the bidomain equations are not generally available and their

numerial solution is omputationally omplex. This omplexity results from the oupling

between the PDEs and the system of sti� ODEs, f. Pathmanathan et al. [201℄, Vigmond

et al. [270℄. To simplify this omplexity, approximations to the bidomain equations have

been developed. The most ommon approximation is the monodomain equation (see

Sundnes et al. [255℄), whih will be presented in Setion 5.2.
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Interfae and Boundary Conditions

Sine the potential in the body region is the ontinuation of the extraellular potential of

the musle region, ontinuity of potential and ontinuity of urrent �ow must be satis�ed

at the musle-body interfae. This an be ahieved by demanding

φe = φo ∀x ∈ ΓI , (σe gradφe) · nM = −(σo gradφo) · nB ∀x ∈ ΓI , (5.12)

where nM
and nB

denote the outward-oriented unit normal vetors of the musle region

and the body region, respetively, and nM = −nB
at the musle-body interfae. Note

that the interfae onditions ensuring ontinuity of potential and ontinuity of urrent at

the musle-body interfae (5.12) are automatially satis�ed when using the �nite element

method.

The assumptions that there is no urrent �ow between the intraellular domain of the

musle region and the body region and that urrent annot �ow aross the outer musle

boundary yield the boundary ondition

(

σi gradφi) ·nM = 0 −→
(

σi gradVm) ·nM = −
(

σi gradφe) ·nM ∀x ∈ ΓI ∪ ΓM .
(5.13)

In (5.13) a hange in variables has been arried out using the de�nition of the membrane

potential, sine the intraellular potential is not a primary variable of the presented formu-

lation of the bidomain equations. Note that boundary ondition (5.13) has to be applied

also at the musle-body interfae, sine the intraellular potential has no ontinuation in

the body domain within the bidomain model.

Boundary ondition (5.13), however, only restrits the �ow of urrent from the intrael-

lular domain aross the outer musle boundary. To ensure that no urrent an �ow aross

the outer musle boundary, additionally a no-�ow (homogeneous Neumann) boundary

ondition is required for the extraellular potential, whih takes the form

(σe gradφe) · nM = 0 ∀x ∈ ΓM . (5.14)

Further, to ensure that urrent annot �ow over the outer boundary of the body region,

a no-�ow boundary ondition is applied at the body surfae. This ondition is given by

(σo gradφo) · nB = 0 ∀x ∈ ΓB. (5.15)

The extraellular bidomain equation (5.9) is essentially a Poisson equation, and the

equation for determining the potential in the body region, Equation (5.11), is a generalised

Laplae equation. Sine only Neumann-type boundary onditions for a Laplae-type or

a Poisson-type equation yield an ill-onditioned matrix [211℄, an additional boundary

ondition is required. Dirihlet boundary onditions far away from the eletrial soure,

as proposed, for example, by Pullan et al. [211℄ for the heart/torso, are too restritive for

the EMG. Hene, a zero-mean ondition, as proposed by Austin et al. [6℄, is applied to

the extraellular bidomain equation in the musle domain and to the generalised Laplae

equation in the body domain. The zero-mean ondition is given by

∫

ΩM

φe dv +

∫

ΩB

φo dv = 0 ∀x ∈ ΩM ∪ ΩB , (5.16)
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where dv denotes an in�nitesimal volume element. The onstraint in (5.16) an onve-

niently be applied in a post-proessing step.

5.2 The Monodomain Model

Assuming that the intraellular and extraellular ondutivity tensors have equal

anisotropy ratios, i. e., σi = kσe for some salar k > 0, the bidomain equations (5.9)

and (5.10) an be simpli�ed to the monodomain equation, f. Keener & Sneyd [144℄. To

this end, the seond (extraellular) bidomain equation (5.9) is �rst rearranged

div
(

(σi + σe) gradφe

)

= −div (σi gradVm) ,

div
(

(1 +
1

k
)σi gradφe

)

= −div (σi gradVm) ,

k + 1

k
div (σi gradφe) = −div (σi gradVm) ,

div (σi gradφe) = − k

k + 1
div (σi gradVm) ,

(5.17)

and then inserted into the �rst bidomain equation (5.10) yielding

div (σi gradVm) − k

k + 1
div (σi gradVm) = Am

(

Cm
∂Vm
∂t

+ I
ion

)

,

1

k + 1
div (σi gradVm) = Am

(

Cm
∂Vm
∂t

+ I
ion

)

,

div
(

(k + 1)−1σi gradVm
)

= Am

(

Cm
∂Vm
∂t

+ I
ion

)

,

div
(

(kσe + σe)
−1σiσe gradVm

)

= Am

(

Cm
∂Vm
∂t

+ I
ion

)

,

div
(

(σi + σe)
−1σiσe gradVm

)

= Am

(

Cm
∂Vm
∂t

+ I
ion

)

.

(5.18)

Introduing the e�etive ondutivity σeff := (σi+σe)
−1σiσe, the monodomain equation

reads

div (σeff gradVm) = Am

(

Cm
∂Vm
∂t

+ I
ion

)

∀x ∈ ΩM . (5.19)

The monodomain equation, essentially a transient reation-di�usion equation, is a

paraboli PDE oupled to a system of ODEs, whih are needed to determine I
ion

. Com-

paring Equation (5.19) with the equations that desribe the ioni urrent rossing the

ell membrane in the models of Chapter 4, i. e., Equations (4.1), (4.7), and (4.14), the

monodomain equation ontains additionally a di�usive term. The di�usion of the mem-

brane potential depolarises the membrane potential of adjaent segments of a �bre. If the

threshold value is reahed, voltage gated hannels in these segments will produe the AP

and restore the impulse shape of the propagating AP.

Although the monodomain model is an exat representation of the bidomain model

only if the extraellular and intraellular ondutivity tensors are equally anisotropi, the

monodomain model is also often employed in other ases as an approximation [191℄. To

this end, Nielsen et al. [191℄ present mathematially optimal monodomain approximations
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to the bidomain model.

Within the limits of this approximation, it is su�ient to solve the monodomain equa-

tion (5.19) if one is only interested in the membrane potential. If one is also interested

in the extraellular potential, one needs to solve the seond bidomain equation (5.9) for

the extraellular potential, after solving the monodomain equation (5.19) for the mem-

brane potential. Sine the monodomain equation (5.19) does not rely on the extraellular

potential, these alulations an be arried out in a deoupled fashion, whih enables a

simple parallel exeution.

To aurately simulate the propagation of APs through musle tissue, a detailed knowl-

edge of the underlying material parameters is required. Here, espeially the ondutivities

of the intraellular and extraellular domains in lateral and transversal diretions of the

musle are of interest. As often in biomehanis, however, these parameters are not read-

ily available. In fat, the experimentally determined values for musle ondutivities vary

by at least a fator of �ve, f. Gielen et al. [84℄, Lowery et al. [160℄. However, due to the

fat that gap juntions do not exist in skeletal musle tissue, the AP is not transferred

between adjaent �bres. Gap juntions are speialised interellular onnetions between

two ells that are present in most tissues, e. g. the myoardium (ardia musle tissue) of

the heart. Sine eletrial stimulation from one �bre to adjaent ones does not our, it is

pertinent to onsider the propagation of APs along a musle �bre as a 1D problem. The

1D representation of the monodomain equation reads

∂

∂s

(

σeff
∂Vm
∂s

)

= Am

(

Cm
∂Vm
∂t

+ I
ion

)

, (5.20)

where s is the spatial variable along the musle �bre, and σeff denotes the ondutivity,

whih is a salar for 1D problems. Further, for 1D problems, the monodomain approxima-

tion (the ondutivity tensors have equal anisotropy ratios) is always satis�ed (f. Nielsen

et al. [191℄), and thus, the monodomain model is equivalent to the bidomain model. It is

furthermore noteworthy that the 1D monodomain equation with onstant ondutivities

oinides with the able equation proposed by Hodgkin & Huxley [120℄.

Boundary Conditions

Similar to the bidomain model, the most ommon boundary ondition for the mono-

domain model is the no-�ow boundary ondition. Negleting the ondutivity of adjaent

strutures, urrent annot �ow out of the musle domain. Thus, for the membrane po-

tential of the monodomain model, no-�ow (homogeneous Neumann) boundary onditions

are applied at all musle domain boundaries, yielding

(σeff gradVm) · nM = 0 ∀x ∈ ΓM . (5.21)

If, in addition to the membrane potential, the extraellular potential is of interest, one

an �rst solve the monodomain equation (5.19) for the membrane potential, and then

solve the extraellular bidomain equation (5.9) in the musle domain, and, if appropriate,

the generalised Laplae equation (5.11) in the body domain. To this end, the appropriate

boundary onditions for these equations are applied, see Setion 5.1.1.
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5.2.1 Numerial Methods for Solving the Monodomain Equation

Analyti solutions to the monodomain equation are restrited to low dimensional problems

and very simple phenomenologial ell models, e. g. the ubi polynomial ioni urrent

model, f. Hunter et al. [126℄. For omplex, nonlinear biophysial ell models, suh as the

model of Hodgkin & Huxley [120℄ or the model of Shorten et al. [240℄, however, analyti

solutions are generally not available.

Numerial methods for the solution of PDEs typially rely on a disrete representation

of its di�erential terms, see Setion 3.1. To this end, it is often onvenient to �rst treat the

spatial derivatives yielding a system of oupled ODEs, before treating the time derivatives.

Disretising the monodomain equation in spae, a reation term Iion,i = I
ion

(t, Vm,i) ours
at eah spatial disretisation point i of the spae-disrete, time-ontinuous equation. For a

problem with n spatial disretisation points and a ell model of dimension m, this yields

a system of oupled nonlinear ODEs of dimension m × n that has to be solved using

a Newton iteration in every time step. Furthermore, biophysial ell models are often

mathematially represented by sti� di�erential equations, requiring very small time steps

to resolve the steep gradients and rapid hanges ourring in these models [211℄.

Although it is ertainly possible to follow this approah, it is not very e�ient from a

omputational point of view. Instead, operator splitting methods [155℄ that allow to treat

the ell models separately from the di�usion term are frequently used for the solution of

the monodomain and bidomain equations, f. e. g. Qu & Gar�nkel [212℄, Sundnes et al.

[254℄, Whiteley [275℄.

Operator Splitting Methods

In ontrast to the approah disussed above, the presented operator splitting methods rely

on �rst disretising the temporal derivatives, and then treating the spatial derivatives.

These methods an be represented using the abstrat notation

∂u

∂t
=

N
∑

i=1

Li(u) , (5.22)

where Li represents an operator, suh as, for example, a spatial derivative, u is the un-

known funtion, and N denotes the number of steps of the splitting method. Two ommon

operator splitting tehniques are presented in the following, the Godunov splitting and

the Strang splitting. The reader is referred to LeVeque [155℄ and Strang [251℄ for further

details.

Godunov Operator Splitting The simplest di�erential operator splitting tehnique is

alled Godunov splitting and is obtained for N = 2. Its splitting error is of �rst order,

i. e., O(h). Sine the overall order of a numerial method an never be higher than its

submethods lowest order, it is su�ient to use �rst-order time-stepping shemes for the re-

sulting subproblems. Applying the Godunov splitting to the monodomain equation (5.19)
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and employing �nite di�erenes for the time disretisation, Equation (5.22) yields

L1(Vm) :=
V ∗
m − V k

m

h
= − 1

Cm
I
ion

, h = tk+1 − tk ,

L2(Vm) :=
V k+1
m − V ∗

m

h
=

1

AmCm
div

(

σeff gradVm
)

, h = tk+1 − tk ,

(5.23)

where V k
m and V k+1

m are the disrete solutions at times tk and tk+1
, respetively, and V ∗

m

denotes an intermediate step introdued through the operator splitting method. Note

that eah equation in (5.23) is solved over the interval [tk, tk+1]. Figure 5.3a graphially

represents the Godunov operator splitting method.
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Figure 5.3: Shemati representation of the time stepping in operator splitting methods, where A

denotes the solution of the reation term I
ion

, and B marks the solution of the transient di�usion

equation. (a) Godunov splitting. (b) Strang splitting.

Strang Operator Splitting The Strang splitting [251℄ obtained forN = 3 yields seond-
order auray assuming eah subproblem is solved using a method of at least this au-

ray. The Strang splitting of the monodomain equation is given by

L1(Vm) :=
V ∗
m − V k

m
1
2
h

= − 1

Cm
I
ion

, 1
2
h = tk+1/2 − tk ,

L2(Vm) :=
V ◦
m − V ∗

m

h
=

1

AmCm
div

(

σeff gradVm
)

, h = tk+1 − tk ,

L3(Vm) :=
V k+1
m − V ◦

m
1
2
h

= − 1

Cm

I
ion

, 1
2
h = tk+1 − tk+1/2 ,

where a further intermediate step V ◦
m has been introdued. The Strang splitting sheme

is graphially represented in Figure 5.3b.

Employing operator-splitting methods to the monodomain and bidomain equations pro-

vides several advantages. The most obvious advantage results from the fat that the re-

ation term, I
ion

, at one disretisation point an be evaluated ompletely independent of

all other disretisation points. Thus, instead of solving one huge nonlinear system, many

small systems are solved. This is typially muh faster and an easily be done in parallel,

potentially employing a massively parallel GPGPU (general-purpose omputing graphis

proessing units), f. Roha et al. [218℄. Moreover, due to the separation of the reation

term from the di�usion term, the most suitable numerial method an be used for eah

subproblem. Hene, the transient di�usion equation (5.23)2, a linear paraboli PDE, an
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be treated di�erently than the nonlinear ODE in (5.23)1. This also inludes that di�erent

time step sizes an be used to solve the equations within the interval [tk, tk+1], e. g., suby-
ling an be performed. This is partiularly interesting for the integration of biophysial

ell models, whih are ommonly desribed by sti� equations and require very small time

step sizes to resolve the rapid hanges and steep gradients that are ourring espeially

during the rising phase of an AP.

5.3 Simulating the Ation Potential Propagation

The �rst part of this setion demonstrates that for the presented appliations the mono-

domain model is a good approximation to the more omplex bidomain model. Based on

this result, the subsequent parts of this setion investigate the e�et that the hoie of

material and disretisation properties of the monodomain model have on the AP propa-

gation.

5.3.1 Comparing the Monodomain and Bidomain Models

As previously mentioned, the monodomain model equals the bidomain model only if

the assumption of equal anisotropy ratios of the intraellular and extraellular ondu-

tivity tensors is satis�ed. Appendix C presents numerial examples demonstrating this

behaviour. The aim of this setion is to investigate how well the monodomain model

approximates the bidomain model for the present appliations if the assumption of equal

anisotropy ratios is not satis�ed.

The investigation is arried out on a simple two-dimensional (2D) test problem of

size ΩM = [x1, x2] = [0, 0.0625 m]2. The domain is disretised using the �nite di�erene

method and 10 disretisation points in eah diretion. No body domain is onsidered. The

Godunov operator splitting is employed for both the monodomain equation (5.19) and the

bidomain equations. The oupled PDEs representing the bidomain model (5.9) and (5.10)

are solved in a monolithi fashion. The fast-twith parametrisation of the ell model of

Shorten et al. [240℄ is used to represent the ioni urrents rossing the ell membrane.

Furthermore, the surfae-area-to-volume ratio, Am, and the membrane apaitane, Cm,

are hosen to be 500 m

−1
and 1.0µF/m2

, respetively, [221, 240℄. Both models are

implemented in Matlab. The (impliit) bakward Euler method and a time step size

of 0.01ms are used to solve the PDEs. Matlab's build-in solver ODE15s is employed to

integrate the sti� ODEs of the ell model of Shorten et al. [240℄ using optimised internal

time steps within intervals of 0.01ms. To evoke an AP, a stimulating urrent su�iently

high to depolarise the membrane potential is injeted lose to a orner of the domain, one

grid point away from the boundary in eah diretion.

It is interesting to note that for the very small examples onsidered in this setion,

there is almost no di�erene in the omputation time required to solve the monodomain

and the bidomain problems. This an partially be explained by the fat that the solution

of the ell model of Shorten et al. [240℄, whih needs to be arried out in both models,

requires most of the omputing time, while the solution of the linear matrix system, whih

ontains twie as many equations for the bidomain model than for the monodomain model,

requires only very little time. Furthermore, it is noteworthy that the m×m matrix arising

from the disretisation of the bidomain model has rank m− 1, i. e., it is singular (2-norm
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ondition number 1.37 · 1017). The singularity arises from exlusively using Neumann

boundary onditions for the extraellular bidomain equation, whih is a Poisson-type

equation. For the resulting system of equations, an in�nite number of solutions for the

extraellular potential exists. Matlab still solves the linear system of equations. The

zero-mean ondition (5.16) is applied in a post-proessing step to determine a reasonable

solution for the extraellular potential.

Condutivity Tensors with Unequal Anisotropy Ratios

Two di�erent test ases are onsidered. The �rst test ase assumes an anisotropy ratio of

10 for the intraellular ondutivity tensor and an isotropi extraellular ondutivity ten-

sor (anisotropy ratio of 1), f. Mordhorst et al. [178℄. In detail, the following ondutivity

tensors are onsidered:

σi = 8.93

[

1 0
0 0.1

]

ek ⊗ el , σe = 6.7

[

1 0
0 1

]

ek ⊗ el . (5.24)

Based on the ondutivity tensors in (5.24), Figures 5.4a � 5.4 ompare the evolution

of the membrane potential of the monodomain and bidomain models at three di�erent

grid points. Furthermore, the distribution of the di�erene between the monodomain and

bidomain models is depited in Figure 5.4d 0.5ms after stimulation has been applied at

node (x1, x2) = (9, 9).
While the membrane potentials based on the monodomain and the bidomain models

are quite similar, one an observe that the di�erene between the two models inreases

with inreasing distane from the stimulation point. This is due to the fat that for the

ondutivity tensors in (5.24) the propagation veloity in the bidomain model is slightly

higher than in the monodomain model. The higher propagation veloity an be explained

by an interation of the membrane potential with the extraellular potential in the bido-

main model, whih is negleted when using the monodomain model. Furthermore, the

di�erenes between the two models are signi�antly larger than in the previous test ases

and are now of the order of several millivolts, f. Figure 5.4d. The maximum di�erene

between the models is 24.04mV and ours at node (x1, x2) = (9, 10) 0.03ms after stim-

ulation. It is however noteworthy that exept for grid points lose to the stimulation

point at times brie�y after stimulation, the di�erene between the two models is less than

10mV, f. Figure 5.4. Although di�erenes exist between the two models, it an be on-

luded that for the ondutivity tensors in (5.24), the monodomain model approximates

the bidomain model quite well.

It is furthermore noteworthy that for these ondutivity tensors propagation of the AP

is fast in the x1-diretion but also ours at a slower rate in the x2-diretion, due to the

assumed intraellular ondutivity in this diretion. In skeletal musle, however, the APs

only propagate along the musle �bres but not perpendiular to them. This is due to the

fat that gap juntions do not exist in skeletal musle tissue.

The absene of gap juntions in skeletal musle tissue inspired the hoie of ondu-

tivities used in the seond test ase. Here, for the intraellular domain, ondutivity

exists only in one diretion, i. e., the �bre diretion, whih is assumed to oinide with

the x1-diretion. The values of the extraellular ondutivity tensor are hosen suh that

the resulting ondutivity tensor on the left-hand side of the extraellular bidomain equa-
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Figure 5.4: Di�erene of the membrane potential of the monodomain and bidomain models

for an anisotropi intraellular ondutivity tensor and an isotropi extraellular ondutivity

tensor. The evolution of the membrane potential of the bidomain model (red) and the mono-

domain model (blue) is shown (a) at node (x1, x2) = (8, 8), (b) at node (x1, x2) = (5, 5), and
() at node (x1, x2) = (2, 2). In addition, (a�) show the di�erene between these two models

(gray, right y-axis). (d) The distribution of the di�erene (in mV) between the bidomain and the

monodomain models is depited 0.5ms after stimulation has been applied at node (x1, x2) = (9, 9).

tion (5.9), i. e., σi + σe, has an anisotropy ratio of 5, f. e. g. Mesin [170℄. In detail, the

following ondutivity tensors are used:

σi =

[

8.93 0
0 0

]

ek ⊗ el , σe =

[

6.7 0
0 3.126

]

ek ⊗ el . (5.25)

Based on these ondutivity tensors, Figures 5.5a � 5.5e ompare the evolution of

the membrane potential of the monodomain and bidomain models at �ve di�erent grid

points. Furthermore, Figure 5.5f depits the distribution of the di�erene between the

monodomain and bidomain models 0.25ms after stimulation has been applied at node

(x1, x2) = (9, 9).
To interpret the results of Figure 5.5, it is pertinent to onsider also the distribution of

the extraellular potential. For the bidomain model, the extraellular potential is a pri-

mary variable. After applying the zero-mean ondition (5.16), the extraellular potential

an diretly be stated. The extraellular potential, however, is not a variable of the mono-
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Figure 5.5: Di�erene of the membrane potential of the monodomain and bidomain models for

an intraellular ondutivity only in �bre diretion and an anisotropi extraellular ondutivity

tensor. The evolution of the membrane potential of the bidomain model (red) and the mono-

domain model (blue) is shown (a) at node (x1, x2) = (6, 9), (b) at node (x1, x2) = (5, 9), () at
node (x1, x2) = (3, 9), (d) at node (x1, x2) = (9, 8), and (e) at node (x1, x2) = (9, 7). In addition,

(a�e) show the di�erene between these two models (gray, right y-axis). (f) The distribution of

the di�erene (in mV) between the bidomain and the monodomain models is depited 0.25ms

after stimulation has been applied at node (x1, x2) = (9, 9).

domain model, and hene, based on the omputed membrane potential distribution, the

extraellular bidomain equation has to be solved for the extraellular potential. Again,

the zero-mean ondition (5.16) is applied in a post-proessing step.
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For the ondutivity tensors in (5.25), Figure 5.6 ompares the distribution of the

bidomain-based extraellular potential with the monodomain-based extraellular poten-

tial 0.2ms after stimulation has been applied at node (x1, x2) = (9, 9).
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Figure 5.6: Distribution of (a) the monodomain-based extraellular potential (in mV), (b) the

bidomain-based extraellular potential (in mV), and () the di�erene between the models (in mV)

for intraellular ondutivity only in x1-diretion and an anisotropi extraellular ondutivity

tensor. The results are shown 0.2ms after stimulation has been applied at node (x1, x2) = (9, 9).

Considering the membrane potential in Figure 5.5, it an be observed that for the

ondutivity tensors in (5.25), the AP propagates almost exlusively in the �bre diretion.

Along this diretion, the membrane potential of the monodomain and bidomain models

are omparable, whereat the bidomain model again shows a slightly higher propagation

veloity (f. Figures 5.5a�). Normal to the �bre diretion, there is no propagation of the

membrane potential in the monodomain model (f. Figures 5.5d and 5.5e). In ontrast,

in the bidomain model, propagation of the membrane potential also ours normal to

the �bre diretion due to a non-zero entry in the extraellular ondutivity tensor in this

diretion. This is due to the fat that the extraellular potential propagating normal to

the �bre diretion indues a hange in the membrane potential at grid points that are

loated at a distane in x2-diretion from the stimulation point, f. Figure 5.6. Solving

suessively the monodomain and the extraellular bidomain equations, the extraellular

potential does not in�uene the membrane potential, and hene, the extraellular potential

distribution in Figure 5.6a has no in�uene on the membrane potential. It is, however,

noteworthy that the propagation equation for the extraellular potential is a Poisson

equation, desribing di�usion proesses, and hene, the potentials rapidly deline with

inreasing distane in x2-diretion. The indued membrane potential at grid points next

to those along whih the AP propagates is low enough that the membrane potential in

the ell models assoiated with these grid points does not reah the threshold potential,

and hene, no AP is generated at these points.

The maximum di�erene in the membrane potential between the models is 36.16mV

and ours 0.03ms after stimulating node (x1, x2) = (9, 10). Exept for grid points lose

to those along whih the AP propagates, the di�erene between the two models is muh

smaller, f. Figure 5.5. Thus, di�erenes between the extraellular potentials of the two

models are of the order of the extraellular potential lose to the propagating AP but van-

ish with inreasing distane from the AP, f. Figure 5.6. It an be onluded that, for the

ondutivities in (5.25), the monodomain model approximates well the AP propagation

along the �bres, while it exhibits signi�ant di�erenes in the normal-to-�bre (ross-�bre)

diretion. The most important property of the propagation equations, however, is the AP

propagation along the musle �bres.
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5.3.2 Propagation of the Ation Potential Along Musle Fibres

The previous setion demonstrated that the monodomain model is a good approximation

to the bidomain model for the onsidered appliations. Based on this result, the 1D mono-

domain equation (5.20) is now used to simulate the propagation of APs along musle �bres.

As before, the model of Shorten et al. [240℄ is employed to represent the ioni urrents

rossing the ell membrane.

Making use of the Godunov operator splitting method, Equation (5.23)1 is integrated

using the forward Euler method. For the time disretisation of the transient di�usion

equation (5.23)2 the bakward Euler method is employed. In the following, a 6 m long

�bre is onsidered. The �bre is spatially disretised using linear Lagrange �nite elements.

Unless otherwise stated, the material parameters listed in Table 5.1 are used for the

simulations.

Symbol Desription Value (slow/fast) Unit Ref.

σeff e�etive ondutivity 3.828 mS/m [221℄

Am surfae-area-to-volume ratio 500 m

−1
[221℄

Cm membrane apaitane 0.58/1.0 µF/m2
[240℄

Table 5.1: Material parameters for the monodomain equation.

The weak form of the monodomain equation is provided in Appendix D.1, and its

�nite element formulation has been implemented in the open-soure software library

OpenCMISS

2

. For the integration of the ell model use is made of the CellML API (appli-

ation programmer interfae). Further implementational details are provided in Bradley

et al. [26℄.

5.3.3 In�uene of the Time Step Size

The aim of this setion is to investigate the in�uene of the time step sizes used for the

solution of the ODE and PDE models, whih result from the operator splitting. To this

end, the 6 m long musle �bre is homogeneously disretised using 1152 one-dimensional,

linear Lagrange �nite elements. All simulations employ the fast-twith parametrisation

of the model of Shorten et al. [240℄. The �bre is stimulated by injeting a urrent of

9600µA/m2
for 0.1ms into the intraellular domain at the leftmost node of the �nite

element mesh. To avoid boundary and stimulation e�ets, the propagation time is mea-

sured between two nodes that are 5 m apart from eah other and remain away from both

boundaries. The times at whih the AP reahes its maximum value at eah of the two

nodes are used to ompute the propagation speed.

First, the e�et of the time step size used for the solution of the ell model is inves-

tigated. To this end, the time step size for the transient di�usion equation is �xed at

hDEQ = 0.0005ms. Table 5.2 (left) lists the resulting AP propagation times required to

travel the 5 m long distane and the orresponding propagation veloities for di�erent ell

model time step sizes. It an be observed that the propagation speed onverges towards

approximately 1.95m/s.

2

http://physiomeprojet.org/software/openmiss
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Having investigated the e�et of the ell model time step size, now the in�uene of

the time step size for the solution of the di�usion equation is analysed. To this end, the

ell model time step size is �xed at hODE = 0.0001ms. Table 5.2 (right) summarises the

propagation times and veloities for di�erent time step sizes of the di�usion equation.

hODE [ms℄ time [ms℄ veloity [m/s℄

0.001 no onvergene

0.0001 23.6 2.12

0.00001 25.4 1.97

0.000001 25.6 1.95

hDEQ [ms℄ time [ms℄ veloity [m/s℄

0.01 26.6 1.88

0.005 26.0 1.92

0.001 24.8 2.02

0.0005 23.6 2.12

Table 5.2: Propagation times and veloities required by the AP to travel a 5 m long distane for

(left) di�erent ell model time step sizes, hODE, and a �xed time step size of hDEQ = 0.0005ms
for the transient di�usion equation, and (right) di�erent time step sizes for the transient di�usion

equation, hDEQ, and a �xed time step size for the ell model of hODE = 0.0001ms.

Interestingly, dereasing the time step size of the ell model, hODE, yields a derease in
the propagation veloity, while a derease of the time step size of the di�usion equation,

hDEQ, yields an inrease in the propagation veloity. In detail, reduing the ell model

time step size by an order of magnitude aused an 8.7% derease of the propagation

veloity. Further, a redution of the time step size of the di�usion equation by an order of

magnitude yielded a 9.4% inrease in the propagation veloity. Furthermore, it should be

mentioned that a derease of the time step size omes at the ost of inreased omputing

time. This applies, in partiular, to the ell model, where a redution aused a dramati

inrease of the total omputing time (result not show). This an be explained by the

fat that the solution of the nonlinear ell models is muh slower than the solution of the

linear di�usion equation.

5.3.4 In�uene of the Element Size

This example investigates the in�uene that the element size has on the propagation

veloity. The investigation is arried out for both the fast-twith and the slow-twith

parametrisation of the ell model of Shorten et al. [240℄. Similar to the previous examples,

a 6 m long 1D musle �bre is stimulated at the leftmost node, and the propagation time

between two nodes that are 5 m apart from eah other is measured. The time step

sizes for the ell model and the transient di�usion equation are hODE = 0.0001ms and

hDEQ = 0.0005ms, respetively.

Initially, the 6 m long �bre is disretised using 144 linear Lagrange �nite elements.

Suessively, the number of elements is doubled until onvergene of the propagation

veloity is ahieved. Following Pathmanathan et al. [201℄, the stimulation urrent has

to be adjusted when hanging the disretisation. For the disretisation with the fewest

elements, here 144 elements, the injeted urrents equal 1200µA/m2
and 2000µA/m2

for the slow-twith and the fast-twith parametrisations, respetively. These values dou-

ble when the number of elements are doubled, sine the amount of injeted urrent is

proportional to the number of elements, when injeting urrent at a single node.
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Table 5.3 summarises for the di�erent disretisations the AP propagation times required

for the 5 m long distane and the resulting AP propagation veloities using the fast-

twith (left) and slow-twith (right) parametrisations of Shorten et al. [240℄.

Ne time [ms℄ veloity [m/s℄

144 24.6 2.03

288 25.4 1.97

576 26.2 1.91

1152 26.4 1.89

2304 26.4 1.89

Ne time [ms℄ veloity [m/s℄

144 35.8 1.40

288 37.0 1.35

576 37.4 1.34

1152 37.6 1.33

2304 37.6 1.33

Table 5.3: Ation potential propagation times required to travel a 5 m long distane and resulting

ondution veloities in fast-twith (left) and slow-twith (right) musle �bres for di�erent number

of elements, Ne.

For both parametrisations, the propagation veloity onverges when dereasing the

element size. The onverged propagation veloities are 1.89m/s and 1.33m/s for the fast-

twith and the slow-twith parametrisations, respetively. Experimentally determined AP

propagation veloities usually range from approximately 2m/s to 6m/s, f. e. g. MGill

& Lateva [164℄. The fat that the AP propagation veloities predited by the model

are smaller than literature values might be attributed to inaurate material parameters.

Hene, the in�uene of the material parameters is investigated in the following setion.

5.3.5 In�uene of Material Parameters

The 1D monodomain equation (5.20) depends on three material parameters � the e�etive

ondutivity, σeff , the membrane apaitane, Cm, and the surfae-area-to-volume ratio,

Am. However, assuming a homogeneous ondutivity, the formulation redues to two

e�etive parameters � the membrane apaitane and the ratio between the ondutivity

and the surfae-area-to-volume ratio. To investigate the e�et these parameters have on

the AP propagation, and to analyse the sensitivity of the propagation veloity to hanges

in these parameters, a systemati variation of the parameters is arried out. The fast-

twith parametrisation of the model of Shorten et al. [240℄ is used for the investigation.

Time steps sizes are hODE = 0.0001ms for the ell model and hDEQ = 0.0005ms for the

di�usion equation. Further, 1152 linear Lagrange �nite elements are used for the spatial

disretisation of the 6 m long �bre.

Table 5.4 summarises for di�erent values of the material parameters the time an AP

requires to propagate along a 5 m long segment of a musle �bre and the orresponding

propagation veloity. The results indiates that both a lower membrane apaitane and a

higher ratio between the ondutivity and the surfae-area-to-volume ratio yield a higher

ondution veloity. Sine the aim of this work is not to model a spei� musle but

rather the development of methods for the simulation of any skeletal musle, the material

parameters of Table 5.1, whih are based on literature values, are still used in the following

simulations.
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σeff/Am [µS℄ Cm [µF/m2
℄ time [ms℄ veloity [m/s℄ Remarks

1.914 1.0 48.2 1.04

3.828 1.0 33.4 1.50

7.656 1.0 23.6 2.12 C
15.312 1.0 16.8 2.98

30.624 1.0 � � A
7.656 0.25 13.3 3.76 B
7.656 0.5 16.8 2.98

7.656 2.0 33.4 1.50

7.656 4.0 � � A

Table 5.4: Propagation times and veloities required by the AP to travel a 5 m long distane for

di�erent values of the material parameters. Remarks: A � no propagating AP is generated. B �

besides the propagation veloity, also the amplitude of the AP is a�eted, i. e., an approximately

14% higher AP amplitude is observed. C � this simulation orresponds to the referene ase of

Table 5.1.

5.3.6 In�uene of the Ativation History

From experiments it is known that the AP propagation veloity and the amplitude of

the AP depend on the ativation history, f. Juel [136℄, Milner-Brown & Miller [175℄. Of

partiular interest are the redued AP amplitude and the redued propagation veloity

observed during sustained ontrations at high frequeny. This phenomenon is termed

membrane fatigue and is attributed to an aumulation of potassium ions and a depletion

of sodium ions within the T-tubules as a result of high-frequeny stimulation. Due to

a hange in the ioni onentration gradient aross the T-tubule membrane in response

to sustained high-frequeny AP disharges (f. Green [90℄, Sejersted & Sjøgaard [233℄),

the amplitude of the membrane potential dereases and the AP propagation veloity is

redued, f. Juel [136℄, Milner-Brown & Miller [175℄.

Due to the fat that the biophysial ell model of Shorten et al. [240℄ inludes a desrip-

tion of T-tubule ioni urrents, the presented model of a musle �bre is used to investigate

the e�et of membrane fatigue on the AP amplitude and propagation veloity. For the

analysis, the model setup desribed in Setion 5.3.4 is used. In agreement with the results

of Table 5.3, the 6 m long �bre is disretised using 2304 �nite elements. The fast-twith

model is stimulated using a frequeny of 100Hz. Due to the fat that the stimulation

frequeny of 100Hz is too high for the slow-twith parametrisation (APs were not reliably

generated), a stimulation frequeny of 50Hz is onsidered for the slow-twith model.

Stimulating the fast-twith model at 100Hz for 500ms, the propagation veloity de-

reases from 1.89m/s to 1.58m/s, whih orresponds to a derease of 16.4%. Employing

the slow-twith parametrisation, the AP propagation veloity dereases within 500ms

from 1.33m/s to 1.25m/s, whih orresponds to a 6.0% derease. The model predited

dereases of the AP propagation veloity of 6.0% and 16.4% within 500ms an be om-

pared to the experimentally determined derease of about 30�50% obtained after 2min

of stimulation, f. Juel [136℄.
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Besides a redution of the AP propagation veloity, hanges in the AP amplitude are

observed. Figure 5.7a shows the evolution of the membrane potential at a point far

from the stimulation point in the fast-twith model as a result of 100Hz stimulation.

Figure 5.7b shows the same quantity for the slow-twith model due to 50Hz stimulation.
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Figure 5.7: Evolution of the membrane potential (a) in the fast-twith model during 100Hz

stimulation, and (b) in the slow-twith model during 50Hz stimulation at a point far away from

the stimulation point.

In Figure 5.7 it an be observed that for both parametrisations, the AP amplitude

dereases rapidly to an approximately steady level. Due to a 500ms long stimulation

at 100Hz, the fast-twith model predits an amplitude redution of 44.9%, while the

slow-twith model at 50Hz stimulation predits an amplitude redution of 27%. Due to

the fat that the diret measurement of hanges of the AP amplitude of a single �bre is

di�ult, instead, the amplitude redution of the surfae-deteted potential is ommonly

reported in experimental studies. Therefore, the predited AP amplitude redutions are

not ompared to experimental data at this point, but a omparison will be provided, when

investigating surfae-deteted potentials in Setion 5.4.3.

The predited dereases in the AP amplitude and the AP propagation veloity due to

high-frequeny stimulation demonstrate that the model is apable of simulating mem-

brane fatigue. As previously mentioned, membrane fatigue is attributed to potassium

aumulation and sodium depletion in the T-tubules. Therefore, Figure 5.8 shows the

evolution of the potassium and sodium onentrations in the T-tubules of a fast-twith

musle �bre due to a high-frequeny stimulation of 100Hz.

The model predits that potassium onentration saturates at a level almost twie as

high as its resting onentration, when the �bre is stimulated for approximately 300ms at

100Hz, f. Figure 5.8a. It is noteworthy that the steady level of the AP amplitude during

high-frequeny stimulation is also reahed after approximately 300ms, f. Figure 5.7a.

The derease in the onentration of sodium in the T-tubules is less pronouned than the

inrease of the potassium onentration, f. Figure 5.8b. After 500ms of high-frequeny

stimulation, the model predits a T-tubule sodium onentration that is about 10% lower

than the resting onentration.
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Figure 5.8: Evolution of (a) the potassium onentration and (b) the sodium onentration in

the T-tubules during 100Hz stimulation in a fast-twith musle �bre.

5.4 Simulating Eletromyographi Signals

The eletrial ativity of a musle is the superposition of the APs generated by its musle

units, eah of whih onsists of many �bres that are simultaneously ativated by their

orresponding motor neuron. The eletrial ativity of a musle an be reorded either

at the skin surfae above the musle or within the musle using needle eletrodes. These

experimentally reorded signals are generally termed EMG signals, or more spei�ally,

surfae EMG (sEMG) and intramusular EMG, depending on the eletrode plaement.

Providing information on healthy and pathologial onditions of a musle, EMG signals

are widely used as soure of data in rehabilitation mediine but also in sienti� researh

suh as movement analysis, neurology, or the development of biofeedbaks. Due to the

fat that EMG signals are the result of asades of omplex biophysial proesses, they

are often hard to interpret and analyse. Therefore, omputational models prediting the

EMG have great potential to improve omprehension of reorded signals.

Building on the results of Setions 5.1 and 5.2, the eletrial ativity of musle tissue

onsisting of many �bres is modelled in this setion. Further, to predit the EMG signals,

the musle tissue model is linked to a volume ondutor. In addition, the MN model

of Negro & Farina [186℄ is inluded in the model to evoke the MUAPs. A shemati

representation of the resulting model is shown in Figure 5.9.

Some of the results presented in this setion have previously been published in Mord-

horst et al. [178℄

3

.

5.4.1 Propagation of Eletrial Signals Through a Volume

Condutor

The propagation of eletrial signals through the 3D musle tissue an be modelled at

the marosale using the bidomain model, f. Setion 5.1. Negleting the e�et that

the extraellular potential has on the membrane potential, the bidomain model an be

3

The methods and results presented in this setion have been developed in lose ollaboration with Mylena

Mordhorst, M. S., during her master thesis and thereafter. The work of Mylena is greatly aknowledged.
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motor neuron pool (ODE)

MU disharge times t
MUj

i

half-saromere (ODE)

musle �bre model

Vm

di�usion eqn. (1D PDE)

EMG signal (3D PDE)

Vm

Figure 5.9: Overview of the model of the EMG. Eah box indiates a model part. The ouplings

between the parts are indiated through arrows together with the transferred information.

simpli�ed to the monodomain model, f. Setion 5.2. While both the bidomain and

the monodomain models are well established for simulating the eletrial ativity of the

heart (f. Pullan et al. [211℄), these approahes have not yet been applied to model EMG

signals. The ativation of skeletal musle, however, is muh more omplex than the

ativation of the heart. The ontration of the heart is initiated by a single ontinuous

wave front propagating through the myoardium. In ontrast, in skeletal musle, the

�bres belonging to a MU are ativated through their orresponding MN independent of

all other MUs, and eletrial ativation from one �bre to adjaent ones does not our.

Hene, the individual �bres an be onsidered as eletrially isolated and an be modelled

as 1D objets. Following this argumentation, the distribution of the membrane potential

an be determined from the 1D monodomain equation (5.20), similarly to the approah

presented in Setion 5.3.2.

One the membrane potential has been determined by solving the monodomain equa-

tion (5.19), the extraellular potential distribution an be omputed in the musle tissue

using the extraellular bidomain equation (5.9) and in the eletrially inative tissues

using the generalised Laplae equation (5.11). Due to the fat that the extraellular po-

tential not only propagates along the �bre diretion but also in diretions perpendiular

to it, Equation (5.9) has to be disretised on a 3D domain. To this end, the nodes of the

1D musle �bre meshes are onneted suh that a 3D linear Lagrange �nite element mesh

is obtained, see Figure 5.10. The weak forms of the extraellular bidomain equation (5.9)

and the generalised Laplae equation (5.11) are provided in Appendix D.2. The spatial

derivative terms in the extraellular bidomain equation (5.9) are disretised and solved

using the resulting �ne-spaed 3D �nite element mesh. Note that this straightforward

approah is hosen due to its simpliity but other methods are also possible. For exam-

ple, a omputationally more e�ient method that uses a oarser �nite element mesh for

the solution of the extraellular bidomain equation than for the monodomain equation is

used in Vigmond et al. [270℄ for modelling the eletrial ativity of the heart. Due to the

fat that skeletal musle �bres are eletrially isolated, the distribution of the membrane

potential in the 3D musle tissue, whih enters the extraellular bidomain equation (5.9)

as a soure term, is highly irregular and non-smooth. The projetion of suh a �utuating

signal to a di�erent grid is not straightforward, whih further ompliates the usage of

di�erent disretisations.
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Figure 5.10: A 2D shemati representation of the 3D problem highlighting the onnetion of

the nodes of the 1D �bre meshes (red, left) to the 3D mesh for the solution of the extraellular

bidomain equation (red, right). Eah �nite element node point of the 1D musle �bre meshes

requires the solution of the biophysial half-saromere model (blue, left).

To summarise, the steps used in this work to ompute the EMG signal are: (i) The 1D

monodomain equation (5.20) is solved for the membrane potential distribution along the

musle �bres. (ii) The extraellular bidomain equation (5.9) and the generalised Laplae

equation (5.11) are solved for the extraellular potential in the musle region and for the

potential in the body region, respetively. The weak forms of these equations have been

implemented into the open-soure software library OpenCMISS [26℄.

While the eletrially inative body region is assumed to behave eletrially isotropi, an

anisotropy ratio of 5 is assumed for the overall ondutivity of the extraellular bidomain

equation (σi + σe), f. Epstein & Foster [66℄, Gielen et al. [84℄, Mesin [170℄. Further, in

agreement with the previous �ndings, the intraellular ondutivity tensor has a non-zero

omponent only in �bre diretion. To model an arbitrary distribution of the �bre dire-

tions, it is onvenient to introdue a loal, orthonormal �bre oordinate system (f. Pullan

et al. [211℄), denoted by νj, suh that

σi =





σi 0 0
0 0 0
0 0 0



νk ⊗ ν l , σe =





σl
e 0 0
0 σt

e 0
0 0 σt

e



νk ⊗ ν l , σo =





σo 0 0
0 σo 0
0 0 σo



νk ⊗ ν l ,

and a loal �bre diretion an be assigned at eah material point of the onsidered body.

Here, the ν1-diretion is hosen to oinide with the diretion of the musle �bres. The

material parameters used in the presented simulations are summarised in Table 5.1 and

Table 5.5.

Symbol Desription Value [mS/m℄ Ref.

σi longitudinal intraellular ondutivity 8.93 [28℄

σl
e longitudinal extraellular ondutivity 6.7 [228℄

σt
e transversal extraellular ondutivity 3.126 [170℄

σfato fat ondutivity 0.4 [228℄

σskino skin ondutivity 0.2 [78℄

Table 5.5: Eletrial ondutivities.
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5.4.2 Surfae and Intramusular EMG in a Retangular Cuboid

This setion demonstrates that the proposed method an simulate realisti intramusular

and sEMG signals. To this end, a retangular uboid of length l = 6 m (x1-diretion),
width w = 2.9 m (x2-diretion), and overall height h = 1.4 m (x3-diretion) is onsid-
ered. The lower 1.2 m are de�ned as transversely isotropi musle region that is overed

by a 0.2 m thik isotropi fat layer. (This simulation does not expliitly aount for the

skin.) Within the musle region, a total of 30 × 13 = 390 musle �bres are equally dis-

tributed. The 390 �bres are randomly assigned to 10 MUs. The resulting distribution is

shown in Figure 5.11a. To simulate a parallel-�bred musle, all �bres are hosen to run in

parallel with the uboid's long edge and span over its entire length. Further, eah musle

�bre is meshed using 144 �nite elements, and the ell model assigned to eah node of the

resulting mesh uses the fast-twith parametrisation of Shorten et al. [240℄. This leads to

the same AP propagation veloity along all �bres. The innervation zone is assumed to be

loated at the middle of the musle uboid. To model the innervation zone, a Gauÿian

distribution around the middle of the �bres with a standard deviation of two nodes is

assigned to the stimulation point. The maximum deviation is 7 nodes, whih orresponds

to a 0.5 m wide spread of the innervation zone.

The MU disharge times are determined using the biophysial model of the MNs of Ne-

gro & Farina [186℄, whih has been desribed in Setion 4.2. The input to the MN model

is a onstant mean synapti urrent of 0.005µA/m2
superimposed by two Gauÿian-

distributed high-frequeny osillating signals, one ommon to the entire MN pool and one

independent for eah MN, see Negro & Farina [186℄ for details. Due to the total synapti

input signal, 8 out of the 10 MUs are reruited. The mean disharge frequenies of the

reruited MUs are approximately 10�15Hz, and the interstimulus interval exhibits a o-

e�ient of variation of approximately 20%. Figure 5.11b shows the MU disharge times

as predited by the MN model.
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Figure 5.11: (a) The attribution of the �bres to the 10 MUs. (b) The motor neuron disharge

times. Figure previously published in [178℄.

Figure 5.12 shows the APs propagating along the musle �bres and the resulting sEMG

signals at the beginning of the simulation (0�13ms). While in experimental studies often

di�erential EMG signals are reorded, all EMG signals presented in this thesis result from

monopolar detetions. Due to the fat that the proposed method determines the potential

at eah point of the domain, di�erential signals an easily be omputed from the di�erene

of two monopolar signals if neessary.
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Figure 5.12: Musle �bre APs and the resulting sEMG signals at times t = 0�6ms (left, from

top to bottom) and t = 7�13ms (right) in steps of size 1ms.
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Figure 5.13 shows a short segment of the virtual sEMG signal at 25 (5 × 5) seleted
points. In both diretions, the distane between the points is hosen to be 5mm, whih

is in agreement with the intereletrode distane (IED) of high-density sEMG eletrodes.
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Figure 5.13: High-density sEMG signals. The x1-diretion oinides with the musle �bre di-

retion, and the x2-diretion is perpendiular to the �bre diretion. In both diretions, the inter-

eletrode distane (IED) is 5mm.

Figure 5.14 shows the omputed EMG signals at 7 seleted positions within the musle

(di�erent depths) and one position at the outer surfae of the fat tissue. This represen-

tation reveals that the intramusular EMG depends heavily on the eletrode position,

piking up signals from only few �bres, whih is in agreement with experimental observa-

tions [138℄. Furthermore, Figure 5.14 demonstrates the e�et of the low-ondutivity fat

tissue on the EMG signal.

Despite the simpli�ed example set-up (uboid geometry, unrealisti MU territories),

the predited EMG signals ompare qualitatively well with the experimental sEMG data

of Farina et al. [70℄ and Barbero et al. [9℄. A quantitative omparison is di�ult as

experimental EMG signals depend heavily on properties that are di�ult to ontrol in ex-

periments, suh as, for example, the MU territories and the thikness of the subutaneous

tissue [54℄. It is furthermore noteworthy that no noise has been added to the omputed

EMG signals. Experimental EMG reordings, in ontrast, always ontain noise, for ex-

ample, eletrode-eletrolyte noise, the noise of the eletroni ampli�ers, line interferene,

biologial noise and the interferene ativity of MUs far from the detetion point [68, 168℄.

5.4.3 E�et of Membrane Fatigue on the EMG

The aim of this test ase is to investigate the e�et of membrane fatigue on the EMG

signal. Changes of the AP amplitude and propagation veloity of a single skeletal musle

�bre due to membrane fatigue have been analysed in detail in Setion 5.3.6. Due to

the fat that the diret measurement of hanges of the AP amplitude of a single �bre

is di�ult, the resulting amplitude redutions of the surfae-deteted potential are now

investigated.

For the numerial experiments the uboid of Setion 5.4.2 is extended by a 1mm thik

layer of skin tissue on top of the fat layer. The ondutivity of the isotropi skin layer is

provided in Table 5.5. As before, the fast-twith parametrisation of the model of Shorten
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Figure 5.14: Intramusular and sEMG signals at position (x1, x2) = (3.92 m, 1.25 m) and

di�erent depths (x3), where x3 = 1.4 m is at the outer surfae of the fat tissue, and x3 = 1.2 m
is at the musle-fat interfae.
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et al. [240℄ is used. To learly demonstrate the e�et of fatigue on the sEMG signal, only

a single �bre in the tissue blok is ativated. The ativated �bre is loated in the middle

of the uboid and 0.4 m below the skin surfae. Stimulation of this �bre ours at its left

end at a frequeny of 100Hz.

Figure 5.15 shows the �rst simulated APs propagating along the stimulated �bre and

the resulting sEMG signal on top of the skin surfae. The derease in the amplitude of

the potential from the �rst to the seond AP is learly visible in the sEMG signal. Note

that this derease is due to the high stimulation frequeny and beomes less pronouned

with larger interstimulus intervals (not shown).
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Figure 5.15: Single �bre APs propagating from left (point of stimulation, stimulation frequeny

100Hz) to right and resulting sEMG at time t = 30.4ms. Note that for illustrational purposes

only the ativated �bre is depited in the musle tissue. Additionally, two sides of the uboid

indiate the musle and fat tissues. Previously published in [178℄.

To quantify the derease in the amplitude of the EMG signal over a larger number

of APs, Figure 5.16a displays the sEMG signal reorded at a position in the middle of

the skin surfae versus time. Within 500ms, the amplitude of the EMG dereases from

0.37mV to 0.22mV, whih orresponds to a derease of 40%.

Furthermore, to illustrate hanges in the propagation veloity due to membrane fatigue,

Figure 5.16 depits the potential distribution in �bre diretion at the surfae along the

uboid's entre line at times 30.4ms and 500.4ms. These time instants are hosen suh

that in both ases the next stimulation ours at the left end of the �bre. Comparing

the sEMG of the non-fatigued state (t = 30.4ms) with the fatigued state (t = 500.4ms),

one observes that both the propagation veloity and the amplitude of the signal derease

with time.

The model predited AP amplitude redution of 40% ompares well to the experimen-

tally determined surfae-deteted mean amplitude redution of 32%, see Milner-Brown &

Miller [175℄. Experimental data re�eting hanges in the AP amplitude exist only based

on the sEMG. In ontrast, hanges in the ondution veloity due to membrane fatigue

an be analysed intramusularly from single �bres or from surfae-deteted potentials, f.

Juel [136℄, MGill & Lateva [164℄. Sine the intramusular reordings of the propagation

veloity are probably more reliable than the values obtained from the sEMG, and sine

the model predited hanges of the AP propagation veloity in single �bres have already

been disussed in detail in Setion 5.3.6, a omparison of the predited surfae-deteted

potentials with experimental reordings is omitted here.
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Figure 5.16: (a) The surfae potential versus time aptured at position

(x1, x2, x3)=(3.0,1.4,1.5) m. (b) The surfae potential versus the spatial oordinate for

times 30.4ms and 500.4ms. Figure previously published in [178℄.

5.5 Disussion

The presented model for simulating the intramusular and surfae EMG is based on

the bidomain model, whih is a ontinuum approximation of the eletrophysiologial be-

haviour of eletro-ative biologial tissue [211℄. The ontinuum harater of the bidomain

model is re�eted by the fat that not eah half-saromere of a musle �bre is represented,

but instead a ontinuous distribution of the subellular quantities is assumed. Further-

more, assuming homogeneous onditions in the ross-setion of the musle �bre, only one

half-saromere model in the ross-setion is used to determine the AP propagation along

the musle �bre.

A monolithi oupling of the bidomain model with a detailed biophysial ell model

in the musle and the generalised Laplae equation in the surrounding tissues leads to

omputational expensive simulations. One ommon approah to derease the omputa-

tional omplexity of the bidomain model is to use the less omplex monodomain model,

f. Nielsen et al. [191℄, Sundnes et al. [255℄. This approah yields an exat method if the

assumption of equally anisotropi intraellular and extraellular ondutivity tensors is

satis�ed, and an approximation if not [191℄. Therefore, it has been demonstrated that the

monodomain model approximates well the bidomain model for the presented appliations.

Using the monodomain model, the equations for the membrane potential and for the

extraellular potential are deoupled from eah other, and hene, an be solved sues-

sively. The suessive solution of the monodomain equation and the extraellular bido-

main equation essentially orresponds to the approah used in previous models of the

EMG [72, 160, 168, 171℄. These phenomenologial models presribe the shape (e. g. the

Rosenfalk approximation) and propagation veloity of the AP, and solve a Poisson equa-

tion for the extraellular potential to predit the EMG.

By suessively solving the monodomain equation and the extraellular bidomain equa-

tion, the e�et that the extraellular potential has on the membrane potential is negleted.

However, it has been demonstrated that this approximation has a minor e�et on the AP

propagation veloity. In fat, the monodomain model predits slightly lower AP prop-

agation veloities than the bidomain model. This is also re�eted in the disrepany
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between the monodomain-based AP propagation veloities reported in Setion 5.3.4 and

those reported by Davidson [45℄ for the bidomain model.

The AP propagation veloities obtained from the monodomain or bidomain models for

the material parameters given in Table 5.1, however, are rather small ompared to exper-

imentally determined AP propagation veloities, whih in skeletal musle are ommonly

about 4m/s, f. Mesin [170℄. Although there is also variability in the experimental data

(for example, MGill & Lateva [164℄ assumed 2�6m/s), it is pertinent to assume that the

given set of material parameters is inaurate. Following this, it has been shown that

both a lower membrane apaitane and a higher ratio between the ondutivity and the

surfae-area-to-volume ratio yield a higher ondution veloity.

In ontrast to previous models of the EMG, whih presribe the shape and propagation

veloity of the AP as part of the model onstitution, the generation and propagation of

the AP in the presented model is based on a transient di�usion equation in onjuntion

with a biophysial Hodgkin-Huxley-type model of the membrane eletrophysiology. One

of the major advantages of the biophysial desription is that it intrinsially aounts for

physiologial e�ets suh as, for example, membrane fatigue that auses hanges in the

amplitude and ondution veloity of the AP during sustained ontrations. Thus, using

the presented biophysial model, one an analyse their e�et on the EMG signal, whih

might improve signal interpretation and lead to a better understanding of reorded EMG

signals. Moreover, hanges in the EMG that might our, for example, in pathologial

onditions, an potentially be investigated using the presented model due to its biophysial

desription. A further potential appliation of the model is the in-silio testing of drugs.

For example, knowing the e�et a ertain mediation has on the ondution of a speies

of ion hannels, its e�et on the AP shape and ondution veloity an be studied, and

the simulation results an be validated using EMG measurements. No previous model of

the EMG ould ombine all these proesses within one framework.

Other drawbaks of existing models also apply to the presented model, e. g., a lak of

reliable experimental data suh as aurate desriptions of the �bre diretions, material

parameters, heterogeneities, and MU territories. This and the fat that reorded EMG

signals vary a lot, for example, due to di�erenes in the thikness of the subutaneous

tissue (f. Dimitrov et al. [54℄), make a quantitative validation of the EMG omputation

di�ult. The bidomain model and its simpli�ation, the monodomain model, however,

are well established within the �eld of biosignal modelling, in partiular for simulating the

eletrial ativity of the heart, see Pullan et al. [211℄. In this ontext, Vigmond et al. [270℄

demonstrated that a oarser mesh an be used for the (ellipti) extraellular bidomain

equation than for the (paraboli) monodomain equation and still maintain reasonable

auray. Choosing the same mesh size for the extraellular bidomain equation would

not have been neessary but appeared to be, from an implementational point of view, the

simplest hoie.

Commonly, as also desribed in Setion 3.2, impliit methods are used for the integration

of the sti� ODEs desribing the ellular behaviour. This is due to the fat that, when

using expliit methods to solve sti� equations, the time step size is often restrited by

stability issues. Employing an impliit method, suh as, for example, the bakward Euler

method, a larger time step an be used, however, a nonlinear system of equations has to

be solved in eah time step. Independent of the solution method, however, a very small

time step size is required to resolve the rapid hanges and steep gradients ourring during
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the rising phase of an AP. Despite the fat that the ell model of Shorten et al. [240℄ is

mathematially represented by a system of sti� ODEs, the advantage of using an impliit

method and a larger time step is balaned by the additional omputational ost of solving

a nonlinear system of equations in every time step. Indeed, the forward Euler method,

an expliit, �rst-order aurate method, turned out to be e�ient to solve the nonlinear

ell model of Shorten et al. [240℄. It is, however, noteworthy that the small time step

size required to resolve the rising phase of an AP is not required during other phases. To

simulate these phases an impliit method and a larger time step size might be muh more

e�ient than an expliit method. Therefore, an impliit method using an adaptive time

step size might be ideal for the solution of the ell models. Suh methods have been used

to solve the examples in Chapter 4 and Setion 5.3.1 using Matlab, however, they are

urrently not implemented in OpenCMISS.

The Hodgkin-Huxley-type model of the membrane eletrophysiology used within the

monodomain model is part of the biophysial half-saromere model of Shorten et al. [240℄.

Sine the half-saromere model desribes the entire exitation-ontration oupling, i. e.,

the signaling pathway from AP generation via alium release and alium dynamis to

stress generation, the model an, in addition to the EMG, also predit the fore that is

generated by the musle. This, amongst others, will be omprehensively disussed in the

next hapter.



6 A Multisale Skeletal Musle

Model

Previous hapters presented modelling approahes that either ompletely negleted the

spatial omponents of the underlying system (Chapter 4) or onsidered spatial omponents

of the musle only with respet to the propagation of eletrial signals through the tissue

(Chapter 5). The ativation-indued ontration of skeletal musles, however, auses also

a deformation of the musle, whih in turn a�ets the fore-generating apaity of the

musle (f. the fore-length and fore-veloity relations in Figures 2.7 and 2.8) and the

ation potential propagation (mehano-eletri feedbak). To simulate the deformation,

as well as the total fore that is exerted during ontration, a ontinuum-mehanial

desription of skeletal musle behaviour is introdued in the following. In this regard,

ontinuum mehanis provides a �exible framework for modelling and simulating isometri

and non-isometri musle ontrations.

6.1 Constitutive Modelling

The ontinuum-mehanial balane relations presented in Setion 3.4.3 are universally

valid, independent of the material of the body under onsideration. However, due to the

fat that the presented system ontains more unknowns than equations, further relations

have to be developed to lose the system of equations. To this end, suitable assumptions

have to be onstitutively introdued, whih will also haraterise the behaviour of the

material.

6.1.1 Preliminary Assumptions and Resulting Equations

Proeeding from the loal forms of the ontinuum-mehanial balane relations of Se-

tion 3.4.3, assumptions are made towards adapting the generally valid balane relations

to the speial ase of skeletal musle modelling. Furthermore, simplifying assumptions

are introdued to derease the omputational omplexity of the model suh that the re-

sulting model an be solved within a reasonable time on today's hardware arhiteture.

For the sake of onveniene, all basi assumptions are �rst summarised before they are

omprehensively disussed and applied to the balane relations.

• Material inompressibility,

• quasi-stati onditions,

• negligible body fores,

• isothermal onditions,

• the superposition of passive and ative stress ontributions,

• hyperelasti material behaviour.

111
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Due to its high ontent of water, skeletal musle tissue is generally onsidered to behave

materially inompressible under physiologial onditions, f. e. g. Böl et al. [19℄, Gindre

et al. [85℄, Takaza et al. [256℄, Van Looke et al. [268℄. In inompressible materials the

mass density does not hange during a deformation proess. Hene, the time derivative of

the density in the loal form of the mass balane (3.43) vanishes and the resulting relation

yields

div ẋ = (grad ẋ) · I = L · I = D · I = 0 . (6.1)

Therein, D := symL = 1
2
(LT +L) denotes the spatial rate of deformation tensor, whih

is de�ned as the symmetri part of the spatial veloity gradient, L := grad ẋ. The

mass balane, suh as all other balane relations, is stated in Setion 3.4.3 in the atual

on�guration. Of ourse, the balane relations an similarly well be expressed in the

referential frame. In the referene on�guration, the ondition of inompressibility states

that the material density of the body at all times equals its density in the referene state,

i. e., ρ = ρ0. Assuming material inompressibility, the loal form of the mass balane in

the referene on�guration leads to

ρ0 = ρ det F −→ det F = 1 . (6.2)

Equation (6.2) restrits the set of admissible deformations to the subset of volume pre-

serving deformations. To take this restrition into aount, the produt of a Lagrange

multiplier p (the hydrostati pressure) and the inompressibility onstraint (6.1) is added

to the entropy inequality, whih is obtained when the balane of entropy is inserted into

the seond law of thermodynamis. Evaluation of the entropy inequality then yields that

the total stress onsists of two parts, i. e.,

T = −p I + TE , S = −p J C−1 + SE , (6.3)

where TE and SE are the so-alled extra stresses of the atual and referene on�gurations,

respetively. Sine the treatment of inompressible materials is well-known in ontinuum-

mehanis, further details are omitted here but an be found, for example, in Bonet &

Wood [23℄ and Holzapfel [121℄.

Further, the assumption of quasi-stati onditions for the ontinuum-mehanial model

implies that the inertia term in the balane of momentum (3.45) vanishes. This assump-

tion is obviously only valid for slow deformations. Deformations involving large aelera-

tions have to be exluded. For example, the model will not neessarily produe aurate

results for quik-release experiments, f. e. g. Hill [117, 118℄, Siebert et al. [243℄. Restrit-

ing the appliation of the model to more physiologial and slow ontrations, however,

one an assume that the inertia terms are small in omparison to the fores exerted by

the musle. The same assumption holds for the body (gravitational) fores. Following

these assumptions, the loal form of the balane of momentum (3.45) redues to

div T = 0 . (6.4)

Furthermore, the loal form of the balane of angular momentum (3.47) diretly yielded

the symmetry of the Cauhy stress tensor, whih implies the symmetries of the Kirhho�

and the 2

nd

Piola-Kirhho� stresses. While these results will be used in the following, the

balane of angular momentum will not be onsidered any further.
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Next, the assumption of isothermal onditions is onsidered. In reality, musle ontra-

tions generate heat, f. Epstein [67℄, Hill [117℄, whih is released to adjaent body parts

and the environment. Furthermore, it is known from experiments that the temperature

has an e�et on the fore-produing apabilities of the musle and the AP propagation

veloity, see [14, 164℄. Moreover, the temperature of a musle depends on its position in

the body, the temperature of the environment, and the level of musle ativity. Follow-

ing the idea of isothermal onditions used in experimental studies, temperature e�ets

are negleted in this work. Therefore, the energy balane drops out and is not further

onsidered.

Musle tissue resists external loads like any other material but an, in addition, also

atively ontrat and generate fore. To inorporate the ative ontratile behaviour

within the ontinuum-mehanial framework, the stress tensor of the musle tissue is

a priori onstitutively assumed to onsist of two parts desribing the passive and ative

behaviours, S
pas

E and Sat

E , respetively, i. e.,

SE = S
pas

E + Sat

E . (6.5)

The rheologial model orresponding to the superposition of the passive and ative stresses

is shown in Figure 6.1.
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Figure 6.1: Rheologial model for the superposition of passive and ative stresses.

While the superposition of the passive and ative stresses is inspired from Hill-type

musle modelling, Hill-type models typially onsist of three elements. In addition to the

ontratile and the parallel elasti elements, they inlude an elasti element in series to the

ative element or in series to the parallel arrangement depited in Figure 6.1, f. Siebert

et al. [242℄. The series elasti element represents the series elastiity of the musle-tendon

omplex. Sine the series elastiity an mainly be attributed to tendon, whih is not

onsidered in this work, the third element is omitted here.

In this work, only the passive part of the stress tensor is derived from a strain energy

(see below), while the form of the ative part is onstitutively assumed, and hene, does

not neessarily satisfy the seond law of thermodynamis. Reently, a few researhers

also derived the ative part of the stress tensor from a strain energy, whih allows to

demonstrate the thermodynami onsisteny of the overall model, f. e. g. Gizzi et al.

[86℄, Rossi et al. [224℄, Shari�majd & Stålhand [239℄, Stålhand et al. [246, 247℄.

While details regarding the thermodynami onsistent formulation of onstitutive mod-

els are omitted here, Appendix A.2 provides additional information on this subjet. For

more details, the reader is referred to Wang & Truesdell [273℄ and referenes therein.

Negleting visous e�ets and assuming hyperelasti material behaviour of the passive

musle tissue, the seond law of thermodynamis yields that the stress tensor an be
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derived from a strain energy funtion W aording to

S
pas

E = 2
∂W
∂C

. (6.6)

For a transversely isotropi material, the strain energy depends on the right Cauhy-

Green deformation tensor, C, and a strutural tensor, Ma. Commonly, however, the

strain energy is formulated in terms of its prinipal and mixed invariants (f. Appendix

A.2), i. e.,

W(C,Ma) = W(I, II, III, IV, V ) . (6.7)

Therein, the prinipal invariants are given by

I = trC = trB = F · F ,
II = tr (cofC) = tr (cofB) = cof F · cof F ,
III = detC = detB = (detF ) · (detF ) ,

(6.8)

and the mixed invariants, whih are only required for anisotropi materials and vanish for

isotropi materials, are given by

IV = tr (MaC) = (a0 ⊗ a0)
T ·C = a0 · F TF a0 = F a0 · F a0 = a · a ,

V = tr (MaC
2) = a0 ·C2 a0 .

(6.9)

Herein, a0 is a unit vetor pointing in the materials preferred diretion in the referene

on�guration, and the strutural tensor is given by Ma = a0 ⊗a0. Moreover, IV = λ2f is
the squared �bre streth in the diretion of the mapped �bre orientation a = F a0, where

λf = |a| denotes the �bre streth (length). Invariant V has no diret physial meaning.

6.1.2 Resulting Strain Energy Funtions

Based on the �ndings of the previous setion, suitable strain energy funtions are de�ned

for the passive musle tissue and the tissue of the subutaneous layer. Hereby, the strain

energy funtion for the isotropi subutaneous tissue is inluded as a speial ase of the

anisotropi passive musle tissue.

Further, due to the fat that musles onsist of musle �bres and extraellular onnetive

tissue, the musle derives its passive response from a ombination of these strutures [85℄.

Within the �bres, the titin �lament, whih onnets the myosin �lament to the Z-diss, is

believed to ontribute most of the passive response, f. e. g. Prado et al. [209℄. Besides the

titin �laments, the hierarhial organisation of the extraellular onnetive tissue, with its

various �lament orientations and ross-onnetions, gives rise to an anisotropi, or more

preisely, transversely isotropi passive material behaviour, f. e. g. Böl et al. [20℄, Gindre

et al. [85℄, Takaza et al. [256℄. Based on the desription of �bre-reinfored materials, the

passive part of the energy funtion is deomposed into an isotropi part and an anisotropi

part,

W(I, II, III, IV, V ) = W iso(I, II, III) + Wani(IV, V ) . (6.10)

Therein, the isotropi part of the energy funtion depends on the prinipal invariants and

represents a �titious ground matrix, whereas the anisotropi part is assumed to depend

only on the mixed invariants and represents the �bre reinforements. Note that in this
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marosopi ontinuum-mehanial formulation, neither does the isotropi ground matrix

re�et the behaviour of the extraellular onnetive tissue, nor do the �bre reinforements

represent the mehanial behaviour of the musle �bres (although the diretion of the �bre

reinforements oinides with the musle �bre diretion). For example, there is no reason

for assuming that the extraellular onnetive tissue behaves mehanially isotropi.

Isotropi Contribution to the Passive Behaviour

A group of isotropi material models that is well-known in ontinuum mehanis, is the

generalised Rivlin or polynomial hyperelasti material. This group is haraterised by the

strain energy funtions

W iso(I, II) =
N
∑

i,j=0

cij(I − 3)i(II − 3)j . (6.11)

Therein, cij0 ≥ 0 are material parameters and a00 = 0 to satisfy the normalisation on-

dition. The strain energy in (6.11) does not depend on the third prinipal invariant

III = det C = (det F )2, whih is unity due to the inompressibility onstraint. Inter-

estingly, the inompressible form of the generalised Rivlin models (6.11) does not satisfy

the ondition of a stress-free referene on�guration, f. Ogden [197℄. However, due to

the fat that the residual stresses are idential normal stresses, they ause no deformation

of the inompressible material, similar to the penalty terms resulting from the inom-

pressibility onstraint. Note that the ompressible form of the generalised Rivlin model is

onstruted in suh a way that it a priori satis�es the requirement of a stress-free referene

on�guration.

Several ommonly used material models, suh as, for example, the Neo-Hookean solid

(N = 1, c01 = c11 = 0), an be derived from this group. In this work, the Mooney-Rivlin

model is adopted [121℄. The strain energy of the Mooney-Rivlin model is given by

W iso(I, II) = c10(I − 3) + c01(II − 3) . (6.12)

To obtain a ompletely stress-free referene on�guration, whih is advantageous for the

numerial solution proess, the initial ondition of the undetermined Lagrange multiplier

is hosen to be p = −(c10 +2 c01), f. Ogden [197℄. Note that the Mooney-Rivlin material

a priori satis�es the requirements of polyonvexity and oerivity (see Appendix A.2.6).

From the strain energy funtion in (6.12) the isotropi part of the extra stress an be

derived aording to Equation (6.6), i. e.,

Siso

E = 2
∂W iso

∂C
= 2

∂W
∂I

∂I

∂C
+ 2

∂W
∂II

∂II

∂C
. (6.13)

Making use of the derivatives of the prinipal invariants,

∂I

∂C
= I ,

∂II

∂C
= (trC) I − CT ,

∂III

∂C
= cofC , (6.14)

the symmetry of the right Cauhy-Green deformation tensor, and the de�nition of the

�rst prinipal invariant, the isotropi part of the 2

nd

Piola-Kirhho� stress tensor results
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in

Siso

E (I, II) = 2 c10 I + 2 c01(II −C) . (6.15)

This stress tensor is not only used for representing the isotropi part of the musle tissue,

but also to model the material behaviour of the subutaneous layer. Due to the fat that

subutaneous tissue is isotropi and does not atively ontrat, the terms derived in the

following vanish for this material.

Anisotropi Contributions to the Passive Behaviour of Musle Tissue

Skeletal musle tissue is generally onsidered to behave transversely isotropi, i. e., the

material has a single preferred diretion, whih oinides with the loal musle �bre di-

retion. While many experiments indiate that musle tissue is sti�er in �bre diretion

than normal to the �bre diretion (f. e. g. Böl et al. [19℄, Morrow et al. [181℄), a more

ompliant behaviour of the �bre diretion ompared to the ross-�bre diretion is reported

by others, f. Nie et al. [189℄, Takaza et al. [256℄. Due to the fat that di�erent musles

and di�erent speies are onsidered in the di�erent experiments, it is possible that both

behaviours exist in di�erent musles. Following this, �rst a strain energy funtion is in-

trodued to represent the more ommon ase with sti�er �bre diretion. For this ase, the

energy funtion desribing the anisotropi behaviour of the musle tissue is adopted from

Markert et al. [163℄. This strain energy depends only on the fourth (mixed) invariant and

is given by

Wani(IV ) =











M
∑

i=1

( bi
di

(

IV di/2 − 1
)

− bi ln(IV
1/2)

)

if IV ≥ 1 ,

0 otherwise .

(6.16)

Therein, bi and di are material parameters (see Markert et al. [163℄ for their restritions),

andM spei�es the number of terms. The form in (6.16) satis�es a priori the normalisation

ondition and the ondition of a stress-free referene on�guration. For further details on

this anisotropi strain energy funtion, the interested reader is referred to Karajan [140℄

and Markert et al. [163℄.

Sine the energy in (6.16) depends only on the fourth invariant, Equation (6.6) yields

Sani

E = 2
∂Wani

∂C
= 2

∂Wani

∂IV

∂IV

∂C
, where

∂IV

∂C
= Ma . (6.17)

Proeeding from this result, the anisotropi portion of the extra stress desribing a ma-

terial with sti�er behaviour in �bre diretion is given by

Sani

E (IV ) =











M
∑

i=1

bi
(

IV (di−2)/2 − IV −1
)

Ma if IV ≥ 1 ,

0 otherwise .

(6.18)

The stress tensor of a transversely isotropi material with sti�er behaviour in the di-

retions normal to the �bre diretion is, for the sake of brevity, not derived from a strain

energy, but diretly stated. The derivation follows ideas presented by Markert et al. [163℄.
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First, additional unit vetors, b0 and c0, desribing diretions normal to the �bre dire-

tion are introdued, together with their orresponding squared strethes, IVb and IVc, and
strutural tensors, Mb and Mc:

b0 ⊥ a0 IVb = b0 ·C b0 Mb = b0 ⊗ b0 ,
c0 = a0 × b0 IVc = c0 ·C c0 Mc = c0 ⊗ c0 .

(6.19)

Note that for the sum of the strutural tensors, the relation Ma + Mb + Mc = I

holds. Using the quantities de�ned in (6.19), the anisotropi portion of a stress tensor

desribing a sti�er behaviour in the diretions normal to the �bre diretion (i. e., in ross-

�bre diretion, XF ) an be given by

Sani

E,XF(IVb, IVc) =











K
∑

i=1

b̄i
(

IV
(d̄i−2)/2
b − IV −1

b

)

Mb if IVb ≥ 1

0 otherwise











+

+











K
∑

i=1

b̄i
(

IV (d̄i−2)/2
c − IV −1

c

)

Mc if IVc ≥ 1

0 otherwise











.

(6.20)

Of ourse, a superposition of the two anisotropi tensors, Sani

E and Sani

E,XF, is also possible,

where the hoie b̄i = bi and d̄i = di for all i = 1, . . . , K = M yields again an isotropi

material behaviour.

Ative Contribution

The fous of this setion is on the ontinuum-mehanial desription of the key property

of skeletal musle to atively ontrat and generate fore. Musle ontration originates

from the interation and relative movement of the atin and myosin �laments in the

saromeres of the musle �bres, see Setion 2.5.2.

Two approahes are ommonly used to inorporate the ative ontratile behaviour of

musle within a ontinuum mehanial framework. The �rst approah is inspired from

the �eld of Hill-type musle modelling, f. e. g. Günther et al. [92℄, Günther & Shmitt

[93℄, Siebert et al. [242℄, Till et al. [261℄, and assumes a priori a superposition of the energies

or stress tensors desribing the passive and ative behaviour. This approah is often used

in ontinuum and multisale musle mehanis, f. e. g. Blemker et al. [16℄, Böl [18℄, Böl &

Reese [21℄, Dal et al. [43℄, Göktepe & Kuhl [87, 87℄, Johansson et al. [135℄, Murtada et al.

[182℄, Nash & Hunter [184℄, Niederer & Smith [190℄, Odegard et al. [196℄, and Röhrle and

o-workers [219�223, 274℄.

The seond approah is based on the multipliative split of the deformation gradient

tensor, whih was initially developed to model proesses involving elasti and inelasti

deformations (visoelastiity, elastoplastiity), f. Lee [154℄. In the ontext of musle

mehanis, the deformation gradient is deomposed into an ative (ontratile) and a

passive (elasti) part, f. e. g. Gizzi et al. [86℄, Göktepe et al. [88℄, Rossi et al. [224, 225℄,

Shari�majd & Stålhand [239℄, Stålhand et al. [246, 247℄. Note that the multipliative split

of the deformation gradient tensor also yields an additive strain energy (f. [86, 110, 224℄),
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but the method requires to identify and solve an additional equation for the evolution of

an internal variable.

To avoid the additional omplexity involved with the seond approah, the present work

follows the �rst method. Thus, the ative stress ontribution is not formally derived from

a strain energy but is onstitutively assumed to take the form

Sat

E (t, IV, γ) =
1

λf
Pmax γ(t, α, λf , λ̇f)Ma . (6.21)

Therein, Pmax

denotes the maximum isometri ative fore per unit referene area (nom-

inal or engineering stress), and γ is a normalised measure of the loal ative stress in the

musle, whih depends on the ativation, α, the saromere length expressed through the

�bre streth, λf , and the ontration veloity, λ̇f , f. Setion 2.5.2. Although the ative

stress tensor in (6.21) is not derived from a strain energy funtion, the form is hosen to

omply with suh an approah. Assuming that an ative strain energy Wat(λf) exists,
the ative stress tensor an be derived from

Sat

E = 2
∂Wat

∂C
= 2

∂Wat

∂λf

∂λf
∂IV

∂IV

∂C
, where

∂λf
∂IV

=
1

2λf
. (6.22)

This yields the ative stress tensor in (6.21) for ∂Wat/∂λf = Pmax γ [110℄.

As ommonly, the ative stress tensor in (6.21) only ats in the diretion of the musle

�bres, Ma. This assumption is based on the observation that, when musles ontrat,

they shorten along their �bre diretion, and, due to their inompresibility, they expand

in the ross-�bre diretions. Although one an easily imagine that ativated musle tis-

sue exhibits also a higher sti�ness in the ross-�bre diretion than non-ativated musle

tissue, no experimental data exist that investigate this e�et. Hene, the values of mate-

rial parameters of the additional sti�ness in ross-�bre diretion annot be determined.

Despite this lak of experimental data, ative stress tensors onsidering additional om-

ponents in the ross-�bre diretion have been proposed by Baillargeon et al. [7℄, Rossi

et al. [224℄, Usyk et al. [265℄ in the ontext of modelling the mehanial behaviour of the

heart.

Di�erent formulations for the normalised ative stress in (6.21) are possible. A purely

marosopi desription ould, for example, be based on the ative ontratile element

in Hill-type musle models, f. e. g. Blemker et al. [16℄. This leads to γ(t, α, λf , λ̇f) =
α(t) fℓ(λf) fv(λ̇f), where α(t) ∈ [0, 1] is a measure of the ativation of the musle, fℓ(λf) is
the fore-length relation, and fv(λ̇f) denotes the fore-veloity relation, f. Gordon et al.

[89℄, Hill [117℄, Katz [141℄, Siebert et al. [242℄.

A di�erent approah yielding a multisale model is obtained when the normalised ative

stress in the marosopi ontinuum-mehanial formulation is derived from a mirosopi

model, suh as, for example, the biophysial half-saromere model of Shorten et al. [240℄.

When the normalised ative stress is derived from a mirosopi ell model, it is often

more onvenient to express the �bre streth in terms of the saromere length, ℓS, whih is

diretly related to the �bre streth via λf = ℓS/ℓ
0
S with ℓ0S = 2.0µm being the saromere

resting length [61℄, i. e., the saromere length of the referene on�guration. Following

this and using the de�nition of the ell-model-based ative stress in Equation (4.26), the
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normalised ative stress in the multisale hemo-eletro-mehanial model is given by

γ(t, α, ℓS, ℓ̇S) = fℓ(ℓS)
B(t, fs, ℓ̇S)− B(t0, 0, 0)

B(ts, fmaxs , 0)−B(t0, 0, 0)
. (6.23)

Therein, the stimulation frequeny, fs, is used as a measure of the ativation, α, and the

F -ℓ relation is denoted by fℓ(ℓS), f. Equation (4.24). Moreover, ts is the time, at whih

the ell model develops its maximum fore, and fmaxs denotes the maximum stimulation

frequeny.

The form in (6.23) aounts for the resting onentrations of XBs in the pre-power

stroke and post-power stroke states and normalises the ative stress using its value at

full ativation, at optimal saromere length, and under isometri onditions. While the

minimal value of the ative stress is zero, its maximal value an exeed the value of one

during lengthening ontrations, f. Zaja [282℄.

Note that the fores obtained from the 0D model introdued in Chapter 4 are here

interpreted as stresses. Justi�ation for this is given by the fat that normalised nominal

stresses are onsidered; sine the nominal stress is de�ned as the ratio between the fore

and the referential area element, the normalisation proess anels out the referential

area elements, whih do not hange in time, and the resulting normalised nominal stress

is idential to the normalised fore.

Summary

In summary, the resulting overall 2

nd

Piola-Kirhho� stress tensor of the anisotropi and

ative skeletal musle tissue is given by

S = −p J C−1 + Siso

E + Sani

E + Sani

E,XF + Sat

E . (6.24)

On the right hand side of Equation (6.24), the �rst term results from the inompressibility

onstraint, the seond term desribes the isotropi part of the passive material response,

and the third and fourth terms represent the additional passive stress ontributions in �bre

and ross-�bre diretions, respetively. Further, the �fth term desribes the ative stress

ontribution that is due to ross-bridge yling and vanishes if purely passive material

behaviour is onsidered.

6.2 Numerial Treatment of the Multisale Model

The previous setion demonstrated that the formulation of the ative part of the stress

tensor of the ontinuum-mehanial musle model relies on the biophysial half-saromere

model of Shorten et al. [240℄, whih has been introdued in Setion 4.3. Further, Chapter 5

presented the extension of the desription of the membrane eletrophysiology to spatial

onditions. Together, these models onstitute a multisale skeletal musle model.

The major drawbak of the presented multisale musle model is its extreme omputa-

tional omplexity. To deal with this, methods are developed in this setion to biophysi-

ally simulate musle behaviour from the ellular level to the whole organ level on today's

hardware arhitetures.
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6.2.1 Overview of the Multisale Musle Model

Figure 6.2 provides an overview of the proposed modelling framework. The individual

parts of the framework have been presented in previous setions (the model of the half-

saromeres in Setion 4.3, the AP propagation model in Chapter 5, and the ontinuum-

mehanial model in Setion 6.1). Here, the interations and ouplings between the

individual model parts are reviewed and highlighted.

half-saromere (ODE)

musle �bre model

multisale musle model

di�usion eqn. (1D PDE)

ontinuum-mehanial

model (3D PDE)

ℓS, ℓ̇S γ

Vm

deformed geometry x

Figure 6.2: Overview of the multisale musle model. Eah box indiates a part of the model. The

ouplings between the parts are indiated through arrows together with the transferred information.

To indue the ontration of a musle �bre, a stimulating urrent is injeted into the

half-saromere model [240℄ that is loated at the neuromusular juntion. The loation

of the neuromusular juntion is assumed to be, for example, at the middle of the musle

�bres. Starting from the neuromusular juntions, the APs propagate along the musle

�bres. This proess is desribed by the di�usion term of the monodomain model, f.

Setion 5.2. For the solution of the monodomain model, use is made of the operator

splitting approah, whih has been presented in Setion 5.2.1. The aim of the operator

splitting is to separate the biophysial ell model of Shorten et al. [240℄ from the transient

di�usion equation, whih are oupled to eah other through the membrane potential (f.

Setion 5.2.1). Besides the membrane potential and many other biophysial quantities,

the ell model of Shorten et al. [240℄ provides the ative stress, γ, that is generated in

eah half-saromere, f. Equation (6.23).

The normalised ative stress enters the ative part of the ontinuum-mehanial on-

stitutive equation through a mapping (homogenisation), whih will be disussed in detail

in Setion 6.2.3. The ontinuum-mehanial musle model predits the stress and strain

distributions, as well as the atual (deformed) geometry of the musle. From the strain

distribution, the hanges in the saromere lengths are determined and, via a �nite dif-

ferene approximation, the loal ontration veloities are omputed. The ontration

veloities diretly enter the model of the half-saromere, while the saromere lengths are

used to sale the generated ative stresses at the half-saromere level, f. Setion 4.3.4.

Hene, at a point in spae, the half-saromere model and the ontinuum-mehanial model

are bidiretionally oupled.

In ontrary to Röhrle et al. [220℄, the governing equations desribing the bioeletrial

�elds and 3D �nite elastiity theory are solved in a strongly oupled way, where the

solution of the mehanis in�uenes the bioeletrial �elds and vie versa. Furthermore,

to take into aount length hanges that arise from the deformation of the musle tissue,
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the monodomain equation is solved on a deforming/moving domain. The adjustments

required to take into aount the deformation of the domain when solving the equations

desribing the AP propagation along the musle �bres will be presented in detail in the

next setion.

6.2.2 Monodomain Model on a Deforming Domain

This setion investigates hanges that have to be applied to the monodomain model

when taking into aount a deformation of the onduting tissue. In a general set-

ting, the ondutivity tensor, the membrane apaitane, the surfae-area-to-volume ra-

tio, and the ioni urrents rossing the ell membrane an depend on the deformation,

i. e., σeff = σeff(C), Cm = Cm(C), Am = Am(C), and Iion = Iion(C), respetively,
f. Nash & Pan�lov [185℄. Furthermore, the deformation of the domain has to be taken

into aount when evaluating the di�usive term on the left-hand side of the monodomain

equation (5.19). Moreover, streth-ativated ion hannels ould be added to a Hodgkin-

Huxley-type desription of the membrane ioni urrents or in a phenomenologial model

of the AP generation, f. Guharay & Sahs [91℄, Pan�lov et al. [199℄.

Without loss of generality, the ondutive, apaitive, and ioni dependenies are ne-

gleted in the following. Further, sine the surfae-area-to-volume ratio depends to a

large extend on the membrane folding fator (f. Pullan et al. [211℄), hanges of this

quantity due to the ontration of musle �bres are expeted to be negligible. Here, the

fous is on modelling the hanges introdued through the deformation of the domain.

Distinguishing between derivatives with respet to the atual oordinates and those with

respet to referential oordinates, and using the short-hand notation q = −σeff gradVm,
the monodomain equation an be formulated in the atual on�guration by

− div q = Am

(

Cm
∂Vm
∂t

+ Iion
)

. (6.25)

Equation (6.25) an either be diretly solved in the atual on�guration, or it an be solved

in the referene on�guration by pulling bak the respetive geometri quantities. To this

end, the loal formulation in (6.25) is �rst transformed into the global representation, i. e.,

∫

Ω

−div q dv =

∫

Ω

Am

(

Cm
∂Vm
∂t

+ Iion
)

dv , (6.26)

and then shifted to the referene on�guration. Making use of the transport theorem for

the volume element, dv = (detF ) dV = J dV , the right-hand side of Equation (6.26) an

be rewritten in the referene on�guration aording to

∫

Ω

Am

(

Cm
∂Vm
∂t

+ Iion
)

dv =

∫

Ω

JAm

(

Cm
∂Vm
∂t

+ Iion
)

dV . (6.27)

Using Gauÿ's divergene theorem and Nanson's formula, da = J F T−1 dA, the left-hand

side of Equation (6.26) an be reformulated to obtain

∫

Ω

−div q dv =

∫

∂Ω

−q · da =

∫

∂Ω

−J q ·F T−1 dA =

∫

Ω

−Div (J F−1 q) dV . (6.28)
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While the divergene operator and the integral have been pulled-bak to the referene

on�guration, the urrent �ux, q, is still de�ned with respet to the atual on�gura-

tion. Following Holzapfel [121℄, the spatial gradient is related to the material gradient by

grad ( q ) = F T−1Grad ( q ). Furthermore, the referential ondutivity tensor, σ0
eff , is in-

trodued through a ovariant pull-bak operation, i. e., σ0
eff = F−1 σeff F

T−1
. This yields

for the urrent �ux vetor

q = −σeff gradVm = −σeff F T−1GradVm = −F σ0
eff F

TF T−1GradVm . (6.29)

Inserting Equations (6.27), (6.28), and (6.29) into (6.26), and returning to a loal for-

mulation yields the monodomain equation in the referene on�guration, whih is given

by

1

J
Div

(

Jσ0
eff GradVm

)

= Am

(

Cm
∂Vm
∂t

+ Iion
)

. (6.30)

For further details, the reader is referred to, for example, Dorfmann & Ogden [55℄, Gizzi

et al. [86℄, Nash & Pan�lov [185℄.

6.2.3 High-Performane Computing

Previous setions disussed the individual modelling parts and their interations within

the multisale modelling framework. This setion fouses on implementational and high-

performane omputing aspets of the resulting multiphysis disretisation shemes. To

this end, e�ient solution strategies are developed for the resulting omplex and ompu-

tationally very demanding multiphysis model desribing phenomena on di�erent length

and time sales. To ahieve this, various onepts of software engineering, for example,

advaned disretisation shemes for multiphysis problems, parallelisation, or staggered

solution shemes are adopted. These onepts have been implemented within the open-

soure software library OpenCMISS, f. Bradley et al. [26℄, Heidlauf & Röhrle [109℄.

Disretisation in Spae and Time

The numerial solutions of both the ontinuum-mehanial model, presented in Se-

tion 6.1, and the monodomain equation, presented in Setion 5.2, rely on the �nite

element method. The weak forms of the governing equations of the bioeletrial and

ontinuum-mehanial models, required for a �nite element implementation, are provided

in Appendix D. A straightforward implementation would use the same mesh for the solu-

tion of both problems. However, the solution of the bioeletrial �eld equations requires

an extremely small time step and a very �ne mesh due to the rapid hanges and steep

gradients ourring in physiologial ell models, see Setion 5.3 and Pullan et al. [211℄. On

the other hand, using the same spatial and temporal disretisation for the solution of the

3D nonlinear ontinuum-mehanial model is prohibitively expensive and unneessary, as

hanges on the sale of an entire musle our at onsiderably larger time sales.

Following the idea of di�erent harateristi length sales, a multiphysis disretisation

sheme is proposed, whih uses a muh �ner mesh for the bioeletrial model than for

the ontinuum-mehanial system. To this end, �rst, a relatively oarse 3D �nite ele-

ment mesh of the musle's geometry is generated. Then, relatively �ne 1D �nite element

musle �bre meshes are embedded within the 3D elements, f. Röhrle et al. [221℄. This
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is shematially represented in Figure 6.3. The governing equations of the ontinuum-

mehanial model are disretised using the oarse 3D mesh, while the di�usion part of

the bioeletrial �eld equation is solved on the 1D musle �bre meshes.
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Figure 6.3: A 2D shemati representation of the 3D problem highlighting the use of the di�erent

meshes for the di�erent subproblems of the multisale model. First, the geometry of the musle

is disretised using 3D quadrati Lagrange �nite elements (blak mesh). This mesh is used for

the solution of the ontinuum-mehanial model. Embedded in these 3D �nite elements are 1D

musle �bre meshes (red) used for the solution of the monodomain equation. Eah �nite element

node point of the 1D musle �bre meshes requires the solution of the biophysial half-saromere

model (blue).

Sine some variables exist on both meshes, transfer operations between the two meshes

are required. The transfer from the oarse 3D �nite element mesh to the �ne 1D �bre

meshes is alled interpolation, while the transfer in the opposite diretion is termed ho-

mogenisation. The homogenisation and interpolation operations are disussed for eah

a�eted variable further below.

Due to the di�erent harateristi time sales of the di�erent physial phenomena, a

staggered solution sheme with three di�erent time step sizes is applied in this work.

A shemati representation of the time-stepping sheme is shown in Figure 6.4. First,

the half-saromere models are solved for 50 time steps with time step size hODE, f.
Setion 4.3.1. The symbol A in Figure 6.4 denotes the solution proess for omputing

the states of the half-saromere model for time t + hODE. Note that for simpliity and

readability of Figure 6.4 only a frational number of time steps are depited. In ase of

omputing the ellular states, whih will be used within the next time step of the di�usion

equation, only 5 instead of the 50 time steps typially used are depited in Figure 6.4.

Eah disretisation point of the monodomain equation is assoiated with its own half-

saromere model. The half-saromere model is mathematially desribed by ODEs in
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Figure 6.4: Shemati representation of the time-stepping sheme. Therein, h is the time step,

ODE denotes the half-saromere model, DEQ is the di�usion equation, and CMM is short for

ontinuum-mehanial model. Previously published in [109℄.
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time, whih do not rely on any spatial quantities. Therefore, eah half-saromere model

an be solved independently of all other half-saromere models. The �nal values of the

membrane potential omputed in these steps are used as starting values for the di�usion

equation, f. Setion 5.2. This proess is denoted by B in Figure 6.4. Following the

solution of the di�usion equation with time step hDEQ (indiated by C), the updated

values of the membrane potential are used as initial onditions for the next solution step

of the half-saromere model (indiated by D). This proedure is repeated a number of

times (3 times in Figure 6.4, typially 1000 times in the atual omputations) before the

values of the ative stress, γ, are homogenised (Γ : γ → γ̄). The homogenisation proess is

denoted in Figure 6.4 by E. The homogenised values, γ̄, enter the ontinuum-mehanial

model through the ative stress tensor, f. Setion 6.1.2. The ontinuum-mehanial

model is only solved in time inrements of size hCMM

(f. step F ). Further, the values of
the saromere lengths and saromere veloities are interpolated and applied to the half-

saromere models, see G in Figure 6.4. At the same time, the position of the nodes of the

1D �bre meshes are updated based on the alulated deformation. The desribed steps

are repeated until the �nal time is reahed.

Homogenisation and Interpolation

As desribed above, some variables are shared between the di�erent disretisations. For

example, the values of the ative stress �eld are determined in the model of the half-

saromere, i. e., at the nodes of the 1D �bre meshes. In order to inlude the saromere-

based ative stresses in the ontinuum-mehanial onstitutive equation, whih is evalu-

ated at the integration points (e. g. the Gauÿ points) of the 3D �nite elements assoiated

with the weak formulation of the mehanial model (see Appendix D.3), the values need

to be homogenised. Like in Röhrle et al. [220℄, the homogenisation is ahieved by om-

puting the arithmeti mean of all 1D nodal values that are losest to a ertain Gauÿ point

of the ontinuum-mehanial 3D �nite element mesh. Other elaborate homogenisation

tehniques ould be adopted but are not further onsidered in this work.

The positions of the nodes of the 1D �bre meshes are de�ned in terms of the loal

element oordinate system of the 3D geometri �nite elements. Following this, the atual

positions of the nodes of the 1D �bre meshes an be determined from the deformation of

the musle's geometry, i. e., from the atual on�guration. For the interpolation the basis

funtions of the 3D �nite elements are used. The nodal positions of the 1D �bre meshes

are updated after eah solve of the mehanial submodel.

Further, information about the saromere lengths and saromere veloities is required

in the half-saromere models loated at the nodes of the 1D �bre meshes. The saromere

lengths and veloities annot be determined in the biophysial model of the half-saromere,

as they also rely on the boundary onditions of the ontinuum-mehanial model of the

entire musle. Therefore, the loal saromere veloity, λ̇f , is approximated by a bakward

�nite di�erene sheme: λ̇f = (ηk+1
i −ηki )/hCMM

, where ηi represents the distane between
two adjaent nodes, and k and k+1 denote two onseutive time steps of the ontinuum-

mehanial model. To avoid unrealisti high variations in the saromere veloity, the

average of the veloity is alulated over a path of seven sequential nodes of one �bre.
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Data Struture

The open-soure software library OpenCMISS [26℄ provides a highly �exible framework for

the simulation of oupled multiphysis problems. Being arranged in a hierarhial fashion,

the onepts of regions, meshes, �elds, et. (see Bradley et al. [26℄ for details) allow for

ouplings between di�erent physial problems at di�erent length and time sales. The

presented skeletal musle model is built on two regions that oupy the same physial

spae (volume-oupled problem). Note that the model just as well ould have been built

on a single region that ontains two meshes, as shown in Figure 6.5. When the interation

of a skeletal musle with neighbouring strutures suh as other musles, bone, fat, or skin

is of interest, these strutures have to be added to the model as additional regions. To

ouple di�erent regions, their interation an be de�ned via interfae onditions, e. g.

ontat.
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Figure 6.5: Shemati drawing of regions and meshes in OpenCMISS. Di�erent regions an be

oupled via interfae onditions. Several meshes an be assoiated with a region. Previously

published in [109℄.

Although a region an ontain an arbitrary number of meshes, eah region used for

the hemo-eletro-mehanial musle model ontains only one mesh. The region used for

the 3D representation of the geometry and the ontinuum-mehanial model uses a 3D

mesh, while the region used for the bioeletrial model ontains a mesh that onsists of

a number of 1D �bres. The 1D �bre meshes are embedded in the 3D �nite elements, f.

Figure 6.3.

Fields are a key data struture in OpenCMISS. Any quantity that an be assoiated with

a mesh is represented in OpenCMISS as a �eld. A �eld variable an be onstant aross the

mesh, it an vary from element to element, from node to node, from interpolation point

(e. g. Gauÿ point) to interpolation point, or from data point (arbitrarily loated) to data

point. The representation of �elds in OpenCMISS is based on FieldML

1

[38℄, whih provides

�eld transfer operators (homogenisation or interpolation) to handle di�erent spatial sales,

f. Setion 6.2.3.

Further, OpenCMISS employs nested ontrol loops to handle di�erent temporal sales.

In the presented model, two separate ontrol loops for the ontinuum-mehanial model

and the bioeletrial problem, eah with its own time step size, are linked to a superior

main ontrol loop. The ontrol loop for the mehanial model is only assoiated with a

single solver, while the bioeletrial ontrol loop is onneted to a solver for the di�usion

1

http://physiomeprojet.org/software/fieldml/
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equation and a seond solver for the half-saromere model.

The half-saromere model is provided in CellML format [82, 107, 158℄. CellML is a

markup language for the desription of subellular models based on XML (Extensible

Markup Language). In a multisale model, CellML an be used to onveniently desribe

the physial proesses ourring at a single point within a model at a larger spatial

sale, f. Bradley et al. [26℄, Nikerson et al. [188℄. Within OpenCMISS, CellML �les

are onverted to Fortran ode, omplied, and linked to the multisale model at runtime.

CellML models an be downloaded from the CellML repository

2

, whih ontains more than

500 models, among them the biophysial model of a half-saromere of Shorten et al. [240℄.

In OpenCMISS, the time step sizes for the CellML models an be hosen independently of

the time step sizes used to solve equations representing di�erent physis. For example,

the half-saromere model requires a muh smaller time step than the di�usion equation,

and hene, subyling of the CellML model is employed. Mathematial justi�ation for

doing this is given by the operator splitting tehnique, f. Setion 5.2.1.

Parallelisation

OpenCMISS is developed for parallel omputations in a heterogeneous multiproessing

environment [26℄, where the MPI (Message Passing Interfae) standard

3

is used for dis-

tributed memory parallelisation, and the OpenMP standard

4

is used for shared memory

parallelisation.

The implementation of the distributed memory parallelisation in OpenCMISS builds on

the onept of domain deomposition. For the presented hemo-eletro-mehanial skele-

tal musle model, the domain is deomposed in suh a way that eah embedded 1D

�bre mesh is uniquely assigned to a proessor, see Figure 6.6. This approah redues

the amount of ommuniation between the individual proessors to a minimum for the

bioeletrial model. Parallel e�ieny is hereby guaranteed by the fat that the di�u-

sion part of the bioeletrial model is usually evaluated 1000 times more often than the

ontinuum-mehanial model (hCMM = 1000 hDEQ). Hene, a user-de�ned domain deom-

position, rather than a omputed deomposition based on the graph partitioning pakages

ParMETIS

5

or Soth

6

, whih is typially used within OpenCMISS, is optimal with respet

to the entire hemo-eletro-mehanial model.

Although urrently not implemented, the individual musle �bre meshes within a single

omputational domain ould be further parallelised using an OpenMP shared memory

parallelisation. Further, the integration of the ODEs desribing the half-saromere model

is highly suitable for parallel exeution on GPGPUs.

6.3 Appliations of the Multisale Model

This setion demonstrates the apability of the proposed multisale and multiphysis

model to biophysially simulate musle ontrations. First, the parameters of the multi-

2

http://www.CellML.org

3

http://mpi-forum.org

4

http://openmp.org/wp/

5

http://glaros.dt.umn.edu/gkhome/metis/parmetis/overview

6

http://www.labri.fr/perso/pelegrin/soth/
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Figure 6.6: Shemati drawing of the domain deomposition as realised for the hemo-eletro-

mehanial skeletal musle model. The deomposition of the 3D mesh of the musle geometry

does not split any of the musle �bre meshes. Previously published in [109℄.

sale model introdued in the previous setions are determined from experimental data.

Further, the performane of the omputational model is investigated, and a omputa-

tional validation of the multisale model is provided. Finally, di�erent appliations of the

multisale and multiphysis model are presented.

6.3.1 Parameter Identi�ation

This setion deals with the identi�ation of the material parameters that have been in-

trodued in the previous setions. For this purpose, experimental data obtained from the

literature are used.

The two parametrisations for the model of the exitation-ontration pathway of

Shorten et al. [240℄ are based on mouse musles. To simulate human musle �bres, a

partial reparametrisation has been arried out in Setion 4.3.2. Within the multisale

musle model, however, the ell model of Shorten et al. [240℄ is used to represent indi-

vidual half-saromeres. When modelling �bres that onsist of individual half-saromeres,

the �bre length signi�antly in�uenes the twith shape and duration, see Setion 6.3.3.

Therefore, the reparametrised version will not lead to twith durations similar to those

observed in human musles. Instead of introduing yet another reparametrisation, the

original parametrisations of Shorten et al. [240℄ are used in this setion. While this ap-

proah is onsidered to be su�ient for the generi model developed in this hapter, the

simulation of a spei� musle might require a �ne tuning of the model. This, however,

is beyond the sope of this work.

Being part of the monodomain equation, the desription of the membrane ioni ur-

rents within the half-saromere model of Shorten et al. [240℄ signi�antly a�ets the AP

propagation veloity, f. Pullan et al. [211℄. Furthermore, the parameters desribing the

di�usive part of the monodomain model govern the AP propagation veloity, f. Se-

tion 5.3.5. The parameters for the di�usive part of the monodomain equation are based

on literature values and are provided in Table 5.1.

Passive Material Parameters

The anisotropi ontinuum-mehanial desription of the passive musle tissue is based on

several parameters that need to be identi�ed. Unfortunately, the majority of experimen-
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tal data existing in the literature have been determined with the marosopi Hill-type

model in mind. Therefore, the experimentally reported strethes are either given in ab-

solute lengths or they are normalised with respet to the optimal length of the musle.

Furthermore, experimental data almost exlusively exist for the musle's along-�bre dire-

tion, sine Hill-type musle models are 1D desriptions that do not onsider the ross-�bre

diretions.

Following the Lagrangean desription of ontinuum mehanis, all quantities are ex-

pressed with respet to the referene on�guration, whih, by de�nition, has to be stress

free. Therefore, the musle's resting length plays a ruial role in the desription of ontin-

uum mehanial models. Unfortunately, the resting length of musles is rarely reported in

the literature. Following this, it is di�ult to identify valid ontinuum-mehanial stress-

strain relations of passive musle tissue from the experimental literature. Among the few

existing stress-strain data, Hawkins & Bey [102℄ arried out uniaxial extension tests only

in �bre diretion. Morrow et al. [181℄, Nie et al. [189℄, and Takaza et al. [256℄ onsidered,

in addition to the �bre diretion, the tensile behaviour of musle tissue in ross-�bre di-

retion. Due to the fat that extension experiments require a non-destrutive �xation of

the tissue samples, whih is extremely di�ult to ahieve, several researhers investigated

the properties of the 3D musle tissue under ompression, see Böl et al. [20℄, Bosboom

et al. [24℄, Van Looke et al. [267, 268, 269℄, and Zheng et al. [284℄. Furthermore, Böl

et al. [19℄ investigated the behaviour of passive musle tissue under pure shear.

In this work, the haraterisation of the passive material behaviour is based on the

desription of �bre-reinfored materials, where one ommonly assumes that the �bres bear

load only under tension but not under ompression [163℄. Following this, the parameters

of the isotropi Mooney-Rivlin model are determined from the data of the ompression

experiments of Zheng et al. [284℄ using a least-squares �t. Compared to other experiments

(see Van Looke et al. [268℄), the data of Zheng et al. [284℄ desribe musle tissue exhibiting

intermediate sti�ness. Figure 6.7a demonstrates that the resulting material behaviour

niely �ts the experimental data [284℄.

Comparing the resulting isotropi material behaviour to data obtained from tension

experiments in �bre diretion, the model's behaviour is muh too ompliant (result not

shown). Following this, the parameters of the anisotropi material model of Markert et al.

[163℄ are determined from the experimental data of Hawkins & Bey [102℄ by performing a

least-squares �t. Figure 6.7b shows the resulting behaviour of the model in �bre diretion

together with the experimental data of Hawkins & Bey [102℄. A single term of the model

of Markert et al. [163℄ is su�ient to �t the experimental data. The �tted parameters of

the isotropi and anisotropi models (parameter set A) are summarised in Table 6.1.

Symbol Desription Value (slow/fast) Unit Referene

c10 1

st
Mooney-Rivlin parameter 6.352e

−11
N/m

2
[284℄

c01 2

nd
Mooney-Rivlin parameter 0.3627 N/m

2
[284℄

b1 1

st
anisotropy parameter 2.756e

−6
N/m

2
[102℄

d1 2

nd
anisotropy parameter 43.373 [ � ℄ [102℄

Table 6.1: Passive material parameters of the mehanial model (A).
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Figure 6.7: Comparison of the model and passive experimental data. (a) The parameters of the

isotropi Mooney-Rivlin material, c10 and c01, are �tted in a least-squares sense to the experimen-

tal data of passive skeletal musle under ompression of Zheng et al. [284℄. (b) The parameters

of the anisotropi material in �bre diretion, b1 and d1, are �tted in a least-squares sense to the

experimental data of Hawkins & Bey [102℄.

While parameter set A niely �ts the experimental data of Zheng et al. [284℄ and

Hawkins & Bey [102℄, it shows less agreement with the passive behaviour of other mus-

les. This an be explained by the fat that the passive properties of skeletal musles

vary heavily from musle to musle, subjet to subjet, and speies to speies, f. e. g.

Gareis et al. [81℄. To demonstrate that the presented model is �exible enough to simulate

musles with di�erent mehanial behaviour, now a musle is onsidered that has a more

ompliant mehanial behaviour in �bre diretion than in ross-�bre diretion, f. Nie

et al. [189℄, Takaza et al. [256℄. Furthermore, this musle has a quite di�erent behaviour

in �bre diretion than normal to the �bre diretion. Hene, while the parameters of the

isotropi Mooney-Rivlin material are retained, an alternative set of anisotropi parame-

ters is determined from the experimental data of Takaza et al. [256℄ using a least-squares

�t (parameter set B). Figure 6.8 demonstrates that the model an niely �t the experi-

mental data [256℄ in �bre diretion (Figure 6.8a) and in ross-�bre diretion (Figure 6.8b).

In eah diretion, a single term of the respetive material model was su�ient to �t the

experimental data. The resulting material parameters (parameter set B) are listed in

Table 6.2.

Symbol Desription Value (slow/fast) Unit Referene

c10 1

st
Mooney-Rivlin parameter 6.352e

−11
N/m

2
[284℄

c01 2

nd
Mooney-Rivlin parameter 0.3627 N/m

2
[284℄

b1 1

st
anisotropy parameter 0.3554 N/m

2
[256℄

d1 2

nd
anisotropy parameter 12.6605 [ � ℄ [256℄

b̄1 1

st
ross-�bre anisotropy parameter 5316.3722 N/m

2
[256℄

d̄1 2

nd
ross-�bre anisotropy parameter 1.499e

−2
[ � ℄ [256℄

Table 6.2: Passive material parameters of the mehanial model (B).
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Figure 6.8: Comparison of the model and passive anisotropi experimental data. The parameters

of the anisotropi material (a) in �bre (F) diretion, b1 and d1, and (b) in ross-�bre (XF)

diretion, b̄1 and d̄1, are �tted in a least-squares sense to the experimental data of Takaza et al.

[256℄.

Due to the fat that Takaza et al. [256℄ only report passive material properties but

do not investigate the ative behaviour of the musle, the passive material parameters of

Table 6.1, i. e., parameter set A, are used in the following. These parameters are based

on the data of Hawkins & Bey [102℄, who also investigated the ative behaviour of the

musle.

Ative Material Parameters

Having identi�ed the parameters of the passive material desription, the ative behaviour

is onsidered next. The desription of the ative part of the ontinuum-mehanial model

depends on the parameter Pmax

and via γ̄ on the F -ℓ and the F -v relations. For the de-
sription of the F -ℓ relation, the fourth-order polynomial of Setion 4.3.4 is used. Further,

the maximum isometri stress, Pmax

, an diretly be obtained from experimental data.

For example, Hawkins & Bey [102℄ report a maximum isometri stress of approximately

7.3N/m

2
for the tibialis anterior musle of the rat. Although values of 20�25N/m

2

are reported by other researhers, this work adopts the value of Hawkins & Bey [102℄,

sine the passive anisotropi material parameters are also determined from this soure.

Of ourse, for the simulation of a di�erent musle, the maximum isometri stress an

easily be hanged in the model, just as well as all other parameters. While one an easily

�nd the value of the maximum isometri stress, the streth or strain at whih this stress

an be generated is more di�ult to determine. Following the diret relation between the

saromere length and the �bre streth and adopting the value of the resting saromere

length ℓ0S = 2.0µm [61℄, the streth at the optimal saromere length of ℓoptS = 2.4µm [32℄ is

found to be λoptf = 1.2. Finally, the parameters required in the ell model to obtain a F -v
relation that is similar to experimental data, are diretly adopted from Setion 4.3.4. For

the sake of onveniene, the parameters of the ative mehanial model are summarised

in Table 6.3.
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Symbol Desription Value (slow/fast) Unit Ref.

Pmax
maximum isometri stress 7.3 N/m

2
[102℄

x0
average distortion indued through the

0.05 µm [240℄

power stroke

f ′
XB-detahment rate (from A1) 5/15 ms

−1
[240℄

h0 power stroke forward rate 0.08/0.24 ms

−1
[240℄

h′ power stroke bakward rate 0.06/0.18 ms

−1
[240℄

f̄
XB-attahment rate of an isometri

0.5/1.5 ms

−1
[240℄

ontration

ḡ
XB-detahment rate if no neighbour is

0.04/0.12 ms

−1
[240℄

in the A2 state

ν in�uene of ooperative e�ets 3.0/3.4 [ � ℄ [213℄

ϑ level of distortion dependene 1700/1000 [ � ℄ [213℄

ℓ0S resting saromere length 2.0 µm [61℄

ℓoptS optimal saromere length 2.4 µm [32℄

Table 6.3: Material parameters of the ative mehanial model.

6.3.2 The Multisale Computational Model

This setion deals with the omputational model that results from the disretisation

of the multisale musle model. First, as a proof of onept, the multisale model is

used to simulate key parameters of marosopi musle behaviour. Furthermore, ritial

disretisation parameters and the parallel performane of the multisale omputational

model are investigated. The results presented in this setion have previously appeared in

Heidlauf & Röhrle [109, 111℄.

Veri�ation of the Multisale Computational Model

The presented multisale approah is based on the assumption that key properties of

skeletal musle behaviour, namely the F -ℓ and F -v relations, an be reovered at the

marosale although they are ompletely de�ned at the mirosopi half-saromere level.

Following this, the multisale model is �rst ompared to experimental F -ℓ data to demon-

strate that the hemo-eletro-mehanial musle model an reprodue typial mehanial

behaviour of whole musle under isometri onditions on the marosale. For the om-

parison, the experimental F -ℓ data of Hawkins & Bey [102℄ are used, from whih the

parameters of the anisotropi material parameters and the value of the maximum isomet-

ri stress have been determined.

Hawkins & Bey [102℄ analysed the rat TA musle, whih onsists of about 97.5% type-

II �bres [248℄. Therefore, all �bres within the model are assumed to be of type II. The

numerial speimen used for the omparison is hosen as a retangular uboid with di-

mensions 4 cm × 2 cm × 2 cm. The �bres are aligned with the long edge of the uboid.

Starting from the stress-free referene on�guration, the musle speimen is �rst pas-

sively strethed along the �bre diretion to the desired musle length. After passively

strething, displaement in the diretion of the �bres is onstrained at both ends of the

speimen in order to simulate �xed-end ontrations. Moreover, displaement at two fur-
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ther non-parallel faes of the speimen is onstrained in the diretion perpendiular to the

respetive fae (symmetry boundary onditions). Note that the lengths of the individual

half-saromeres are not onstrained but only the total length of the musle. To simulate

a fully ativated musle, a stimulation frequeny of fs = 100Hz is applied to the entral

half-saromere model of eah musle �bre model. The simulation output is the nominal

stress, whih is de�ned as the ratio of the resulting reation fores in �bre diretion and

the initial ross-setional area of the speimen. The peak nominal stress of the hemo-

eletro-mehanial model indued through the passive streth and the applied stimulation

provides the value of the total model. The determined passive and total nominal stresses

at di�erent musle strethes are shown in Figure 6.9a together with the experimental

stress-streth data of Hawkins & Bey [102℄.

After establishing realisti mehanial behaviour under isometri onditions, the ou-

pled hemo-eletro-mehanial model is now tested for its apaity to reprodue exper-

imental F -v data of whole musle. The hyperboli F -v relation of Hill [117℄ an be

expressed by

v

v
max

=
1− F̄ /F̄iso

1 + F̄ /(κF̄iso)
, (6.31)

where F̄iso denotes the maximum isometri fore, v
max

is the maximum shortening veloity

at F̄ = 0, and κ is a dimensionless parameter. In the literature, κ ranges from 0.15 to

0.25 [165℄. Ranatunga [213℄, for example, reports a mean value of κ = 0.24 for rat soleus

musle. Sine rat soleus musle onsists mainly of type-I �bres [244℄, all half-saromere

models in the multiphysis model use now the type-I parametrisation of Shorten et al.

[240℄.

Within the numerial experiments the model speimen is �rst passively strethed to

the optimal length. Then, the length of the speimen is kept �xed, and all �bres are fully

ativated (fs = 100Hz). For a presribed veloity the orresponding reation fore is

omputed. The resulting F -v data are depited in Figure 6.9b, where the fore values have
been normalised to the value at isometri onditions and the veloity has been normalised

to the maximum shortening veloity. Fitting the parameter κ in Equation (6.31) in a

least-squares sense to the simulation results obtained for shortening ontrations yields

κ = 0.241, f. Figure 6.9b.
For lengthening ontrations, the hemo-eletro-mehanial model predits a maximum

fore of 1.77 times the isometri fore. In the literature, di�erent behaviours are reported

for lengthening ontrations of skeletal musles, see Morgan [179℄. The bounded inrease

predited by the model is in agreement with the �ndings of Zaja [282℄, who reports a

maximum of 1.8 times the isometri fore. Sine the model behaviour for lengthening

ontrations proved to be sensitive to a single parameter, the presented model an easily

be adapted to a di�erent shape. However, the non-ontinuously di�erentiable behaviour at

the transition from shortening to lengthening ontrations, observed in experimental F -v
relations (see Katz [141℄), is not predited by the model. One the origin of this unique

feature is ompletely understood, it ould potentially be inluded in the XB-dynamis

omponent model.
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Figure 6.9: F -ℓ and F -v relations of the multisale musle model ompared to experimental data.

(a) The passive and total stresses of the model, and the experimental data of rat TA musle [102℄.

Simulations are arried out at strethes varying from 0.8 to 1.4 in steps of size 0.1 and at λf =
0.75, 0.76, 1.35, and 1.375. (b) The F -v data of the model (blak rosses), the orresponding �t

of Hill's hyperboli relation (κ = 0.241, blue line), and the region of typial musle F -v urves

( 0.15 ≤ κ ≤ 0.25, light-blue shaded area). Figure previously published in [111℄.

Investigation of Critial Disretisation Parameters

The presented multisale model is build on a staggered solution sheme that uses di�er-

ent time step sizes for the solution of the di�erent submodels. Critial time step sizes

for the bioeletrial model have already been disussed in Setion 5.3.3. Here, the model

behaviour for di�erent time step sizes of the ontinuum-mehanial model, hCMM

, is inves-

tigated. Figure 6.10 shows the stress evolution of a shortening ontration (v = −0.1 v
max

)

of a musle that is uniformly stimulated at 50Hz. The results for three di�erent time step

sizes (hCMM = 0.1ms, 0.5ms, and 2.0ms) are shown, whereof the solutions for the smaller

two time steps almost oinide (red dashed line and blue rosses), and the solution for

the largest time step size (hCMM = 2.0ms) depits signi�ant deviations and osillatory

behaviour.
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Figure 6.10: Model behaviour for di�erent time step sizes of the ontinuum-mehanial model,

hCMM

. The solutions for the smaller two time steps almost oinide (red dashed line and blue

rosses), while the solution for the largest time step size shows a non-physial, osillatory be-

haviour. Previously published in [111℄.
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Moreover, within this framework the ative stresses determined in the half-saromere

models are homogenised and inluded in the ontinuum-mehanial onstitutive equation.

The homogenisation is required for omputational e�ieny. A skeletal musle model that

would use the same number of elements for the bioeletrial and the mehanial problem

does no longer require any homogenisation, however, this approah results in a omputa-

tional model that is no longer feasible for any pratial appliation. The homogenisation

proess has little e�et on the onvergene behaviour of the mehanial problem, as has

been demonstrated by Röhrle et al. [220℄. In Röhrle et al. [220℄, the number of embedded

�bre models remained onstant, while the number of 3D mehanial elements was su-

essively re�ning until homogenisation is no longer required. The investigation showed

very good onvergene properties if ompared to the mehanial-only problem, see Röhrle

et al. [220℄.

Performane Analysis

To analyse the parallel performane of the omputational framework, a simple geometri

model is onsidered. A ubi geometry with 2 m edge length is generated and disretised

using eight tri-quadrati/tri-linear Lagrange �nite elements, f. Appendix D.3. A uniform

�bre diretion parallel to an edge of the ube is de�ned, and a total of 400 musle �bres

are evenly distributed in the ubi geometry. Eah �bre is disretised using 60 linear

Lagrange �nite elements. At eah disretisation point of the 1D musle �bre meshes, the

fast-twith version of the model of Shorten et al. [240℄ is solved.

First, the musle is passively strethed in �bre diretion by 20% to reah the optimal

�bre streth of λoptf = 1.2. Under isometri onditions (the musle speimen is �xed at

the optimal length), a 100Hz tetani stimulation is applied to the entral half-saromere

model of all �bres in the model. To analyse the speed-up in a parallel environment, the

desribed model is exeuted on 1, 2, and 4 proessors. A speed-up of 2.18 is ahieved

when going from 1 to 2 proessors, while a speed-up of 1.95 is ahieved when omparing

2 to 4 proessors. Further, the simulations are repeated using only 36 �bres instead of

400. In this ase, speed-ups of 1.44 and 1.50 are ahieved, when inreasing the number

of proessors from 1 to 2 and from 2 to 4, respetively. Table 6.4 lists the timing results

and speed-up fators for a Intel

R© Xeon

R© Proessor E5520 and 8GB of RAM.

36 �bres 400 �bres

# of pros time [ s ℄ speed-up [ � ℄ time [ s ℄ speed-up [ � ℄

1 10004.32

1.441

177759.11

2.185

2 6940.91

1.500

81360.24

1.948

4 4625.88 41763.99

Table 6.4: Exeution time in seonds and resulting speed-up for 1, 2, and 4 proessors. Previously

published in [111℄.

In the example with 400 �bres, the solution of the bioeletrial model dominates the

total omputing time. Here, a speed-up fator of 2.18 ours, whih exeeds the theoret-

ially ahievable value of 2. This an be explained by a signi�antly higher number of

ahe misses on 1 proessor than on multiple proessors, as the size of the bioeletrial
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model for eah proessor sales down proportionally to the number of proessors. (Ghost

elements do not exist and no ommuniation between the proessors is required in the

bioeletrial model.) The other end of the spetrum is marked by the example using only

36 �bres, i. e., 3×3 �bres per 3D element, leading to a one-by-one orrespondene between

the number of Gauÿ points in the plane perpendiular to the �bres and the number of

embedded �bres. (The 3D elements use 3× 3× 3 Gauÿ points.)

Note that the disretisation for the mehanis is independent of the number of embedded

�bres and is idential in both ases. In the ase of 36 �bres, the speed-up fators are rather

poor, sine the solution of the ontinuum-mehanial problem laims a larger fration of

the total omputing time. The poor saling of the ontinuum-mehanial model is due

to the few 3D elements. Together with the ghost elements required for the mehanial

model, eah proessor has to ompute (i) 8 �nite elements when 1 proessor is used, (ii) 8

�nite elements when 2 proessors are used, and (iii) 6 �nite elements when 4 proessors are

used. (All elements that share a surfae with an atual element of the domain are ghost

elements.) For pratial appliations, however, �ner disretisations of the ontinuum-

mehanial model are desirable sine they provide a better approximation of the musle's

geometry and a higher auray. Furthermore, inluding more musle �bres within the

hemo-eletro-mehanial model is preferable for more realisti musle simulations.

6.3.3 Investigating Di�erent Musle Fibre Arrangements

While previous setions investigated the general behaviour of the multisale omputational

model, this setion presents a spei� appliation of the hemo-eletro-mehanial musle

model. To this end, di�erenes in the musle ontration and fore generation that result

from the arrangement of the musle �bres in the musle are investigated. The results

presented in this setion have previously been published in Heidlauf & Röhrle [111℄.

Introdution

The fasiles in parallel-�bred musle are aligned with the musle's line of ation and

run almost the entire length of the musle [159℄. The fasiles either onsist of long

�bres spanning the entire length of the fasiles (in the following termed �spanning-�bred

musle�), or they are omposed of several shorter in-series arranged �bre ompartments

(in the following termed �series-�bred musle�), f. Heron & Rihmond [115℄, Young et al.

[277℄. The �bre ompartments in series-�bred musle an either be separated by tendinous

insriptions, as, for example, in at and human semitendinosus musle, or the musle

�bres are arranged in short overlapping arrays, see Loeb et al. [159℄, Paul [202℄, Woodley

& Merer [276℄.

The advantages and disadvantages of series-�bred and spanning-�bred musle arrange-

ments on the fore generation have not yet been systematially analysed. Experiments

provide only limited information on whih e�ets are due to the �bre arrangement and

whih e�ets are due to other anatomial or physiologial properties, e. g. the musle ge-

ometry. Mathematial models instead an be used to investigate the in�uene of a spei�

property on the overall behaviour. Previous modelling works foused on the in�uenes

of the musle geometry and the �bre diretion on the fore generation [229, 288℄. In this

setion, the presented hemo-eletro-mehanial skeletal musle model is used to om-

pare series-�bred and spanning-�bred musles. The aim of this omparison is to reveal
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di�erenes in the mehanial behaviour of the di�erent musle �bre arrangements.

Loeb et al. [159℄ hypothesize that there exists a stability problem in spanning-�bred

musles when the AP propagation time exeeds the twith rise time of a single saromere.

This implies that saromeres loated at a long �bre's neuromusular juntion produe

their peak twith fore before saromeres loated at the �bre's ends are ativated, and

hene, ativated saromeres might shorten against non-ativated parts of the �bre [159℄.

As a result, mehanial instabilities and damage might our [159℄, sine saromeres

loated at the �bre ends might be passively strethed to beyond myo�lament overlap, a

state, from whih the saromere an not independently reover through ativation. It

has therefore been suggested that the AP propagation time might impose a limit on

the �bre length [159℄. In series-�bred musle, a similar stability problem is believed to

exist when ativation of series-arranged ompartments is unbalaned or asynhronous,

i. e., if musle �bres in an ativated ompartment shorten against �bres in non-ativated

ompartments [159, 216℄.

Methods

In all of the following numerial experiments, a retangular uboid with dimensions

12 cm × 2 cm × 2 cm is onsidered. The fasile diretion is assumed to be aligned with

the uboid's long edge. To mimi series-�bred skeletal musle arrangements, the long

side of the musle speimen is subdivided into ompartments of equal length. The mus-

le �bres in adjaent ompartments are aligned end-to-end and do not interdigitate with

eah other. As in real musle, eletrial ativation from one musle �bre to adjaent ones

does not our, neither between adjaent ompartments nor in lateral diretion within a

ompartment. The neuromusular juntion of eah musle �bre is assumed to be loated

in the middle of the respetive �bre. All half-saromeres are assumed to be of type II.

The mehanial behaviour of the hemo-eletro-mehanial musle model is investigated

for simultaneously stimulating all musle �bres. Before stimulating the musle speimen,

it is passively strethed to the optimal length (λoptf = 1.2, ℓoptS = 2.4µm).

Results

First, �xed-end ontrations and shortening ontrations at 10% of the maximum short-

ening veloity at fs = 50Hz and 100Hz are onsidered. A musle model with �bres that

span the entire length of the fasiles (referred to as SPA) and a model onsisting of four

�bre ompartments in series (referred to as SER·4) are ompared to eah other. The

resulting nominal stresses are depited in Figure 6.11. Fixed-end ontrations predit

di�erenes of almost up to 80% between the di�erent musle �bre arrangements. The

largest di�erenes our at the beginning of the ontration, i. e., during the �rst twith

but deline rapidly to approximately 10% and less. Moreover, the results show that the

initial di�erenes are less pronouned in shortening ontrations independent of the stim-

ulation frequeny. At fs = 50Hz, twithes tend to be more fused for model SPA than for

model SER·4. This applies to both �xed-end and shortening ontrations. Completely

fused twithes are observed for both models for fs = 100Hz.
Independent of the stimulation frequeny, model SER·4 shows higher peak fores than

model SPA in �xed-end and shortening ontrations. At fs = 100Hz, the maximum fore

of model SER·4 is 3.29% and 6.61% higher than the maximum fore of model SPA in
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Figure 6.11: Comparison of a spanning-�bred musle model (SPA) and a series-�bred musle

model onsisting of four in-series arranged �bre ompartments (SER·4) stimulated with (a, b)

fs = 100Hz and (, d) fs = 50Hz in (a, ) �xed-end and (b, d) shortening ontrations at

v = 0.1 v
max

, and their di�erenes in perent. Figure previously published in [111℄.

�xed-end and shortening ontrations, respetively. The observed derease after reahing

the maximal value in all simulations with fs = 100Hz is due to fatigue, whih is ontained

in the half-saromere model of Shorten et al. [240℄.

The results reveal that the largest di�erenes between spanning-�bred and series-�bred

musle models our during the �rst twith in �xed-end ontrations. Hene, �xed-end

single twith experiments are further investigated in the following. The aim is to reveal

a potential relation between the twith shape and the �bre length. In addition to the

model with spanning �bres (termed SPA), musle speimens onsisting of two, four, six,

and twelve �bre ompartments of equal length are onsidered. The series-�bred models

are termed SER·2, SER·4, SER·6, and SER·12 indiating the respetive number of om-

partments. Furthermore, two di�erent senarios are onsidered. In the �rst senario, all

�bres in all ompartments reeive a stimulus at the same time to simulate a oordinated

single twith ontration. The seond senario appeals to the model with six in-series

arranged ompartments, in whih only the �bres within the �rst ompartment are stimu-

lated. (Note that the hoie whih of the ompartments is stimulated does not in�uene

the resulting reation fores.) This model is referred to as SER·6a.
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Figure 6.12: Distribution of the membrane potential (Vm in [mV℄) and ontration-indued

deformation during single twith ontrations of models SPA (t = 22ms after stimulation), SER·2
(t = 10ms), SER·6 (t = 5ms), and SER·12 (t = 2ms) (from top to bottom). Previously published

in [111℄.

Figure 6.12 shows the distribution of the membrane potential and the ontration-

indued deformation of the musle in the di�erent models of the �rst senario. Further,

Figure 6.13 demonstrates that the twith rise time of a musle depends on the length of its

musle �bres, i. e., the twith rise time inreases with inreasing musle �bre length. Thus,

model SER·12 has the lowest twith rise time of 17.2ms, while the maximum twith rise

time ours in model SPA, where the peak stress ours 38.2ms after stimulation. The

omputed AP propagation speed of the models is 2.186m/s. In model SPA, where the

AP propagates 6 m from the motor end-plates to eah end of the �bres, this propagation

speed yields an AP propagation time of 27.45ms. In omparison, a half-saromere model

onsidered in isolation shows a twith rise time of 16.1ms. Hene, the AP propagation

time in model SPA exeeds the twith rise time of a single half-saromere. In other words,

the saromeres loated at the motor end-plates reah their peak twith fore before the

saromeres loated at the ends of the �bres are ativated.

While the twith rise time inreases, the peak twith stress of the musle model dereases

with inreasing musle �bre length. In detail, the peak twith stresses are 0.82N/m

2

and 0.98N/m

2
in models SPA and SER·12, respetively, whih orresponds to an in-

rease of 19.4%. Integrating the area below the stress urve over 200ms, i. e., to a point

where the ative stress has delined and only passive stress omponents remain, yields

84.95N·ms/m

2
and 83.25N·ms/m

2
for models SPA and SER·12, respetively. Further,

deduting from the total stresses the respetive passive stresses, whih are due to the

initial streth to the optimal length, the peak twith fore obtained in model SER·6a is

6.5 times smaller than the peak twith fore of model SER·6.
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Figure 6.13: Comparison of single twith ontrations in a spanning-�bred model and in series-

�bred models with di�erent �bre lengths and number of ompartments. The reader is referred to

the text for model de�nitions. Previously published in [111℄.

Besides the ontration-indued stresses, hanges in loal saromere length during �xed-

end single twith ontrations are analysed. The aim is to investigate if ativation-indued

strethes of passive saromeres to beyond myo�lament overlap our. The resulting max-

imum and minimum saromere lengths are reported in Table 6.5.

Min. saromere length Max. saromere length

SER·12 2.39µm 99.59% 2.41µm 100.41%

SER·6 2.26µm 93.96% 2.54µm 105.95%

SER·4 2.16µm 90.05% 2.63µm 109.68%

SER·2 2.03µm 84.52% 2.64µm 109.84%

SPA 1.81µm 75.49% 2.66µm 111.02%

SER·6a 1.74µm 72.51% 2.58µm 107.38%

Table 6.5: Minimum and maximum saromere lengths in �xed-end single twith ontrations

absolute and in perent of their length prior to stimulation, i. e., ℓ
opt
S = 2.4µm. Previously

published in [111℄.

Considering the �rst senario, the shortest and largest saromere lengths of 1.81µm and

2.66µm, respetively, our for model SPA. Changes in saromere length derease with

an inreasing number of in-series �bre ompartments. In the seond senario, a minimum

saromere length of 1.74µm is observed for model SER·6a.

Disussion

First, the omputational results obtained for the di�erent musle �bre arrangements are

disussed, before using this data to analyse its impliations on stability. The presented

model predits the largest di�erenes between series-�bred and spanning-�bred musles

in the rise time, shape, and peak fore of single twithes. During sustained ontrations,

twithes tended to fuse at lower stimulation frequenies in spanning-�bred musles, while
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series-�bred musles showed higher peak fores. Sine the basi desriptions of passive and

ative material behaviour are idential in the di�erent models, the observed di�erenes

in the fore responses must result from the di�erenes in the musle �bre arrangement.

Although the same half-saromere model is used in all simulations, single twithes are

more dispersed in musle models with longer �bres, whih an be explained by longer AP

propagation times. Experimentally observed di�erenes in the twith shape in di�erent

�bres of the same twith type might therefore be largely governed by the �bre length.

This might partially explain the di�erent twith shapes observed in di�erent speies.

For example, the twith rise time in mouse soleus musle onsisting purely of type-I

�bres is approximately 35ms [240℄, while 90ms are observed in human type-I MUs [76℄.

Further, the simulations demonstrated that a fasile onsisting of end-to-end terminating

�bres does funtionally not perform like a single musle �bre of equivalent length, as

hypothesized by Lieber & Fridén [157℄.

Aording to Harris et al. [101℄, long �bres are less e�ient than short �bres sine

saromere shortening annot be well synhronised along the length of a �bre. Harris et al.

[101℄ speulate that a twith in a long �bre will produe muh less fore than a more

synhronous ontration of the saromeres. The presented results on�rm that the peak

twith fore in spanning-�bred musle is lower than in series-�bred musle of the same

length, however, it is also more dispersed, suh that the stress indued through a single

twith integrated over time is similar in series-�bred and spanning-�bred musles. This

an be attributed to the fat that the number of saromeres ontributing to the ative

fore is idential in both models. The non-ativated parts of the �bres behave as series

elasti elements, i. e., they store ontratile energy. It is believed that the minor di�erenes

observed in the integrated stress values stem from loal hanges in saromere length due

to the F -ℓ relation and from di�erent saromere ontration veloities due to the F -v
relation. At this point, however, one has to bear in mind that the modelling assumption

of hyperelasti passive material behaviour neglets visous e�ets, whih exist in passive

musle, see Hoyt et al. [122℄, Van Looke et al. [267℄.

The model further predits that the peak fore exerted by a synhronous ativation

of all in-series arranged ompartments exeeds the produt of the number of in-series

arranged ompartments and the peak fore produed when stimulating only the �bres in

one ompartment. This might be explained by the fat that an additional series om-

pliane is introdued through inative ompartments against whih the ativated �bres

ontrat [25℄. It is hypothesized that the e�et will be more pronouned at shorter musle

lengths than at the optimal length (at whih the numerial experiments are arried out),

f. Mutungi & Ranatunga [183℄, or in musles with passive fores appearing only at long

musle length (see further below).

Changes in saromere length due to the ontration of ativated parts of the �bres

against non-ativated parts are reported for spanning-�bred and series-�bred musle mod-

els. Fixed-end single twith ontrations, in whih the �bres of all ompartments are

simultaneously ativated, show that hanges in saromere length inrease with inreasing

�bre length. Shorter saromere lengths are only observed if one out of six ompartments is

ativated (model SER·6a). This is not surprising as the �ve non-ativated ompartments

at as series elasti elements. Comparing the extreme values of the saromere length

with Figure 4.15a reveals that the range of saromere lengths of the numerial experi-

ments is limited to a rather narrow region with onsiderable �lament overlap. Mutungi &
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Ranatunga [183℄ report experimental saromere length hanges in �xed-end single twith

ontrations that are onsiderably smaller than those found in the present numerial inves-

tigations. The di�erene an be explained based on the fat that Mutungi & Ranatunga

[183℄ simultaneously stimulated the entire �bre bundle using plate eletrodes, and hene,

almost all saromeres shortened onurrently against a small region at the �bre ends.

The fat that the model predits rather small hanges in saromere length during �xed-

end single twith ontrations might be explained by the following onsiderations. A

resting saromere length of 2.0µm [61℄ is assigned to the model's stress-free referene

on�guration (λf = 1). Thus, the longest observed saromere length of 2.66µm orre-

sponds to a loal �bre streth of λf = 1.33. Comparing this value with the F -ℓ relation
in Figure 6.9a, one observes that onsiderable passive fores start to appear at this �bre

streth. This an be explained by the fat that at every instant in time, the ontratile

fores in the ativated parts of the musle need to be mathed by the streth-indued

passive fores in the non-ativated, in-series arranged parts. Saromere length hanges

will therefore be more pronouned in musles with passive fores appearing at long musle

length.

A limitation of the model is that it does not inlude tendons. Sine tendinous tissue is

muh sti�er than passive musle tissue [103℄, the series ompliane added to the system

by inluding tendons is onsidered to be small. Therefore, the e�et of negleting tendons

in this study is expeted to have a minor e�et on the fore generation and the saromere

length hanges.

The study of ompartmentalisation is partiularly interesting with regard to analysing

stability issues. The model results demonstrate that ativated parts of a musle an on-

trat against non-ativated parts. It has been hypothesized that in long spanning-�bred

musle, in whih the AP propagation time exeeds the twith rise time, ativation-indued

stresses might streth non-ativated saromeres to beyond myo�lament overlap potentially

leading to instabilities [159℄. Loeb et al. [159℄ therefore speulate that the twith rise time

might impose a limit on the length of the musle �bres. The presented results, however,

demonstrate that a musle model, in whih the AP propagation time exeeds the twith

rise time of a single saromere, does not neessarily show any instabilities. In series-�bred

musle a similar stability problem is believed to exist when ativation of series-arranged

ompartments is unbalaned or asynhronous, i. e., if musle �bres in an ativated om-

partment shorten against �bres in non-ativated ompartments [159, 216℄. This instability

was not observed either in the numerial experiments (model SER·6a) using the presented
model settings.

The fat that instabilities are observed neither in the spanning-�bred model nor in the

series-�bred model might be due to the fat that in the present model passive fores appear

already at short musle length. Aording to Hawkins & Bey [102℄, this orresponds to

the behaviour of rat TA musle, whih shows even at full ativation a monotonially

inreasing isometri F -ℓ relation, f. Figure 6.9a. The passive sti�ness of the musle

tissue might therefore prevent an overextension of non-ativated saromeres. However,

in musles with passive fores appearing at long musle length, saromere extensions to

beyond myo�lament overlap might be possible, and this might lead to stability problems

and damage [159℄.





7 A Multisale Model of the

Neuromusular System

The previous hapter introdued a multisale model of skeletal musle. Assuming sim-

pli�ed stimulations, this model was used to simulate idealised musle ontration. To

simulate more realisti musle ontrations, this hapter enhanes the multisale musle

model to a model of the neuromusular system.

7.1 Overview of the Multisale Model of the

Neuromusular System

To simulate the behaviour of the neuromusular system, the multisale musle model of

Chapter 6 is oupled to the model of the motor neuron pool of Negro & Farina [186℄,

whih has been desribed in Setion 4.2. Furthermore, the model of the neuromusular

system is oupled to the EMG model of Setion 5.4, to simulate musle ontrations and

the EMG signal under isometri and non-isometri onditions. The resulting model of

the neuromusular system is shematially shown in Figure 7.1.

motor neuron pool (ODE)

MU disharge times t
MUj

i

half-saromere (ODE)

musle �bre model

multisale musle model

Vm, x

di�usion eqn. (1D PDE)

ontinuum-mehanial

model (3D PDE)

EMG model (3D PDE)

ℓS, ℓ̇S γ

Vm

deformed geometry x

Figure 7.1: Overview of the multisale model of the neuromusular system. Eah box indiates

a model part. The ouplings between the parts are indiated through arrows together with the

transferred information.

To determine the disharge times of eah MN, the biophysial model of Negro & Farina

[186℄ is solved, f. Setion 4.2 and Appendix B. The oupling of the MN pool model to

the musle model is unidiretional, i. e., the �ow of information between the models only

143
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ours from the model of the MN pool to the musle model. Therefore, theoretially, one

ould preompute the motor unit reruitment and �ring times independent of the musle

model. However, in order to integrate in the framework proprioeptors, suh as musle

spindles and Golgi tendon organs, whih provide the MN pool with information about

the state of the musle, at a later time, the model of the MN pool is integrated in the

framework and is not solved deoupled from the musle model. To realise the integrated

formulation, the MN model of Negro & Farina [186℄ is oupled to the half-saromere model

that is loated at the neuromusular juntion (e. g. at the middle of eah �bre).

The MU disharge times are used to drive the multisale hemo-eletro-mehanial mus-

le model. The multisale model predits the atively generated fore and the deformation

of the musle, see Chapter 6 for details.

In Setion 5.4, the bidomain model has been proposed to simulate EMG signals. Here,

this tehnique is further developed to take into aount the ativation-indued deformation

of the tissue to aurately predit the EMG signal also under non-isometri onditions.

To this end, the EMG model requires information about the deformed geometry, x, in

addition to the membrane potential, Vm, f. Figure 7.1. The modi�ations required in the

EMG model are explained in detail in the following setion.

7.2 Modelling Eletromyographi Signals Under

Non-Isometri Conditions

Following the monodomain approximation (see Setion 5.2), the equations for determining

the EMG signals are deoupled from the multisale musle model. Thus, the multisale

model and the extraellular bidomain equation an be solved suessively.

Following the approah of Setion 5.4, the nodes of the 1D musle �bre meshes, whih

are used for the solution of the monodomain equation, are onneted to form a 3D mesh

of linear Lagrange �nite elements, see Figure 7.2. This �ne-spaed 3D mesh is used to

disretise the extraellular bidomain equation and to ompute the EMG signal.
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Figure 7.2: A 2D shemati representation of the 3D problem highlighting the use of the di�erent

meshes for the di�erent subproblems of the multisale model. First, the geometry of the musle is

disretised using 3D quadrati Lagrange �nite elements (blak mesh). This mesh is used for the

solution of the ontinuum-mehanial model. Embedded in these 3D �nite elements are 1D musle

�bre meshes (red, left), used for the solution of the monodomain equation. Eah �nite element

node point of the 1D musle �bre meshes requires the solution of the biophysial half-saromere

model (blue). Conneting the nodes of the 1D meshes yields a �ne-spaed 3D �nite element mesh

(right) for solving the extraellular bidomain equation. Previously published in [178℄.
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The multisale skeletal musle model takes into aount the mehano-eletri feedbak

by applying the deformation of the 3D musle geometry to the 1D musle �bre meshes, f.

Setion 6.2.2. The omputation of the EMG takes advantage of the same tehnique, i. e.,

the solution of the extraellular bidomain equation aounts for the tissue deformation.

Similar to the monodomain equation, the extraellular bidomain equation either an be

solved on the atual on�guration, or it an be solved in the referene on�guration

by pulling bak the geometri quantities. Following the approah of Setion 6.2.2, the

extraellular bidomain equation reads in the referene on�guration

Div
(

J (σ0
i + σ

0
e)Gradφe

)

= −Div
(

J σ0
i GradVm

)

, (7.1)

where σ0
i = F

−1 σi F
T−1

and σ0
e = F

−1 σe F
T−1

are the referential ondutivity tensors

of the intraellular and the extraellular domains, respetively. In this work, however,

the EMG is omputed on the deformed (atual) on�guration, where the nodal positions

of the �ne-spaed 3D mesh (Figure 7.2 right) are updated in every step. Here, the step

size of the EMG model is taken in aordane with the time step size of the ontinuum-

mehanial model.

7.3 Appliations of the Multisale Model of the

Neuromusular System

Two examples are presented in the following, demonstrating the apability of the pro-

posed model of the neuromusular system. While the �rst example onsiders an idealised

geometry, the seond example simulates the tibialis anterior musle.

7.3.1 Isometri and Non-Isometri Contrations of a Retangular

Cuboid

Introdution and Methods

For the simulation, the uboid geometry and the MU �bre distribution of the example of

Setion 5.4.2 is adopted. While the formulation in Setion 5.4.2 is restrited to isometri

onditions, the hemo-eletro-mehanial model an simulate any kind of ontration and,

additionally, allows to predit the generated fore.

Two senarios are onsidered. In the �rst senario, the uboid musle speimen is �xed

at both ends to simulate a �xed-length ontration. In the seond senario, only one end

of the musle speimen is �xed, while deformation of the other end is left unonstrained

to simulate a non-isometri ontration. Furthermore, in both senarios, displaement at

two further non-parallel faes of the speimen is onstrained in the diretion perpendiular

to the respetive fae (symmetry boundary onditions). For the omputation of the bio-

eletrial �elds, homogeneous Neumann (no-�ow) boundary onditions are applied. Note

that in the non-isometri ase, the fore-length and fore-veloity relations are omitted

to obtain larger deformations of the musle speimen.
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Results

To drive the model of the neuromusular system, a onstant mean synapti urrent of

0.005µA/m2
superimposed by two Gauÿian-distributed high-frequeny osillating signals

(see Negro & Farina [186℄ for details) is applied to the MN model of Negro & Farina [186℄.

The resulting disharge times are shown in Figure 7.3a, together with the generated

nominal stresses. The nominal stresses are omputed from the reation fores of the musle

model of the �rst senario (�xed-length ontration). Due to the small number of MUs

inluded in the simulation, the generated stresses are aompanied by large �utuations.
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Figure 7.3: (a) Motor unit disharge times and indued nominal stresses during a �xed-length

ontration, and (b) total length of the speimen during a non-isometri musle ontration in

the uboid example.

If only one end of the speimen is �xed (as in the seond senario), the ontration

indues a deformation of the musle speimen. This is shown in Figure 7.3b, where the

total length of the uboid is plotted versus the time. Aording to Figure 7.3b, the

speimen shortens signi�antly in the beginning of the simulation, but little hanges are

observed at later simulation times.

Following this, Figure 7.4 shows the ation potentials propagating along the musle

�bres and the resulting sEMG signals at the beginning of the simulation (0�26ms) for the

non-isometri ontration. The ontration-indued deformation of the uboid is learly

visible.

Disussion

In ontrast to previous models of the EMG, the proposed multisale hemo-eletro-

mehanial an take into aount the tissue deformation. This allows to predit, for

example, the e�et of hanges in the loal �bre orientation or a shift of the innervation

zone with respet to the skin surfae on the sEMG signal, f. DeFreitas et al. [48℄, Nishi-

hara et al. [192℄, Piitulainen et al. [206℄.

Further, while previous models of the EMG are restrited to isometri onditions, the

present approah allows to study the EMG also during non-isometri ontrations. This

enhanes signi�antly the appliability of EMG models. For example, lengthening on-

trations of skeletal musles require a neural ativation strategy that is di�erent from that

during isometri ontrations, see Enoka [64℄. Using the presented framework, reruitment

and rate oding strategies based on neurophysiologial hypotheses an be tested and the
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Figure 7.4: Deformation, musle �bre APs, and the resulting sEMG signals at times t = 0�12ms

(left, from top to bottom) and t = 14�26ms (right) in steps of size 2ms.
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simulation results an be ompared to EMG reordings during lengthening ontrations.

This might help to reveal the neural strategy underlying lengthening ontrations.

7.3.2 Modelling the Tibialis Anterior Musle

Although the �nite element method allows for arbitrary geometries, the examples pre-

sented in the previous setions were all based on simpli�ed geometries. This setion

demonstrates that the proposed model is apable of simulating musle ontrations and

EMG signals also for non-trivial, realisti geometries. To this end, the human TA musle

is onsidered. Some of the results of this setion have previously appeared in Mordhorst

et al. [178℄.

Introdution and Methods

The geometry of the TA and the fat/skin tissue is based on the visible human male

dataset [245℄. The TA's bipennate musle �bre diretions are based on DT-MRI data [151℄.

The geometry of the musle without the fat/skin tissue has previously been used, see [109,

219, 221℄. For the disretisation of the 3D geometry of the musle and the subutaneous

tissue 39 tri-quadrati/tri-linear Lagrange �nite elements are used. To redue omplexity

and omputational time, only 2700 musle �bres are onsidered. The 1D musle �bres

are disretised using 140 400 linear Lagrange �nite elements and 144 000 nodes. Eah of

these nodes is assoiated with a biophysial half-saromere model of Shorten et al. [240℄.

The musle �bres are grouped into 10 MUs. The general assumption that a musle

typially onsists of many type-I and few type-II MUs [76℄ is re�eted within the model

by hoosing the �rst six MUs to use the slow-twith parametrisation, while the other four

MUs (MUs 7�10) use the fast-twith parametrisation of the ell model of Shorten et al.

[240℄. Note that the di�erent parametrisations of the biophysial half-saromere model

lead to di�erent AP propagation veloities, whih are also observed in real musles and

signi�antly in�uene the sEMG. Further, following Fuglevand et al. [76℄, an exponential

distribution of the innervation number was assumed, where the largest MU had 100 times

as many �bres as the smallest MU. The MU �bre distribution is depited in Figure 7.5,

where a di�erent olour is hosen for eah MU.
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Figure 7.5: The geometry of the TA and the surrounding fat/skin tissue. Additionally, the

(randomly assigned) MU �bre distribution is illustrated, where the olours of the �bres display

the 10 MUs. The resulting EMG signals are simulated based on the super�ial TA and adjaent

fat/skin layer, i. e., the region highlighted with bold blak lines. Previously published in [178℄.

While the MU territories in real musles are spatially on�ned to small regions within

the musle's ross-setional area, this model assumes a random distribution of the �bres.

This assumption is made to simplify the model setup and is not due to any framework-
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inherent limitations. An algorithm to distribute the MU �bres within the musle volume

an be found in Röhrle et al. [221℄.

The MU disharge times are adopted from the example in Setion 5.4.2. These disharge

times have been determined using the biophysial MN model of Negro & Farina [186℄,

and are depited in Figure 5.11b. To model the innervation zone, a Gauÿian distribution

around the middle of the �bres with a standard deviation of two nodes was assigned to the

stimulation point. The maximum deviation was 7 nodes, whih orresponds to a 0.56 m

wide spread of the innervation zone. To simulate a �xed-length ontration, all �nite

element nodes at the proximal and distal ends of the musle are �xed in the mehanial

model.

While the ativation-indued ontration of the TA is based on the entire musle and

the surrounding fat/skin tissue, the subsequent EMG omputation is only based on the

super�ial part of the TA overed by a layer of fat and a layer of skin tissue (blak lines

in Figure 7.5). Along the super�ial TA, the thikness of the fat and the skin layer

varies slightly, i. e., the fat layer has a thikness of approximately 6mm and the skin layer

thikness is approximately 1.5mm. Due to its larger distane to the skin surfae, the

deep TA is onsidered to have a minor ontribution to the sEMG signal. It is, however,

noteworthy that the presented modelling approah is not limited to the super�ial part

of the TA. The TA's super�ial part ontains 900 embedded �bres. The �nite element

mesh for the omputation of the EMG onsists of 47 908 elements. The ondutivities in

Table 5.5 are used for omputing the EMG signal.

Results

Figure 7.6 shows for six seleted times the distribution of the membrane potential along

the musle �bres and the ontration-indued deformation of the TA musle and the

surrounding tissue.

The resulting sEMG signal at the skin overing the super�ial part of the TA musle

is visualised in Figure 7.7 for �ve di�erent times.

Sine the TA is a pennate musle, the generated EMG signal is di�erent from the one

shown in the previous setion, where the �bres are parallel to the skin. Due to the �-

bre angle, no pronouned propagation of the potential at the surfae an be deteted.

Rather, the signals propagating along the �bres towards the surfae lead to an inrease

in the surfae potential. In agreement with the �ndings of Barbero et al. [9℄, the sEMG

of the simulated pennate musle is dominated by the end-of-�bre e�et and the extin-

tion of the AP. While these experimental �ndings are qualitatively re�eted by the model

results, they make a quantitative omparison di�ult. This likewise holds for the me-

hanial deformation. Experiments using ultrasound together with EMG measurements

are performed, for example, by Hodges et al. [119℄, Ruiz-Muñoz & Cuesta-Vargas [226℄

to study the relation between the EMG signal and arhitetural parameters, suh as the

pennation angle. As expeted from the experimental �ndings of Hodges et al. [119℄, the

pennation angle inreases during the simulated isometri ontration. However, while the

model onsiders the isolated TA, the experiments are performed in vivo inluding intera-

tions of the TA with adjaent tissue, whih makes further omparisons within the sope

of this work impossible.
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Figure 7.6: Membrane potential distribution along eah musle �bre and ontration-indued

deformation of the TA musle and surrounding fat/skin tissue for six seleted times. The blak

lines refer to the referene (undeformed) on�guration.
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(undeformed) on�guration.
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Disussion

Due to the omplexity of the multisale model and its assoiated omputational ost,

the number of musle �bres that an urrently be inluded in a simulation on a normal

desktop PC using a single proessor is limited to a few thousand. The human TA onsists

of about 250 000 �bres [105℄, and thus, only about 1% of the �bres an urrently be

simulated. However, there exists a large potential for parallelisation (f. Setion 6.2.3 and

Heidlauf & Röhrle [109℄) and model redution tehniques to derease the omputational

load and/or allow to inlude a more realisti number of �bres in the simulations.

Although strategies have been employed to redue the omputational omplexity of the

model, the omputing time is still high for the presented model. On a normal desktop

PC (Intel

R© Core

TM
i5-3470 CPU, single proessor, 3.2GHz, and 32GB of memory) the

solution of the hemo-eletro-mehanial model on the TA (2700 �bre meshes, eah of

whih required the solution of more than 50 biophysial half-saromere models, yielding

more than 7.5·106 degrees of freedom (DOFs) for the bioeletrial problem) required about

3 h to simulate 0.2ms. The omputation of the orresponding EMG was about 15min.

It is, however, noteworthy that about 90% of the EMG omputing time is spent on �le

I/O, and only 10% is required for the atual omputation of the EMG signal. This is due

to the fat that the membrane potential and the extraellular potential distributions are

urrently stored in ASCII �les, whih have to be written out and read in for eah time

step. A more sophistiated implementation that eliminates the umbersome I/O of the

membrane potential and the nodal positions is feasible, sine the entire model is solved

within a single framework (OpenCMISS). This, however, has not been realised yet. Sine

the appliation of the model is urrently limited by the omputation time, this issue has

to be addressed in the future.

With regard to simulating musle behaviour under realisti onditions, one also has to

raise the question if it is atually neessary to simulate every single �bre of a musle.

Due to the fat that in reality the diameter of a musle �bre is limited by the time the

AP takes to propagate along the T-tubules, it might be possible to aurately simulate

musle ontrations and the EMG using fewer �meta-�bres� representing parts of musle

units, f. Fuglevand et al. [77℄.

While it might be possible to simulate realisti musle ontrations using �meta-�bres�,

the number of MUs inluded in a ontration signi�antly a�ets the fore output. For

example, Röhrle et al. [221℄ demonstrated that a smoother fore response is generated,

when inluding more MUs in the simulation. Due to the omputational omplexity of the

model, only 10 MUs are onsidered here. This redued set of MUs an not aurately

represent the 450 MUs of the human TA musle.

Previous models of the EMG are not restrited by their omputation times. However,

these models annot take into aount arbitrary �bre arhitetures. Further, existing

models are not apable of prediting hanges in the EMG signal or the AP shape and

propagation veloity that are due to the mehanial deformation of the tissue or due to

underlying biophysial proesses suh as membrane fatigue.



8 Summary, Disussion, and

Outlook

8.1 Summary

The aim of this thesis was the biophysial simulation of the hemo-eletro-mehanial

proesses of the neuromusular system leading to musle ontration and fore generation.

To this end, di�erent approahes have been followed. First, a novel, biophysial model

of the neuromusular system arose from oupling a detailed biophysial model of the

exitation-ontration oupling in skeletal musle �bres to a biophysial, Hodgkin-Huxley-

type model of the motor neuron pool that predits motor unit reruitment and rate oding.

Further, to simulate eletrial signals propagating through musle and subutaneous

tissue, the biophysial musle model was linked to bioeletrial �eld equations. This

formulation intrinsially aounts for hanges in the amplitude and propagation veloity

of the ation potential, whih might result, for example, from membrane fatigue. Based

on this approah, the intramusular and surfae EMG signals have been predited.

Furthermore, during isometri and non-isometri skeletal musle ontrations, the

EMG has been simulated using a multisale hemo-eletro-mehanial model, taking

into aount the ontration-indued tissue deformation. The multisale, hemo-eletro-

mehanial skeletal musle model resulted from inorporating a biophysial desription

of half-saromere-based ative stresses within a ontinuum-mehanial onstitutive equa-

tion. Being based on a �nite-deformation theory, the ontinuum-mehanial desription

allows predition of ontration-indued and externally applied tissue deformations as

well as the overall musle fore generation. To demonstrate the apabilities of the re-

sulting multisale and multiphysis framework, the model was used to reveal di�erenes

in the ontratile behaviour and the fore response that result from the musle �bre ar-

rangements. Moreover, using the biophysial model of the motor neuron pool to drive the

multisale hemo-eletro-mehanial musle model, voluntary skeletal musle ontrations

have been simulated. In partiular, a model of the human TA musle demonstrated the

geometri �exibility of the �nite element-based formulation.

The following list summarises novel aspets provided by this work to the �eld of mod-

elling the neuromusular system.

• The detailed biophysial model of the exitation-ontration oupling of Shorten

et al. [240℄ has been extended to a representation of the di�erent musle units

within a skeletal musle.

• A partial reparametrisation of the model of Shorten et al. [240℄ has been proposed

to simulate human musles.

• The resulting musle model has been used to reveal that doublet potentiation is

aused by an inrease in the myoplasmi alium onentration, whih results from

153
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the superposition of residual alium from the �rst stimulus and the alium released

in response to the seond stimulus.

• To simulate non-isometri ontrations, the musle model of Shorten et al. [240℄ has

been extended to aount for ooperative e�ets and a distortion dependene.

• A novel model of the neuromusular system that is biophysial in all main parts

has been developed. To this end, the musle model of Shorten et al. [240℄ has been

oupled to the Hodgkin-Huxley-type model of the motor neuron pool of Negro &

Farina [186℄.

• It has been demonstrated through numerial examples that the monodomain model

is a valid approximation to the more omplex bidomain model in the ontext of

modelling the AP propagation in skeletal musle tissue.

• Following this, a biophysial desription of the AP propagation along skeletal musle

�bres based on the monodomain model has been proposed. The model has been

used to investigate the e�et and origin of membrane fatigue on the amplitude and

propagation veloity of APs along musle �bres.

• A novel, biophysial model of the EMG has been proposed. This model is based

on a Hodgkin-Huxley-type desription of the membrane eletrophysiology and the

bidomain/monodomain model. A major advantage of the biophysial desription

is that it intrinsially aounts for physiologial properties, suh as hanges in the

amplitude and AP propagation veloity, rather than presribing these e�ets as part

of the model onstitution.

• A ontinuum-mehanial onstitutive equation for skeletal musle modelling has

been developed. It has been demonstrated that the proposed formulation is �exible

enough to aurately represent the passive behaviour of di�erent skeletal musles.

The desription of the ative part of the onstitutive model is based on the biophys-

ial model of Shorten et al. [240℄ and inludes the fore-length and fore-veloity

relations at the mirosopi half-saromere level. Parameters of the proposed on-

stitutive model for the passive and nerve-ativated response of skeletal musle have

been identi�ed using experimental data of the literature.

• The resulting multisale and multiphysis model has been implemented in the open-

soure software library OpenCMISS taking advantage of a distributed-memory paral-

lelisation, the CellML API, and staggered solution shemes. The fully oupled, bidi-

retional implementation aounts for both eletro-mehani and mehano-eletri

feedbaks.

• The multisale musle model has been used to reveal di�erenes in the ontratile

behaviour and fore generation that result from the arrangement of the musle �bres

within the musle.

• To simulate voluntary ontrations, the multisale skeletal musle model has been

oupled to the model of the motor neuron pool of Negro & Farina [186℄. This

yielded a novel multisale, geometrial model of the neuromusular system. Using

the resulting model, musle ontrations and the EMG have been simulated under

isometri and non-isometri onditions. In ontrast to previous works, this model

an take into aount the ontration-indued deformation of the tissue.
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8.2 Disussion and Outlook

Many aspets of the presented work have already been disussed (f. Setions 4.5, 5.5, and

6.3), and this setion only highlights a few points. The presented modelling framework

uni�es several omponent models to an integrated desription of the oordinated ation

of the neuromusular system. The resulting integrated model is biophysial in all main

parts. The biophysial representation provides many advantages over phenomenologial

desriptions, as it is based on the underlying anatomy and physiology of the modelled

system. The major advantage of the detailed biophysial desription is that it allows

to investigate internal quantities (e. g. intermediate quantities of a signaling pathway).

Many of these internal quantities (e. g. the onentration of ertain organi moleules)

an now be experimentally determined using, for example, NMR (nulear magneti reso-

nane) spetrosopy. This allows to further parametrise and validate biophysial models.

Properly parametrised and validated biophysial models an be used, for example, to in-

vestigate pathologial onditions. This is not possible using phenomenologial models, as

these models ommonly do not inlude internal quantities.

Moreover, ombining for the �rst time, a biophysial desription of the motor neuron

pool and a multisale ontinuum-mehanial skeletal musle model, the framework an be

used to investigate problems that annot be studied with existing models. For example,

novel neurophysiologial ontrol mehanisms an be tested, whih, in addition to the size

priniple, take into aount the biomehanial e�ieny.

Due to the fat that the multisale hemo-eletro-mehanial model is based on an inte-

grated, fully oupled formulation, the model aounts for bidiretional ouplings, suh as

the ones ourring from the ombination of eletro-mehani and mehano-eletri feed-

baks. Thus, in addition to the ontration-indued deformation of the musle tissue, the

model takes into aount hanges in the bioeletrial properties of the volume ondutor

and the fore-generating apabilities of the musle that result from tissue deformation.

This is in ontrast to previous multisale skeletal musle models [219�221℄. These models

are based on a look-up table ontaining preomputed solutions to the bioeletrial �eld

equations that are utilised when solving the mehanial model. The bidiretional oupling

also allows to inlude proprioeptors within the framework at a later time.

Within the presented multisale framework, the desription of the ative ontratile be-

haviour is ompletely determined at the mirosopi half-saromere level. This approah

is in ontrast to previous ontinuum-mehanial skeletal musle models [16, 220℄ that in-

lude the ative fore-length and the ative fore-veloity relations at the marosale. The

purely marosopi approah implies the assumption of an averaged saromere length and

an averaged saromere veloity, and hene, these models annot represent loal hanges

in the saromere length and shortening veloity. Moreover, due to the fat that both the

fore-length and the fore-veloity relations an be attributed to properties at the sar-

omere level, they should be modelled at the mirosale. In detail, the length dependene

of the ative fore is due to hanges in the overlap of thik and thin �laments within

the saromeres [89℄, while the veloity dependene is attributed to a lower tension of the

ross bridges that reattah in a shortened state and an inreased ross-bridge detahment

rate [205, 258℄. In the presented multisale model, the length and veloity of individual

half-saromeres are only restrited by the overall length and veloity of the entire mus-

le, whih depend on the mehanial boundary onditions. This is an advantage of the
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multisale model ompared to the half-saromere model and also motivates the multi-

sale model. Following this, the model an be used, for example, to study the e�et of

saromere inhomogeneities on the musle fore generation.

Further, being based on the bioeletrial �eld equations, the multisale model an pre-

dit intramusular and surfae-EMG signals. While previous models of the EMG were

limited to isometri onditions, the present multisale model an simulate the intramus-

ular and sEMG during any kind of ontration. By taking into aount the ontration-

indued deformation of the tissue, the model an investigate the in�uene of the relative

movement of musle �bres with respet to the eletrode at the skin surfae on the EMG

signal under �xed-length and non-isometri onditions. This might lead to more aurate

signal interpretations. Moreover, being based on a biophysial desription, the model an

predit hanges in the EMG signal that result, for example, from biophysial proesses

suh as membrane fatigue, rather than presribing these e�ets as part of the model

onstitution, as in previous, phenomenologial models of the EMG.

Validation of the presented multisale hemo-eletro-mehanial musle model is, of

ourse, a hallenging task. Individual parts of the model, suh as the biophysial de-

sriptions of the motor neuron pool and the half-saromeres, have been adopted from

literature. These models have previously been validated, at least, under ertain idealised

onditions. Furthermore, the bioeletrial �eld equations are ommonly used in the �eld

of biosignal proessing, for example, for modelling the eletrial ativity of the heart.

Although the entire ative behaviour of the multisale musle model is determined at

the mirosopi half-saromere level, the multisale and multiphysis model an predit

marosopi fore-length and fore-veloity relations. Furthermore, the presented multi-

sale hemo-eletro-mehanial musle model predits both the generated fore and the

orresponding EMG signal. This provides a unique opportunity to validate the multisale

model by simultaneously measuring musle fores and EMG signals in an experimental

setup. This, however, is beyond the sope of this work.

For a further validation and appliation of the model, the omputing time has to be sig-

ni�antly redued. Although staggered solution shemes and parallelisation tehniques are

used within the multisale framework, the appliation of the model is urrently strongly

limited by its enormous omputational ost. Within the multisale modelling framework,

the solution of the biophysial half-saromere models takes by far most of the omputing

time. Thus, one has to arefully onsider how muh biophysial detail is required for a

spei� problem. If biophysial details are unimportant, one might be able to use a phe-

nomenologial ell model instead of a biophysial one, whih might dramatially derease

the solution time. If biophysial details are important, model redution tehniques might

be applied to derease the omputational ost, while preserving biophysial detail. While

this is beyond the sope of the present work, this issue should be addressed in the future.

Another limitation of the hemo-eletro-mehanial musle model results from its mul-

tisale harater. Being based on ontinuum theory, the multisale approah relies on the

assumption of sale separation. This means that the marosopi struture (the musle) is

several orders of magnitude larger than the mirostrutural elements of whih the maro-

sopi struture is omposed. If this property is satis�ed, the marosopi behaviour an

be desribed statistially by the properties of the mirostrutural elements. In human

musles, the length of the musle �bres, however, is often of the same order of magnitude

than the length of the whole musle. This is not unique for skeletal musle, but applies to



8.2 Disussion and Outlook 157

many biologial tissues. Nevertheless, ontinuum theory is ommonly used in the �eld of

biomehanis, and little researh fousses on this issue. In the ontext of bone, limitations

of the appliation of ontinuum theory have been disussed by Harrigan et al. [100℄.

Due to the modular struture of the presented multisale and multiphysis framework,

extending the model and/or replaing individual parts, when neessary, is straightfor-

ward. A few possible extensions of the model are disussed in the following. The model of

the exitation-ontration oupling in the musle �bres does not inlude a representation

of the ell metabolism. Biophysial models of the metabolism in skeletal musle �bres,

however, exist, and these models an potentially be integrated into the biophysial half-

saromere model and an be oupled to the existing desription of metaboli fatigue. Fur-

thermore, within the multisale skeletal musle model, the mirosopi formulation of the

ell metabolism ould potentially be oupled to the marosopi ontinuum-mehanial

balane of energy.

Further, depending on the type of ontration, a�erent signals were estimated to aount

for up to 50% of the input to spinal ord motor neurons. The presented hemo-eletro-

mehanial model of the neuromusular system does not urrently inlude a desription

of proprioeptors. Sine models of musle spindles and Golgi tendon organs exist in the

literature [173, 174℄, these models an be integrated into the multisale and multiphysis

omputational framework to expliitly aount for a�erent inputs to the motor neurons.

This might ontribute to a more realisti representation of the synapti input to the motor

neuron pool.





A Additional Continuum-Mehanial

Details

A.1 Natural Basis Representation

A.1.1 Covariant and Contravariant Basis

At any position x in the 3D physial spae, two basis systems an be derived from a set

of general urvilinear oordinates θk with k = 1, 2, 3. The ovariant (natural) basis, ak,

and the ontravariant (dual) basis, ak
, are given by

ak :=
∂x(θk)

∂θk
, and ak :=

∂θk(x)

∂x
. (A.1)

While neither the vetors of the ovariant basis nor the vetors of the ontravariant basis

are neessarily orthogonal to eah other, the vetors of the di�erent bases satisfy the

onditions ak ‖ al × am with yli rotations of k, l,m = 1, 2, 3 [162℄. Following this,

one an onlude that, in the speial ase of orthonormal basis vetors, the ovariant and

ontravariant basis vetors oinide with eah other and result in a ommon Cartesian

oordinate system, i. e., ak = a
k =: ek.

Equation (A.1) de�nes the natural basis vetors in the atual on�guration. Similarly,

ovariant and ontravariant basis vetors an be de�ned in the referene on�guration

aording to

hk :=
∂X(θk)

∂θk
, and hk :=

∂θk(X)

∂X
. (A.2)

Using the basis vetors of the referene and atual on�gurations, the deformation

gradient tensor an be expressed in terms of the natural bases, yielding the relations

F = ak ⊗ hk , F T = hk ⊗ ak , F−1 = hk ⊗ ak , F T−1 = ak ⊗ hk . (A.3)

Of ourse, all quantities that an be derived from the deformation gradient tensor, suh

as, for example, the deformation and strain measures of Setion 3.4.1, an similarly be

expressed using the natural bases, see Markert [162℄ for details.

A.1.2 Covariant and Contravariant Transport Operations

Transport operations are required to relate quantities of the referene on�gurations to

their ounterparts in the atual on�guration, and vie versa. Although in orthonormal

basis systems, the ovariant and ontravariant basis vetors oinide, it is essential to

distinguish between ovariant and ontravariant quantities at this point, sine they obey

di�erent transport operations.
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Following the transport of line elements (3.28)1, the deformation gradient has the prop-

erty to map ovariant vetors of the referene on�guration to ovariant vetors of the

atual on�guration. Based on this, the inverse of the deformation gradient must obey

the property of mapping ovariant vetors of the atual on�guration bak to ovariant

vetors of the referene on�guration. On the basis of these properties, the operations

nℓ = F mℓ , and mℓ = F−1nℓ , (A.4)

are known as ovariant push-forward and pull-bak operations, where mℓ and nℓ denote

ovariant vetors of the referene and atual on�gurations, respetively. Furthermore,

the ontravariant push-forward and pull-bak operations are introdued via

nℓ = F T−1mℓ , and mℓ = F Tnℓ , (A.5)

where mℓ
and nℓ

denote ontravariant vetors of the referene and the atual on�gu-

rations, respetively. Similar to the transport operations for vetors in (A.4) and (A.5),

transport operations an also be introdued for higher-order tensors. The ovariant push-

forward and pull-bak operations for seond-order tensors are given by

N ℓ = F M ℓF
T , and M ℓ = F−1N ℓF

T−1 , (A.6)

where N ℓ and M ℓ are ovariant tensors of the referene and the atual on�gurations,

respetively. Analogously, the ontravariant push-forward and pull-bak operations read

N ℓ = F T−1M ℓF−1 , and M ℓ = F TN ℓ F . (A.7)

Therein, M ℓ
and N ℓ

denote ontravariant tensors of the referene and the atual on-

�gurations, respetively. The transport operations for fourth-order tensors are omitted

here, but an be found, for example, in the appendix of Markert [162℄.

A.2 Thermodynami Considerations

The formulation of a onstitutive equation has to satisfy ertain requirements to be ther-

modynamially onsistent. These basi thermodynami priniples are given by the re-

quirements of determinism, equipresene, and loal ation, as well as material frame in-

di�erene, universal dissipation, and material symmetry. These onepts are only brie�y

disussed here for the sake of ompleteness, sine the material models for the passive

mehanial behaviour of musle and subutaneous tissue used within this work are known

to satisfy the basi thermodynami priniples. For more details, the reader is referred to

Wang & Truesdell [273℄ and referenes therein.

A.2.1 Determinism, Equipresene, and Loal Ation

The priniples of determinism and equipresene state that the set of uniquely de�ned,

undetermined response funtions, R = {ψ, T }, where ψ denotes the Helmholtz free en-

ergy, an depend on the entire set of proess variables, V, i. e., R = R(V). Further,

the prinipal of loal ation requires that the set of proess variables only onsists of
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loal values. Assuming isothermal onditions, the set of proess variables is given by

V = {F , GradF , Ma, X}, f. [140℄. This hoie of proess variables allows to onsider

loal inhomogeneities in the material behaviour based on their position in the referene

on�guration. This is important to distinguish, for example, musle tissue from subu-

taneous tissue. Within this work, the same energy funtion is used to desribe passive

musle and subutaneous tissue. A di�erene in the mehanial behaviour of these ma-

terials is obtained by the assignment of di�erent material parameters. Therefore, the

referential position vetor, X, an diretly be omitted from the set of proess variables.

Furthermore, a strutural tensor Ma is inluded in the set of proess variables to hara-

terise non-isometri material behaviour. Due to the fat that an evaluation of the entropy

inequality always yields the independene of the response funtions of the seond deforma-

tion gradient, GradF , the proess variables of the Helmholtz free energy, ψ, are a priori

onstitutively assumed to be

ψ = ψ(F ,Ma) . (A.8)

A.2.2 Material Frame Indi�erene

The priniple of material frame indi�erene is also known as the priniple of objetivity

as it states that the onstitutive equations have to be independent of the position of the

observer. Following this, the onstitutive equations have to be invariant under rigid-body

rotations of the atual on�guration.

Salar quantities are always invariant with respet to rotations. Further, the strutural

tensor, Ma, is de�ned by quantities of the referene on�guration. Hene, it is not af-

feted by rotations of the atual on�guration. The deformation gradient, however, is not

invariant to rigid-body rotations, and hene, it is not a suitable quantity for the formula-

tion of onstitutive equations that satisfy the requirement of material frame indi�erene.

Using the polar deomposition of the deformation gradient (3.29), a more suitable for-

mulation of the onstitutive equations an be based on the right streth tensor, whih is

a quantity of the referene on�guration. Moreover, sine the right Cauhy-Green defor-

mation tensor and the Green-Lagrangean strain tensor are also quantities of the referene

on�guration, the Helmholtz free energy an equally well be de�ned with respet to these

quantities, i. e.,

ψ(U ,Ma) = ψ(C,Ma) = ψ(E,Ma) . (A.9)

For the sake of simpliity, di�erent Helmholtz free energy funtions are denoted by the

same symbol ψ in Equation (A.9).

A.2.3 Universal Dissipation

The priniple of universal dissipation states that the entropy inequality, whih results from

the ombination of the balane of entropy and the seond law of thermodynamis, has to

be satis�ed by all thermodynami admissible proesses. In this work, (passive) visous

e�ets are negleted and the passive musle tissue is assumed to behave hyperelastially.

Hyperelasti materials are haraterised by fully reversible material behaviour, i. e., no

dissipative e�ets are observed, and the entropy prodution vanishes. Following this,

the evaluation of the entropy inequality for hyperelasti materials yields the well-known
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relation between the 2

nd

Piola-Kirhho� stress tensor and the Helmholtz free energy

SE = 2 ρ0
∂ψ

∂C
. (A.10)

Next, a strain energy density de�ned per unit referene volume W is introdued. The

strain energy desribes the elasti potential or the stored elasti energy of the material.

From this strain energy, the 2

nd

Piola-Kirhho� stress tensor an be derived aording to

W := ρ0 ψ −→ SE = 2
∂W
∂C

. (A.11)

A.2.4 Material Symmetry

Like other works, this work assumes an isotropi mehanial behaviour of the subuta-

neous tissue and a transversely isotropi material behaviour of musle tissue, f. e. g. Böl

et al. [19℄, Morrow et al. [181℄, Nie et al. [189℄, Takaza et al. [256℄, Van Looke et al. [268℄.

Isotropi and transversely isotropi material behaviours are the simplest ases within the

group of material symmetries. Isotropi behaviour means that the mehanial response

of the material under onsideration is ompletely independent of the orientation of the

material sample. In ontrast, a transversely isotropi material has a single preferred dire-

tion, suh that the response of the material also depends on the orientation of the sample.

This implies that the stored energy of the anisotropi material does not only depend on

the deformation, but also on the orientation of the material sample.

The fat that the same material behaviour an be observed for ertain orientations of

the material sample motivates the introdution of symmetry groups. Mathematially, this

requires the invariane of the formulation with respet to an orthogonal transformation

of the referential oordinates. Due to the fat that isotropi behaviour is insensible to all

orthogonal transformations, the strutural tensor of this lass of materials is given by

Ma = I , (A.12)

and the argument an be negleted in the formulation of the strain energy.

Further, the behaviour of a transversely isotropi material is insensible to inversion,

re�etion with respet to a plane normal to the �bre diretion, to re�etions with respet

to any plane that is parallel to the �bre diretion, to arbitrary rotations about the �bre

diretion, and 180-degree rotations about any axis that is perpendiular to the �bre

diretion, as well as any ombinations thereof. To mathematially represent the material

symmetries of transversely isotropi materials, one introdues a referential unit vetor a0

that points in the preferred diretion. Using this vetor, the strutural tensor is given by

Ma = a0 ⊗ a0 , (A.13)

and obeys the properties

Ma = M
T
a , Ma = MaMa , and tr Ma = 1 . (A.14)
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A.2.5 Theory of Invariants

The theory of invariants is derived from the idea that the formulation of the strain energy

funtion should be independent of the hoie of the oordinate system. Sine the strain

energy in (A.9)2 depends on the seond-order tensors C and Ma, and sine any tensor

is de�ned with respet to a spei� oordinate system, the formulation in (A.9)2 annot

be independent of the oordinate system. Instead, the strain energy funtion should be

formulated in terms of basi salar invariants, whih are independent of the oordinate

system.

Sine the strutural tensor for isotropi materials equals the identity tensor, it an be

omitted from the list of arguments. The remaining dependeny of the energy on the right

Cauhy-Green deformation tensor an be expressed by the deformation tensor's basi

invariants

J = trC , JJ = trC2 , JJJ = trC3 , (A.15)

where C2
denotes the tensor produtCC. Instead of the basi invariants (A.15), similarly

the eigenvalues or the prinipal invariants of the right Cauhy-Green deformation tensor

(6.8) an be used, as these sets are all related to eah other. As ommonly done in �nite

elastiity, the strain energy is de�ned based on the prinipal invariants, i. e.,

W(C) = W(I, II, III) . (A.16)

In the ase of transversely isotropi material behaviour, the energy funtion depends on

the right Cauhy-Green deformation tensor and on the strutural tensor. In addition to

the basi invariants of the right Cauhy-Green deformation tensor, the basi invariants of

the strutural tensor are omputed, whih are all equal to unity, f. Equations (A.14) and

(A.15). Furthermore, mixed invariants are introdued that depend on both tensors. Due

to the properties of the strutural tensor (A.14), several of the mixed invariants oinide,

and only two distint mixed invariants remain, whih are given by

IV = tr (MaC) = (a0 ⊗ a0)
T ·C = a0 · F TF a0 = F a0 · F a0 = a · a ,

V = tr (MaC
2) = a0 ·C2 a0 .

(A.17)

Herein, IV = λ2f is the squared �bre streth in the diretion of the mapped �bre orientation

a = F a0, where λf = |a| denotes the �bre streth (length). The mixed invariant V has

no diret physial meaning. Following this, the strain energy funtion of a transversely

isotropi material an be given by

W(C,Ma) = W(I, II, III, IV, V ) . (A.18)

A.2.6 Further Physial and Mathematial Requirements

Besides the above disussed restritions on strain energy funtions, further mathematial

and physial restritions apply. First, based on the physial observation that an in�nite

elongation of a material or the ompation of a mehanial body to a single point requires
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an in�nite amount of energy, one postulates that

W −→ ∞ if

{

detF −→ 0 ,

(‖F ‖2 + ‖cof F ‖2 + detF ) −→ ∞ ,
(A.19)

where ‖( q )‖2 denotes the 2-norm (or Eulidean norm).

Furthermore, the ombination of polyonvexity and oerivity of the strain energy fun-

tion guarantees that a unique solution to the variational problem exits, see e. g. Balzani

[8℄ and referenes therein. The ondition of oerivity sets a lower limit for the energy or-

responding to a given deformation. Without expliitly de�ning oerivity here, a stored

energy funtion that is omposed of positive additive terms will automatially satisfy the

oerivity ondition provided that at least one additive term is oerive [8℄. Following this,

the strain energy funtions onsidered in this work are oerive due to the fat that the

part of the strain energy desribing the passive isotropi behaviour (the Mooney-Rivlin

material) is known to be oerive.

Further, a strain energy funtion is said to be polyonvex if and only if W(F ) =
ϕ(F , cof F , detF ) is onvex with respet to eah of the prinipal minors F , cof F , and
detF separately. This ondition is satis�ed if the seond derivatives of the energy funtion

with respet to the prinipal minors are positive de�nite, i. e.,

∂2ϕ

∂F ⊗ ∂F
· (G⊗G) ≥ 0 ,

∂2ϕ

∂(cof F )⊗ ∂(cof F )
· (G⊗G) ≥ 0 ,

∂2ϕ

∂(detF )2
≥ 0 ,

where G 6= 0 denotes an arbitrary seond-order tensor. Aording to Balzani [8℄, the

ondition of onvexity in 1D an be written in terms of the following inequality:

ϕ(κλf,1 + (1− κ)λf,2) ≤ κϕ(λf,1) + (1− κ)ϕ(λf,2) with κ ∈ (0, 1), λf,1 6= λf,2 .

This relation an be geometrially interpreted. Plotting the strain energy versus the �bre

streth, a onvex energy is haraterised by the fat that no point on a straight line

that onnets two points on the urve, an denote a lower energy than the strain energy

orresponding to the same �bre streth.

Finally, with regard to the referene on�guration, a suitable form of the strain energy

has to onform two further requirements. First, due to the fat that the referene on-

�guration is assumed to be stress-free in ontinuum mehanis, the extra stresses in (6.3)

have to vanish for F = I. Note that the penalty term in (6.3), whih results from the in-

ompressibility onstraint, is not a�eted by this ondition, sine idential normal stresses

do not ause a deformation of an inompressible material. Furthermore, the normalisa-

tion ondition requires that the stress-free referene on�guration is also energy free, i. e.,

W(F = I) ≡ 0.



B The Motor Neuron Model

The motor neuron model of Negro & Farina [186℄ is desribed by the following ODEs [39℄:

Cd
m

∂V d
m

∂t
= −gdL (V d

m −EL)− gC (V d
m − V s

m) , (B.1)

Cs
m

∂V s
m

∂t
= −gsL (V s

m −EL)− gC (V s
m − V d

m)− I
ion

, (B.2)

I
ion

= ḡ
Na

m3 h (V s
m −E

Na

) + ḡ
Kf

n4 (V s
m − EK) + ḡ

Ks

q2 (V s
m − EK) , (B.3)

∂m

∂t
= 0.32

13− V s
m

exp
{

(13− V s
m)/5

}

− 1
(1−m) − 0.28

(V s
m − 40)

exp
{

(V s
m − 40)/5

}

− 1
m,

(B.4)

∂n

∂t
= 0.128

(

exp
{

(17− V s
m)/18

})

(1− n) − 4
(

exp
{

(40− V s
m)/5

}

+ 1
)−1

n ,

(B.5)

∂h

∂t
= 0.032

15− V s
m

exp
{

(15− V s
m)/5

}

− 1
(1− h) − 0.5

(

exp
{

(10− V s
m)/40

})

h , (B.6)

∂q

∂t
= 3.5

(

exp
{

(55− V s
m)/4

}

+ 1
)−1

(1− q) − 0.025 q . (B.7)

Furthermore, for the ondutanes and the apaitanes, the following relations apply:

gC = 2
(Ri ld
πr2d

+
Ri ls
πr2s

)−1

, gdL =
2 π rd ld
Rd

m

, gsL =
2 π rs ls
Rs

m

, (B.8)

ḡ
Na

= 30 · 2 π rs ls , ḡ
Kf

= 4 · 2 π rs ls , ḡ
Ks

= 16 · 2 π rs ls , (B.9)

Cd
m = 2 π rd ldCm , Cs

m = 2 π rs ls Cm . (B.10)

The material parameters of the model are provided in Table B.1 for the dendriti and

somati ompartments (indiated by subsripts d and s).
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Symbol Desription Value (small�large)

Cm membrane spei� apaitane 1µF/m2

Ri ytoplasmi resistivity 70Ω m

Rd
m spei� resistane of dendriti membrane 14.4�6.05 kΩ m

2

Rs
m spei� resistane of somati membrane 1.15�0.65 kΩ m

2

ld dendriti ompartment length 0.55�1.06 m

ld somati ompartment length 77.5�113µm
rd dendriti ompartment radius 20.75�46.25µm
rs somati ompartment radius 38.75�56.5µm
E
Na

sodium equilibrium potential 120mV

EK potassium equilibrium potential -10mV

EL leakage Nernst voltage 0mV

Table B.1: Material parameters of the motor neuron model.



C Comparing the Monodomain

Model and the Bidomain Model

To numerially demonstrate that the monodomain model and the bidomain model lead

to similar results for intraellular and extraellular ondutivity tensors with equal

anisotropy ratios, di�erent test ases are employed. The �rst test ase onsiders isotropi

ondutivity tensors (both ondutivity tensors have an anisotropy ratio of 1). The on-

dutivities (in mS/m) for this test ase are given by

σi = 8.93

[

1 0
0 1

]

ek ⊗ el , σe = 6.7

[

1 0
0 1

]

ek ⊗ el . (C.1)

Therein, ej denotes a basis vetor of an orthonormal basis. The model setup is the same

as the one used in Setion 5.3.1.

Based on the isotropi ondutivity tensors in (C.1), Figure C.1a shows the distribution

of the membrane potential in the 2D domain 0.37ms after stimulation has been applied at

node (x1, x2) = (9, 9). The depited distribution has been omputed using the bidomain

model. For the same time step, Figure C.1b shows the di�erene between the bidomain

model and the monodomain model.
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Figure C.1: Distribution of (a) the bidomain-based membrane potential (in mV), and (b) the

di�erene between the bidomain model and the monodomain model (in mV) for isotropi ondu-

tivities. Here, the results are shown 0.37ms after node (x1, x2) = (9, 9) has been stimulated.

The hoie of isotropi ondutivities is re�eted in the isotropi propagation of the

membrane potential. Similar to the membrane potential, the error plot shows a symmetri

distribution. The maximum di�erene at one node within the entire simulation time is

9.21 · 10−5
mV and ours at the beginning of the simulation at a node lose to the
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stimulation point. Based on the symmetri distributions and the similarity of the results

of the monodomain and the bidomain models, one an onlude that the monodomain

model is a valid approximation to the bidomain model for isotropi ondutivities.

The seond test ase onsiders anisotropi ondutivity tensors satisfying the ondition

of equal anisotropy ratios (both ondutivity tensors have an anisotropy ratio of 10). The

ondutivities (in mS/m) for this test ase are given by

σi = 8.93

[

1 0
0 0.1

]

ek ⊗ el , σe = 6.7

[

1 0
0 0.1

]

ek ⊗ el . (C.2)

Based on the anisotropi ondutivity tensors in (C.2), Figure C.2a shows the distri-

bution of the membrane potential in the 2D domain of the bidomain model 0.28ms after

stimulation has been applied at node (x1, x2) = (9, 9). For the same time step, Figure C.2b

depits the di�erene between the bidomain model and the monodomain model.
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Figure C.2: Distribution of (a) the bidomain-based membrane potential (in mV), and (b) the

di�erene between the bidomain model and the monodomain model (in mV) for anisotropi on-

dutivity tensors with equal anisotropy ratios of 10. Here, the results are shown 0.28ms after

node (x1, x2) = (9, 9) has been stimulated.

For the anisotropi ondutivities, there is no symmetry in the membrane potential dis-

tribution. Due to the higher ondutivity in x1-diretion, the ation potential propagates

faster in this diretion. Similar to the ase of isotropi ondutivities and as expeted for

ondutivity tensors with equal anisotropy ratios, the di�erene between the monodomain

and bidomain models is very small. The maximum di�erene at one node within the entire

simulation time is 1.55 · 10−4
mV and ours at the beginning of the simulation at a node

lose to the stimulation point. The numerial results on�rm the theoretial �nding that

the monodomain model is a valid approximation to the bidomain model for anisotropi

ondutivities with equal anisotropy ratios. If the ondition of equal anisotropy ratios of

the intraellular and extraellular ondutivity tensors is not satis�ed, one has to investi-

gate the quality of the approximation, f. Setion 5.3.1. If, in addition to the membrane

potential, the extraellular potential is of interest, one has to solve either the bidomain

equation or suessively the monodomain equation and the extraellular bidomain equa-

tion (f. e. g. Setion 5.4).



D Weak Forms

D.1 Weak Form of the Monodomain Equation

For the numerial treatment of the monodomain equation (5.19), �rst the Godunov oper-

ator splitting (5.23) is applied to separate the nonlinear reation term from the di�usion

term. Due to the fat that Equation (5.23)1 only onsists of oupled ODEs, no spatial

disretisation is required for this part. To disretise the di�usion term using �nite ele-

ments, the weak form of Equation (5.23)2 is derived by following the proedure desribed

in Setion 3.1. To this end, Equation (5.23)2 is �rst multiplied by a test funtion δV and

integrated over the domain. Using the Gauÿian integral theorem, the weak form of the

transient di�usion equation (5.23)2 yields

∫

ΩM

V k+1
m − V ∗

m

h
δV dv = −

∫

ΩM

σeff

AmCm
gradVm · grad δV dv +

∫

∂ΩM

q δV da . (D.1)

Therein, q = (AmCm)
−1 σeff gradVm ·n denotes the Neumann boundary onditions. Sine

the weak form (D.1) ontains no derivatives of the membrane potential of higher order

than one, it is su�ient to use linear Lagrange �nite elements, f. Zienkiewiz et al. [286℄.

For the time-disrete representation, the impliit (bakward) Euler method is employed.

To this end, the membrane potential on the right-hand side of (D.1) is hosen to be at

the new time level, i. e., Vm = V k+1
m .

D.2 Weak Form of the Extraellular Bidomain

Equation

Following the proedure desribed in Setion 3.1, the weak form of the extraellular bido-

main equation is obtained in the form

−
∫

ΩM

(σi + σe) gradφe · grad δφ dv +

∫

∂ΩM

qφ δφ da =
∫

ΩM

σi gradVm · grad δφ dv −
∫

∂ΩM

qV δφ da .

(D.2)

Therein, δφ denotes the test funtion, and qφ = (σi+σe) gradφe·n and qV = σi gradVm·n
are the Neumann boundary onditions for the extraellular potential and the membrane

potential, respetively. Linear Lagrange �nite elements are used for the spatial disreti-

sation of the weak form of the monodomain equation.
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Further, the generalised Laplae equation (5.11) in the eletrially inative fat and skin

tissue reads in its weak form

−
∫

ΩB

σo gradφo · grad δφ dv +

∫

∂ΩB

qo δφ da = 0 , (D.3)

where qo = σo gradφo · n denotes the Neumann boundary ondition for the potential in

the subutaneous tissue.

Sine time derivatives do not our in the extraellular bidomain equation (5.9) or the

generalised Laplae equation (5.11), no temporal disretisation is required. The extra-

ellular bidomain equation is solved for the extraellular potential for eah membrane

potential distribution that results from the solution of the time-disrete monodomain

equation.

D.3 Weak Form of the Continuum-Mehanial Model

For the sake of onveniene, this setion reviews the governing equations of the ontinuum-

mehanial model. Assuming quasi-stati onditions and negligible body fores, the bal-

ane of momentum redues to

div T = 0 . (D.4)

Therein, T = J−1 F S F T
, and the 2

nd

Piola-Kirhho� stress tensor is given by S =
−p J C−1 + SE, see Setion 6.1 for details. The hydrostati pressure, p, has been intro-

dued into the system as an undetermined Lagrange multiplier to inorporate the inom-

pressibility onstraint, f. Setion 6.1. To ompute the value of this additional unknown,

a further equation is required, sine the vetor-valued balane of momentum is needed to

determine the three omponents of the urrent position vetor (or, in a displaement for-

mulation, the displaement vetor). The additional equation is derived from the balane

of mass for inompressible materials in the referene on�guration and is given by

J − 1 = 0 . (D.5)

Introduing the vetor-valued and salar-valued test funtions δu and δp, respetively,
the weak forms of the balane of momentum and the inompressibility ondition are

obtained as

−
∫

Ω

T · grad δudv +

∫

∂Ω

t · δuda = 0 ,
∫

Ω

(J − 1) δp dv = 0 ,

(D.6)

with the Neumann boundary onditions t = T n, and Ω = ΩM ∪ ΩB
. The system of

equations resulting from the �nite element disretisation of the linearised version of (D.6)

reads

[

K11 K12

K21 0

] [

x

p

]

=

[

f

0

]

. (D.7)

Therein, x and p are the nodal values of the position vetor in the atual on�guration

and the nodal values of the hydrostati pressure, and f ontains the disrete Neumann
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boundary onditions. The system of equations (D.7) is solved monolithially.

To avoid instabilities resulting from the fat that the hydrostati pressure does not

expliitly appear in the inompressibility onstraint, �nite element formulations have to

be used that satisfy the LBB ondition (Ladyzhenskaya-Babu²ka-Breezi or inf-sup on-

dition), f. e. g. Fortin & Brezzi [75℄. In this work, so-alled Taylor-Hood elements are

employed that use quadrati Lagrange shape funtions for the position unknowns and

linear Lagrange shape funtions for the pressure unknowns, f. Figure D.1.
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Figure D.1: 10-noded tetrahedral and 27-noded hexahedral Taylor-Hood elements.
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