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vorgelegt an der

Biomechanical computer models provide novel insights into musculoskeletal
function by overcoming technical and ethical barriers faced by experimental tech-
niques. Current macroscopic, continuum-mechanical skeletal muscle models,
however, neglect certain aspects of motor-unit physiology and thus oversimplify
muscle function. This Ph.D. thesis deals withmethods to enrich suchmodels with
microstructurally derived motor-unit information. By doing so, contraction dy-
namics and joint-kinematics can be predicted, for the first time, as a combination
of individual motor-unit -activity, -properties, and (three-dimensional) -anatomy.
Such a model uncovers unique relationships between neuromuscular physiology
and muscle function, for example, the role of motor-unit remodelling (typically
occurring during ageing and neuromuscular disorders) on joint-function. This
integrated neuro-musculoskeletal modelling approach can be applied to better
understand phenomena such as fatigue and be used to inform medical interven-
tions by predicting surgery outcomes or aiding movement rehabilitation proto-
cols related to trauma, neuromuscular disorders, or ageing.
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Deutsche Zusammenfassung

Motoreinheiten sind die Bausteine der im Skelettmuskel und umfassen alle Fasern, die von
einem einzigen Motorneuron innerviert werden. Die Skelettmuskulatur wiederum besteht
je nach Muskel aus einigen wenigen bis mehreren hundert Motoreinheiten. Die Fasern der
Motoreinheit sind oft auf bestimmte Weise innerhalb des Muskels verteilt und nehmen Teil-
bereiche seiner Querschnittsfläche ein. Die selektive Rekrutierung der Motoreinheiten ist die
Grundlage der funktionellen Heterogenität der Skelettmuskulatur. So sind zum Beispiel die
Fasern im tiefen Bereich des Kaumuskels bei der Kieferretraktion aktiver, während die ober-
flächlichen Fasern bei der Kieferhebung und -protrusion aktiver sind. Hinzu kommt, dass die
besondere Anordnung der Fasern einer Motoreinheit in einem Muskel (Motoreinheitsanatomie)
im Erwachsenenalter nicht fixiert bleibt. Stattdessen wird die Motoreinheitsanatomie während
des gesunden Alterns allmählich und bei neuromuskulären Erkrankungen wie Amyotropher
Lateralsklerose (ALS), Cerebral Palsy und Parkinson-Krankheit schneller umgestaltet. Daher
ist die Berücksichtigung der Anatomie und Aktivität der Motoreinheit für ein tieferes Ver-
ständnis der gesunden und pathologischen Funktion des Skeletmuskelsystems von größter
Bedeutung.

Biomechanische Modelle können Einsichten und Daten liefern, die mit experimentellen
Techniken praktisch und/oder ethisch nicht erreichbar sind. Modernste dreidimensionale
Modelle des neuromuskulären Systems lassen sich in zwei große Kategorien einteilen: mak-
roskopische und mehrskalige Modelle. Die enorme physiologische Detailgenauigkeit, die durch
mehrskalige Modelle zur Verfügung steht, geht auf Kosten der Einfachheit der Modelle und
der Rechengeschwindigkeit. Diese Modelle werden daher häufig für Analysen auf Mikro-
und/oder Gewebeebene verwendet. Andererseits gilt für moderne makroskopische Modelle, die
auf Gliedmaßen- oder Gelenkebene verwendet werden, dass Motoreinheiten gleichmäßig im
Muskel verteilt sind. Daher sind bestehendeModellierungsansätze entweder zu “herangezoomt”
und damit für funktionelle Untersuchungen an der Gliedmaßenskala unpraktisch, oder sie
nehmen eine zu globale Sichtweise ein und berücksichtigen nicht die funktionelle Heterogenität
der Muskeln.

Ziel dieser Arbeit ist es, diese Einschränkungen durch die Entwicklung einer neuartigen
Methode zu überwinden, die bestimmte Aspekte der beiden bestehenden Ansätze kombiniert.
Die Muskelaktivität ist, analog zu den Multiskalenmodellen, mikrostrukturell begründet, wenn
auch mit einer gröberen Auflösung. Im Gegensatz zu diesen Modellen werden die Bereiche
mit Motoreinheiten (Motoreinheitsterritorien) jedoch nicht auf einer Pro-Faser-Basis, sondern
gemittelt dargestellt, was über ein Homogenisierungsverfahren berechnet wird. Jede Motore-
inheit wird dann mit ihrem eigenen Aktivitätsimpuls angesprochen, wodurch die (räumlich
und zeitlich) granulare Natur der Muskelkontraktion erfasst werden kann. Die Berechnung der
räumlichen Verteilung, Aktivität und Homogenisierung der Motoreinheiten erfolgt während
einer Offlinephase. Dadurch gibt es analog zu makroskopischen Modellen, keine Notwendigkeit
mehr, einzelne Fasern während der Laufzeit zu berücksichtigen. Da die (homogenisierte)
neuronale Information vorberechnet wird, ist der Berechnungsaufwand des vorgestellten
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Motoreinheit-getriebenen Modellierungsansatzes während der Laufzeit minimal im Vergleich
zu makroskopischen Status-quo-Modellen. Dies ermöglicht erstmals die dreidimensionale
Untersuchung der Beziehung zwischen den individuellen Eigenschaften, Aktivitäten und Ana-
tomie von Motoreinheiten und der motorische Gesamtleistung eines anatomisch realistischen,
kontinuumsmechanischen Modells des Bewegungsapparats im Gelenk- oder Gliedmaßenskala.

Modellierung dreidimensionaler Motoreinheiten

Eine der größten Herausforderungen bei diesem Ansatz ist die Definition von anatomisch
realistischen, dreidimensionalen Motoreinheitsterritorien. Motoreinheitsterritorien beim
Menschen zeigen zwar eine enorme Vielfalt zwischen Muskeln und Individuen, weisen jedoch
einige Schlüsselmerkmale auf: sie sind lokal auf Unterregionen des Muskels beschränkt, sie
überschneiden sich mit mehreren anderen Territorien, und bestimmte Motoreinheitstypen
können bevorzugt in bestimmten Muskelquerschnittsflächen lokalisiert. Bestehende Methoden
zur Verteilung von Motoreinheiten verwenden bisher entweder idealisierte Muskelgeometrien,
eine vereinfachte Motoreinheitsanatomie oder beides. Darüber hinaus unterscheiden diese
Methoden in der Regel nicht zwischen junger, alter und pathologischer Motoreinheitsanatomie.

Um diesen Einschränkungen zu begegnen, wird ein neuartiger Algorithmus zur Konstruktion
der Motoreinheitsanatomie entwickelt. Vor der Erzeugung der Motoreinheitsanatomie werden
die Muskelfasern in der dreidimensionalen Muskelgeometrie rekonstruiert. Der Algorithmus
innerviert dann die virtuellen Muskelfasern, um eine Referenz- oder gesunde Motoreinheit-
sanatomie zu bilden. Dies geschieht iterativ pro Motoreinheit: Zunächst wird eine zentrale
Faser in Bezug auf einen manuell festgelegten Referenzpunkt identifiziert. Danach werden
die peripheren Fasern innerviert, nun in Bezug auf die zentrale Faser (der gegebenen Motor-
einheit). Der Innervationsalgorithmus wird iterativ fortgesetzt, bis alle virtuellen Fasern
innerviert sind. Die Anatomie der Motoreinheit ist durch Abstände gekennzeichnet, die die
Suchräume für die zentralen und peripheren Fasern bestimmen. Die Referenzmotoreinheit-
sanatomie kann einem zyklischen Prozess der Denervation und teilweisen oder vollständigen
Reinnervation unterworfen werden, um sich einer gealterten oder ungeordneten Motorein-
heitsanatomie anzunähern. Durch die Steuerung von Parametern wie der Häufigkeit des
Absterbens der α-Motorneuronen und der Wachstumsrate der Motoneuron-Sprossen, wird
eine Vielzahl umgebauter Motoreinheiten, einschließlich Atrophie, erstellt.

Eine gewisse Einschränkung der Abstände zwischen den zentralen und peripheren Muskel-
fasern und die optionale Anwendung von Zyklen der Denervation/Reinnervation ermöglicht
die Rekonstuktion einer Vielzahl anatomisch realistischer, gesunder oder pathologischer, Motor-
einheitsterritorien. Die Motoreinheitsanatomie wird dann mittels einer statistischen Methode
homogenisiert, um Motoreinheitsterritorien in dreidimensionalen, anatomisch realistischen
Muskelmodellen zu generieren. Die räumliche Beschreibungen von Motoreinheitsterritorien
werden mit individueller Motoreinheitsaktivität zur Verwendung mit einer kontinuumsmech-
anischen konstitutiven Beziehung der Skelettmuskulatur kombiniert.

Prototyp eines neuro-muskuloskelettalen Modells

Der integrierte neuromuskuläre Ansatz wird mit einem Prototypmodell des Kausystems demon-
striert. Dieses Modell umfasste den Unterkiefer, den rechten Molaren, die linken und rechten
Kiefergelenke (Fossae, Gelenkscheiben & Kondylen) und die Kasumuskeln. Die molare Okklus-
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alfläche, die Fossae und der Muskelursprung (am Jochbogen) sind im Raum fixiert. Während
der Kontraktion der Kaumuskeln übertragen sie über die Muskelansätze Kraft auf den Unter-
kiefer. Die Kraft ist dann teilweise auf die Kiefergelenke und den Molar verteilt, wodurch ein
statischer Biss simuliert wird. Die Kaumuskeln werden mit jeweils 50 Meta-Einheiten (die
jeweils aus einer Untermenge von Motoreinheiten bestehen) bestückt. Das Ausmaß der Über-
lappung der Meta-Einheiten und ihre Positionen innerhalb des Kaumuskels werden anhand
von Literaturdaten ermittelt.

Zuerst wird das Prototyp-Modell mit dem Status-Quo-Modellierungsansatz verglichen. Im
zweiten Schritt wird eine Reihe von Fallstudien durchgeführt, um das Potenzial des integrierten
Modellierungsansatzes aufzuzeigen, wie zum Beispiel der Kalibrierung von experimentellen
Messtechniken. In den folgenden Unterabschnitten wird zunächst der Modellvergleich behan-
delt, dann wird jede der (vier) Fallstudien beschrieben.

Einfluss der Kaumuskelmotoreinheiten auf die Beißkraft

Biomechanische Simulationen des Kausystems können einzigartige Einblicke in die Kaumus-
kelfunktion und die Entwicklung der Okklusionskraft liefern. Die meisten Modelle ver-
nachlässigen jedoch die funktionelle Heterogenität der Kaumuskulatur, indem sie von gleich-
mäßig verteilten Motoreinheiten in der Kaumuskulatur ausgehen. Das Prototypmodell wird
verwendet, um den Einfluss dieser Annahme auf die Bisskraft zu untersuchen.

Durch die sequentielle Rekrutierung der Motoreinheiten des Kaumuskels wird die regionale
Kontraktion simuliert, die vom anterioren tiefen Kopf der Kaumuskeln nach außen verläuft.
Die resultierende (maximale) Beißkraft wird mit einem Status-quo-Modell verglichen, bei dem
die Kaumuskeln durch eine äquivalente, räumlich konstante Aktivität gleichmäßig rekrutiert
werden.

Bei einer durchschnittlichen Kaumuskelaktivität von 50% unterschied sich die Größe
der Beißkraft bei einigen Kraftkomponenten um bis zu 40 %. Dabei unterschied sich die
vorhergesagte Richtung der Beißkraft beider Modelle während des Beißprozesses. Zum Beispiel
war der Kraftvektor im Prototypmodell zunächst kraniodorsal ausgerichtet und es erfolgte
eine Umorientierung nach kranioventral nachdem die oberflächlichen Motoreinheiten des
Kaumuskels aktiviert wurden. Im Status-quo-Modell wurde keine solche Richtungsumkehrung
beobachtet. Sowohl Größe als auch Richtung der Beißkraft konvergierten zwischen den
beiden Modellen oberhalb von etwa 70% der Kaumuskelaktivierung.

Der intramuskuläre Druck im Kaumuskel wird ebenfalls zwischen den beiden Modellen
verglichen. Bei einer 20 % Aktivierung zeigte das Prototypmodell ausgeprägte Regionen mit
hohem (−0,1MPa) und niedrigem Druck, die den kontrahierenden beziehungsweise inaktiven
Kaumuskel-Regionen entsprachen. Das Status-quo-Modell zeigte dagegen keine solchen
Extreme in der Druckverteilung und stattdessen war der Druck normal um einen Mittelwert
(−0,06MPa) verteilt.

Diese Ergebnisse deuten darauf hin, dass die Modellierung Motoreinheiten die motorischen
Leistung des Kaumuskels und die Beißkraft für niedrige bis mittlere Kontraktionen stark beein-
flusst. Dies kann zu besseren Vorhersagen während des Kauens und anderer submaximaler
Kauaufgaben, zum Beispiel Bruxismus, führen. Allgemeiner gesagt zeigen die Ergebnisse,
dass die räumlich-zeitliche Modellierung der Motoreinheiten in komplexen Muskeln, die an
submaximalen Aufgaben beteiligt sind, für das Verständnis ihrer motorischen Leistung von
entscheidender Bedeutung ist.
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Sensitivitätsanalyse der Beißkraft als Funktion der Motoreinheitsanatomie

Die Anatomie der Motoreinheit variiert zwischen Muskeln und Individuen und ihre selektive
Rekrutierung führt zu Variationen in der motorischen Leistung. Um die Auswirkungen der
Motoreinheitsanatomie-Variation auf die motorischen Leistung zu quantifizieren, werden
mehrere Prototypmodelle erstellt, jedes mit einer einzigartigen Motoreinheitsanatomie. Ein
submaximaler Biss wird durch die sequentielle Rekrutierung von 34 von 50 der Motoreinheiten
durchgeführt, was einer durchschnittlichen 20% Aktivität entspricht.

Zwei Arten von Variationen (insgesamt 10) der Motoreinheitsanatomien werden verwendet:
Variation der Überlappung und der Position von Motoreinheitsterritorien. Die resultierenden
(10) Spitzenwerte der Beißkraft hatten einen Mittelwert von 146N± 7N in einem Kraftbereich
von 26N. Die Kraftrichtung wurde stärker beeinflusst, wobei der Winkel in der horizontalen
Ebene einen Mittelwert von −78°± 34° und einen Bereich von 122° hatte.

Die Position des Motoreinheitsterritoriums hatte einen größeren Einfluss auf die Beißkraft
als die Überlappung der Motoreinheitsfasern, was weitgehend auf die Veränderungen der
Hebelverhältnisse der Motoreinheit zurückzuführen ist. Dies deutet darauf hin, dass aus
funktioneller Sicht experimentelle Daten über die mittlere Lage des Motoreinheitsterritoriums
und nicht über die individuelle Verteilungen der Fasern der Motoreinheit ausreichen könnten,
um das Motoreinheitsanatomiemodell zu charakterisieren.

Bereichsaufgelöste Aktivität und intramuskulärer Druck

Intramuskulärer Druck kann zur Ableitung von Muskelaktivität verwendet werden, da der
lokale Flüssigkeitsdruck im Muskel mit der Kontraktion des Muskels zunimmt. Während
submaximaler Kontraktionen bleiben jedoch einige Muskelbereiche inaktiv. Diese passiven
Regionen erfahren aufgrund der lateralen Kraftübertragung über das Bindegewebe ebenfalls
Druckveränderungen. Dabei ist es unklar, inwieweit der Druck in diesen (passiven) Bereichen
dazu dienen kann, die Gelenkkraft vorherzusagen.

Dies wird untersucht, indem die Drücke in den aktiven und passiven Bereichen der Kasumus-
keln während einer submaximalen Beißsimulation mit der Beißkraft verglichen wird. Der
Druck im Kaumuskel wird auf der Grundlage der (mittleren) Aktivität der Region entweder als
aktiv oder passiv klassifiziert und mit der Beißkraft über die gesamte Dauer des submaximalen
Bisses korreliert.

ImAllgemeinen korrelierten die Drücke in den aktiven Kompartimenten gutmit der Beißkraft,
mit einem mittleren Spearman Korrelationskoeffizienten von r = 0,86± 0,13. Die Drücke in
den passiven Regionen korrelierten beide weniger stark mit einem mittleren Koeffizienten von
r = 0,78± 0,22 und zeigten eine Links- oder Negativschiefe, was darauf hindeutet, dass eine
größere Streuung der weniger korrelierten Drücke in den passiven Regionen auftrat.

Dies bedeutet, dass die Verwendung anatomischer Informationen zur Platzierung des intra-
muskulären Druckkatheters in der Nähe der aktiven Kompartimente seine Vorhersagefähigkeit
bei submaximalen Kontraktionen verbessern würde.

Bestimmen der Zuckungseigenschaften der Motoreinheit

Die Identifizierung der individuellen Eigenschaften von Motoreinheiten ist entscheidend für
das Verständnis von Muskelkontraktionen. Ansätze wie Spike-triggered-averaging oder
neuere faltungsbasierte Methoden können verwendet werden, um Kontraktionseigenschaften
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einzelner Motoreinheiten in vivo zu ermitteln. Solche Methoden messen typischerweise (i) die
Kontraktionskraft an einem biomechanisch mit dem Muskel verbundenen Punkt und (ii) gehen
davon aus, dass die Kontraktionskräfte der einzelnenMotoreinheiten linear aufsummiert werden
können, um die Muskelkraft zu erhalten. Um den Einfluss des Messpunktes zu untersuchen,
werden ausgewählte Motoreinheiten im Kaumuskel des Prototypmodells stimuliert. Dabei wird
die Bisskraft gemessen und die Spannung am Kaumuskelansatz am Jochbogen bestimmt, welche
die wahre Muskelkraft darstellt. Das lineare Modell der Muskelkraft wird überprüft, indem
zunächst eine Gruppe von Motoreinheiten separat stimuliert und ihre einzelnen Kraftantworten
arithmetisch summiert werden. Die gleiche Gruppe von Motoreinheiten wird dann gleichzeitig
stimuliert, um die Kraftantwort des gesamten Systems zu erhalten.

Die am Zahn gemessene maximale Kraft unterscheidet sich im allgemeinen Fall von der am
Muskel gemessenen Kraft, wobei größere Unterschiede bei größeren Motoreinheiten auftreten:
Die Abweichung beträgt etwa 10% für die Motoreinheit 10 (von 50) und 29% für die Motor-
einheit 40. Die vom linearen Modell vorhergesagten Muskelkräfte lagen ebenfalls unter der
vom dreidimensionalen Modell vorhergesagten Muskelkraft. Dabei wächst die Diskrepanz
zwischen beiden Modellen mit der Anzahl der aktiven Motoreinheiten; so ist die simulierte
Muskelkraft bei vier gleichzeitig aktiven Motoreinheiten um 31% höher als im linearen Modell.
Dies bedeutet, dass erstens die Umverteilung der Spannung innerhalb des Muskels und der
dentalen Strukturen (Unterkiefer, parodontales Ligament usw.) zu einer geringeren Kraft am
Messpunkt (Molaren) führt als am Muskelursprung. Zweitens lösen die kombinierten Twitches
im Vergleich zur linearen Summation der Scherkräfte eine geringere Scherspannung im Muskel
aus, was zeigt, dass das lineare Modell die tatsächliche Muskelkraft unterschätzt.

Strukturelle Veränderungen während des Alterns und neuromuskuläre Störungen

Die Veränderungen in der neuromuskulären und muskuloskelettalen Struktur und Funktion, die
während des gesunden Alterns und bei neuromuskulären Störungen auftreten, sind komplex,
voneinander abhängig und mit experimentellen Techniken schwer zu isolieren. Es bleibt
unklar, inwieweit allein die Umgestaltung der Motoreinheitsanatomie die motorische Leistung
während des Alterns und bei neuromuskuläre Störungen verändert.

Zu diesem Zweck wird das Prototypmodell verwendet, indem einzelne gesunde, gealterte
und kranke Modelle erzeugt werden, die jeweils einen unterschiedlichen Grad an Umbau
und Atrophie der Motoreinheit aufweisen. Das heißt, die Rekrutierung, die Zuckungen, die
querschnittsspezifische Stärke und die Geometrien des Muskels usw. werden konstant gehalten
und nur die Anatomie der Motoreinheiten wird verändert. Die Kasumuskeln werden maximal
rekrutiert und die resultierende Beißkraft verglichen.

Der Beißkraftverlust war größer als der Prozentsatz der atrophierten Fasern, zum Beispiel
führten 38 % atrophierte Fasern zu einem Spitzenkraftverlust von 51% verglichen mit gesunden
Kasumuskeln. Die Richtung der Bisskraft hingegen wurde erst beeinflusst, wenn die Atrophie
50 % überschritt. Selbst wenn die für die Kontraktion verantwortliche Eigenschaften des
Muskels unverändert bliebe, reichte die Atrophie der Muskeln allein nicht aus, um den gesamten
Kraftverlust zu erklären, und hatte einen nichtlinearen Einfluss auf die Bissrichtung.

Das bedeutet, dass die Veränderungen in der Anatomie der Motoreinheit und ihre Aus-
wirkungen auf die Muskelfunktion, zum Beispiel Veränderungen der Hebelverhältnisse oder
der allgemeinenMuskelkontraktionsdynamik, bei der Untersuchung des Kraftverlusteswährend
des Alterns und neuromuskulärer Störungen berücksichtigt werden sollten.
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Schlussfolgerung und Ausblick
Der in dieser Arbeit entwickelte Modellierungsansatz ermöglicht zum ersten Mal die Un-
tersuchung der Aktivität und Anatomie einzelner Motoreinheiten im Kontext eines dreidi-
mensionalen, anatomisch realistischen muskuloskelettalen Modells auf der Gelenk- und Ex-
tremitätenskala.

Obwohl bestimmte mikrostrukturelle Merkmale idealisiert wurden, und trotz des hier auf
Kasumuskeln begrenzten Anwendungsfalls, zeigten das Prototypenmodell und die Proof-of-
Concept Untersuchungen das Potenzial dieser integrierten neuro-muskuloskelettalen Umge-
bung. Durch die Modellierung der lokal aufgelösten Aktivierung der Muskeln wurde die
motorische Leistung, in Form von intramuskulärem Druck und Gelenkmoment, stark beein-
flusst. Unterschiede in der motorischen Leistung wirkten sich am deutlichsten auf niedrige bis
mittlere Muskelkontraktionen aus, was darauf hindeutet, dass Untersuchungen von Aufgaben
wie der Bewahrung einer gesunden Körperhaltung und alltäglichen Bewegungen von solchen
Modellen profitieren können.

Mechanisch basierte experimentelle Techniken, zum Beispiel Messung des intramuskulären
Drucks, Ultraschall, Tensiomyographie, Mechanomyographie und hoch-aufgelöste-Kraft-
myographie, profitieren ebenfalls von den Fähigkeiten des vorgestellten motoreinheits-
getriebenenModellierungsansatzes. Der Grund dafür ist, dass das integrierteModell gleichzeitig
die Beziehungen zwischen der Motoreinheitsaktivität, lokalen strukturellen Veränderungen
der Muskeln und der globalen motorischen Leistung aufzeigt. Darüber hinaus könnte die
Anwendung des Modells auf der Extremitätenskala auch die Kontrollstrategien für Geräte
mit Mensch-Maschine-Schnittstelle, wie zum Beispiel angetriebene Prothesen und -Orthesen,
verbessern.

Die vorhergesagte motorische Leistung im Prototypmodell hängt, anders als bei Status-Quo
Modellen, stark von einem zunehmenden Clustergrad der Motoreinheitsfasern ab. Ein solches
Clustering tritt zusätzlich zur Atrophie allmählich während des gesunden Alterns und schneller
bei neuromuskulären Störungen auf. Angesichts der alternden Weltbevölkerung könnte die
Berücksichtigung der lokalen Aktivität der Muskeln zunehmend an Bedeutung gewinnen.
Mit Blick auf die Zukunft könnten solche Modelle helfen, Phänomene wie Ermüdung zu ver-
stehen und für medizinische Eingriffe, zum Beispiel der Vorhersage von Operationsergebnissen
oder der Planung von Bewegungs-Rehabilitationsprotokollen im Zusammenhang mit Trauma,
neuromuskulären Störungen oder des Alterns, genutzt werden.
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Motor-units are the building blocks of force in skeletal muscle and comprise all fibres that are
innervated by a single motor-neuron. Skeletal muscles are, in turn, composed of a few to several
hundred motor-units, depending on the muscle. The fibres of a motor-unit are often distributed
uniquely, and occupy subregions of a muscle’s cross-sectional area. The selective recruitment
of motor-units is the basis of functional heterogeneity in skeletal muscles. For example, fibres
in the deep region of the masseter are more vigorously activated during jaw retraction, and
the same is true for superficial fibres during jaw elevation and protrusion. Additionally, the
particular arrangement of a motor-unit’s fibres in a muscle (motor-unit anatomy) does not
remain fixed in adulthood. Instead, motor-unit anatomy is remodelled gradually during healthy
ageing, and more rapidly during neuromuscular disorders such as amyotrophic lateral sclerosis
(ALS), cerebral palsy, and Parkinson’s disease. Therefore, the consideration of motor-unit
anatomy and activity is paramount to a deeper understanding of healthy and pathological
musculoskeletal system function.

Biomechanical models can provide insights and data that are not practically and/or ethic-
ally obtainable via experimental techniques. State-of-the-art, three-dimensional models of
the neuromuscular system fall into two broad categories—macroscopic and multiscale. The
tremendous physiological detail afforded by multiscale models comes at the cost of model
simplicity and computational speed. These models are thus often applied to micro and/or tissue-
scale analyses. On the other hand, state-of-the-art macroscopic models, while being used at the
limb- and joint-scale, treat motor-units as being uniformly distributed in the muscle. Therefore,
existing modelling approaches are either too “zoomed-in” and thus impractical for functional
investigations at the limb-scale, or they take too global a view and do not account for the
functional heterogeneity of muscles.

This thesis aims to overcome these limitations by developing a novel method which combines
certain aspects of the two existing approaches. Muscle activity is microstructurally based,
analogous to multiscale models, albeit at a coarser resolution. In contrast to these models,
however, the motor-unit territories are not represented on a per-fibre basis, but rather rep-
resented in an averaged sense, computed via a homogenisation procedure. Each motor-unit
is then supplied with its own activity, thus capturing the (spatially and temporally) granular
nature of muscle contraction. The computation of the motor-unit distribution, and activity,
as well as the homogenisation procedure occurs during an offline phase. This means that,
analogous to macroscopic models, individual fibres are no longer required during run-time.
Since the (homogenised) neural information is pre-computed, the computational cost incurred
by the proposed modelling approach during run-time is minimal in comparison to status-quo
macroscopic models. This allows, for the first time, three-dimensional investigations of the
relationship between individual motor-unit-properties, -activities, and -anatomy, and motor-
output of an anatomically realistic, continuum-mechanical musculoskeletal system model at
the joint- or limb-scale.
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Modelling Three-Dimensional Motor-Units
One of the major challenges to this approach is the definition of anatomically realistic, three-
dimensional motor-unit territories. Human motor-unit territories, while showing enormous
variety between muscles and individuals, have some key characteristics: they are locally
confined to sub-regions of the muscle, they overlap with multiple other territories, and certain
types of motor-units may be preferentially located in certain regions of the muscle cross-
sectional area. Existing methods to distribute motor-units have till now either idealised muscle
geometries or simplified motor-unit anatomy, or both. Furthermore, these methods typically
do not differentiate between young, aged, and pathological motor-unit anatomy.

To address these limitations, a novel algorithm to construct motor-unit anatomy is developed,
including the ability to generate healthy and pathological states. Prior to the generation of
motor-unit anatomy, muscle fibres are reconstructed in the three-dimensional muscle geometry.
The algorithm then innervates the virtual muscle fibres to form a reference or healthy motor-
unit anatomy. This is done iteratively per motor-unit: First, a central fibre is identified in
relation to a manually specified reference point. Second, peripheral fibres are innervated,
now in relation to the central fibre (of the given motor-unit). The innervation algorithm
continues iteratively until all virtual fibres are innervated. Motor-unit anatomy is characterised
by distances governing the search spaces for the central and peripheral fibres. The reference
motor-unit anatomy may be subjected to a cyclic process of denervation and partial or complete
reinnervation, to approximate aged or disordered motor-unit anatomy.

By controlling parameters such as the frequency of motor-neuron death and the rate of motor-
neuron sprout growth, a variety of motor-unit remodelling, including atrophy, is achieved. By
placing certain restrictions on the distances between the central, and peripheral muscle fibres,
and optionally applying cycles of denervation/reinnervation, a wide variety of anatomically real-
istic, healthy, or pathological, motor-unit territories is possible. The motor-unit anatomy is then
homogenised via a statistical method to generate motor-unit territories in three-dimensional,
anatomically realistic muscle models. The spatial descriptions of motor-unit territories are com-
bined with individual motor-unit activities for use with a continuum-mechanical constitutive
relation of skeletal muscle.

Prototype Neuro-Musculoskeletal Model
The integrated neuromuscular method is demonstrated with a prototype model of the masticat-
ory system. This model comprises the mandible, right molar, left and right temporomandibular
joints (fossae, articular discs & condyles) and masseters. The molar occlusal surface, fossae
and origin of the masseter (at the zygomatich arch) are fixed in space. When the masseters
contract, they transmit force to the mandible via the attachment areas. The contractile force is
then routed partly to the temporomandibular joints and partly to the molar, thus simulating
a static bite. Each of the left and right masseter is populated by 50 meta-units (a meta-unit
represents a subset of motor-units). The amount of motor-unit overlap and their positions
within the masseter are informed by literature data.

First, the prototype model is compared to the status-quo modelling approach. Second, a
series of case-studies are carried out (with the prototype model) to highlight the potential of the
integrated modelling approach, for example, to aid the calibration of experimental techniques.
In the following subsections, first the modelling comparison is covered, then each of the (four)
case-studies are described.
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The influence of masseter motor-units on bite force

Biomechanical simulations of the masticatory system can provide unique insights into masticat-
ory muscle function and occlusal force development. Most models, however, assume uniformly
distributed motor-units in the masticatory muscles and thereby neglect their functional hetero-
geneity. The prototype model is used to investigate the influence of this assumption on bite
force.

By sequentially recruiting masseter motor-units, regional contraction, progressing outward
from anterior deep head, is simulated. The resulting (maximal) bite force is compared to a
status-quo model; where the masseters are recruited uniformly by an equivalent, spatially-
constant activity. At an averaged 50% masseter activity, the bite force magnitude differed
up to 40 % in some components. The bite force direction differed drastically between the two
models during the bite process. For example, in the prototype model, the force vector was
initially directed cranio-posteriorly and was reoriented cranio-anteriorly as the superficial
motor-units of the masseter became active. No such reversal was observed in the status-quo
model. Both bite force magnitude and direction converged between the two models above
about 70 % masseter activation.

Intramuscular pressure in the masseter is also compared between the two models. At 20 %
activation, the prototype model exhibited distinct regions of high (−0.1MPa) and low pressure,
corresponding to the contracting and inactive masseter regions, respectively. The status-quo
model, in contrast, did not show such extremes in pressure difference and instead pressure was
normally distributed about a mean value (−0.06MPa).

These results imply that modelling motor-units strongly influences masseter motor-output
and bite force for low to medium contractions. This may lead to better predictions during
mastication and other sub-maximal masticatory processes, for example, bruxism. More gener-
ally, the results highlight that spatio-temporal modelling of motor-units in complex muscles,
involved in sub-maximal tasks is vital in understanding their motor-output.

Sensitivity of motor-output to motor-unit anatomy

Motor-unit anatomy varies between muscles and individuals and their selective recruitment
leads to variations in motor-output. To quantify the impact of motor-unit variation on motor-
output, several prototype models, each with unique motor-unit anatomy, are created. A sub-
maximal bite is performed by sequentially recruiting 34 of 50 of each masseters’s motor-units,
corresponding to an averaged 20 % activity.

Two types of variations (totalling 10) of the motor-unit anatomies are taken: variation of the
overlap and positions of the motor-unit territories. The resulting (10) peak bite force magnitudes
had a mean of 146N±7N and a range of 26N. Force direction was affected to a greater degree,
with the angle in the horizontal plane having a mean of −78°±34° and a range of 122° across all
10 variations.

The position of the motor-unit territory had a greater influence on bite force than the overlap
of motor-unit fibres, which is largely due to the changes in motor-unit mechanical advantage.
This suggests that from a functional perspective, experimental data of mean territory location,
rather than individual motor-unit fibre distributions, may be sufficient to characterise the
motor-unit anatomy model.
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Regional activity and intramuscular pressure

Intramuscular pressure can be used to infer muscle activity, since local fluid pressure in the
muscle increases as the muscle contracts. During sub-maximal contractions, however, some
muscle regions remain inactive. These passive regions, due to lateral force transmission via
connective tissues, also experience changes in pressure. The degree to which pressure in
these (passive) regions can predict joint force is not well understood. This is investigated by
comparing pressures in the active and passive regions of the masseters to the bite force during a
sub-maximal bite simulation. Pressures in the masseter are classified as either active or passive
based on the (mean) activity of the region, and are correlated with the bite force over the entire
duration of the sub-maximal bite.

In general, pressures in the active regions correlated well with the bite force, with a mean
Spearman correlation coefficient of r = 0.86± 0.13. Pressures in the passive regions correlated
less strongly, with a mean coefficient of r = 0.78± 0.22, and showed a left or negative skew.
This indicates that a larger spread of less-correlated pressures occurred in the passive regions.

This implies that using anatomical information to place the intramuscular pressure sensor
near the active regions would improve its predictive ability during sub-maximal contractions.

Determining motor-unit twitch properties

Identification of individual motor-unit properties is crucial in understanding muscle contractile
behaviour. Approaches such as spike-triggered-averaging or more recent, convolutional tech-
niques can be used to attain twitch properties in vivo. These methods typically (i) measure
twitch force at some point biomechanically linked to the muscle and (ii) assume that individual
motor-unit twitch forces can be linearly summed to give muscle force. To investigate discrepan-
cies in measurement location, selected motor-units in the masseter of the prototype masticatory
model are stimulated, and twitch force measured at the molar and over the masseter origin at
the zygomatic arch (the later representing the true twitch force). Linear summation of twitch
forces is investigated by first, individually stimulating a set of motor-units and arithmetically
summing their twitch responses (linear model). The same set of motor-units are then stimulated
simultaneously to obtain the so-called compound twitch.

The twitch forces measured at the tooth underpredicted the twitch forces measured at the
muscle, with larger differences (in peak twitch force) arising for larger motor-units: approx-
imately 10 % deviation for motor-unit 10 (of 50) increasing to 29 % for motor-unit 40. The
linear model underpredicted twitch force, with the discrepancy increasing with the number
of co-contracting motor-units; the compound twitch for four co-contracting motor-units was
31 % higher than the linearly summed counterpart.

This implies that, first, stress redistribution within the muscle and dental structures (mandible,
periodontal ligament, etc.) results in a lower twitch force at the measurement point (molar)
than at the muscle origin. Second, the compound twitches elicit lower shear stress in the muscle,
compared to linear summation of shear, showing that the linear twitch model underpredicts
true muscle force output.

Structural and functional changes during ageing and neuromuscular disorders

The changes in the neuromuscular and musculoskeletal structure and function that occur during
healthy ageing and neuromuscular disorders are complex, interconnected, and difficult to isolate
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with experimental techniques. The extent to which the remodelling of motor-unit anatomy
alone alters motor-output during ageing and neuromuscular disorders remains unclear.

The prototype model is used to this end; by generating individual healthy, aged, and dis-
eased models, each with varying degrees of motor-unit remodelling and atrophy. That is, the
recruitment, twitch, specific-strength, geometries, etc. are kept constant and only motor-unit
anatomy is altered. The masseters in each model are maximally recruited and the resulting bite
force is compared.

Bite force loss was greater than the percentage of atrophied fibres, for example, 38 % atrophied
fibres resulted in a peak force loss of 51 % compared to the healthy masseters. Bite force direction
on the other hand was only affected once atrophy exceeded 50 %. Even if the muscle properties
responsible for contraction remained unchanged, atrophy of muscles alone was not sufficient
to explain all force loss, and had a non-linear effect on bite force direction.

This implies that the alterations in motor-unit anatomy and their impact on muscle function,
for example, causing changes in mechanical advantage or overall muscle contraction dynamics,
should be considered when investigating force loss during ageing and neuromuscular disorders.

Conclusion and Outlook
The modelling approach developed in this thesis, for the first time, enables the investigation
of the activity and anatomy of individual motor-units in the context of a three-dimensional,
anatomically realistic musculoskeletal model at the joint- and limb-scale.

Although certain microstructural features were idealised, and although the use-case was
limited to the masticatory system, the prototype model and proof-of-concept studies demon-
strated the potential of this integrated neuro-musculoskeletal environment. By modelling
regional activity of muscles, motor-output was strongly influenced, including intramuscular
pressure, shear stress, and joint-torque. Differences in motor-output were manifest at low to
medium muscle contractions the most, which suggests that investigations of tasks such as
posture maintenance and day-to-day movements would benefit from such models.

Mechanically based experimental techniques such as intramuscular pressure, ultrasound,
tensiomyography, mechanomyography, and high-density force-myography can also benefit
from the capabilities of the motor-unit driven modelling approach presented. This is because
the integrated model simultaneously reveals the relationships between motor-unit activity,
local structural changes in muscle, and global motor-output. Furthermore, application of such
a model to the limb-scale could also inform control strategies for human-machine-interface
devices such as powered-prostheses and -orthoses.

The predicted motor-output in the prototype model, unlike in the status quo model, depends
strongly on the degree of clustering of the motor-unit fibres. Such clustering, in addition
to atrophy, occurs gradually during healthy ageing and more rapidly during neuromuscular
disorders. Given the ageing world-wide population, the consideration of heterogeneous muscle
activity via the behaviour of individual motor-units may become increasingly relevant. With
an eye towards the future, such models may help understand phenomena such as fatigue and be
used to inform medical interventions, for example, by predicting surgery outcomes or planning
movement-rehabilitation protocols related to trauma, neuromuscular disorders or ageing.





Nomenclature

General conventions

(·)g Global coordinate-system
(·)E Reference coordinate-system
(·)e Local coordinate-system
(·)M Muscle parameter
(·)T Tendon parameter
(·)MTC Musculotendon parameter
˙(·) = D(·)/Dt Material time derivative
(̆·) Meta-unit parameter
det(·) Determinant
Grad(·) Gradient with respect to the reference configuration
grad(·) Gradient with respect to the current configuration
Div(·) Divergence with respect to the reference configuration
div(·) Divergence with respect to the current configuration
tr(·) = I · (·) Trace operator

Scalars

Solid mechanics theory
t Time [s]
B0 Continuum body in the reference configuration (t = 0)
B Continuum body in the current configuration (t > 0)
P Particle in B
∂B0 Surface of B0

∂B Surface of B
J Jacobian
ρ0 Density in the reference configuration [g/cm3]
ρ Density in the current configuration [g/cm3]
Pext External power [J/s]
Pdef Stress power [J/s]
K Kinetic energy [J]
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xxiv Nomenclature

Musculotendon constitutive law
Ψ Internal (strain) energy [N/mm2]
E Young’s modulus [N/mm2]
ν Poisson’s ratio
αM Muscle activity
λ Muscle stretch
λopt Optimal muscle stretch
Pmax Maximum isometric specific-strength [N/mm2]
c1,2 Isotropic material parameters [N/mm2]
c3,5 Anisotropic-passive material parameters [N/mm2]
c4,6 Anisotropic-passive material parameters
c Incompressibility penalty parameter [N/mm2]
fl Force-length relationship
wasc,dsc Anisotropic-active material parameters
vasc,dsc Anisotropic-active material parameters
γM Muscle volume fraction

Motor-unit activity models
E Excitatory drive
IRi Innervation-ratio of motor-unit i
Ri Recruitment threshold of motor-unit i
Fi Firing rate of motor-unit i [Hz]
ṼM Membrane voltage
r̃ Calcium concentration
A1−2 Pre- and post cross-bridge power stroke states
αi Activity of motor-unit i

Motor-unit anatomy models
NMU Number of motor-units
NFO Number of fibre-scaffolds/seed-points
Λs & Λf Microstructure spacing perpendicular and along fibres [mm]
R & D Peripheral and central fibre-scaffold search radii [mm]
∆R & ∆D Increments for R and D [mm]
λ1−3 Distance skewness factors
κ Discrete distribution of motor-unit i
κ̂ Homogenised distribution of motor-unit i

Ageing & neuromuscular disorder model
T Large time span, i.e, >> t

fdenir Frequency of denervation event [1/T]
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ndenir Number of motor-units denervated per denervation event
ρI
denir Probability to denervate type-I motor-units

tdorm Dormant time periods before atrophy [T]
gII
r & gI

r Motor-neuron sprout growth rate for type-I & -II motor-units [mm/T]

Vectors

Solid mechanics theory
X Position vector in the reference configuration [mm]
x Position vector in the current configuration [mm]
ξ0 Gauß point in the reference configuration [mm]
ξ Gauß point in the current configuration [mm]
u Displacement [mm]
a0 Fibre direction in the reference configuration
a Fibre direction in the current configuration

Motor-unit anatomy models
cMUT Motor-unit territory global reference point [mm]
ci Motor-unit territory i central reference point [mm]
sk Seed-points/virtual neuromuscular junction of fibre-scaffold k [mm]
q Stencil for neighbouring seed-points [mm]
v1−3 Distance skewness axes

Second-order tensors

Solid mechanics theory
I Identity
F Deformation gradient
R Rotation
U Right (material) stretch
v Left (spatial) stretch
C Right Cauchy-Green (Green) deformation
b Left Cauchy-Green (Finger) deformation
l Velocity gradient [1/s]
d Rate of deformation [1/s]
w Rate of rotation [1/s]
E Green-Lagrange strain
A Euler-Almansi strain
ε Small strain
σ Cauchy stress [N/mm2]
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σD Deviatoric Cauchy stress [N/mm2]
σIMP Hydrostatic Cauchy stress [N/mm2]
τ Kirchhoff stress [N/mm2]
S First Piola-Kirchhoff stress [N/mm2]
P Second Piola-Kirchhoff stress [N/mm2]

Sets

Motor-unit anatomy models
D Motor-neuron discharge times
S Seed-points
F Fibre-scaffold points
Tc Empty seed-points for central fibre-scaffold search
Tp Empty seed-points for peripheral fibre-scaffold search



1 Introduction

1.1 Motivation

Figure 1.1: Movement is a vital part of life. Before we can even talk, we learn to crawl, stand, walk and
begin to explore the world (starting with the living-room).

Our bodies are made to move. Sensory information is integrated in the brain and ultimately
governs the actions of the motor system. Although we consciously plan, decide, and are aware
of our movements, they seem to be carried out automatically. In other words, not much thought
is typically given to the particular intensity and duration of muscle contractions that are
required to carry out day-to-day tasks. Rather, these details are handled by the neuromuscular
system, where motor-neurons recruit and coordinate muscles in the particular way best suited
for a given movement.

The basic functional element of force production in the neuromuscular system is the motor-
unit, which consists of all muscle fibres that are innervated by a single motor-neuron (Sher-
rington, 1929). The force exerted by a muscle depends on the number of motor-units recruited
together with the rate of their stimulation (Adrian et al., 1929). As increasing force is deman-
ded of a muscle, a larger number of motor-units are recruited, and their firing rate increases
accordingly. Recruitment occurs in order of increasing motor-unit twitch force, referred to as
the size-principle (Henneman, 1957) and is so-called because motor-units that produce a larger
force tend to comprise more fibres.

Not only do motor-units vary in size, but their fibres are arranged in distinct patterns in a
muscle, referred to as motor-unit anatomy or territory. The selective recruitment of motor-units
therefore alters the temporal and spatial contractile behaviour of muscle. This phenomenon,
sometimes called the functional heterogeneity or task-specificity of muscle, means that the
nervous system is able to modulate muscle function to meet the varying demands placed
on the musculoskeletal system. For example, muscles may contribute differently to different
movement tasks by varying their line of action (Herring et al., 1979; Loeb, 1985). This is but one
example of the tight linkage between neuromuscular anatomy, activity, and musculoskeletal
system function. In an early investigation of skeletal muscle functional heterogeneity, Herring
et al. (1979) stated that “[t]he usual assumptions made about muscles for biomechanical analysis

1



2 Chapter 1: Introduction

such as uniform contraction and constant line of action, are inappropriate for complex muscles
[…]”.

Motor-unit anatomy, furthermore, does not remain fixed in adulthood. During ageing,
motor-units undergo successive cycles of denervation and reinnervation, which leads to both
motor-unit fibre clustering and muscle fibre atrophy due to motor-unit loss (e.g. Morris, 1969;
Lexell et al., 1988). These changes occur more rapidly and/or to a greater extent during
neuromuscular disorders, such as amyotrophic lateral sclerosis (ALS) (Morris, 1969), Charcot-
Marie-Tooth disease (Lester et al., 1983) or cerebral palsy (Rose et al., 1998). Therefore, to
understand the changes in motor-output during healthy ageing and neuromuscular pathologies,
the remodelling of motor-units and its impact on the functional heterogeneity of muscles needs
to be taken into account.

Experiments can offer crucial insights into the interplay of motor-unit anatomy, activity,
and muscle function. They are, however, faced with certain technical and ethical barriers
that limit the type and fidelity of data obtained. In humans, non-invasive techniques such
as electromyography, ultrasound, and intramuscular pressure (Floyd et al., 1950; Sejersted
et al., 1984; Rutherford et al., 1992), are typically used to infer muscle activity indirectly. The
calibration and validation of these techniques is challenging since the neural activity that drives
motor-output is typically not known.

Biomechanical models of the musculoskeletal system can be used to augment experimental
techniques. Although idealised, these models provide a transparent environment to investigate
the relationships between neural-inputs and motor-outputs. These models can be used either to
predict movements based on neural activity (forward-dynamics) or to compute neural activities
for given movements (inverse-dynamics). So-called Hill-type muscle models typically represent
muscles as one-dimensional segments and scale muscle contractile force along a predefined
line-of-action (e.g. Zajac, 1989; Delp, 1990). Since these models are computationally inexpensive,
they are typically used for multi-muscle, limb, or whole-body movement analysis.

Alternatively, continuum-mechanical macroscopic models treat the muscle as a volumetric,
three-dimensional structure and can therefore capture the geometrical and structural features
of muscle contraction, e.g., evolving fibre length, pennation angles and contact with other
tissues (Johansson et al., 2000; Fernandez et al., 2005), which cannot be taken into account by
the Hill-type models due to their oversimplification of muscle anatomy. Despite the detailed
structural modelling within macroscopic continuum-mechanical models, a wide practise is to
recruit all regions of the muscle simultaneously. In other words, the entire muscle receives the
same (time varying) activation. The shortcomings of assuming uniform spatial recruitment is
that the functional heterogeneity of skeletal muscles, due to selective recruitment of spatially
distinct motor-units, cannot be taken into account.

Another approach to continuum-mechanical skeletal muscle models is the multiscale ap-
proach. In multiscale models, individual contractile filaments, sarcomeres, and fibres in the
muscle are modelled and thus local muscle contraction is simulated with tremendous detail (e.g.
Röhrle et al., 2008). This comes, however, at the cost of model simplicity and computational
speed. Therefore, these models are limited to idealised geometries and/or isolated muscle geo-
metries. That is, an anatomically realistic, multiscale model, at the joint-scale, i.e., interacting
with surrounding tissues and bones, remains elusive.

The main drawbacks of existing three-dimensional skeletal models for investigating the
functional heterogeneity of muscles is that multiscale models are restricted, due to practical reas-
ons, to tissue-level analyses and macroscopic models oversimplify neuromuscular physiology
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and thus treat the muscle as a single contractile unit. These models, therefore, are limited in
their ability to reveal neuromuscular structure-functional relationships. For example, cerebral
palsy causes, in addition to altered neuromuscular-tissue properties and recruitment strategies,
changes at the motor-unit anatomical level (Rose et al., 1998). These complex and interrelated
alternations typically lead to pathological gait, which often treated via tendon length alteration
(e.g. Rutz et al., 2011). Considering these factors simultaneously—alterations in musculotendon
structure, neural activity, and motor-unit anatomy—would lead to a more realistic “virtual
surgery” and aid in pre-surgical planning. Therefore, to gain a deeper understanding of healthy
and pathological limb movement and skeletal muscle motor-output, both neural and muscular
systems need to be considered in an integrated sense, at the joint-scale.

This thesis aims to overcome limitations of existing macroscopic and multiscale approaches
by developing a model that can both be used at the joint- and limb-scale, with multiple-muscles,
and is able to capture the functional heterogeneity of skeletal muscles by modelling anatom-
ically realistic motor-units in three-dimensions. This is done by combining the macroscopic
descriptions of muscle structure with neuromuscular information, i.e., motor-unit anatomy and
activity, derived from the microscale. By doing so, individual motor-unit activity and anatomy
can be linked to overall joint function and limb movement.

In the following, first, the state-of-the-art of continuum-mechanical modelling, experimental
evidence of skeletal muscle functional heterogeneity, and the anatomical basis of functional
heterogeneity, i.e., motor-unit anatomy, is covered in Section 1.2. Second, the research goals
are summarised in Section 1.3. To meet these research goals, a prototype model of the mastic-
atory system is developed and used to perform case studies. The prototype model, and brief
introductions to the case studies are given in Section 1.4. Finally, an outline of the thesis is
given in Section 1.5

1.2 State-of-the-art

1.2.1 Continuum-mechanical modelling of skeletal muscles
Most (volumetric) biomechanical skeletal muscle models include mechanisms to: activate the
muscle via some parameter αM, direct this active stress Sactive within the volume according
to the arrangement of muscle fibres, and incorporate hallmark muscle properties such as the
force-length fl and force-velocity fv relationships (Hill, 1938; Gordon et al., 1966; Zajac, 1989).
A generic formula for active stress may be written as

Sactive ← αM Pmax fl fv,

where Pmax is a material parameter (typically in N/mm2) that scales the magnitude of the active
stress. The arrow represents some process which maps the scalar magnitude of the active stress
to a three-dimensional stress state, represented by a second-order tensor. The main approaches
to do so are discussed below. Additionally, a muscle also passively resists deformation, one
method—the so-called active-stress approach1—additively splits this contribution, i.e.,

Smuscle = Spassive + Sactive.

1An alternative method is the active-strain approach, which uses a multiplicative split of the deformation
tensor (e.g. Ambrosi et al., 2012; Hernández-Gascón et al., 2013).
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The ways in which each behaviour is derived are plentiful and can be broadly split into two
classes—microscopic (multiscale) and macroscopic. In the former approach, the interaction of
individual sarcomere filaments are typically modelled, with the relevant electrical and chemical
triggers governing their activity (e.g. Röhrle et al., 2008; Röhrle et al., 2012; Heidlauf et al., 2014).
For example, the stress of a certain sarcomere at location X in the muscle can be computed
via Ca2+ concentrations, which can then be normalised to compute muscle activity at the
same location, i.e., αM ← αM(t,x). The properties of muscle contraction are implicit in the
micromechanical interactions of the filaments, for example, the force-length relationship arises
naturally due to changes in overlap between the thick and thin filaments. The mapping of
(one-dimensional) fibre stresses to the volumetric stress tensor occurs via a homogenisation
step, mapping Sactive ← Sactive and the geometrical representation of individual fibres ensures
that the active stress is directed appropriately within the muscle.

The incredible physiological detail afforded by multiscale models allows precise investig-
ations of the relationships between the microstructure, biochemical/physical-processes and
macroscopic muscle contraction and force production (e.g. Heidlauf et al., 2014; Röhrle et al.,
2016; Heidlauf et al., 2017). Furthermore, the multi-physics nature of some multiscale models
allows the modelling of electrophysiological behaviour of contracting muscles (Mordhorst et al.,
2014; Mordhorst et al., 2015). However, this level of physiological fidelity comes at the cost of
model-complexity and computational time. To achieve acceptable run-times, these models are
typically combined with specialised solution techniques and/or software, e.g., model-order-
reduction (Mordhorst et al., 2017) or highly parallel computation (Bradley et al., 2018a; Bradley
et al., 2018b; Maier et al., 2019). Even then, such models are typically restricted to idealised
geometries (e.g. Mordhorst et al., 2017) and, at best, isolated muscles (e.g. Röhrle et al., 2012;
Maier et al., 2019).

Macroscopic models, forgo muscle microstructure and instead describe skeletal muscle
behaviour and structure in a homogenised sense. Individual fibres are replaced with a fibre
orientation field, which describes local variations in muscle anatomy and directs the active
stress within the muscle volume. This means that the active stress is not directed by fibre
geometry but via a so-called structural tensor, i.e., Sactive ← Sactive M , where M contains the
fibre direction information. The deformation of fibres is represented via fibre stretch λ, which
is computed from the deformation of the continuum bulk. Muscle behaviour is then captured
by lumped phenomenological models acting on λ, for example, the force-length relationship
can be defined directly as a function of fibre-stretch fl ← fl(λ) (Zajac, 1989).

By doing so, macroscopic models trade physiological accuracy for model simplicity and
computational speed, enabling these models to overcome limitations that are typical of more
complex and computationally demanding multiscale models. This has lead to the use of
macroscopic models at the limb and joint-scale, often involving multiple muscles, and contact
between surrounding tissues. For example; forward dynamics simulations of 2-muscle systems
to predict static bite force (Weickenmeier et al., 2017) and dynamic movement of the arm
(Röhrle et al., 2017); the passive deformation of 11 muscles embedded in soft tissues of the
lower-limb stump during contact with a prosthetic (Ramasamy et al., 2018); up to 20 muscle
pairs in the face to mimic facial expressions, including interactions with surrounding bones
and soft tissues (Wu et al., 2014); or more recently, 23 muscles spanning the shoulder joint,
coupled with inverse-dynamics, to compute muscle activities during upper-arm movements
(Péan et al., 2019).

Since the microstructural basis of activity is removed, fibres can no longer be grouped
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into spatially distinct motor-units and thus muscle activity is applied uniformly throughout
the muscle: Gielen et al. (2000), Johansson et al. (2000), Lemos et al. (2001), Oomens et al.
(2003), Blemker et al. (2005b), Fernandez et al. (2005), Röhrle et al. (2007), Wu et al. (2014),
Fan et al. (2017), Röhrle et al. (2017), Weickenmeier et al. (2017), Ramasamy et al. (2018)
and Péan et al. (2019). Status-quo macroscopic muscle models justify the application of a
spatially-constant activity by assuming that motor-units are uniformly distributed in the
muscle, i.e., αM ← αM(t) ∀X . Such an approach, however, fails to address the ability of the
neuromuscular system to alter (regional) skeletal muscle motor-output by selectively recruiting
motor-units, which is detrimental to modelling the functional heterogeneity of muscles.

1.2.2 Functional heterogeneity of skeletal muscles

Functional heterogeneity (Herring et al., 1979) refers to the regional variety of a muscle’s motor-
output. The neuromuscular basis for this is either the recruitment of anatomical neuromuscular
compartments (English et al., 1981; Segal, 1992), where muscle compartments are innervated
by “private nerve branches”. Alternatively, selective recruitment of neighbouring motor-
units may occur, leading to regional contraction (e.g. Schindler et al., 2014). Other terms,
such as “selective activation”, “inhomogeneous activation”, “task-dependence/specificity” and
“functionally complex” (e.g. Pratt et al., 1991; Holtermann et al., 2005; Holtermann et al., 2009;
Miyamoto et al., 2012) are also used to describe the same phenomenon. Some detailed examples
are presented below.

Blanksma et al. (1990) used fine-wire electrodes to measure activity in different regions of
the temporalis and found that, apart from the anterior regions, the muscle showed alterations
in activity in response to changes in bite force direction. Phanachet et al. (2003) used fine-wire
electrodes to record electromyography signals of single motor-units at various locations in
lateral pterygoid. They found that 14 % of motor-units were specialised to one task. Similarly,
Schindler et al. (2014) used fine-wire electrodes in the masseter and found that about half
(46 %) of the investigated motor-units were specialised to one task. These findings, among
those of Blanksma et al. (1995), Turkawski et al. (1998), Murray et al. (1999), Phanachet et al.
(2003), Schindler et al. (2005), Ogawa et al. (2006) and Guzmán-Venegas et al. (2015), reveal the
tremendous functional heterogeneity of the masticatory muscles.

Besides the masticatory muscles, other examples of functionally heterogeneous muscles
are numerous, for example: biceps brachii (ter Haar Romeny et al., 1984; Pérot et al., 1996;
Holtermann et al., 2005), trapezius (Holtermann et al., 2009), rectus femoris (Miyamoto et al.,
2012), and triceps surae (Staudenmann et al., 2009; Wakeling, 2009; Csapo et al., 2015).

While the focus till now has been on force production and movement, the functional het-
erogeneity of muscles also manifests itself in other aspects of motor-output. For example,
consider the fluid pressure within muscles, or intramuscular pressure. From a purely mechan-
ical perspective, regional contraction would increase pressure locally due to the law of Laplace
(Basford, 2002). These regional pressure variations lead to variations in muscle blood perfusion
and may act to mitigate fatigue during sub-maximal sustained contractions (canines—Ameredes
et al. (1997); humans—Sjøgaard et al. (1986) and Sjøgaard et al. (1988)).

These experimental observations, among others, highlight the weakness in modelling the
muscle as a uniformly contracting unit. Perhaps status-quo macroscopic muscle models can
capture muscle contributions to joint-torque and movement in some averaged sense, but
the subtleties of regional contraction due to motor-unit activity and anatomy are lost. For
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example, in the aforementioned simulation of the shoulder joint (Péan et al., 2019), although the
trapezius model is divided into four separate muscles (according to its anatomical subdivisions
(e.g. Holtermann et al., 2009)); this may still oversimplify its behaviour. This is because there
is evidence that even within a subdivision of the trapezius, selective motor-unit recruitment
leads to task-specificity (e.g. Jensen et al., 1997; Samani et al., 2010). Or, consider the static bite
force simulation (Weickenmeier et al., 2017), which treats the masseter as a single contracting
unit and does not account for the functional heterogeneity of the masseter (e.g. Schindler et al.,
2005; Ogawa et al., 2006; Schindler et al., 2014).

1.2.3 Measurement and modelling of motor-unit anatomy
The basis of functional heterogeneity in skeletal muscles is the selective recruitment of motor-
units. This section deals, in turn, with the historic development to state-of-the-art of experi-
mental techniques to measure motor-unit anatomy before addressing status-quo computational
approaches to model motor-unit anatomy.

Experimental measurement of motor-unit anatomy

Themeasurement of motor-unit anatomy or motor-unit territories can be broadly classified into
direct and indirect methods. Former methods, such as histochemical staining, operate onmuscle
tissue itself and the latter use biosignals to infer territory location. The typical features that
characterise a motor-unit territory are: (two-dimensional) size or (one-dimensional) span, fibre
arrangement or density, and position relative to the muscle cross-sectional area or thickness.
For example, in various mammals the masseters occupy relatively small fractional muscle cross-
sectional area: 4.5–19.6 % compared to limb muscles: 6–76 % (Table 1.1). Furthermore, since
motor-units comprise a single fibre-type, often, the distribution of fibre-types can be used as a
marker for motor-unit territory location.

Direct methods involve whole muscle cross-sections (animal studies) and muscle biopsies
(human studies). Animal studies apply electrical stimulation of an α-motor-neuron axon,
together with histochemical staining (glycogen depletion) to identify individual fibres of a
motor-unit. Since this is performed manually, only a few motor-units are typically measured
per study. The first study to use histochemical staining to investigate motor-unit territory (rat
tibialis anterior) was by Edström et al. (1968), who reported motor-unit territories covering
12–26% of muscle’s cross-sectional area. This confirmed the prevailing theory at the time (via
indirect methods), that motor-unit territories occupy subregions of a muscle’s cross-sectional
area and that fibres of different motor-units are found next to each other, i.e., motor-unit
territories overlap. Similarly, Burke et al. (1973) reconstructed type-FR and -FF motor-unit
territories in a cat’s gastrocnemius at various cross-sections along the muscle and found that
motor-unit territories are confined to the muscle cross-sectional area and that “it seems likely
that at least 40–50 muscle units share any one region within the medial muscle”.

Bodine-Fowler et al. (1990) formalised the concept of a motor-unit territory boundary by
“connecting outlying fibres by straight lines to form the smallest convex area containing all of the
motor-unit fibres”, which enabled quantitative analysis of fibre distribution within a motor-
unit territory. The dispersion of fibres was investigated by computing the local variance in
fibre count (density) and revealed that 6 out of 7 motor-unit territories had a fibre distribution
different from random. Additionally, their investigations also supported the local confinement
of motor-unit territories to subregions of the muscle’s cross-sectional area—covering 41–76%
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and 8–22% of muscle cross-sectional area for soleus and tibialis anterior, respectively. Reports
of these and other similar studies on motor-unit territory size are summarised in Table 1.1.

Furthermore, by analysing inter-fibre distances, Bodine-Fowler et al. (1990) quantitatively
revealed the existence of “holes” within the fibre distributions, suggesting regions of high and
low fibre density within a motor-unit territory. The non-uniform distribution of fibres within a
territory may be a remnant of neuromuscular development (e.g. Pfeiffer et al., 1985; Dahm et al.,
1988) (cited in Monti et al. (2001)) due to pruning of initially multiply innervated muscle fibres.

An important aspect of the structural changes in skeletal muscles during healthy ageing
and neuromuscular disorders is the remodelling of motor-unit anatomy. These investigations
are typically performed on biopsies of human muscle, and since a muscle biopsy is devoid of
intact α-motor-neuron axons, fibre-type distribution stands in as an indicator of motor-unit
territories. The remodelling of motor-units occurs mainly via cycles of denervation and partial
or complete reinnervation, leading to both atrophy of some fibres and the clustering of others,
during ageing (e.g. Morris, 1969; Lexell et al., 1988) and neuromuscular disorders (e.g. McComas
et al., 1973; Lester et al., 1983; Kelly et al., 2018) (Figure 1.2).

Several methods have been proposed to quantify these structural changes, for example, by
measuring changes in fibre-type distributions (e.g. Morris, 1969; Johnson et al., 1973b; Lester
et al., 1983; Lexell et al., 1988; Lexell et al., 1991). Among these, is the co-dispersion index

Table 1.1:Motor-unit territory sizes in animals and humans. The method to determine motor-unit territory
(MUT) size are GD: glycogen depletion and iEMG, sEMG and HDEMG for needle, surface and high-density
surface electromyography, respectively. †combined with simulated results.

MUT area/%-CSA

Species Method Muscle Min. Max. Source

Rat GD

soleus 25 75 Kugelberg et al. (1970)
tibialis anterior 12 26

tibialis anterior 6 21 Larsson et al. (1991)
med. gastrocnemius 8 18 Kanda et al. (1992)

Cat GD soleus 41 76 Bodine et al. (1988)
tibialis anterior 8 22

Pig GD masseter 5 10 Herring et al. (1991)

Rabbit GD masseter 4.5 19.6 Kwa et al. (1995b)

MUT length/mm

Human

sEMG vastus medialis †12 †65 Gallina et al. (2015)
iEMG genioglossus 3 14 Luu et al. (2017)

iEMG

masseter

0.3 19 McMillan et al. (1991)
iEMG 0.4 13.1 Tonndorf et al. (1994)
iEMG 0.7 8.6 van Dijk et al. (2016)
HDEMG 1.2 7.9 Lapatki et al. (2019)
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(a) Healthy, 32 years. (b) Healthy, 70 years.

(c) Amyotrophic lateral sclerosis. (d) Charcot-Marie-Tooth disease.

Figure 1.2: Muscle biopsies for healthy (young and old) muscles in (a) and (b) from the vastus lateralus.
Pathological muscle biopsies are shown in (c) and (d), the muscle is unspecified, and the scale bar
(bottom-right) is 100 µm. Type-I fibres are lightly stained and type-II fibres are heavily stained. (a) and
(b) reproduced, with permission, from (Lexell et al., 1988) and (c) and (d) from (Lester et al., 1983).

proposed by Lester et al. (1983), which describes the clustering of fibre-types within a region
of muscle cross-sectional area. Segregation of fibre-types yields larger co-dispersion index
values, e.g.,+0.27 and+0.74 for amyotrophic lateral sclerosis and Charcot-Marie-Tooth disease,
respectively (Figures 1.2c and 1.2d).

Non-invasive techniques such as medical imaging (magnetic resonance imaging or ultra-
sound) and electromyography (scanning-, needle-, or surface-electromyography), trade in
specificity for coverage. That is, a larger number of motor-unit territories can be uncovered,
but they are described by their average position in the muscle rather than their individual fibre
distributions.

Since motor-unit territory contraction is coupled with electrical activity due to excitation-
contraction coupling, electromyography techniques can be used to locate active motor-unit
territories indirectly. Early investigations involved intramuscular electrodes together with
scanning electromyography techniques, where the electrode is guided through the muscle cross-
section and changes in measured potential used to demarcate the active motor-unit territory
(e.g. Buchthal et al., 1959). Other studies using scanning electromyography to investigate
motor-unit anatomy followed, such as those of McMillan et al. (1991) and Tonndorf et al. (1994).

Today, electromyography remains a popular technique to determine motor-unit anatomy in
humans. Needle electromyography, either in a scanning or multi-electrode variant, reveals
large numbers of motor-unit territory in human muscles, for example, 30 in the genioglossus
(Luu et al., 2017) or 160 in the masseters (van Dijk et al., 2016). Advances in non-invasive,
surface electromyography, together with advanced post-processing techniques have remarkably
become just as effective as invasive methods in uncovering motor-unit territories: 55 in the
medial gastrocnemius (Vieira et al., 2011), 77 in the vastus medialis (Gallina et al., 2015) or 190
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Figure 1.3: Motor-unit anatomy shapes obtained by Magnetic Resonance Imaging from Birkbeck et al.
(2020). Licensed under CC BY 4.0.2

in the masseters (Lapatki et al., 2019) (Table 1.1).
Additionally, medical imaging techniques are also employed to obtain a more detailed picture

of motor-unit territories in human muscle. These techniques measure (local) deformations
during muscle contraction. While some techniques identify regions of local contraction, others
are able to demarcate individual motor-unit territories. Deffieux et al. (2008) use high frame
rate (up to 2.5 kHz) ultrasound to highlight areas of contractions in the biceps brachii based on
tissue velocity. Csapo et al. (2015) were also able to identify regional motor-unit “task groups”
using velocity-encoded magnetic resonance imaging in the triceps surae muscle group.

More recently, Rohlén et al. (2020) use high frame rate, high resolution ultrasound to de-
marcate individual territories in a 4× 4 cm cross-section of the biceps brachii. Birkbeck et al.
(2020) combined magnetic resonance imaging with external stimulation to image individual
motor-unit territories with incredible detail (Figure 1.3).
From the literature, the characteristics of mammalian motor-unit anatomy can be summarised
as:

• Territories occupy localised regions within the muscle; some motor-units can
occupy up to 75 % of the cross-sectional area.

• Territories overlap with each other, i.e., fibres of 10-50 motor-units can be found
within a region of the muscle.

• Fibres within a territory seem to be arranged in sub-clusters separated by “holes”
containing relatively few motor-unit fibres.

• Territory shapes are often highly irregular.

In addition to these characteristics, certain muscles show preferential locations of motor-unit
types within the muscle cross-sectional area. For example, in the tibialis anterior, where larger
motor-units are found to be preferentially located deep in the muscle (Henriksson-Larsén et al.,
1985; Mesin et al., 2010) or in the masseter, where higher fractions of smaller motor-units are
found posteriorly in the deep head (humans—Eriksson et al. (1983) and Tonndorf et al. (1994);
other mammals—Herring et al. (1979) and Turkawski et al. (1998)). However, this seems to vary
between muscles and recent studies have challenged these findings, e.g., for the masseter (van
Dijk et al., 2016; Lapatki et al., 2019).

2https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/
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Computer modelling of motor-unit anatomy

Algorithms to construct motor-unit fibre distributions have already been employed, for example,
by Navallas et al. (2010), Röhrle et al. (2012), Carriou et al. (2016), Robertson et al. (2017) and
Botelho et al. (2019), and are able to capture some anatomical features of motor-unit territories,
such as territory overlap and their varying sizes. Common to almost all algorithms is a three-
step process to construct motor-unit anatomy: First, motor-unit size is determined in terms
of the number of fibres it contains. Second, a territory center is selected in the muscle cross-
sectional area or volume and third, fibres are assigned to the territory in relation to the territory
center. The differences lie in the search algorithms, for example, some assign fibres completely
randomly, while maintaining a constant fibre density within the territory, while others use a
Gaußian distribution about the territory centers.

However, these algorithms typically do not allow for the restriction of motor-unit types
to a subregion of muscle cross-sectional area and idealise both motor-unit territories and
muscle geometries. For example, muscle cross-section is most commonly represented as
a two-dimensional circle (exceptions being Röhrle et al. (2012) and Botelho et al. (2019)).
Furthermore, these algorithms make no attempt to replicate or differentiate healthy (young
or aged) and pathological motor-unit anatomy. Therefore, these methods may not be suitable
for three-dimensional muscle geometries and cannot describe pathological or aged motor-unit
distributions.

1.3 Research Goals
The aim of this thesis is to develop a motor-unit driven, three-dimensional, musculoskeletal
model at the joint- (and limb-) scale. This is achieved by integrating motor-unit anatomy and
activity with macroscopic, continuum-mechanical constitutive relations of skeletal muscle,
and is demonstrated via an anatomically realistic, three-dimensional model at the joint-scale.
Furthermore, the limitations of existing methods to model motor-unit anatomy are addressed
via a novel motor-unit anatomy algorithm, which also has the ability to generate healthy, aged,
and pathological fibre distributions.

This necessitates the following research goals:

1. Develop a continuum-mechanical constitutive relation of the musculotendon
complex able to account for spatio-temporal motor-unit information.

2. Develop a method to compute individual motor-unit activity.
3. Develop a method to generate anatomically realistic motor-unit anatomy, able

to capture healthy, aged, and diseased states.
4. Develop a work-flow to integrate the motor-unit information into the muscu-

lotendon complex constitutive relation.
5. Develop an anatomically realistic prototype model and carry out case-stud-

ies to demonstrate and highlight the applicability of the integrated neuro-
musculoskeletal model.

The methods, workflows, and models developed in this thesis aim at providing deeper
insights into the functional heterogeneity of muscles. This has applications in augmenting and
calibrating non-invasive experimental techniques to infer muscle activity, informing movement
rehabilitation protocols and predicting musculoskeletal surgery outcomes.
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1.4 Prototype Masticatory System Model and
Case-Studies

The integrated neuro-musculoskeletal modelling approach is demonstrated via a prototype
model of the masticatory system. Independent case-studies are carried out with the prototype
model to highlight the potential of modelling the neuromuscular and musculoskeletal systems
in an integrated sense at the joint-scale. These are introduced, in turn, below.

The influence of masseter motor-units on bite force
Bite force is commonly used to evaluatemasticatory performance (Röhrle et al., 2018a). However,
masticatory muscle forces are rarely measured directly. Biomechanical models can approximate
underlying changes in muscle function related to changes in bite force. Most biomechanical
models, however, treat masticatory muscles as line-segments (e.g. Ackland et al., 2017; Stansfield
et al., 2018). Furthermore, models that do treat the masseters as volumetric muscles, treat them
as single contractile units (Röhrle et al., 2007; Weickenmeier et al., 2017). This may oversimplify
the function of the masseter, which has shown to be highly task-specific (e.g. Schindler et al.,
2014; Guzmán-Venegas et al., 2015).

The aim of this case-study is to quantify the influence of masseter motor-unit recruitment on
bite force predictions in comparison to a status-quo approach. The prototype model is used to
simulate a maximum voluntary bite force. The simulation is repeated, but with the masseters
treated as single contractile units. Differences in both bite force and masseter intramuscular
pressure are used to quantify the contribution of individual motor-units to bite force.

Sensitivity of motor-output to motor-unit anatomy
The masseter is typically split into two or three distinct compartments, and motor-units are
generally confined within them (Tonndorf et al., 1994). However, the anatomy of masseters can
vary considerably between individuals (Cioffi et al., 2012) and this may affect the motor-unit
anatomy within the masseter. Its motor-units display task specificity, in that they are selectively
recruited for particular bite force directions (e.g. Ogawa et al., 2006). The degree to which the
anatomy of motor-units influences masticatory function is not well understood.

The aim of this case-study is to quantify the influence of motor-unit anatomy on joint-
function. By systematically varying the motor-unit distribution parameters, multiple prototype
models are generated—each with a unique masseter motor-unit anatomy. All models are
supplied with the same sub-maximal activity, and the resulting spread of bite forces used as a
marker of changes in masticatory motor-output.

Regional activity and intramuscular pressure
Intramuscular pressure is a technique to infer muscle activity. It operates by measuring
the hydrostatic fluid pressure within a muscle’s fascicles, and shows good agreement with
electromyography in predicting joint force (e.g. Aratow et al., 1993; Ateş et al., 2018). During
sub-maximal muscle contractions, some regions of the muscle may remain inactive since a
fraction of motor-units are recruited. The intramuscular pressure sensor, therefore, may be
positioned in a passive, non-recruited region. From a mechanical standpoint, contracting
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fibres generate local increases in pressure, i.e., due to law of Laplace (Basford, 2002), and
these pressures would be laterally transmitted to the passive regions (e.g. Turrina et al., 2013).
However, the (relative) ability of such “passive pressures” to predict joint force remains unclear.

The aim of this case-study is to quantify the predictive abilities of passive and active pressures
during a sub-maximal contraction. To this end, the prototype model is used to simulate a
sub-maximal bite force by partially recruiting the masseters. Pressures in the passive and active
regions are then correlated to the bite force to quantify their predictive ability. Furthermore,
by analysing prototype models with various motor-unit anatomies, statistical analysis of the
pressure-force correlation coefficients is carried out.

Determining motor-unit twitch properties
Identification of motor-unit contractile properties is important in understanding whole muscle
contraction. Despite its many limitations, such as breakdown of the linear summation assump-
tion or sensitivity to motor-unit firing synchronicity (Negro et al., 2014; Dideriksen et al., 2018),
spike-triggered-averaging remains a popular technique to measure twitch properties in vivo.
Recently, alternative methods, for example, using deconvolution techniques (Negro et al., 2017),
have been proposed to overcome certain limitations of spike-triggered-averaging.

Regardless of the method, in vivo measurement of twitch forces restricts (twitch) force
measurement at some point biomechanically removed from the muscle. For example, bite force
is used to measure masticatory muscle twitches (McMillan et al., 1990). Typically, moment arm
and torque computations are used to estimate muscle twitch forces. However, such analyses
may be oversimplified, for example, muscle attachment idealised to a point as well as the use
of simplified anatomical and rigid geometry.

The aim of this case-study is to quantify the accuracy of using bite force as a measure of
masseter twitch response. This is done by individually stimulating masseter motor-units and
comparing the forces at the masseter origin and at the molar. Additionally, linear summation
of twitch forces is a common assumption of many biomechanical models. The validity of linear
summation is quantified by comparing the twitch response of simultaneously stimulated motor-
units and the algebraically summed twitch response of individually stimulated motor-units.

Structural and functional changes during ageing and neuromuscular
disorders
The breakdown of motor-neurons during ageing and neuromuscular disorders causes patho-
logical functioning of motor-units and can also lead to a total loss of a motor-neuron. This
severs the link between the nervous system and muscle fibres, which may either be revived by
reinnervation or may eventually atrophy. This process occurs in repeated cycles of denervation
and reinnervation and causes reorganisation of motor-unit fibre distribution.

The neuromuscular changes that occur during ageing and neuromuscular disorders are
complex, interconnected (Larsson et al., 2018) and challenging to isolate experimentally. For
example, the sole contribution of motor-unit remodelling, including atrophy, to loss of muscle
function is unclear.

The aim of this case-study is to quantify the force loss caused by muscle remodelling that
is typical of ageing and neuromuscular disease. Several prototype models are created, each
with varying degrees of motor-unit remodelling, including atrophy. The models are identical
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in all other aspects and are supplied with the same recruitment protocol. The simulated
maximum voluntary bite force between the healthy, aged, and disordered models are compared
to investigate changes in masticatory function.

1.5 Outline
The intermediate chapters, between the introduction and discussion, fall into one of four
categories: background and theory (Chapters 2 & 3), modelling the musculoskeletal and
neuromuscular systems (Chapters 4 & 5), integration of the neuromuscular and musculoskeletal
models (Chapters 6 & 7), and development of the prototype model with associated case-studies
(Chapters 8 & 9).

The thesis continues by providing basic physiological background of the neuromuscular sys-
tem in Chapter 2. It covers neuromuscular anatomy and functioning, including musculotendon
complex tissues, excitation-contraction coupling, motor-units and their recruitment.

In this thesis, three-dimensional musculoskeletal system movement is modelled by the
theory of continuum mechanics. The mathematical formulation of the theory, including
contact mechanics, is briefly given in Chapter 3. Continuum-mechanical problems are typically
discretised via the finite element method, which is also briefly covered in the chapter.

The solution of the continuum-mechanical problem is not complete without a description of
the materials involved. Large strain, hyperelastic constitutive relations, typical of soft biological
tissues, are covered in Chapter 4. Then, specific constitutive relations of the musculotendon
complex and other biological tissues are presented (research goal 1), including characterisation
of the material parameters to experimental data.

Skeletal muscle activity is based on the sum of individual motor-unit activity and anatomy.
The computation of physiologically realistic motor-unit activity and anatomy is covered in
Chapter 5. The combination of a recruitment model with cross-bridge- and calcium-dynamics
models to compute motor-unit activity is covered first (research goal 2). The larger part of the
chapter focuses on the computation of motor-unit anatomy: Focusing first on the approximation
of themicrostructure, including case-studies of the biceps brachii, lateral pterygoid andmasseter.
Second, describing the method to generate motor-unit anatomy (research goal 3). The chapter
ends by characterising the motor-unit anatomy method and relating distribution parameters to
common motor-unit territory metrics.

In Chapter 6, the (macroscopic) mechanical musculoskeletal description and the (micro-
structural) neuromuscular information are integrated (research goal 4). The chapter begins
by describing the process to homogenise the motor-unit territory distributions, and quan-
tifies the error introduced by modelling assumptions. The remainder of the chapter details
the implementation of the model, i.e., in a commercial finite element package. Convergence
studies are carried out to guide element choice and judge incompressibility behaviour. Finally,
the integrated neuro-musculoskeletal finite element model is demonstrated on an idealised
geometry.

With the integrated model at hand, Chapter 7 describes the development of a prototype
masticatory model (research goal 5). First, a brief physiological background of the masticatory
system is given. Then the geometrical development of the model is detailed with an emphasis
on the masseters, including the definition of the motor-unit anatomy. In the last section of the
chapter, the role of masseter motor-units in generating bite force is investigated and compared
to a status-quo model.
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In Chapter 8, the prototype masticatory model is used for a series of specialised case-studies
(research goal 5). These have already been outlined in Section 1.4, and are: sensitivity of
masticatory motor-output to masseter motor-unit anatomy, regional activity and intramus-
cular pressure, determining motor-unit twitch properties and the influence of ageing and
neuromuscular disorders on masticatory motor-output. The impact of ageing and disease on
motor-output requires an extension of the motor-unit anatomy method and is therefore covered
separately in Chapter 9 (research goal 3).

Although most chapters contain isolated discussions, Chapter 10 discusses and summarises
the thesis as a whole. It starts with the major contributions before moving onto the general
limitations of the proposed methods and models. The next section then deals with the overall
findings and implications of the thesis in the field of biomechanical musculoskeletal simulation.
The thesis ends by taking a broader view and proposing future research directions.
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2 Physiological Background of the
Neuro-Musculoskeletal System

The tremendous variety of movements that the human body is capable of, is made possible by
the way in which bones, connective tissues and skeletal muscles (the musculoskeletal system)
are organised and also by the way in which they are controlled and regulated by the nervous
system (the neuromuscular system). The musculoskeletal system is highly varied, involving a
multitude of different joint-types, and various sizes, shapes, arrangements, and compositions
of some six hundred and forty muscles. Despite this variety, individual muscle and tendons
(musculotendon complex) share commonalities, being adapted to each joint. The anatomy and
function of the musculotendon complex are discussed in Section 2.1.

Such a complex movement apparatus requires an appropriately rich and varying control
mechanism to exploit its potential, and to do so efficiently. While voluntary movement is
initiated and planned by the central nervous system, it is the peripheral nervous system which
directly innervates the skeletal muscles and causes them to contract. The organisation and
recruitment principles of the neuromuscular system are discussed in Section 2.2.

2.1 The Musculotendon Complex and Muscle Contraction
While bones and connective tissues provide, quite literally, the skeleton or framework for
human movement, the driver of movement is skeletal muscle contraction. The musculotendon
complex is composed of connective tissues and the skeletal muscle itself. A brief description of
each of these components is given in the following.1

The diversity of the size, shape, and arrangements of skeletal muscles enables, in part, the
wide range of human movement tasks. A selection of muscle properties is given in Table
2.1. The number of fibres in a muscle range from about ten thousand, e.g., lumbircales-1 up
to almost a million, e.g., masseter. The shape of muscles also varies according to the tasks
they perform, e.g., the short and thick masseter can produce large forces over a short distance
while the long and slender Sartorius produces force quickly and over a larger contraction
range. Additionally, the arrangement of muscle fibres is also specialised between muscles,
classified as parallel, fusiform, or (uni-, bi- and multi-) pennate. Most muscles have a fusiform
arrangement, e.g., biceps brachii. In pennate muscles, fibres insert into tendons at some oblique
angle, typically not exceeding 20 degrees in humans (e.g. Chleboun et al., 2001; Kawakami et al.,
2006). The pennated fibres enable a greater cross-section of fibres, termed physiological cross-
sectional area, within the same muscle volume. This comes at the cost of shorter fibres, which
operate over a shorter (optimal) range (e.g. Gans, 1982; Chleboun et al., 2001) compared to
parallel or fusiform fibre arrangements.

1Further details on these and other topics, e.g., vasculature, can be found in Kandel et al. (2000), MacIntosh
et al. (2005) and Korthuis (2011).
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Table 2.1: Structural information for select muscles. Muscle volumes are given for males (M), females (F)
and mixed/not-specified (NS). The superscirpt (·)∗ indicates data from Enoka (1995), and with (·)† from
MacIntosh et al., 2005.

Volume/cm3

Muscle α-MN Num. fibres M F NS Source

lumbricales-1 93∗ 1.0× 104∗ – – –
sartorius – 1.3× 105† 100(a) 161(a) – (a)Amabile et al. (2017)
brachiorad. 333∗ 1.3× 105∗ – – 65(b) (b)Holzbaur et al. (2007)

tibialis ant. 445∗ 2.5× 105∗ – – 253(c) (c)Belavý et al. (2011)
medial gastroc. 579∗ 1.1× 106∗ – – 231(c)

masseter 1452(d) 9.3× 105(d) 33(e) 22(e) – (d)Carlsöö (1958)
(e)Cioffi et al. (2012)

2.1.1 Connective tissues
The epimysium is the outermost, dense connective tissue surrounding the entire muscle belly.
It provides structural integrity to the muscle and reduces friction against neighbouring tissues
during movement. The epimysium thickens and merges with the distal tendons of the muscle
and therefore provides some degree of force transmission to the tendons (Turrina et al., 2013).

Within a muscle, bundles of fibres are separated into fascicles, surrounded by perimysium,
which plays an important role in force transmission towards the bones (Turrina et al., 2013).
Individual muscle fibres are, in turn, also wrapped in connective tissue: the endomysium.
While the majority of contractile force is transmitted along muscle fibres, the endomysium
facilitates lateral force transmission to the neighbouring fibres (e.g. Purslow, 2010; Turrina
et al., 2013). The collagen of the three connective tissues ultimately merge with the bones
via tendons, aponeurosis (found in flat muscles with wide attachment areas, e.g., masseter),
fascia or directly with bone via the periosteum and thus transfers skeletal muscle force to the
skeleton.

2.1.2 Sarcomeres and excitation-contraction coupling
The fundamental unit of force production within skeletal muscles is the sarcomere, which is an
arrangement of thick and thin filaments (contractile proteins) between so-called Z-disks (Figure
2.1). The interaction of the thick and thin filaments gives rise to sarcomere force production.
The thick filaments are composed of myosin molecules, which are coiled and have two globular
heads protruding from the entire length of the filament. Surrounding the thick filaments are
six thin filaments, which are primarily composed of actin molecules wrapped in the proteins
tropomyosin and troponin. These two proteins act to control the interaction, and thus force
generation, between actin and the myosin heads. The thin filaments are anchored at either
ends of the sarcomere to the Z-disks and the thick filament is located centrally, giving rise to
alternating light and dark bands observed under microscopy.

During contraction, the filaments slide relative to each other, bringing the Z-disks towards the
center of the sarcomere, described by the sliding filament hypothesis, proposed (independently)
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sarcomere

myofibril

actin tropomyosin

myosin

Z-disk

Figure 2.1: Simplified myofibril (top) and sarcomere (bottom) structure. The myosin (with heads) forms
the thick filaments (red). The actin forms the thin filament (in blue) and is surrounded by a coil of
tropomyosin (green).

by Huxley et al. (1954a) and Huxley et al. (1954b). Contraction is initiated in response to an
action-potential propagating across the sarcolemma, travelling down the transverse-tubules
and causing a release of calcium (Ca2+ ) from the terminal cisternae into the sarcoplasm of
the fibre. The binding of Ca2+ to troponin causes a conformational change removing the
tropomyosin enabling the linkage of the myosin globular heads and actin, referred to as a cross-
bridge. Upon linkage, myosin heads perform mechanical work and pull the actin towards the
center of the sarcomere, referred to as the power-stroke state, and consume chemical energy
via adenosine diphosphate.

After the power-stroke, adenosine triphosphate binds to the myosin head leading to cross-
bridge detachment, where adenosine triphosphate is hydrolysed to adenosine diphosphate
(and inorganic phosphate), returning the myosin head to its pre power-stroke, or primed, state.
The process of cross-bridge attachment, power-stroke, detachment, and return to the primed
state is referred to as cross-bridge cycling. As long as the actin binding sites remain exposed,
i.e., Ca2+ concentration is maintained, the cross-bridge cycle repeats. The transformation of an
action-potential to cross-bridge cycling and force production is called excitation-contraction
coupling. Since a single action-potential does not release enough Ca2+ to form all cross-
bridges in the muscle fibre, repeated action-potential are required in quick succession to
increase Ca2+ concentration, thereby increasing fibre contraction strength. The number of fibres
recruited and the rate of action-potential firing are governed by neural principles, discussed in
Section 2.2.

2.1.3 Muscle fibres
The structure of skeletal muscle is hierarchical and is composed of several repeating units.
These are, in the order of smallest to largest: sarcomeres, myofibrils, muscle fibres and fascicles
(Figure 2.2). Sarcomere lengths range from 1.5–3.5 µm (Kandel et al., 2000) and are arranged
in series to form the myofibrils, which have a diameter of approximately 1 µm (Colomo et al.,
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1997). Myofibrils are grouped together to form muscle fibres, which have lengths ranging
from 1–500mm and diameters from 10–60 µm (Kandel et al., 2000). As previously mentioned, a
single muscle may contain between 100–1,000,000 fibres.

sarcomere

myofibril
muscle fibre

perimysium
fascile

endomysium

motor-unit territory

muscle

epimysium

Figure 2.2: Hierarchical structure of skeletal muscle from the largest (right) to smallest (left) components.
Muscle fibres innervated by a single α-motor-neuron are shown in yellow; the region they occupy is the
motor-unit territory.

Muscle fibre contractile force

Since each cross-bridge generates force independently, the total force generated by the muscle
fibre depends on the amount of overlap between the thin and thick filaments of the fibre’s
constituent sarcomeres. Therefore, there exists an optimal fibre (and therefore muscle) length,
at which a maximum amount of overlap between the filaments in the cross-bridges is attained
and thus maximum relative force is produced. As fibre length decreases, the thin filaments
overlap and effectively block each other, thus reducing overlap with the thick filaments. On
the other hand, as fibre length increases the thin filaments are pulled beyond the ends of the
thick filaments and the filament overlap decreases. Experimental observations of the length
dependence of sarcomere tension, by Gordon et al. (1966),2 are schematically shown in Figure
2.3a.

The peak rate at which muscle fibres can contract is limited by the speed of the cross-bridge
cycling. At increased contraction velocities, the speed of thin filament sliding prevents every
myosin head from finding an attachment site and thus a reduction in force is observed as con-
traction velocity increases (Hill, 1938). Extension of fibres during a contraction results in passive
stretching of the attached cross-bridges and thus a higher (resistive) force is attained (Figure
2.3b). Shortening and lengthening contractions are referred to as concentric and eccentric
contractions, respectively, and those with no change in length as isometric contractions.

2Data points digitised via PlotDigitizer (Huwaldt, 2015).
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Figure 2.3: Force-length relationship of sarcomeres and force-velocity relationship of muscle fibres. Data
points shown as circular marks connected via dotted lines. A fit to the data is shown as a solid line. (a)
Experimental data from Gordon et al. (1966), (b) experimental data from Edman (1988) (fitting equation
and parameters from Alcazar et al. (2019)) and eccentric and concentric contractions are shown in red
and blue, respectively.

Muscle fibre-types

Historically, the speed of contraction was used to differentiate muscle fibres—with those
exhibiting low and high rates of contraction denoted as type-I (or slow) and type-II (or fast)
fibres, respectively. Currently, histochemical (ATPase staining),3 myosin isoform identification
and metabolic enzyme identification are used to differentiate fibre-types. The rate of ATPase
hydrolysis (energy released to reset the myosin head to the cocked position) is two to three
times higher in fast fibres compared to slow fibres. An indirect measurement of this rate is
the amount of ATPase within a fibre, corresponding to the intensity of staining. Traditionally,
this yields an additional classification of fibre-types: type-IIA and type-IIB, with the latter
containing more ATPase and having a higher rate of shortening. With recent advances in
technology, up to a total of seven fibre-types in human have been classified according to
histochemical staining (from slowest to fastest) as type- I, IC, IIC, IIAC, IIA, IIAB and IIB (Scott
et al., 2001, and references therein).

Alternatively, energy metabolism may be used to classify muscle fibres, reflecting metabolic
pathways which are either oxidative (aerobic) or glycolytic (anaerobic). This leads to three fibre-
types: slow-twitch oxidative (SOG), fast-twitch oxidative (FOG) and fast-twitch glycolytic (FG).
A strong enough correlation exists between type-I, -IIA and -IIB with SOG, FOG and FG fibres,
therefore, these terms are often used interchangeably. Type-IIA and -IIB fibres may, however,
use both glycolytic and oxidative metabolism pathways. Oxidative capacity is proportional
to the amount of myoglobin and number of capillaries, giving fibres with this metabolism a

3Histochemical staining involves chemical reactions between some applied agent and a molecule of interest,
e.g., ions, lipids, amino-acids, saccharides (such as glycogen), resulting in an observable change (or marking) of
the molecule. Particular reaction procedures illicit this change for particular molecules, e.g., the Periodic Acid
Schiff reaction is used for the detection of glycogen. An early review on the topic can be found in Ali Khan (1976).
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reddish appearance. Conversely, fibres predominantly using glycolytic metabolism appear
white.

Non-spanning muscle fibres

The classical or intuitive view of skeletal muscle fibres is that they have an approximately
constant cross-section and extend “end-to-end” within a muscle, i.e., they have the same length
as the muscle fascicles. Then, any and all active tension produced by the fibres is transferred
(directly) to the connective tissues at either end of the muscle fibre. Experimental evidence
has shown, however, that some muscle fibres in certain species, including humans, terminate
within the muscle (intrafascicularly) at either or both ends of the fibre. These non-spanning
muscle fibres show a progressive decrease in cross-sectional area, commonly referred to as
tapering, and terminate within intramuscular connective tissue (e.g. Trotter, 1990). Such
non-spanning muscles have been observed in humans, particularly in the sartorius, gracilis,
biceps femoris, semitendinosus and semimembranosus muscles (Trotter, 1993, Table 4) and the
brachoradialis muscle (Lateva et al., 2010, and references therein). Interestingly, neither the
internal organisation of the muscle fibres, e.g., sarcomere lengths, nor the sarcomere activity,
changes towards the tapered ends of the fibre.

In light of these observations, several theories have emerged to explain the occurrence of non-
spanning fibres. One such theory is that the curved surface acts to reduce stress concentrations
at fibre ends. Mathematical analysis of idealised fibre shapes has shown that cylindrical fibres
would give rise to shear stress concentrations at the fibre end, while a conical shape acts to
avoid stress concentrations (e.g. Zhang et al., 2012). This comes, however, at the trade-off of
fibre volume and thus tension production, which can be mediated by a curved profile (e.g.
Trotter et al., 1992). It has been proposed that the fibre adapts to the local stress environment
to optimise smooth stress transmission, giving rise to a variety of fibre tapering profiles (e.g.
Trotter, 1993; Monti et al., 2001, and references therein). Another reason for shorter muscle
fibres is to avoid heterogeneous tension production along the fibre due to conduction delays in
longer fibres (Monti et al., 2001, and references therein).

Force transmission between non-spanning fibres occurs via the intramuscular connective
tissue. A distinction has to be made between in-series fibres and more general non-spanning
fibres. The former may be thought of as essentially a “classical” tendon-to-tendon fibre, inter-
rupted by connective tissue, the so-called myomuscular junction. The latter simply refers to any
fibre which terminates intrafascicularly, including those which may have significant amounts
of overlap with other fibres. It appears that (non tapering) in-series fibres and myomuscular
junctions are a relatively rare occurrence and that “in muscles composed of discontinuous fibres,
the single muscle fibres overlap one another” (Trotter, 1993) (see also Huijing (1999a)). Force
transmission between non-spanning fibres is thought to occur largely via shear stresses over
the overlapping portion of the fibres (e.g. Trotter et al., 1992).

Whether muscle fibres run the entire length of the fascicle, taper and terminate within
the muscle belly or are blunted and connected via myomuscular junctions, the function of a
muscle fibre remains that of tension production. As argued by Monti et al. (2001), “[f]rom a
functional viewpoint, whether these long fibres are composed of a series of shorter fibres or are a
single anatomical entity may not be the important factor to consider”. Therefore, a distinction
can be made between an anatomical and a functional muscle fibre: a functional fibre is defined
as comprising multiple anatomical fibres joined via connective tissue.

A particular form of non-spanning fibres are those where neighbouring fibres are divided
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regularly along their length. For example, nearly all fibres in the cat’s semitendinosus are
divided by a connective tissue inscription approximately one third from its proximal end,
dividing the muscle into two compartments, with each compartment individually innervated
(e.g. Kellis et al., 2012). This in-series arrangement of (all) muscle fibres is thought to allow
for control of contractile length characteristics while maintaining overall force (Monti et al.,
2001, and references therein). Apart from the rectus abdominis, such muscles are generally not
found in humans.

2.2 The Neuromuscular System
The organisation, planning, and execution of voluntary movement originates from the central
nervous system. This process of the integration of sensory information, together with the
coordination of movement is highly complex and beyond the scope of this thesis, for further
details, see Kandel et al. (2000, Chapter 33).

Once the multitude of factors has been integrated by the central nervous system and the
command for a voluntary movement is issued, the peripheral nervous system takes over. Motor-
neurons recruit the right amount of motor-units for the required duration to best carry out the
desired movement. Voluntary movement is seldom a top-down, one-way process. Whether
maintaining sitting posture during a long day of writing, or quickly moving out of harms
way, seemingly automatic responses integrate feedback from sensory organs. Spinal reflexes
respond to sensory information from the muscles, joints, and skin, which are integrated in
the spinal cord. The feedback pathways of the neuromusculoskeletal system are beyond the
scope of this thesis, for further details, see Kandel et al. (2000, Chapter 35) or Gandevia et al.
(2002). The central nervous system does not independently and individually control every
single muscle fibre, but rather higher level recruitment principles in conjunction with the
peripheral nervous system are employed to reduce mental effort involved with movement
(Enoka, 1995). The organisation of the peripheral nervous system in regards to motor-control
is discussed below.4

2.2.1 The motor-unit
The building block of force production is the motor-unit. First proposed by Liddell et al. (1925),
later refined by Sherrington (1925), in which the motor-unit is defined as “the muscle fibres
innervated by the unit and the whole axon of the motoneuron”, i.e., the α-motor-neuron and
all muscle fibres that it innervates. Numbers of motor-units, and therefore α-motor-neurons,
in muscles can vary between ten to several thousand (Table 2.1). The ratio of number of
fibres within each muscle to the number of α-motor-neuron is referred to as the average
innervation-ratio, and can range between approximately 110–1732 fibres, for the lumbricalis-1
and medial gastronemius, respectively (Feinstein et al., 1955) (also Table 2.1). On the other hand,
the innervation-ratio indicates the number of fibres innervated by a single α-motor-neuron
and corresponds to the increment in force when that motor-unit is recruited. Therefore, the
innervation-ratio, and to a degree the average innervation-ratio, provides an indication of the

4The anatomical arrangement of motor-units within skeletal muscle, and the consequences it has on muscle
function, is of central importance in this thesis. The state-of-the-art of these topics were therefore discussed in
Chapter 1.
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fineness of motor-control, where a low innervation-ratio corresponds to small force increments
and thus finer control. An argument could be made that larger muscles do not require fine
control, therefore the smaller the muscle (regarding raw size), the lower the innervation-ratio
should be—this is partly supported by experimental data (Enoka, 1995, and references therein).

By analysing the magnitude and rate of force production in response to a single action-
potential, a motor-unit can be classified as either slow- or fast-twitch. Slow-twitch motor-units
produce lower force and have longer rise times compared to fast-twitch variants (Figure 2.4).
The property of a motor-unit depends on the properties of its constituent muscle fibres, so
slow-twitch, or type-S, and fast-twitch, or type-FR and -FF, motor-units are comprised largely
of type-I, type-IIA and -IIB fibres, respectively (Section 2.1.3).

Classifying the number of motor-units within a given muscle, according to the peak twitch
force produced, reveals that there are a large number of motor-units which produce a low force
and a small number of motor-units that produce a large force (e.g. van Cutsem et al., 1997).
Experimental results suggest that the magnitude of motor-unit force is determined largely
by its innervation-ratio, and to a lesser degree by the radii of its constituent fibres and their
specific-strength (Kanda et al., 1992; Enoka, 1995). Therefore, the motor-units which produce a
low force are also those with low innervation-ratios. Given this correlation between force and
size, the terms slow and small motor-unit are often used interchangeably; similarly for fast and
large motor-units.
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Figure 2.4: Twitch responses of the smallest: dark-blue and largest: maroon motor-units.

2.2.2 Recruitment of motor-units
The recruitment of motor-units within a muscle occurs according to the so-called size principle,
first proposed by Henneman (1957), essentially stating that α-motor-neurons are recruited
in the order or increasing size. Motor-unit size is positively correlated with α-motor-neuron
size. Smaller α-motor-neurons have a larger resistance, therefore the same stimulation current
results in a higher voltage potential as compared to larger α-motor-neurons, causing a discharge
of an action-potential in the former but not in the latter. For this reason, smaller and larger
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motor-units are often referred to as low- and high-threshold motor-units, respectively. This
indicates that during a ramped voluntary contraction, the smaller motor-units which are
numerous and produce low forces slowly, are recruited before those larger motor-units, which
are fewer but produce large forces rapidly. This is advantageous since movements requiring low
amounts of force only involve smaller motor-units, which are less fatigable and allow for finer
control (due to lower innervation-ratio). The larger motor-units then effectively “stand-by” to
provide short bursts of high force.

Stimulation of a motor-unit with a rapid series of action-potentials, i.e., with a time delay
smaller than twitch force drop off, results in a summation of motor-unit force magnitude attain-
ing some maximum level at a given stimulation frequency, referred to as a tetanic contraction
or tetanus. The total force output of a skeletal muscle is a function of its motor-units, both
regarding the number of motor-units which are recruited and the rate at which they are firing
(Adrian et al., 1929). Generally, the recruitment of additional motor-units accounts for a larger
portion of force increase than does the increase in their firing rate, e.g., additional recruitment
accounts for ≈80 % of force (e.g. De Luca et al., 1982). The motor-unit firing rate(s) can be
described as linearly proportional to the volitional effort placed on the muscle (Kernell, 1965).
Discharge rates typically vary between 5–35Hz, with upwards of 100Hz observed in some
muscles, e.g., the aductor policis (muscle of the hand) (Enoka, 1995, and references therein).





3 Theoretical Framework of the
Mechanical Problem

The same principles that are used to predict the deformation of a spring under weight can be
applied to more complex cases, for example, predicting failure stresses within a bridge or the
movement of a limb. Namely, by representing the real, mechanical system as a mathematical
model. Such models have proved immensely useful for the analysis of physical problems
and “import” real world systems into mathematical (Euclidean) space and time. This chapter
discusses the mathematical theory typically used to construct and solve problems of solid
mechanics.

In mechanics, motion can be classified as kinematic or deformational. The former deals
with rigid bodies undergoing large motions while the latter is described by Cowin (2013) as “a
motion in which some points on the same object move relative to one another”. The theory used
to describe and analyse deformable motion is the continuum model, typically referred to as
continuum mechanics (Section 3.1).

While the calculation of the spring deformation mentioned earlier is possible on pen and pa-
per, for example, via Hooke’s law, the system of equations deriving from continuum-mechanical
models makes this tedious and impractical. In fact, finding exact (or strong) solutions to most
continuum-mechanical problems is not possible, instead an approximate (or weak) solution
is sought after. One of the most important methods to obtain such weak solutions is the
finite element method (Section 3.2). Lastly, the extension of the theory to include interactions
between bodies, i.e., contact mechanics, is briefly presented (Section 3.3).1

3.1 Continuum Mechanics
Concerning different approaches to solve mechanical problems, Clifford Truesdell III (1919-
2000), a pioneer of continuum mechanics, in “The Non-linear Field Theories of Mechanics”
s(Truesdell et al., 2004, originally published in 1965), writes:

Matter is commonly found in the form of materials. Analytical mechanics turned its back upon
this fact, creating the centrally useful but abstract concepts of the mass point and the rigid
body, in which matter manifests itself only through its inertia, independent of its constitution;
“modern” physics likewise turns its back, since it concerns solely the small particles of matter,
declining to face the problem of how a specimen made up of such particles will behave in
the typical circumstances in which we meet it. Materials, however, continue to furnish their
masses of matter we see and use from day to day: air, water, earth, flesh, wood, stone, steel,
concrete, glass, rubber, … All are deformable. A theory aiming to describe their mechanical

1Further references for the detailed treatment of continuum-mechanics, the finite element method and contact
mechanics, including those used in this chapter, are: Bonet et al. (1997), Holzapfel (2000), Truesdell et al. (2004),
Zienkiewicz et al. (2005), Wriggers (2006) and Cowin (2013).
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behavior must take heed of their deformability and represent the definite principles it obeys.

A description of the basics of continuum mechanics follows, with the application to bio-
mechanical problems in mind. That is, multiple bodies (muscles, bones, and other soft tissues)
undergoing large deformational and/or rigid body movement and in contact with each other.
First, the kinematic, strain measures and rate of deformations are treated (respectively in
Sections 3.1.1, 3.1.2 and 3.1.3), followed by the concept of stress (Section 3.1.4). The focus is
then shifted towards formulating the initial boundary value problem of solid mechanics, by
first introducing the fundamental balance relations (Section 3.1.5) and then forming the initial
boundary value problem itself (Section 3.1.7).

3.1.1 Kinematic relations
Continuum mechanics, while not excluding rigid body motion, is primarily concerned with the
movement of particles relative to one another, i.e., deformational motion. Consider the muscle
as a continuum body B comprised of material points P , whose coordinates change over some
time span t = [0,T ]. The motions and deformations over time cause B to occupy a sequence of
geometrical regions Ω0, . . . ,Ω; called the configurations of B. The configuration at the start
of the motion, i.e., at t = 0, is referred to as the reference (or undeformed) configuration,
denoted by Ω0. The configuration at some later time t > 0, i.e., Ω, is referred to as the current
(or deformed) configuration. For brevity, the configuration of the B is denoted directly via a
subscript, i.e., B0 at t = 0 and B otherwise (Figure 3.1). The motion of a material point P is
described by the placement function χ, which maps the initial position Xg (in mm) in the
reference (or undeformed) configuration, to a position xg (in mm) in the current (or deformed)
configuration at time t,

xg = χ(Xg, t). (3.1)

The superscript (·)g indicates the coordinate-system (basis) of the vector gi = {g1, g2, g3}.
Typically, the coordinate-systems which describe the reference and current coordinates are
aligned (co-linear); referred to here as a “global coordinate-system”. Therefore, the explicit
specification of the basis system is superfluous and is usually omitted. This, however, is not
the case for the development of a “local coordinate-system”, which is used to simplify certain
analyses, e.g., orthotropic materials under large deformations. However, to avoid cumbersome
notation, the following assumes a global coordinate-system and the superscript (·)g is omitted.
The local coordinate-system is introduced and discussed in Chapter 6.

To differentiate quantities by configuration, upper case and lower case variables are used for
the reference and current configurations, respectively. As a side note, the configuration of a
variable is independent of the basis used to describe it.

The motion of B is assumed to be smooth, i.e., continuously differentiable with respect to
position and time, and that it can be (uniquely) inverted, i.e.,

X = χ−1(x, t). (3.2)

This only holds if

J(X , t) = det
(
∂χ

∂X

)
6= 0, (3.3)

where J(X , t) is introduced as the Jacobian and where det(·) denotes the determinant operator.
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Figure 3.1: Kinematic setting of a continuum body in the reference and current configurations.

As will be seen later, the Jacobian plays a special role in the modelling of incompressible
materials, as it describes the change in volume at X .

The placement functions in Equations 3.1 and 3.2 refer to the Lagrangean (or material)
and Eulerian (or spatial) description of motion, respectively. They essentially describe two
different ways of looking at the same physical process. Using the analogy of a river, in the
Eulerian description, the observer sits on the river bank and watches the water (particles) flow
by. Whereas in the Lagrangean description, the observer is in a canoe and is “glued” to the
movement of a water particle. More specifically, in the Eulerian description quantities such
as displacement, velocity, pressure, and density depend on both position and time, i.e., the
observer can look at different parts of the river at different times. While in the Lagrangean
description, these quantities depend on time only, as the observer’s position is fixed to any
given water particle in the river.

The Eulerian description lends itself to fluid mechanics, since, as the analogy suggests, the
behaviour of the river in a region is of more interest than the motion of every single water
particle. On the other hand, the Lagrangean description is used in solid mechanics, since the
local deformation (and the history) of individual particles and the stresses and strains they
catalyse, are important. As such, the Lagrangean description is used in this thesis.

The velocities and accelerations are described in current configuration by

ẋ =
∂x

∂t
, and ẍ =

∂2x

∂2t
. (3.4)

Lastly, the displacement u (in mm) of a material point, in the Lagrangean description, is
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given by the difference in positions between the reference and current configurations,

u(X , t) = x(X , t)−X . (3.5)

3.1.2 Deformation and strain measures

Strain is vital to analyses in solid mechanics and is derived from more fundamental deformation
quantities. The seed from which almost all other deformation measures grow is the deformation
gradient

F =
∂χ(X , t)

∂X
, (3.6)

which describes deformation and motion in the neighbourhood of a point X . The deformation
gradient maps material vectors to spatial vectors, e.g., line elements,

dx = F (X , t) dX . (3.7)

Since the above expression is a linear transformation between the reference and current
configurations, F is a two-point tensor involving both the spatial and reference coordinate-
systems. If F is independent of X then the deformation is said to be homogeneous, i.e., every
P ∈ B experiences the same deformation. This is the case, or at least the desirable case, in
material testing, e.g., dog-bone specimens aim at uniform deformation in tensile tests. For
physically meaningful deformations and from Equation 3.3, it can be seen that

J(X , t) = det(F ) > 0, (3.8)

i.e., the material neither experiences compaction to a single point (J = 0) nor inversion (J < 0).
Then, it can be assumed that the inverse of the deformation gradient F−1 exists, and is given
by the derivative of the inverse motion (Equation 3.2) with respect to the spatial coordinates

F−1 =
∂χ−1(X , t)

∂x
, (3.9)

mapping spatial vectors to material vectors. If there is no motion, F = I , x = X and
J = 1. While the former two relations hold only if no motion is present, J = 1 may still hold
during motion. In this case the deformation is referred to as isochoric or volume-preserving.
Incompressible materials such as rubbers and biological materials typically undergo such
deformations.

Whether a solid object is rotated and then stretched or stretched and then rotated, the final
deformed state is assumed to be the same. The deformation gradient can be decomposed into
such a pure stretch and a pure rotation via the so-called polar decomposition,

F = RU = vR, (3.10)

where U and v are called the right (or material) and left (or spatial) stretch tensors and R is
the rotation tensor. The stretch tensors U and v measure the pure local stretch deformation
and are positive definite and symmetric, e.g., U = UT and cT ·Uc > 0, where c is an arbitrary
vector. It is often convenient to express U in terms of its eigenvalues λi and eigenvectors Ni,
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i.e.,
UNi = λi Ni, i = {1, 2, 3}, (3.11)

referred to as the principal stretches and principal directions, respectively. The principal
stretches of v are identical to those of U , since eigenvalues represent the physical nature of a
tensor. On the other hand, the eigenvectors of the right and left stretch tensors are related to
each other via the rotation tensor R. As a side note, the local coordinate-system makes use of
this decomposition property of the deformation tensor, where the rotation tensor rotates the
local coordinate-system as well as the material (Section 6.3.2).

The rotation tensor R is proper orthogonal, i.e., RTR = I and measures the pure local
rotation, i.e., the change in the local orientation. The relation between the right and left stretch
tensors is given by

v = FRT = RURT. (3.12)

Given the polar decomposition (Equation 3.10) of F , the Cauchy-Green deformation tensors
can be defined according to

C = F TF =
(
UTRT)RU = UU and (3.13)

b = FF T =
(
vRT)RTvT = vv, (3.14)

and are symmetric and positive definite. The right Cauchy-Green (or Green) deformation
tensor C is defined entirely in the reference configuration (analogous to U ). Conversely,
the left Cauchy-Green (or Finger) tensor b (analogous to v) is defined entirely in the current
configuration. Given that F is a two-point tensor, and from the polar decomposition (Equation
3.10), it follows that the R must also be a two-point tensor, mapping vectors from reference to
the current configuration.

The relations between b and C can be given via Equations 3.12 and 3.14 as

b = v2 = RURTRURT = RU 2RT = RCRT, (3.15)

and similarly for C
C = RTbR. (3.16)

As stated above, strains (in fact, also stresses) are concepts used to ease certain analyses.
Therefore, a wide variety of strain measures can be constructed from the basic (deformational)
building blocks, tailored to a particular analysis. Typically, differences between these measures
arise only when deformations are large, as is the case for biological tissues. Common strain
measures to biomechanical analyses are introduced by defining a change in the squared line
elements between the reference and current configurations,

dx· dx− dX · dX = dX ·C dX − dX · dX (3.17)
= dX · (C − I) dX =: dX · 2E dX ,

where E is the Green-Lagrange strain tensor, i.e.,

E =
1
2
(C − I). (3.18)
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Similarly,

dx· dx− dX · dX = dx · dx− dx · b−1 dx (3.19)
= dx · (I − b−1) dx =: dx · 2A dx,

where A is the Euler-Almansi strain tensor, i.e.,

A =
1
2
(I − b−1). (3.20)

It can be seen from their definitions, that E and A are strain measures in the reference and
current configurations, respectively.

3.1.3 Rate of deformation
Often, the rate of change of physical quantities is of interest. The velocity gradient l (in 1/s) in
the current coordinates is given by

l(x, t) =
∂v(x, t)

∂x
, (3.21)

and can be additively decomposed into symmetric and antisymmetric (skew) parts, i.e.,

l(x, t) =
1
2
(l + lT) +

1
2
(l− lT) (3.22)

= d(x, t) +w(x, t),

where d is the so-called rate of deformation (or strain) tensor and w is the rate of rotation (or
spin) tensor (both in 1/s).

The material time derivative D/Dt is introduced, which is the derivative of a material field
with respect to time at a fixed positionX , it is also denoted in the following by ˙(·). The material
time derivative of the deformation gradient F is given by

Ḟ (X , t) =
∂

∂X

(
∂χ(X , t)

∂t

)
=

∂V (X , t)
∂X

, (3.23)

and the relation between F and l is given via the chain rule (applied to Equation 3.21) and
Equations 3.6 and 3.9 as

l =
∂χ̇(X , t)

∂X

∂X

∂x
= Ḟ F−1. (3.24)

3.1.4 Stress measures
Stress, like strain, is a crucial notion in solid mechanics and represents the internal loading
within an object. Finite deformation of a body B causes neighbouring particles to exert forces
on each other and stress is the measure of the intensity of these forces per unit area.

Consider a body cut by an imaginary plane at some point x with a (unit) normal vector n in
the current configuration. Deformations give rise to a traction vector t at x, acting over an
infinitesimal surface area element ds on the plane. On the opposite side of the imaginary plane,
an equal and opposite resultant force df arises. The analogous quantities to x, n, t and ds are
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given in the reference configuration by X , N , T and dS, respectively. Then it is assumed that

df = t(x, t,n) ds = T (X , t,N ) dS, (3.25)

where t andT (in N/mm2) are the Cauchy and first Piola-Kirchhoff traction vectors, respectively.
The former is in the current configuration and the later in the reference configuration.

Cauchy’s stress theorem, a fundamental relation in solid mechanics, can be derived by
assuming that a second-order tensor (field) exists, such that,

t(x, t,n) = σ(x, t)n and (3.26)
T (X , t,N ) = P (X , t)N , (3.27)

where σ and P are the Cauchy and first Piola-Kirchhoff stress tensors (in N/mm2), respectively.
The stress theorem states, essentially, that σ or P are independent of n or N , while t or T are
linear in n or N , respectively.

By combining Equations 3.25 and 3.26, the relation between the Cauchy and first Piola-
Kirchhoff stress is given by

σ(x, t)n ds = P (X , t)N dS, (3.28)

and by using Nanson’s formula (ds = J F TdS), Equation 3.28 can be written as

σ = J−1 PF T. (3.29)

Similarly for P ,
P = J σF -T. (3.30)

It can be seen that σ is in the current configuration, i.e., the current infinitesimal force
(df ) acting over the current infinitesimal area element (ds). On the other hand, P is a partial
pull-back of σ in that it considers the current force over the reference area element (dS).
Two other commonly used stress measures are introduced here for completeness: namely the
Kirchhoff τ and second Piola-Kirchhoff S stresses (in N/mm2). The Kirchhoff (or weighted)
stress tensor differs from σ only by the volume ratio, i.e.,

τ = J σ, (3.31)

and also exists wholly in the current configuration. The second Piola-Kirchhoff stress tensor is
a partial pull-back of P , i.e.,

S = F−1P , (3.32)

and exists wholly in the reference configuration, i.e., considering both the infinitesimal reference
force and area element. The remaining stress mappings are given for reference:

σ = J−1τ = J−1FSF T, (3.33)
τ = PF T = FSF T, (3.34)
P = τF−T = FS and (3.35)
S = JF−1σF−T = F−1τF−T . (3.36)
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Certain stress measures are better suited to certain analyses. For example, in a transversely
isotropic material such as fibre-reinforced concrete or many biological materials, stresses along
the fibre directions are of primary interest, i.e., those which are independent of the rotations
applied to the body. Such a property is exhibited by the second Piola-Kirchhoff stress S, which
is invariant under rigid body rotation in the current configuration.

The Cauchy stress tensor can be additively decomposed into a volume changing (hydrostatic
or dilatational) σIMP and volume preserving (distortional or deviatoric) σD parts, i.e.,

σ = σIMP I + σD. (3.37)

The hydrostatic stress is given by
σIMP =

1
3
trσ, (3.38)

and the distortional stress can be computed by subtracting σIMP from σ.

3.1.5 Balance relations

Concerning conservation principles, Cowin (2013) states “There is an aspect of the application of
conservation principles of mechanics (those of mass, momentum, angular momentum, energy, etc.)
that is an artisan-like skill that requires some experience on the part of the modeler”. He goes on
to write the general conversation principle “in the form of an accounting statement” as follows;

[The rate of change of a quantity in a system]

=[The amount of the quantity coming into the system per unit time]
− [The amount of the quantity leaving the system per unit time]
+ [The amount of the quantity produced within the system per unit time]
− [The amount of the quantity consumed within the system per unit time].

In fact, this “accounting statement” can be simplified further by assuming that the quantities
are neither produced nor consumed within the system, as is done in this section. More
specifically, only closed and insulated systems are considered, i.e., the mass remains fixed and
no energy is transferred with the body’s surroundings (Holzapfel, 2000).

In general, balance equations can be formulated in either a global (integral) or local (differ-
ential) form, expressed either with material or spatial quantities. In continuum mechanics, the
local form in terms of the spatial configuration is of interest. These local balance laws are valid
for each material point in the body, and are derived from their global counterparts.

Mass balance

In a closed system, mass can neither be created nor destroyed. Locally, this translates to
restrictions on density ρ (in kg/cm3), which is described by a (at least piecewise) continuous
density defined in the reference and current configurations by

ρ0(X) = lim
∆V→0

∆m

∆V
and ρ(x, t) = lim

∆v→0

∆m

∆v
, (3.39)
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where ∆V and ∆v are the volume elements in the reference and current configurations,
respectively.2

Given that the total mass must remain constant during the motion of the body, and by taking
Equation 3.39 in differential form, it can be stated that

Dm
Dt

=
D
Dt

∫
B
ρ(x, t) dv = 0. (3.40)

The expression above is the global or strong form of the mass balance.
The local or weak form is derived by first considering the relationship between ρ0 and ρ,

given that the mass must remain constant during any motion;∫
B
ρ0 − ρJ dV = 0, (3.41)

where
J =

dv
dV

(3.42)

is the Jacobian or volume ratio, cf. Equation 3.3. Second, since Equation 3.41 must hold for
arbitrary dV , the integrand must itself vanish at all points, giving

ρ0 − ρJ = 0, (3.43)

which must hold for all time, i.e., taking the material time derivative gives the local form of the
mass balance

D
Dt

(ρJ) = ρ̇+ ρ div ẋ = 0. (3.44)

Linear momentum balance

The conservation of momentum, L(t) (in kgmm/s), is stated in the form of Newton’s second
law, i.e., that the product of the mass and acceleration of the object:

L(t) =

∫
B
ρẋ dv, (3.45)

must be balanced against the resultant force F (t) (in kgmm/s2 ∝ N) acting on the body at all
times t, i.e.,

D
Dt

L = F (t). (3.46)

The resultant force is (additively) split into forces acting on the surface of the body t (in N/mm2)
and those acting throughout the body b (in N/mm3). Then,

D
Dt

∫
B
ρẋ dv =

∫
∂B

t ds+
∫
B
b dv, (3.47)

2Note that in continuum mechanics ∆V does not tend to 0, but rather to the scale of a representative volume
element, discussed in later Chapter 4.
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which is the global form of the linear momentum balance. The local form is given by first, using
Cauchy’s stress theorem (Equation 3.26) to rewrite the surface integral in Equation 3.47 as∫

∂B
t ds =

∫
B
divσ dv. (3.48)

Second, since the global form must hold for any volume, the integrand must itself vanish, giving
the local form of the linear momentum balance, i.e.,

divσ + b = ρẍ, (3.49)

and is referred to as Cauchy’s first equation of motion.

Moment of momentum balance

The balance of rotational momentum or moment of momentum states that the rate of change
of angular momentum must equal the sum of applied moments. The global form is derived
analogously to the balance of linear momentum (Section 3.1.5) and given here (about the origin)
directly as

D
Dt

∫
B
x × ρẋ dv =

∫
∂B

x × t ds+
∫
B
x × b dv, (3.50)

Then, by the use of Cauchy’s stress theorem (Equation 3.26) and since the resulting integrand
itself must vanish;

x× (divσ + b− ρẍ) = 0, (3.51)

and by inserting the local forms of the mass and linear momentum balances (Equations 3.44
and 3.49, respectively), the local form of the momentum of balance can be written as

E : σT = 0 (3.52)

(see Holzapfel, 2000 for details). The above relation holds only if σ is symmetric and is a
consequence of the local rotational momentum balance and is Cauchy’s second equation of
motion.

Mechanical energy balance

The balance of mechanical energy (or power theorem) states that the rate of work done by
external forces Pext on a body is equal to the sum of the rate of change of kinetic energy K(t)
and the stress power Pdef(t) supplied to the body (all in Nmm/s ∝ J/s), i.e.,

Pext(t) =
D
Dt
K(t) + Pdef(t). (3.53)

By splitting external forces into surface tractions t and body forces b (Equation 3.47), the
external work is given by

Pext(t) =

∫
B
b · ẋ dv +

∫
∂B

t · ẋ ds. (3.54)
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The kinetic energy (in J) obtained by generalising Newtonian mechanics to a continuum, i.e.,

K(t) =
∫
B

1
2
ρẋ · ẋ dv, (3.55)

and by using Reynold’s transport theorem,

D
Dt
K(t) =

∫
B
ρẋ · ẍ dv. (3.56)

For a purely mechanical and conservative system, The rate of internal mechanical work done
by stress field is

Pdef(t) =

∫
B
σ : d dv. (3.57)

where d is the rate of deformation (Equation 3.22). Substituting the above expression in
Equation 3.53 yields∫

B
b · ẋ dv +

∫
∂B

t · ẋ ds =
∫
B
ρẋ · ẍ dv +

∫
B
σ : d dv. (3.58)

The Cauchy stress and rate of deformation tensor is said to be work (or energy conjugate),
as it represents the physical power during a deformation. Commonly used work-conjugate
pairs are:

{Jσ,d} , {P , Ḟ } and {S, Ė}, (3.59)

see Holzapfel (2000) for further details.
Lastly, the stress power can be expressed as the rate of change of internal energy per unit

current volume Ψ(x, t) (in J/mm3), i.e.,

Pdef(t) =
D
Dt

Ψ(x, t) =
D
Dt

∫
B
Ψ(x, t) dv. (3.60)

The (specific) internal energy is the basis for the constitutive relation of (hyperelastic) materials
(Chapter 4).

3.1.6 Objectivity

The physical quantities introduced till nowmust be objective or frame-indifferent, meaning they
must be invariant under changes in the observer’s position (coordinate-system). In other words,
if the coordinate-system is varied, the physical quantity itself must remain unchanged. The
change of observer may be thought of as a rigid body rotation, represented by the orthogonal
tensor Q; then, a vector a and tensor A are objective if

a+ = Qa and (3.61)
A+ = QAQT. (3.62)
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For example, the line element dx subject to Q yields

dx+ = Q dx = QF dX . (3.63)

It can be seen that vectors dx+ and dx differ in components but have the same magnitude.
That is, the length of the line element does not change, only its coordinates. Furthermore,
consider the Cauchy stress tensor σ subject to Q, i.e.,

Qt = σ+Qn. (3.64)

Comparison with Equation 3.26 gives,

σ+ = QσQT, (3.65)

showing that the Cauchy stress tensor is objective. It can be shown that the first and second
Piola-Kirchhoff stress tensors, P and S, respectively, are also objective. Furthermore, from the
above expression, it can be seen that

F+ = QF . (3.66)

Note that although F+ does not satisfy Equation 3.62, it is still considered to be objective. This
is because F is a two-point tensor, i.e., one index describes the material coordinate which is
intrinsically independent of the observer, therefore, F transforms as a vector, i.e., Equation
3.61. Lastly, substituting this relation into Equation 3.13 for C gives

C+ = F TQTQF = QCQT. (3.67)

3.1.7 Initial boundary value problem

An initial boundary value problem is one where a solution is found to a system of differential
equations, subjected to some boundary and initial conditions. For example, to calculate how
much a steel beam will bend under a load, the way in which the beam is fixed must be known
together with the load it is subjected to—the boundary conditions. The type of steel the beam
is composed of must also be taking into account—the constitutive relations. And the state of
the beam at the start must be known—the initial conditions. This information is combined with
one (or more) of the conservation principles (Section 3.1.5) and the solution—displacement of
the beam in the above example, is found such that the balance law(s), initial and boundary
conditions are satisfied (subject to the constitutive relations).

Consider a body B at time t with surface ∂B (Figure 3.1), the surface may be partitioned into
disjoint parts, i.e.,

∂B = ∂Bu ∪ ∂Bσ with ∂Bu ∩ ∂Bσ = ∅, (3.68)

over which the different types of boundary conditions, are applied. The boundary conditions
may be divided into two classes: Dirichlet boundary conditions, which specify displacement
u(x, t) (on ∂Bu) and Neumann boundary conditions, which specify surface tractions t(x, t,n)
(on ∂Bσ). Lastly, initial conditions are given by specifying the displacements u and velocities
ẋ in the reference configuration t = 0, i.e., u0(X) and ẋ0(X).

The body is subject to themomentum balance, i.e., Cauchy’s first equation ofmotion (Equation
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3.49), where the Cauchy stress tensor must be symmetric, i.e., σ = σT, owing to the balance of
angular momentum (Equation 3.50) and the spatial and material mass densities are related via
the Jacobian, i.e., ρ = J−1ρ0, owing to the balance of mass (Equation 3.43).

Summarising the problem gives the strong form of the initial boundary value problem of
solid mechanics as

divσ + b = ρẍ, (3.69)
u = û on ∂Bu,
t = t̂ on ∂Bσ ,

u(x, 0) = û0,

ẋ(x, 0) = ˆ̇x0,

where (̂·) are the prescribed values. As mentioned previously, constitutive relations (discussed
in the next chapter) are necessary to complete the problem formulation. Analytical solution of
the strong form is rarely possible, instead a variational or weak formulation is employed to
determine approximate solutions which satisfy all required conditions in a mean sense. This is
the basis of the finite element method.

3.2 Finite Element Method
The boundary value problem in solid mechanics (discussed above) attempts to find displace-
ment fields which satisfy the governing balance laws and boundary and initial conditions,
subject to constitutive laws. An analytical solution of the displacement field would specify
the displacement at any location within the body, that is, with an infinite spatial resolution.
Finding such expressions is limited to rare and idealised cases. For real-world problems, where
geometries, boundary conditions and constitutive laws become increasingly complex such as a
collision of two vehicles or flexion of an elbow via contracting muscles, analytical solutions
become unobtainable.

The finite element method is a numerical method which provides approximate solutions to
such problems. Briefly, the finite element method reduces differential equations to a system of
algebraic equations which are suited for solution via computer programs. One way to obtain
an approximate solution is via the principle of virtual work (Section 3.2.1).

Essentially, it involves diving up the body into a system of smaller bodies (finite elements),
which are interconnected at certain points (the nodes). Solutions (here: displacements) are then
found at discrete points within the body. By considering the body as an assembly of smaller
bodies, the problem is converted from a solution of partial differential equations to a system of
algebraic equations. The solution of this, usually massive, system of equations is efficiently
performed by computer programs.

3.2.1 Principle of virtual work

Consider a body B0 subject to tractions t (and body forces) which give rise to a displacement
u. Now, a further small, imaginary or virtual, displacement δu is imposed on B. Work is
the product of force and displacement; virtual work is the product of force and a virtual
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displacement δu; defined here by
δu = ũ− u, (3.70)

where ũ is a virtual, slightly modified form of the true displacement u. The modified displace-
ment satisfy the Dirichlet boundary conditions ũ = û on ∂Bu.

Then theweak form of the initial boundary value problem is obtained bymultiplying Equation
3.69, in turn, by u and ũ and taking the difference. This yields (given here without derivation)∫

B
ρ ẍ · δu dv +

∫
B
σ : grad (δu) dv −

∫
B
b · δu dv =

∫
∂Bσ

t̂ · δu ds. (3.71)

Since u and ũ satisfy the boundary conditions, δu = ũ − u = 0 on ∂Bu. Similarly for the
initial conditions; ∫

B
u(x, 0) · δu dv =

∫
B
u0 · δu dv and (3.72)∫

B
ẋ(x, 0) · δu dv =

∫
B
ẋ0 · δu dv.

The above two equations together constitute the weak form of the initial boundary value
problem (Equation 3.69). Alternatively, the weak form of the initial boundary value problem in
the reference configuration reads∫

B0

ρ0 Ẍ · δU dV +

∫
B0

P : Grad (δU) dV −
∫
B0

B · δU dV =

∫
∂B0,σ

T̂ · δU dS. (3.73)

3.2.2 Spatial discretisation and approximate solution

It can be seen that the weak form of the boundary value problem obtained via the principle of
virtual work (Equation 3.71) lends itself to the finite element method since the displacements
must satisfy the imposed conditions in a mean sense. The introduction of the trial solution δu
in Equation 3.71 leads to non-zero residual term on the right hand side of the equation. The
residual is computed within each of the elements (defined below) and summed over the entire
body to give a global system of equations. Then, the solution is calculated such that the global
weighted residual becomes zero.

The body B is divided into a set of subdomains Be, called elements, such that

B ≈
Ne∑
e=1

Be, (3.74)

where Ne is the number of elements. Similarly, the boundary is divided into segments, such
that

∂B ≈
Ne∑
e=1

∂Be =
Nσ∑
e=1

∂Be
σ +

Nu∑
e=1

∂Be
u, (3.75)

recalling the surface definitions in Equation 3.68. The discretised form of the initial boundary
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value problem (Equation 3.71) is then

Ne∑
e=1

[ ∫
Be

ρ ẍ · δu dv +
∫
Be

σ : grad(δu) dv −
∫
Be

b · δu dv
]

(3.76)

=
Nσ∑
e=1

∫
∂Bσ

t̂ · δu ds.

Using the Galerkin method, both the dependent variables and their virtual forms are approx-
imated by the same basis functions, here u and δu, i.e.,

u(ξ) ≈
n∑

a=1

na(ξ) ũa = n(ξ) ũ, (3.77)

δu(ξ) ≈
n∑

a=1

na(ξ) δũa = n(ξ) δũ,

where a is the node label, n is the number of nodes per element and ξ are the parametric
element coordinates.

The virtual displacements are related to the virtual strains via

grad(δu) =
1
2

(
grad(δu) + [grad(δu)]T

)
δε

+
1
2

(
grad(δu)− [grad(δu)]T

)
δΩ

, (3.78)

where ε andΩ are the small strain (symmetric) and the small rotation (skew-symmetric) tensors.
The small strain tensor can be written in matrix form (with the discretisation introduced
simultaneously) as

δε = S δu ≈
n∑

a=1

(Sna(ξ)) δũa = B δũ, (3.79)

where S is the strain-displacement matrix whose elements can be determined by considering
the small strain in index notation

εi,j =
1
2

(
∂ui

∂xj

+
∂uj

∂xi

)
. (3.80)

Making the substitution for grad(δu) in Equation 3.78,3 together with the approximations
(Equations 3.77 and 3.79) in the discretised initial boundary value problem (Equation 3.76)
yields, per element,

δũ


∫
B
ρn · n dv

Me

ẍ+

∫
B
σ : B dv

Pe

−
∫
B
b · n dv −

∫
∂Bσ

t̂ · n ds

fe

 = 0. (3.81)

As a side note, the stress σ is determined by the constitutive relation. Where Me, Pe and
3The double contraction of a symmetric tensor (σ) and a skew-symmetric one (Ω) is zero.
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fe are the (element) mass, internal force and external force matrices. The introduction of an
approximate solution gives rise to a (per-element) residual Re. Recall that each element is
composed of n nodes; thus the global assembled system of equations is

R =


R1
R2
...
Rn

, M =


M11 M12 . . . M1n
M21 M22
... . . .

Mn1 Mnn

, P =


P1
P2
...
Pn

, f =


f1
f2
...
fn

. (3.82)

The global system matrix M is the system mass matrix and describes the spatial distribution of
mass within body.

The integrations in Equation 3.81 are transformed from the region Be to the parametric
space −1 < ξ < 1 and performed numerically using Gauß quadrature. For example, in one
dimension, ∫ 1

−1
f(ξ) dξ =

Nξ∑
p=1

f(ξp)wp, (3.83)

where ξp are the Gauß quadrature points and wp the associated weights.

3.2.3 Numerical solvers

Since the finite element method uses the same discretisation to resolve both the geometry
and to perform the computations, complex geometries can give rise a large number of nodes
and elements and subsequently to large systems of equations. For example, typical element
numbers include 2× 104 for a rubber bite simulation (Röhrle et al., 2018b), 4× 105 for an
aircraft crash simulation (Thai et al., 2015), and 106 for an automobile crash simulation (Li et al.,
2015). Therefore, such problems are typically solved via computer programs.

For transient problems the temporal domain is discretised. Here, the following notation, for
some arbitrary quantity c, is introduced as c(tn+1) = cn+1.

Using Equation 3.82 to form a global system of balance equations (Equation 3.81),

Rn+1 = Mün+1 + Pn+1 − fn+1 = 0. (3.84)

Following the method employed by the commercial finite element software package Abaqus/
Explicit (v2017, Dassault Systèmes, France) (Dassault Systèmes, 2017), the update of the
displacement is given by an explicit central difference scheme

u̇n+1/2 = u̇n−1/2 +
∆tn+1 +∆tn

2
ün, (3.85)

un+1 = un +∆tn+1 u̇n+1/2.

Therefore, knowing the accelerations at increment n, the velocities and displacements can be
advanced at n+ 1. To proceed with the solution Pn+1 needs to be computed, from Equation
3.81

Pn+1 =

∫
B
σn+1 : B dv, (3.86)

whereσn+1 can be computed by the updated displacement un+1: this is done via the constitutive
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relation, i.e.,
σn+1 = f(un+1, . . .). (3.87)

At this stage the accelerations can be advanced also, i.e.,

ün+1 = M−1 (fn+1 − Pn+1). (3.88)

For numerical efficiency a lumped (or diagonal) mass-matrix M is used, the basic idea is store
element masses along the diagonal of the matrix. Then the computation ofM−1 becomes trivial.
The updated accelerations lead to the advancement of the velocity, displacement, and stress,
and the solution cycle continues.

As compared to implicit methods, the explicit method avoids the computationally demanding
task of matrix inversion and does not require the tangent stiffness matrix of its constitutive
relations. The major drawback of the explicit method is, however, its conditional stability. If
accelerations change drastically during an increment, the method produces inaccurate results
or may even lead to catastrophic failure of the simulation. To prevent such drastic changes in
acceleration, the problem is solved at very small (sub-millisecond) time increments. The time
step, known as the critical time step, is determined by material properties and element size, and
should be equal to the smallest time taken for a (stress) wave to propagate across an element.

3.3 Contact Mechanics
The previous sections dealt with the solid mechanics problem with a single body, subjected to
boundary and initial conditions. A large class of problems, however, involve interactions, such
as muscle gliding along bone or a car crashing into a barrier. This section briefly introduces
the theory to include contact in the solid mechanics initial boundary value problem.4

Consider some continuum bodies in space. The “rules” which govern the motion and
deformation of each body are identical, i.e., each body is governed by its own boundary value
problem and constitutive relation. As these bodies translate and deform, they may occupy the
same region of space. Without some framework which tracks the bodies (and their surfaces),
and allows for force transmission across shared surfaces, they would simply pass through one
another. The framework of contact mechanics allows the bodies to interact with one another
and extends the continuum-mechanical framework by modifying the boundary value problem
such that contact-gaps, -surfaces, and -forces can be described. The interactions between the
bodies are embedded within the boundary value problem, thus linking mechanical contact over
the body surface with the behaviour of the bulk of the body.

Consider the problem in Figure 3.2, where two bodies, B(1)
0 and B(2)

0 in the reference
configuration undergo large motions and deformations described by placement functions
x(1) = χ(1)(X(1), t) and x(2) = χ(2)(X(2), t) (cf. Equation 3.1), arriving at their respective
current configurations B(1) and B(2). In addition to the surfaces over which the Dirichlet and
Neumann boundary conditions are applied, an additional surface over which (possible) contact

4References for the detailed treatment of contact mechanics and related topics of tribology include Wriggers
(2006) and Laursen (2003).
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Reference configuration Current configuration

∂B
(1)
0,u

∂B
(1)
0,σ

∂B
(2)
0,u

∂B
(2)
0,σ

∂B
(1)
0,c

∂B
(2)
0,c

χ(1)(X, t)

χ(2)(Y , t)

B
(1)
0

B
(2)
0

B
(1)

B
(2)

g1

g2

g3

t = 0 t > 0

x
y

Figure 3.2: Kinematic setting of continuum bodies in contact in the reference and current configurations.
For clarity, the boundary definitions of the surfaces in the current configuration (right) are omitted.

may occur is defined as ∂B(i)
c , i = {1, 2}, with the properties

∂B(i)
u ∪ ∂B(i)

σ ∪ ∂B(i)
c = ∂B(i), and

∂B(i)
u ∪ ∂B(i)

σ = ∂B(i)
u ∪ ∂B(i)

c = ∂B(i)
σ ∪ ∂B(i)

c = ∅. (3.89)

For the description of contact between bodies it is convenient to denote one surface over
which the contact is parametrised, i.e., the surface whose points will be monitored with respect
to the second surface. The reference surface is typically denoted the master surface and the
other the slave, here ∂B(2) is chosen as the slave surface. Furthermore, the slave surface is
parametrised by a set of convected coordinates ξ = {ξ1, ξ2}, which can be thought of as being
“engraved” on the surface of ∂B(2).

For every point on the master surface x(1) ∈ ∂B(1), the closest point on the slave surface
x̃(2) ∈ ∂B(2) can be found by a minimum distance problem, i.e.,

d(2)(ξ) =
∥∥x(1) − x̃(2)

∥∥ = min
x(2)

∥∥x(1) − x(2)(ξ)
∥∥ ∀x(1) ∈ ∂B(1). (3.90)

The tangent vectors at x(2) (to ξ) are computed via

aα =
∂x(2)(ξ)

∂ξα
, (3.91)

where α = {1, 2}. Then the normal (outward from the slave to the master surface) is given
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simply by the cross-product of the tangential vectors, i.e.,

n(2) =
a1 × a2

‖a1 × a2‖
. (3.92)

The fundamental relation, the so-called gap function, can then be defined as the closest absolute
distance between both surfaces, i.e.,

gN(X
(1), t) = −n ·

(
x(1)(X(1), t)− x̃(2)(X(2), t)

)
. (3.93)

It should be noted that the name gap function as defined here is a misnomer, as g > 0 does
not indicate a positive distance or gap between the bodies but rather an interpenetration of
the two. To prevent interpenetration of the bodies, a resultant contact pressure tN(X , t) must
arise (in the direction n) when gN > 0. These physical considerations leads to the so-called
Karush-Kuhn-Tucker (KKT) optimality conditions, i.e.,

gN(X
(1), t) ≤ 0, tN(X

(1), t) ≥ 0, and tN gN = 0. (3.94)

The conditions mean: First, that interpenetration of the two bodies is not permitted. Second,
that the pressure that arises must be positive, i.e., directed towards the surface and third, that
pressure can only arise when contact occurs.

3.3.1 Tangential contact
The gap function only describes interactions normal to the surfaces. Frequently, however,
relative or tangential movement and contact accompanies normal contact. Applying the balance
of linear momentum at the contact boundary ∂B(1)

c = ∂B(2)
c in the reference configuration, the

first Piola-Kirchhoff stress is

T (1)
c (X(1), t) dA(1) = P (1) N dA(1) = −T (2)

c (X̃(2), t) dA(2). (3.95)

In other words, the traction must be equal and opposite across the contacting surfaces. The
contact traction T

(2)
c can be decomposed into normal and tangential components, tN and tT,

respectively, i.e.,
T (2)

c = tT + tN n, (3.96)

where tT · n = 0. Since the tangential component is in the tangent space of ∂B(2)
c , it can be

resolved via the base vectors aα (α = {1, 2}) (Equation 3.91) via

tT = −tTα a
α, (3.97)

where aα are contravariant vectors associated with aα. The surface tractions tT then provide
the basis of a frictional constitutive law. A popular choice is the Coulomb friction law, i.e.,

Φ = ‖tT‖ − µ tN ≤ 0, (3.98)

where µ is the coefficient of friction and Φ is the so-called slip function. The magnitude of the
tangential traction is limited by that of the normal traction, and µ dictates this proportionality
and is referred to as the coefficient of friction. Typical values of µ for contacting surfaces
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are: 0.2–0.4 for concrete-steel, 0.04–0.06 for steel-teflon, 0.06–0.10 for cartilage-cartilage with
various lubricating solutions (Merkher et al., 2006; Wriggers, 2006).

Friction resists tangential movement and therefore, if the friction is high enough no relative
tangential motion should occur. This is described via the tangential velocity, which can be
expressed as

νT = ζ̇
tT
‖tT‖

with ζ̇ ≥ 0 and ζ̇Φ = 0, (3.99)

where ζ̇ is the consistency parameter defined piecewise according to

ζ̇ =

{
= 0, if Φ < 0 (stick)
> 0, else if ‖tT‖ = µ tN (slip).

(3.100)

The expressions (Equations 3.99)2−3 reflect two key physical constraints: first, no slip occurs
while the tangential tractions tN are below the Coulomb limit (µ tN) and second, any slip that
does occur must be linearly proportional to the frictional stress exerted. These inequalities,
together with the KKT optimality conditions (Equation 3.94) specify the additional constraints
imposed on a system when incorporating finite deformation, frictional contact.

3.3.2 Weak formulation of the contact problem
The strong form of the contact problem can then be obtained by the standard initial boundary
value problem of solid mechanics (Equations 3.69) subject to the normal and tangential contact
conditions given in Equations 3.94 and 3.98–3.99, respectively. The weak form is derived
similarly to the initial boundary value problem discussed in Section 3.1.7, i.e., multiplication by
a test function which vanishes at the Dirichlet boundary surface and performing an integration
over the body domain, now with an additional term describing the contact work over ∂B(i)

c .
As previously mentioned, contact is typically parametrised over the slave surface, further-

more, only the active contact surface contributes to contact work. Then, the weak form of the
large deformation solid mechanics problem with contact is given (directly) by

2∑
i=1

∫
B(i)

0

P (i) : Grad(δU (i)) + ρ
(i)
0 Ẍ(i) · δU (i) dV −

∫
B(i)

0

B(i) · δU (i) dV (3.101)

−
∫
∂B(i)

σ,0

T̂ (i) · δU (i) dS +

∫
∂̃B(2)

c,0

(
δU (1) − δU (2)) · (tN n+ tT) dA = 0,

where ∂̃B(2)
c,0 denotes the active contact boundary (on the slave surface). The above expression

is analogous to Equation 3.73 with an additional contact virtual work term.



4 Constitutive Modelling of the
Musculoskeletal System

The initial boundary value problem in Chapter 3 describes the continuum-mechanical system in
terms of kinematic and deformation measures, stresses, and balance principles. These equations,
however, do not distinguish the type of material(s) within the system. Using, again, the analogy
of a spring—the material that the spring is made of is critical to determining its deformation
under a certain weight. This information is provided by the constitutive relations. Whereas the
balance principles must hold for all materials, constitutive relations hold only for the particular
material they describe. In “Biomechanics—Mechanical Properties of Living Tissues”, Yuan-Cheng
Fung (Fung, 1993) writes:

[O]bservations of living organisms can be made at various levels of size: e.g., at the level of
the naked eye, …, or at the limit of scanning tunneling microscopes. …And the images of a
biological entity look very different at different levels of magnification. This suggests that we
can define a continuum of the real world with a specific bound on the lower scale of size.

The bound on the lower scale of size is linked to the concept of the representative volume ele-
ment, which plays a fundamental role in continuummechanics, and by extension, in continuum-
mechanical constitutive relations. The representative volume element assumes that a point in
the continuum body represents the averaged microstructure in the volume surrounding that
point. Typically, at volumes smaller than the representative volume element, the density and
behaviour of the material becomes heterogeneous.

Therefore, continuum-mechanical constitutive relations must describe material behaviour
at a macroscopic scale. This poses certain challenges for skeletal muscle models. First, force
production occurs at the microscopic level, where (myosin and actin) filaments in the sarcomere
slide past each other and convert chemical energy to mechanical energy. The cross-bridge
dynamics lead to the characteristic properties of muscle contraction such as the force-length
fl and force-velocity fv relationships. Second, due to the fibrous structure of muscles, this
active force (or stress) is transmitted predominantly along a preferred direction, i.e., along
the muscle fibres, impacting the passive behaviour of muscle as well. Third, muscle fibres are
neither recruited individually nor all-at-once, instead bundles of fibres are stimulated together
by an α-motor-neuron (the motor-unit). Therefore, there are several “microscopic” features of
muscle behaviour that need to be captured by a macroscopic constitutive description of skeletal
muscles.

Several macroscopic, continuum-mechanical, constitutive relations of skeletal muscle have
been proposed in the last few decades, and have addressed the first two issues described above.
Given a muscle body B, the two primary variables are the stretch λ(x) (x ∈ B) and activity
parameter. The characteristics of muscle contraction are modelled using phenomenological
approaches, for example, by defining fl directly as a function of fibre stretch fl(λ) (similarly for
fv(λ̇)) (e.g. Zajac, 1989). Typically, the activity parameter acts to scale the active stress between

45
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0 and 1, corresponding to fully-passive and -active behaviour, respectively. Muscle structure is
represented by a fibre orientation field, which acts as a preferred direction along which the
active stress is transmitted.

The passive behaviour of skeletal muscles is typical of soft biological tissues, exhibiting the
so-called “J-shaped” stress-strain behaviour (e.g. Takaza et al., 2013). These materials are initially
compliant and undergo stiffening to prevent damage at high levels of stretch. Additionally,
soft biological tissues (skeletal muscles included) are highly incompressible due to their large
water content (e.g. Böl et al., 2014). This is responsible for the characteristic bulging of skeletal
muscles—as shortening along the fibres takes place, volume is conserved by thickening in the
off-fibre directions.

In summary, a vast majority of macroscopic constitutive relations describe skeletal muscle
as transversely isotropic, nearly or purely incompressible, and additively split the active and
passive stress responses (so-called active-stress approach) (e.g. Johansson et al., 2000; Blemker
et al., 2005b; Tang et al., 2009; Chi et al., 2010; Röhrle et al., 2017). Some relations treat the
passive behaviour of muscle as viscoelastic (e.g. Wheatley et al., 2017). This effect, however, is
assumed to be small (Tian et al., 2011) and thus is typically not considered. For recent reviews
on the topic see Dao et al. (2018) and Röhrle et al. (2019).

In line with state-of-the-art methods, a slightly modified constitutive relation of skeletal
muscles is developed. The key difference is the way in which the muscle activation parameter
is computed, which is modified to account for individual motor-unit anatomy and activity.
Status-quo constitutive relations of skeletal muscle treat muscle activity in an averaged sense,
that is, a temporally varying but spatially constant activity is applied throughout the muscle.
This is justified by assuming that motor-units are uniformly distributed and by doing so, the
ability to model the functional heterogeneity of muscles is lost. To replicate the motor-unit
driven recruitment of muscles, the activity is decomposed into spatial and temporal components
representing motor-unit anatomy and activity, respectively. This modification, however, does
not characterise motor-unit anatomy and activity, which is dealt with in Chapter 5.

This chapter is organised as follows: First, building on the continuum-mechanical theory
introduced in Chapter 3, the theory of hyperelastic constitutive modelling, in general, is
presented (Section 4.1). Second, the constitutive relation of the musculotendon complex
is described (Section 4.2). The majority of this section deals with the muscle and is then
generalised to account for connective tissues in the musculotendon complex. Other soft tissues
and bones are idealised as linear elastic and are described briefly (Section 4.3). Lastly, the
musculotendon complex constitutive relations are characterised with experimental data to
describe the transversely isotropic behaviour of a general human skeletal muscle (Section 4.4).1

4.1 Hyperelasticity
Soft biological tissues are often described via hyperelastic material constitutive relations.
Originally developed for rubber materials, such relations derive from a (specific) strain-energy
Ψ (in J/mm3 ∝ N/mm2), which is “…the mechanical work required in a reversible process to
produce a particular state of strain” (Mooney, 1940). Recalling that the first Piola-Kirchhoff
stress P is work-conjugate to time derivative of the deformation gradient Ḟ (Equation 3.59),

1Further references for the detailed treatment of continuum-mechanical constitutive relations, including
those used in this chapter, are: Fung (1993) and Holzapfel (2000).
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then the work done between t = [0,T ] can be written as

Ψ =

∫ T

0
P :

∂F

∂t
dt, (4.1)

and differentiating both sides by time yields

∂Ψ

∂t
= P :

∂F

∂t
. (4.2)

Then, using the chain rule, the rate of the strain-energy can be expressed as

∂Ψ

∂t
=

∂Ψ

∂F

∂F

∂t
. (4.3)

Comparing Equations 4.2 and 4.3, yields

P =
∂Ψ(F )

∂F
. (4.4)

The above relation can be expressed for the Cauchy and second Piola-Kirchhoff stresses by
using the mappings in Equations 3.29 and 3.32

σ = J−1 ∂Ψ(F )

∂F
F T, S = F−1 ∂Ψ(F )

∂F
. (4.5)

The strain-energy is assumed to be objective, i.e., the energy within the system is independent
of rigid body motions,

Ψ(F ) = Ψ(F+) = Ψ(Q,F ), (4.6)

using Equations 3.66 and 3.63 (in the reference configuration). Setting Q = RT and using the
right polar decomposition (Equation 3.10),

Ψ(Q,F ) = Ψ(RT,F ) = Ψ(U). (4.7)

The expression above shows that the strain-energy of a hyperelastic material is dependent
purely on the stretch, i.e.,

Ψ(F ) = Ψ(U). (4.8)

For biological materials with a preferred direction, such as skeletal muscles, it is convenient
to formulate constitutive relations in terms of the second Piola-Kirchhoff stress S, since it has
the property of being invariant under rigid body rotations (in the current configuration). As
such, the strain-energy is formulated in terms of the right Cauchy-Green deformation tensor
C (Equation 3.13), which is work-conjugate to S,

Ψ(F ) = Ψ(C). (4.9)

Considering Ψ(C), via the chain rule and using Equation 3.13

∂Ψ(F )

∂F
=

∂Ψ(C)

∂C

∂C

∂F
= 2F

∂Ψ(C)

∂C
. (4.10)
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The expression in Equations 4.4 and 4.51−2 then become;

P = 2F
∂Ψ

∂C
, σ = 2J−1 F

∂Ψ

∂C
F T, and S = 2

∂Ψ

∂C
, (4.11)

respectively, and describe the general constitutive relation for a hyperelastic material. That is,
the characterisation of the stress response requires the definition of the strain-energy Ψ.

4.1.1 Incompressibility and quasi-incompressibility

Given the large water content in soft biological materials they can be considered as incom-
pressible. In the continuum-mechanical framework, this implies the volume ratio between the
reference and current configurations must equal unity, i.e., J = 1 (Equation 3.42). This con-
straint, on the deformation, is typically added to the strain-energy function via the Lagrangean
method, i.e.,

Ψ̂ = Ψ(C)− p (J − 1), (4.12)

where Ψ is the purely incompressible material behaviour and p is the Lagrange multiplier (in
N/mm2), corresponding in this context to the hydrostatic pressure, which enforces the incom-
pressibility condition. To determine the stress response, the above equation is differentiated
with respect to F , then together with Equations 4.4, 4.52 and 4.10 (derivation skipped), the
second Piola-Kirchhoff stress can be expressed as

S = 2
∂Ψ

∂C
− pC−1. (4.13)

The hydrostatic pressure p, being a kinematic constraint, can only be enforced by taking the
balance relations and boundary conditions into account. The enforcement of this constraint
requires considering the pressure as an independent variable in the balance relations.

Alternatively, the material can be treated as nearly incompressible by adding a penalty term
Ψ̃(J) to the strain-energy function to enforce the incompressibility condition (e.g. Oden, 1978;
Simo et al., 1982). Where Ψ̃(J) is chosen such that Ψ̃(J → 0) = Ψ̃(J → ∞) = ∞ and that
the reference configuration results in a stress-free state. Then, the strain-energy for the nearly
incompressible material is given by

Ψ̂ = Ψ(C) + Ψ̃(J). (4.14)

Thus the constrained optimisation of incompressible strain-energy is recast into an uncon-
strained optimisation problem of the nearly incompressible strain-energy. Note that Equation
4.14 is not a split of strain-energy into purely dilatational (volume-changing) and distortional
(volume-preserving) parts, but rather the penalty term essentially replaces the incompressibility
constraint enforced via p in Equation 4.12 and is commonly referred to as the coupled formu-
lation. With the numerical implementation of the constitutive relation in mind, the nearly
incompressible constitutive relations are chosen and are solely discussed in the following.
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4.1.2 Isotropy

Assuming that the nearly incompressible strain-energy Ψ̂ is unchanged under rotations, it may
then be represented in terms of the principal invariants of its arguments,

Ψ̂ = Ψ(I1, I2) + Ψ̃(I3), (4.15)

where

I1(C) = trC , I2(C) = 1/2
[
(trC)2 − tr (C2)

]
, I3(C) = detC = J2. (4.16)

The stresses, given their definitions in Equations 4.111−3, may now be expressed in terms of
the invariants using the following relations,

∂Ψ̂(C)

∂C
=

3∑
i=1

∂Ψ̂

∂Ii

∂Ii
∂C

, (4.17)

and
∂I1
∂C

= I ,
∂I2
∂C

= I1I −C ,
∂I3
∂C

= I3C
−1. (4.18)

Lastly, the strain-energy and associated stress relations may also be formulated in terms of
the principal stretches of U or b (Equation 3.11), i.e.,

Ψ̂(C) = Ψ̂(λi), (4.19)

where i={1, 2, 3}. The partial derivative in Equation 4.17 can be written in terms of the principle
stretches λi and directions Ni (Equation 3.11) as

∂Ψ̂(C)

∂C
=

3∑
i=1

∂Ψ̂

∂λ2
i

∂λ2
i

∂C
=

3∑
i=1

1
λi

∂Ψ̂

∂λi

Ni ⊗Ni. (4.20)

The principle stretches are further subject to the condition J = λ1 λ2 λ3 = 1, if the material is
perfectly incompressible.

4.1.3 Transverse isotropy

In addition to the typical J-shaped stress-strain response, several biological tissues exhibit
differing mechanical responses along various direction, for example, arteries (Dobrin, 1978),
tendons (Kolz et al., 2015) and myocardium (Demer et al., 1983). Owing to its microscopic
structure, skeletal muscle displays preferred fibre directions, along which the majority of the
force is transmitted. Skeletal muscle may be therefore idealised as a ground material (connective
tissues) with a single fibre family exhibiting a single preferred direction (muscle fibres), i.e., as
a transversely isotropic material.

Considering a point X ∈ B0 that now displays a preferred fibre direction a0(X), |a0| =
1 in the reference configuration. Analogous to Equation 3.7, a0 is mapped to the current
configuration via

λa(X , t) = F (X , t) a0(X), (4.21)
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where |a| = 1. In other words, λ corresponds to the stretch along the current (unit) fibre
direction a and is often computed in the reference configuration via

λa · λa = λ2 = F a0 · F a0 = a0 ·C a0, (4.22)

using Equation 3.13.
The fibre orientation is used to construct a so-called structural tensor (for further details,

see Holzapfel (2000) and Schröder et al. (2003));

M = a0 ⊗ a0. (4.23)

The strain-energy must remain objective under rigid body motions and in addition to I1, I2, I3
(Equation 4.16) the following invariants are introduced

I4 = a0 ·C a0 = λ2, I5 = a0 ·C2 a0. (4.24)

The nearly incompressible strain-energy is now given by

Ψ̂ = Ψ(I1, I2, I4, I5) + Ψ̃(I3), (4.25)

and the stresses (Equations 4.111−3) may now be expressed in terms of the invariants using
Equations 4.17 and 4.18, together with

∂I4
∂C

= M ,
∂I5
∂C

= a0 ⊗C a0 + a0 C ⊗ a0. (4.26)

Lastly, the transversely isotropic strain-energy and stresses can be expressed in the principal
directions. Setting N1 = a0, λ1 = λ, and expanding the summation in Equation 4.20 gives

∂Ψ̂(C ,M)

∂C
=

1
λ

∂Ψ̂

∂λ
M +

1
λ2

∂Ψ̂

∂λ2
M2 +

1
λ3

∂Ψ̂

∂λ3
M3, (4.27)

where M2 = M3 = (1/2) (I −M) for transverse isotropy (e.g. Odegard et al., 2008).

4.2 Musculotendon Complex

The constitutive relation of skeletal muscle is developed first, and then generalised to describe
the musculotendon complex. The constitutive relation is a modified form of Röhrle et al. (2017),
and is a transversely isotropic, nearly incompressible, hyperelastic material model.

The active behaviour is modelled by the active-stress approach, where the passive and active
stresses are additively split, i.e.,

Smuscle(C ,M ,αM) = Spassive(C ,M ) + αM Sactive(C ,M ), (4.28)

where S is the second Piola-Kirchhoff stress tensor (without loss of generality), and αM is the
activity parameter that scales the active stress between 0 and 1, corresponding to passive and
active behaviour, respectively.

The passive response of skeletal muscle is further split into contributions from the isotropic
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“bulk” (connective tissues) and along the muscle fibres, i.e.,

Spassive(C ,M) = Sisotropic(C) + Sanisotropic(C ,M), (4.29)

Both passive responses are modelled by a hyperelastic material response and are therefore
derived from strain-energy functions (Section 4.2.1 and 4.2.2).

Passive stresses arise due to external deformation of the muscle, that is, they arise only
if there is non-zero strain imposed on the muscle. On the other hand, the active response
of muscles is only partly dependent on mechanical deformation, i.e., incremental change in
active stresses can occur when there is no incremental change in the strains. This is possible
due to activation of the muscle, which gives rise to stress within the muscle—independent of
the strain incrementation. Thus, the active stress does not warrant a strain-energy potential
for its derivation (e.g. Ambrosi et al., 2012) and the stress formulation is directly introduced
(Section 4.2.3). Note that the active response is dependent on the mechanical deformation via
the force-length relationship.

4.2.1 Isotropic response
The isotropic response in Equation 4.29 represents the connective tissue between the muscle
fibres, e.g., epimysium and endomysium, and is characterised as hyperelastic. As explained
earlier and in Section 4.1, a nearly incompressible formulation is chosen due to numerical
reasons. The isotropic strain-energy Ψiso can then be given by

Ψ̂isotropic(I1, I2, I3) = Ψisotropic(I1, I2) + Ψ̃isotropic(I3), (4.30)

whereΨ is the incompressible strain-energy and Ψ̃ is an energetic penalty term which enforces
the incompressibility condition J = 1 (see Section 4.1.1), given here by,

Ψ̃isotropic(I3) = c (J − 1)2 − d ln J , (4.31)

where c is the penalty parameter and d is a dependent material parameter (both typically in
N/mm2=MPa). The parameter d ensures a stress-free reference configuration, and depends on
the particular form of Ψisotropic (Holzapfel, 2000). As c→∞ the strain-energy is amplified for
J 6= 1 (Figure 4.1). For alternate penalty formulations see Simo et al. (1982) and Ciarlet (1988,
Chapter 4).

Biological tissues can be characterised by a large diversity of hyperelastic constitutive laws
(e.g. Chagnon et al., 2015, and references therein). Here, the Mooney-Rivlin law is used, which
has the following strain-energy function

Ψisotropic(I1, I2) = c1 (I1 − 3) + c2 (I2 − 3), (4.32)

where c1, c2 are material parameters (in MPa). Then, using Equations 4.113, 4.17 and 4.181−3,
the second Piola-Kirchhoff stress is given by

Sisotropic = 2
∂Ψiso

∂C
= 2

(
∂Ψ

∂C
+

∂Ψ̃

∂C

)
(4.33)

= 2 (c1 + I1c2) I − 2c2 C + 2cJ(J − 1)C−1 − dC−1.
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Figure 4.1: Penalty strain-energy function against volumetric change with varying penalty parameters.

Using the assumption of a stress-free reference configuration, the above expression can be
solved for d (in MPa), giving,

d = 2(c1 + 2c2). (4.34)

4.2.2 Anisotropic-passive response

The anisotropic response represents the passive resistance of themuscle along the fibre direction.
A strain-energy function from Balzani et al. (2006) is used, which describes soft biological
tissues and satisfies conditions of polyconvexity, yields a stress-free reference configuration,
and provides good fitting capabilities. Assuming that muscle fibres only provide resistance
under tension, the strain-energy has the form:

Ψanisotropic(I4) =

{
c3 (I4 − 1)c4 + c5 (I4 − 1)c6 if λ ≥ 1,
0 otherwise,

(4.35)

where c3, c5, c4 and c6 are material parameters; the former two are in MPa, while the latter are
unitless. Recall that λ =

√
I4 is the fibre stretch (Equation 4.24).

The second Piola-Kirchhoff stress is derived similarly to the isotropic stress, together with
Equation 4.26. Since, however, the Ψanisotropic is dependent on I4 alone, the second Piola-
Kirchhoff stress reduces to

Sanisotropic =
∂Ψ

∂I4
M . (4.36)

Giving,

Sansiotropic =

{
2 c3 c4M (I4 − 1)c4−1 + 2 c5 c6 M (I4 − 1)c6−1 if λ ≥ 1,
0 otherwise.

(4.37)
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4.2.3 Anisotropic-active response

The anisotropic-active response, as motivated above, does not explicitly warrant a mechanical
strain-energy potential, since the activation supplied to the stress arises due to biochemical
sources. Therefore, the active stress formulation is directly introduced as

Sactive =
Pmax

I4
αM fl(λ)M , (4.38)

where αM = [0, 1] is the degree of activation of the muscle, λ =
√
I4, Pmax is the maximum

specific-strength of the muscle (in MPa), and fl(λ) is the normalised amount of actin-myosin
overlap, i.e., dictating the force-length relationship of the active stress. Here, this is defined as

fl = exp

(
−

∣∣∣∣∣ λ
λopt − 1
wi

∣∣∣∣∣
vi)

, (4.39)

where i = asc for λ ≤ λopt and i = dsc for λ > λopt, corresponding to the ascending and
descending branches of the force-length relationship, respectively.

4.2.4 Accounting for motor-unit anatomy and activity

As it stands, the activity parameter scales the active stress uniformly for all points x in the
muscle body B. To account for both motor-units distribution and activity, the “traditional”
activity parameter is decomposed correspondingly into spatial and temporal components. That
is,

αM → αM(t,x) =
∑
i=1

αi(t) κ̂i(x(X , t)), (4.40)

where the muscle activation now depends on the sum of motor-unit activities αi(t) and their
distribution within the muscle κ̂i(x). Decomposition of muscle activity in such a way requires
certain assumptions on the spread of activity within the motor-unit. It can be seen in the
above equation that a scalar activity is applied simultaneously to all spatial positions of a
motor-unit. This implies that the activity of all fibres and sarcomeres within the motor-unit
are synchronised, i.e., action-potential propagation is instantaneous once it arrives at the
neuromuscular-junction. The errors introduced by this assumption are quantified in Section
6.2.

The territory distributions are (normalised) volume fractions at each point within the muscle,
and are related in the current and reference configurations by the placement function, i.e.,

κ̂i(x) = χ(κ̂i(X), t). (4.41)

In other words, the motor-unit distributions κ̂i(X) are defined in the reference configuration
and subsequently transported with the deforming material. Of course, the two quantities—αi(t)
and κ̂i(X)—must be defined in a physiologically realistic manner. Their definition is covered
in Chapter 5.
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4.2.5 Musculotendon complex

The overall stress response of the muscle is given by substituting Equations 4.33, 4.37, 4.38, and
4.40 into Equation 4.28;

Smuscle = 2 (c1 + I1 c2) I − 2c2 C + 2cJ(J − 1)C−1 − dC−1 (4.42)
+
(
2 c3 c4 (I4 − 1)c4−1 + 2 c5 c6 (I4 − 1)c6−1)M

+

(
1
I4

Pmax αM(X , t) fl(λ)
)
M ,

subject to the condition in Equations 4.37 and fl is determined via Equation 4.39.
Owing to their function of (uniaxial) load transmission between muscle and bone, tendons

have highly varied mechanical properties along different directions, being much stiffer along
the major (collagen) fibre direction (e.g. Lynch et al., 2003). Therefore, the tendons may also be
considered as fibres embedded in an extracellular matrix and the same constitutive relations
used for the skeletal muscles are employed.

The skeletal muscle constitutive relation (Equation 4.42) is generalised by introducing two
parameters: P̃max and γM. The first parameter acts to scale the passive muscle response in
proportion to the maximum specific-strength and is computed via

P̃max =
Pmax

P 0
max

, (4.43)

where P 0
max is a reference maximum specific-strength (in MPa) used to characterise the active

force-length response and Pmax is the corresponding value for the muscle under consideration.
The second parameter denotes the type of tissue being modelled, where γM = 1 represents

pure muscle tissue, γM = 0 represents pure tendon tissue and 0 < γM < 1 is a mixture of the
two. Tissue parameters are used to scale and interpolate the material parameters to yield the
overall musculotendon complex material parameters according to

cMTC
i = γM P̃max c

musc
i + (1− γM) c

tend
i , (4.44)

where i = 1, . . . , 6 are the material parameters in Equations 4.33 and 4.37. Note the parameter
c is an incompressibility parameter (Equation 4.31), which remains constant for all tissues and
d is a dependent material parameter (Equation 4.34). The superscripts (·)musc and (·)tend are
introduced to differentiate material parameters for muscle and tendon, respectively. Note that
P̃max only scales the passive response of the muscle parameters.

By substituting cMTC
i into Equations 4.33 and 4.37, SMTC

isotropic and SMTC
anisotropic are obtained, re-

spectively. The overall musculotendon complex stress response is given by

SMTC(0 < γM < 1)→ SMTC = SMTC
isotropic + SMTC

passive + γM Sactive, (4.45)

and for pure muscle and tendon, correspondingly, by

SMTC(γM = 1)→ Smusc = Smusc
isotropic + Smusc

passive + Sactive and (4.46)
SMTC(γM = 0)→ Stend = Stend

isotropic + Stend
passive. (4.47)

Other stress measures can be obtained by using the mappings in Equations 3.33-3.36, for
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example, the musculotendon complex Cauchy stress is

σMTC = J−1 F SMTC F T. (4.48)

4.3 Other Soft Tissues and Bones
During human movement, skeletal muscles and connective tissues undergo large deformations
and exhibit non-linear material behaviour. Bones, on the other hand, experience much smaller
strains given their higher stiffness and can thus be treated as linear elastic. Other soft tissues
considered in this thesis, such as the periodontal ligament or the articular discs are also assumed
to behave linear elastically. This oversimplification of their behaviour was justified by the fact
that the stress response in and around these regions was not of primary interest.

In a linear elastic material, stresses are a function of strain only, i.e.,

σ = C : ε, (4.49)

where C is the fourth-order symmetric tensor of elastic material coefficients and ε is the
infinitesimal strain tensor defined by

ε =
1
2

(
(grad(u))T + grad(u)

)
, (4.50)

recalling that u is the displacement (Equation 3.5). Due to the symmetries of the stress and
strain tensors and in the case of isotropic elasticity, the non-zero components of C can be
written (in Voigt notation) as

C1,1 = C2,2 = C3,3 = λL + 2µL, (4.51)
C4,4 = C5,5 = C6,6 = µL, (4.52)
C1,2 = C1,3 = C2,3 = λL, (4.53)

where λL and µL are the so-called Lamé coefficients (both in MPa). Equation 4.49 can then be
expressed as

σ = λL tr ε+ 2µL ε. (4.54)

Lamé coefficients are related to the commonly used Young’s modulus E (in MPa) and Poisson’s
ratio ν via

E =
µL(3λL + 2µL)

λL + µL
and (4.55)

ν =
λL

2(λL + µL)
. (4.56)

4.4 Material Characterisation
Although the constitutive relations demarcate types of material, i.e., rubber from stone, the
parameters within a constitutive relation characterise the response of a particular material. For
example, in the one-dimensional Hooke’s law f = k x, the relation between the force f and
extension x demarcates linearly elastic materials, while the material parameter k characterises
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the stiffness of a particular spring. Similarly the independent material parameters cmusc
1−6 , ctend1−6 ,

and Pmax characterise the response of a particular musculotendon complex.
Since the constitutive relations describe the relation between stress and strain at individual

points P within a continuum body B, experimental data should be obtained from muscle
samples experiencing homogeneous deformations. In other words, determining material
parameters at the whole muscle scale, or with specimens containing geometric non-linearities,
or multiple materials is not ideal.

The musculotendon complex responses and associated material parameters are characterised
by in vivo experimental data obtained from literature: Smusc

isotropic and Smusc
anisotropic to Takaza et al.

(2013), Sactive to Gordon et al. (1966) and Gollapudi et al. (2009) and Stend
anisotropic to Kolz et al.

(2015).
Under the assumption of homogeneous deformation, i.e., all points P ∈ B experience the

same deformations, stresses, and strains, the constitutive relations can be reformulated in
terms of principle stretches and directions (Equations 4.20 and 4.27). Then by aligning the
principal directions with experimental (loading and constraint) directions, the determination
of the material parameters is greatly simplified.

To simplify the fitting procedure, the purely incompressible forms of the Mooney-Rivlin
relation is used. The assumption is that if the penalty parameter c is large enough, the response
of the nearly incompressible formulation should sufficiently match the purely incompressible
form (investigated in Section 6.3.3).

4.4.1 Non-active musculotendon complex behaviour
Muscle isotropic and passive response

The anisotropic-passive and isotropic response are characterised simultaneously. This is because
of the lack of experimental data on individual fibres and the isolated (isotropic) matrix. In other
words, it is difficult to experimentally isolate the contributions of the isotropic and anisotropic
components to the passive response along the fibre direction. More commonly, the intact
muscle (fibres and matrix) is experimentally tested (e.g. van Loocke et al., 2006; Takaza et al.,
2013; Böl et al., 2014; Mohammadkhah, 2017).

The anisotropic-passive and isotropic responses were fit by comparing the predicted uniaxial
stress responses (given below) to the experimental tensile response of Takaza et al. (2013).
Briefly, the experiments were performed on excised samples of the longissimus dorsi muscle of
three-month old female pigs. The samples were approximately 50×10×10mm and were loaded
at a strain rate of 0.05 % s−1 and the material response was plotted as Cauchy stress against
stretch (digitised here via the open source program PlotDigitizer (Huwaldt, 2015)). Material
parameters cmusc

1−6 were adjusted such that the error between the predicted and experimental
responses was minimised.

Consider a uniaxial (compression or tension) displacement on a specimen of muscle, i.e., ex-
periencing homogeneous deformation. The specimen is displaced by λ along λ1, and the
remaining directions (λ2,λ3) are unconstrained. This means that stress σ1 (along λ1) is non-zero,
while σ2 = σ3 = 0.

The incompressibility constraint enforces a constant volume throughout the deformation,
i.e., J = 1 (Equation 3.42) and can be expressed in terms of the principle directions as

J = λ1 λ2 λ3 = 1. (4.57)
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Under this assumption, the deformations for (homogeneous) uniaxial displacement by the
amount λ can be expressed as

λ1 = λ, λ2 =
1√
λ
, λ3 = λ2. (4.58)

Since experimental data is often formulated in terms of the true stress, the passive muscle
stress (Equation 4.42 with αM = 0) is expressed as the Cauchy stress, using Equations 4.112
and 4.20. Then for uniaxial loading the Cauchy stresses in the principle directions σpassive,i are

σpassive,1 = −p+ 2λ2 (λ2 − 1
)c6−1

c5c6 + 2λ2 (λ2 − 1
)c4−1

c3c4 + 4λc2 + 2λ2 c1

(4.59)

σpassive,2 = σpassive,3 = −p+ 2λc2 +
2c2
λ2 +

2c1
λ

,

where p is the hydrostatic pressure enforcing the incompressibility constraint (cf. Equation
4.13), and is determined by the boundary condition that the off-axis stresses must be zero. Then

p =
(2λ3 + 2) c2 + 2λc1

λ2 . (4.60)

Since the problem is multi-dimensional, non-smooth and with multiple possible local minima,
a gradient free search-based optimisation method was used (e.g. Hooke et al., 1961). Briefly, the
direct-search method proceeds as follows: First, let R(x1,x2, . . . ,xn) be the objective function
to be minimised, here: the difference between the experimental and predicted stresses,

R(c) =
N∑
i=1

(
σpassive,1(λi, c)− σ

exp
passive,1(λi)

)2 , (4.61)

where c is the vector of material parameters and λi is the current stretch. Second, starting with
some base point B0 = R(c0), each parameter is perturbed and the objective function evaluated.
Third, the perturbed parameters which result in the minimal objective function are selected
to be the next base point R(c1) = B1. The process is repeated until R(ci) falls below some
tolerance value. The optimisation was performed in MATLAB (R2018a, The MathWorks, Inc.,
USA) using the patternsearch function.

The optimised parameters cmusc
1−6 are given in Table 4.1. The resulting parameters were used

to predict the (homogeneous) passive and isotropic material responses in uniaxial tension, and
are plotted together with the experimental data in Figure 4.2.

Tendon response

It is assumed that the tendon extracellular matrix behaviour is identical to that of the skeletal
muscle and as such the parameters ctend1 , ctend2 are taken as those identified for the skeletal
muscle. This leaves the parameters of the anisotropic-passive response ctend3−6 to capture the
in-fibre stiffness of the tendon. Experimental data from Kolz et al. (2015) were used, in which
uniaxial tensile experiments were performed on the biceps tendon. Similar to above, the data
was imported using PlotDigitizer and the parameters identified via optimisation methods in
MATLAB. The optimised parameters are given in Table 4.1.
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Table 4.1: Summary of material properties for the musculotendon complex with respective sources.

Tissue Contribution Parameter Value Source/comments

muscle

isotropic
cmusc 10 MPa penalty parameter

cmusc
1 2.683× 10−6 MPa

fit to Takaza et al. (2013)

cmusc
2 1.171× 10−2 MPa

passive

cmusc
3 2.653× 10−2 MPa
cmusc
4 2.755
cmusc
5 4.514× 10−2 MPa
cmusc
6 5.451

active

wasc 2.944× 10−1

fit to Gordon et al. (1966)vasc 2.146
wdsc 4.612× 10−1

vdsc 3.669

λopt – muscle specific
Pmax –
P 0

max 1.330× 10−1 MPa Gollapudi et al. (2009)

ρmusc 1.060 g/cm3 Ward et al. (2005)

tendon

isotropic ctend1 cmusc
1

ctend2 cmusc
1

passive

ctend3 6.407× 103 MPa

fit to Kolz et al. (2015)ctend4 6.014
ctend5 3.031× 101 MPa
ctend6 2.380

ρtend ρmusc

4.4.2 Active muscle behaviour

Analogous to the passive response, the fully activated (αM = 1) active stress (Equation 4.38)
can be expressed in terms of principle stretches for homogeneous loads as,

σactive,1 = Pmax exp

(
−

∣∣∣∣∣ λ
λopt − 1
wi

∣∣∣∣∣
vi)

. (4.62)

The parameters wi, vi,λopt govern the force-length relationship of the sarcomere by scaling
the maximum isometric stress Pmax as function of the sarcomere stretch. The experimentally
measured sarcomere force-length relationship by Gordon et al. (1966) is used to characterise
the force-length relationship. The data is reported as normalised isometric tetanus tension
t̄sc against the sarcomere length lsc (in µm) and was was digitised using the aforementioned
PlotDigitizer.
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(a) Skeletal muscle response.
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Figure 4.2: Predicted uniaxial, tensile passive-muscle and -tendon responses compared to experimental
values. Individual contributions shown with dotted lines: isotropic and passive responses in green and
blue, respectively and the total response with a thick, solid line. Experimental data is shown with circular
markers: adapted from Takaza et al. (2013) and Kolz et al. (2015) for (a) the skeletal muscle and (b)
tendon tissue, respectively.

Sarcomere stretch λ was computed by first determining the optimal sarcomere length loptsc
and then by assuming that the sarcomere stretch at this length unity, i.e., λ = λopt = 1, then

λi =
lsc,i

l
opt
sc

. (4.63)

To obtain a reference specific-strength of the muscle, the maximum isometric tension of
type-I muscle fibres was used P 0

max = 0.133MPa (Gollapudi et al., 2009). The normalised tension
t̄sc was then multiplied by this value to obtain the experimental active stress, i.e.,

σ
exp
active,1 = P 0

max t̄sc. (4.64)

The parameters wi and vi were then determined by using optimisation methods in MATLAB to
reduce the error between the σactive,1 and σ

exp
active,1. The optimised parameters wasc, wdsc, vasc and

wdsc are given in Table 4.1 and plotted in Figure 4.3a.

4.4.3 Overview and parameter variations
The set of parameters, and respective sources, characterising the musculotendon complex are
summarised in Table 4.1. The effect of varying the amount of the connective tissue (tendon)
percentage via γM on the passive response is shown in Figure 4.3b. The muscle specific
parameters λopt and Pmax were varied and the resulting uniaxial stress-strain responses are
shown in Figures 4.4a and 4.4b, respectively. Lastly, the total muscle stress response is shown
in Figure 4.5.
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Figure 4.3: (a) Unscaled active force-length with experimental data (from Gordon et al. (1966)) shown as
circular marks, and (b) passive stress response for varying muscle volume fraction parameters.
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(a) Varying λopt.
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Figure 4.4: Effect of muscle specific material parameters on overall muscle stress response. The dotted
lines represent the active f-l response and the solid line the total response. (a) dark-blue: λopt = 0.8, red:
λopt = 1.0, green: λopt = 1.2 (b) variation in peak stress and resulting passive-scaling factor P̃max.
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Figure 4.5: Uniaxial stress response of the skeletal muscle, with each trace representing a different response:
thickmaroon: total, maroon: active, green: isotropic and dark-blue: anisotropic-passive. The experimental
data derived from literature are shown as circular marks.





5 Modelling Motor-Unit Activity and
Anatomy

Muscle is unique among biological materials in its ability to contract and generate force. Skeletal
muscle, as well as cardiac muscle, can do so rapidly compared to smooth muscle. Skeletal
muscle comprises motor-units of varying size that often occupy subregions of the muscle’s cross-
sectional area. The anatomy (or architecture) of a motor-unit refers to the particular distribution
of its fibres within the muscle. The selective recruitment of spatially localised motor-units is
the basis of skeletal muscle functionally heterogeneity. This has a wide range of consequences
for muscle function, for example, the same muscle can contribute to different tasks via selective
recruitment of its motor-units. For example, the deep part of the masseter is more active during
lateral jaw movement (Schindler et al., 2014), or different regions of the biceps are active during
different tasks, whether due to supination or pronation (ter Haar Romeny et al., 1984) or due to
contraction level alone (Borzelli et al., 2020). Regional contraction can also alter intramuscular
pressure, which, in turn, regulates blood flow to mitigate fatigue (e.g. Sjøgaard et al., 1986;
Sjøgaard et al., 1988). Remodelling of motor-unit anatomy can thus impact muscle function,
for example, during healthy ageing (Lexell et al., 1988) and neuromuscular disorders, such as
amyotrophic lateral sclerosis (ALS), Parkinson’s disease or cerebral palsy (Morris, 1969; Rose
et al., 1998; Kelly et al., 2018). Therefore, the modelling of motor-unit anatomy is paramount to
understanding certain aspects of healthy and pathological motor-output.

Although status-quo, three-dimensional macroscopic muscle models may take motor-units
into account in a temporal sense, i.e., by computing muscle activity frommotor-unit recruitment
and cross-bridge dynamics (e.g. Gielen et al., 2000; Oomens et al., 2003; Weickenmeier et al.,
2017), the spatial distribution of motor-units in muscle is neglected. In other words, status-quo,
macroscopic models use a time-varying activity that is applied uniformly throughout the
muscle (e.g. Röhrle et al., 2017; Weickenmeier et al., 2017; Ramasamy et al., 2018; Péan et al.,
2019) and thus cannot model regional muscle contraction and are not suited to investigate the
functional heterogeneity of muscles.

This chapter presents a method to enrich continuum-mechanical muscle models with both
motor-unit activity and, more importantly, their anatomy. As introduced in the previous
chapter, the starting point is to decompose the (overall) muscle activity into temporal and
spatial components. The focus of this chapter is the definition of physiologically realistic
(temporal) motor-unit activity and their (spatial) anatomy (Figure 5.1). Motor-unit activity is
computed by a somewhat standard approach (Section 5.1). Computation of the motor-unit
anatomy, on the other hand, is more challenging. Motor-unit architecture is intrinsically
linked to the fibre arrangement of the muscle. Macroscopic models forgo this microstructural
information and instead represent this information as a fibre orientation field. Therefore,
connectivity information of the fibres is lost. To generate anatomically plausible motor-unit
architecture: First, this information is recovered by approximating the microstructure in three-
dimensional models of skeletal muscles (Section 5.2). Second, a novel motor-unit architecture
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algorithm is developed which innervates the reconstructed muscle fibres to generate the motor-
unit distribution in three-dimensions (Section 5.3). Lastly, the performance and short-comings
of the methods are discussed in Section 5.4.
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NMU

Figure 5.1: Workflow to compute motor-unit driven muscle activity αM(t,x) based on i = 1, . . . ,NMU
motor-unit (MU) activities αi(t) and MU anatomies κi(X). The innervation-ratio IRi determines the
size of the MU. The voluntary excitatory drive E(t) is used to compute motor-neuron firing times Di,
which are combined with twitch properties to compute αi(t). Muscle geometry B0 and fibre orientations
a0(X) are used to reconstruct the microstructure in the form of neuromuscular junctions (NMJs) S and
corresponding fibres F . The fibres are innervated at the NMJs and mapped to B0, forming κi(X). The
dotted lines show the optional step of ageing and disease, covered separately, in Chapter 9.

5.1 Motor-Unit Activity
Voluntary movements are carried out by the recruitment of motor-units, typically across
multiple muscles. This does not occur on a per-motor-unit basis, but rather according to higher-
level recruitment strategies. One such robust strategy is the so-called size principle (Henneman,
1957), which states that motor-units are recruited in order of increasing force output (or size).
Given that motor-unit sizes, i.e., the number of fibres they contain, vary exponentially; a large
fraction of small motor-units are available for most tasks, with the larger motor-units “standing
by” in case of an increased demand of force.

Once recruited, motor-units typically discharge at rates proportional to force level, limited
by a maximum frequency. By recruiting additional motor-units, a muscle can increase its force
output by approximately 80 %. The remaining 20 % is achieved by an increase in the discharge
rate of the motor-units (e.g. De Luca et al., 1982), although this may vary between muscles (e.g.
Scutter et al., 1998).

Motor-neuron pool recruitment is described by a phenomenological model of Fuglevand
et al. (1993), which is briefly described in Section 5.1.1. The firing of an α-motor-neuron
causes the motor-unit to contract and generate force via excitation-contraction coupling. More
specifically, calcium (Ca2+ ) currents have a cascading effect and cause cross-bridge cycling.
The excitation-contraction coupling converts chemical energy into mechanical energy, which



5.1 Motor-Unit Activity 65

is the basis of skeletal muscle force production.
Similar to Heidlauf et al. (2017), the Ca2+ and cross-bridge dynamics are described by

biophysical models of Aliev et al. (1996) and Razumova et al. (1999), respectively, and are covered
in Section 5.1.2. Lastly, the recruitment and cross-bridge dynamics models are characterised to
describe a generic human motor-unit pool (Section 5.1.3).

5.1.1 Motor-neuron pool recruitment

The recruitment model is based on Fuglevand et al. (1993) and is only briefly covered in the
following. Consider an α-motor-neuron pool with NMU motor-units. Each α-motor-neuron i
(i = 1, . . . ,NMU) has a recruitment threshold Ri (in arbitrary units), above which it begins to
discharge. The recruitment thresholds are normalised and follow an exponential distribution,
with a large number of α-motor-neurons having a low threshold and vice versa, i.e.,

Ri = exp
(
i
ln rR
NMU

b

)
, (5.1)

where rR is the range of recruitment thresholds and b is a shape parameter.
Volitional command for muscle contraction is described by an excitatory drive E(t) (in

arbitrary units). It represents the sum of all synaptic inputs to the muscle. A single, scalar, and
time-varying excitatory drive is supplied to the α-motor-neuron pool. It is compared to the
recruitment threshold Ri of α-motor-neuron i, which begins to discharge when the excitatory
drive exceeds its recruitment threshold, i.e., E(t) > Ri. The mean discharge frequency (or
firing rate) F̃ R of an α-motor-neuron is not constant but rather increases as E(t) >> Ri,
according to

F̃ R
i (t) = E(t)−Ri + FM with E(t) > Ri and F̃ R

i (t) ≤ F P
i , (5.2)

where F P
i and FM are the peak and minimum firing rates, respectively (all firing rates are in

Hz). In the equation above, the second condition bounds the mean firing rate. The peak firing
rate is described by

F P
i = F P

1 − FD Ri

RNMU

, (5.3)

where FD is the range of peak firing rates and RNMU is the recruitment threshold for the largest
α-motor-neuron. The actual firing rate of the α-motor-neurons is computed by applying
random perturbations about the mean firing rate F̃ R

i according to

F R
i (t) =

F̃ R
i (t)

1+ c Z
, (5.4)

where c = [0, 1] is the degree of variation and Zi(t) is selected from a normally distributed set
of z-scores ranging between −3.9 and 3.9. Individual discharge times are then computed by the
relation

F R
i (tj) =

1
tFi,j+1 − tFi,j

, (5.5)
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rearranged as

tFi,j+1 =
1

F R
i (tj)

+ tFi,j , (5.6)

where tFi,j is the jth firing time (in s) of motor-unit i and is stored in Di = {tF1, tF2, . . . , tFend}.
The recruitment model (input/output) can be summarised, for an α-motor-neuron i, by

E(t), t = [0, tend]→ Di | E(t) > Ri, i = 1 . . . ,NMU, (5.7)

where t = [0, tend] is the duration of the excitatory drive and Di are firing times for α-motor-
neuron i.

5.1.2 Motor-unit contractile response

Skeletal muscle fibre cells are excitable, meaning that if a sufficiently strong current is applied, a
depolarisation of the membrane potential occurs—the action-potential—before the cell returns
to rest. The perturbation of the membrane potential causes ionic currents to cross the muscle
fibre cell’s membrane and has a cascading effect, leading ultimately to cross-bridge cycling and
tension production.

Almost all models of action-potential propagation derive from the landmark model of Alan
Hodgkin and Andrew Huxley (Hodgkin et al., 1952). Briefly, the essence of the model was to
describe the membrane potential Vm as an electrical circuit: a capacitor Cm in parallel with
ionic currents Iion, and is stated here for reference:

Cm
dVm

dt
= −Iion(Vm, t) + Istim, (5.8)

where Istim is some applied current.
The ionic currents comprise sodium Na+, potassium K+, and other (leakage) currents. The

behaviour of each current is scaled by its (per unit area) conductance, which themselves may
depend on the membrane potential via so-called gating variables. For further details of the
model, see the cited literature or Keener et al. (2009).

FitzHugh and Nagumo provided a simplified version of the Hodgkin-Huxley model, by
separating fast- and slow-processes (FitzHugh, 1961; Nagumo et al., 1962; FitzHugh, 1969). For
example, the gating variables of Na+ activation operate over a much shorter time period than
do the gating variables of its deactivation and those of K+ activation. This model thus has fast
v and slow w variables, the former representing excitation and the latter recovery.

In skeletal muscles, the depolarisation of the membrane causes the release of large amount of
calciumCa2+ from the sarcoplasmic reticulum. TheCa2+ is the trigger for excitation-contraction
coupling. The rate at which Ca2+ is released and sequestered by the sarcoplasmic reticulum is
slow compared to Na+ activation, for example.

A particular extension of the FitzHugh-Nagumo model is that of Aliev et al. (1996), de-
veloped for cardiac excitation. The two-state dimensionless model’s fast-process represents the
membrane potential Vm, i.e.,

dṼm

dt̃
= −k Ṽm (Ṽm − a)(Ṽm − 1)− Ṽm r̃ + Ĩstim, (5.9)
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where (̃·) is a dimensionless quantity, Istim is the stimulation current (at the neuromuscular-
junction), k and a are characterisation parameters and r̃ is the slow-process variable, which
represents the inward (repolarising) current. Note that the tilde symbol is omitted in the
following for clarity.

The slow-process is assumed (similar to Heidlauf et al. (2017)) to represent the Ca2+ -
concentration in the myoplasm (released from the sarcoplasmic reticulum) qualitatively, i.e.,

dr
dt

=
e0 +m1 r

m2 + Vm
[−r − k Vm (Vm − a− 1)], (5.10)

where e0, m1 and m2 are characterisation parameters. A rise in Ca2+ -concentration leads to a
conformational change in tropomyosin, enabling the linkage of the myosin-head and actin:
forming a cross-bridge. Subsequently, mechanical work is performed when the myosin-head
pulls the actin towards the centre of the sarcomere.

The cross-bridge dynamics are modelled by a Huxley-type biophysical model describing the
cross-bridge dynamics (Razumova et al., 1999). Briefly, the model represents cross-bridges in
four distinct states: detached non-activated Roff, detached activated D, pre-power-stroke A1,
and post-power-stroke A2. The transitions between these states are modelled by first-order
kinetics. By adjusting the rate of cross-bridge cycling, different fibre-types (slow, fast) can be
realised (e.g. Schmid et al., 2019). Furthermore, by varying the maximum number of cross-
bridges in the post-power-stroke state Amax

2 , during an isometric tetanic contraction, the peak
force of the sarcomere can be altered.

The Ca2+ dependent activation is governed by reaction rates kon and koff, which depend on
the intracellular Ca2+ -concentration r(t) (Equation 5.10), i.e.,

kon = k0
on +

(
kCa
on − k0

on
) r(t) r0
r(t) r0 + r50

and (5.11)

koff = k0
off +

(
kCa
off − k0

off
) r(t) r0
r(t) r0 + r50

.

In the above equation, r0 is the initial Ca2+ -concentration, r50 is the normalised concentration
when half of the cross-bridges are active, and k0

on/off and kCa
on/off are characterisation parameters

(in 1/s). These reaction rates, together with rate coefficients f , f ′, g, g′,h,h′ (in 1/s), switch the
tropomyosin-troponin thin filament between the four states of the cross-bridge according to:

dD
dt

= kon(t)Roff + f ′ A1 + g A2 − (koff(t) + f + g′) D, (5.12)

dA1

dt
= f D + h′ A2 − (f ′ + h) A1,

dA2

dt
= hA1 − (h′ + g) A2 + g′ D and

Roff = RT − A1 − A2 −D.

The parameterRT in the equation above, represents the total number of cross-bridges at a given
filament overlap, and is typically characterised by a piecewise linear function to represent the
force-length relationship of sarcomeres (Figure 2.3a). However, given that the force-length
relationship is already modelled by the (three-dimensional) continuum-mechanical constitutive
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relation (Equation 4.39), RT is presently set to equal unity.
Recall, the states A1 and A2 refer to the pre- and post-power-stroke states, respectively.

Therefore, the conversion of chemical to mechanical energy is represented by the transition
A1 → A2. The fraction of cross-bridges in the post-stroke state within a sarcomere is taken as
the marker of its activity. The normalised activity of the sarcomere is computed via

α(t) =
A2

Amax
2

, (5.13)

where Amax
2 is the maximum number of cross-bridges in the post-stroke state.

The Ca2+ and cross-bridge dynamics described by the equations above are assumed to
be representative for all fibres of a motor-unit. This is justified by assuming that the action-
potential, which is initiated by the arrival of the stimulus current at the neuromuscular-junction,
travels instantly along the fibres of the motor-unit. In reality, the action-potential propagates
along the fibre with a finite velocity. The consequences of this assumption onmuscle contraction
is investigated via a multiscale model in Section 6.1.

By applying the stimulus current Istim (for some tstim) at the firing times D computed via
the recruitment model (Equation 5.5), the Ca2+ current flow is dictated via the behaviour of
the α-motor-neuron pool (Section 5.1.1), thus coupling the recruitment and Ca2+ dynamics
models. The stimulus current of each motor-unit is denoted by the subscript i (i = 1, . . . ,NMU),
i.e., Istim → Istim,i. This leads to per-motor-unit membrane voltage, Ca2+ and cross-bridge
dynamics, and ultimately, per-motor-unit activity, i.e.,

αi(t) =
A2,i

Amax
2,i

. (5.14)

5.1.3 Motor-unit activity: model characterisation
Muscle activity is described by the sum of the activities of its individual motor-units. Summar-
ising the chain of events: when the excitatory drive E(t), t = [0, tend], exceeds the recruitment
threshold of α-motor-neuron i, the α-motor-neuron begins to fire at a given rate F R

i (t), gov-
erned by the α-motor-neuron pool properties. Firing times Di are then computed retroactively
from F R

i (t) and demarcate the times at which a stimulus current Istim,i is supplied to motor-unit
i.

The stimulus current leads to changes in Ca2+ -concentration ri(t), which starts the cross-
bridge cycling process. When the cross-bridges transitions from the pre- to post-power-stroke
states (A1,i → A2,i, respectively), chemical energy is converted to mechanical energy. The
(normalised) fraction of cross-bridges in the A2,i state is taken as the motor-unit activity αi(t).
This can be summarised together with Equation 5.7, for t = [0, tend] and i = 1, . . . ,NMU, as

E(t)→ Di | E(t) > Ri

recruitment model

→ r(Di, . . .)→ A2,i(r(Di), . . .)→ αi(Di)

excitation-contraction coupling model

. (5.15)

The above relation shows that motor-unit activity is computed for the entire duration of the
excitatory drive.

There are large number of parameters involved in this chain of events, which, when tuned
appropriately, can represent a specific human skeletal muscle, e.g., masseter or triceps. Further-
more, states such as pathology, training, and fatigue can also be approximated by modifying
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the biophysical recruitment and contractile processes.

Motor-unit pool size

Although individual motor-unit activity can be computed without any information about its
size, the two are implicitly linked. For example, small units are assumed to fire first and have
slower and weaker twitches. Therefore, motor-unit size is introduced here for convenience.
The size of a motor-unit commonly refers to the number of muscle fibres it innervates, the
so-called innervation-ratio. In skeletal muscles, there are many small motor-units and a few
large units. The innervation-ratio is therefore characterised by an exponential distribution and
modelled here by the phenomenological model of Enoka et al. (2001), i.e.,

IRi = IR1 exp
(
i
ln rIR
NMU

)
, (5.16)

where rIR = IRNMU/IR1 (cf. Equation 5.1). The fractional innervation-ratio is computed via

ĪRi =
IRi

IRtot
, (5.17)

where IRtot is the sum of all innervation-ratios, i.e., the total number of fibres in the muscle.
An exemplary innervation-ratio is computed for 100 motor-units, with IR1 = 120 and IR100 =
12,874, resulting in a total of 278,739 fibres (Figure 5.3a).

Motor-neuron pool recruitment

A generic, human skeletal muscle α-motor-neuron pool is constructed from NMU = 100 α-
motor-neurons, numbered from the smallest to largest motor-unit, according to its innervation-
ratio. The recruitment model is characterised by the parameters in Fuglevand et al. (1993),
summarised in Table 5.1.

To demonstrate the behaviour of the α-motor-neuron pool, a piecewise-linear excitatory
drive is prescribed: increasing from zero to its peak value E(t) = Emax within 0.25 s, then held
constant for 1 s, followed by a decrease within 0.25 s, and lastly with a rest period of 0.5 s. The
magnitude of Emax (in arbitrary units) is computed such that the largest α-motor-neuron is
brought to its peak firing rate, i.e.,

Emax = R100 + F P
100 − FM. (5.18)

A coefficient of variation of cV = 0.2 is used to introduce random variability in the firing rates,
and the resulting firing rates are shown in Figure 5.2a.

Individual discharge times Di are computed according to Equation 5.5 and are shown in
Figure 5.2b. Given the linear increase in E(t) and the exponential shape of Ri (Equation 5.1),

Table 5.1: Parameters characterising a generic human muscle α-motor-neuron pool.

F P
1 /Hz FD/Hz FM/Hz rR b cV

60 10 8 30 1 0.2
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Figure 5.2: Motor-neuron pool recruitment behaviour. (a) Average firing rates for every 5th α-motor-
neuron. The ramp-up, -down and constant phases of the excitatory drive are clearly visible. (b) Discharge
times for the α-motor-neuron pool with every 5th α-motor-neuron plotted.

the initial discharges follow a smooth (non-linear) pattern. The α-motor-neurons continue
to discharge, subject to random variations (Equation 5.4), until E(t) < Ri, at which point
de-recruitment of α-motor-neuron i occurs. However, due to the stochastic nature of the
inter-spike-intervals, α-motor-neuron discharges become increasingly out-of-sync between
each other as the contraction proceeds. This is reflected in the non-smooth derecruitment
behaviour.

Motor-unit contractile response

A single stimulus leads to a so-called twitch contraction (or response) within the motor-unit,
characterised by a short rise time and slower fall time. The contractile behaviour of a motor-unit
is characterised by its peak twitch force F twitch and the time taken to reach it, referred to as the
time-to-peak (TTP). Smaller motor-units take longer to attain a lower force and the opposite
is true for larger motor-units, which attain a higher force, faster. By altering the rates of
Ca2+ flow and cross-bridge dynamics, the twitch response can be adjusted. In the following,
this is achieved by changes in cross-bridge dynamics only, i.e., by altering the rate coefficients
f , f ′, g, g′,h,h′ (Equations 5.121−4).

Up to seven fibre-types have been observed in human skeletal muscles (Scott et al., 2001).
Human muscles, however, are rarely split into such discrete groups and instead motor-unit
properties have been observed to vary continuously throughout a muscle (Heckman et al., 2012,
and references therein). To reflect this, rate parameters were (non-linearly) scaled to attain
smoothly varying motor-unit twitches between the “slowest” (smallest) and “fastest” (largest)
motor-units.

For example, to parametrise motor-unit contractile behaviour in a pool of NMU motor-units:
(i) rate coefficients for the average twitch response (motor-unit number NMU/2) are identified
(Table 5.2), (ii) these coefficients are scaled to obtain the “slowest” (i = 1) and “fastest” (i = NMU)
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motor-units, and (iii) the parameters are interpolated to obtain rate coefficients, between these
two extremes, for the remaining NMU − 2 motor-units.

Similar to the previous section, a pool with 100 motor-units was constructed. The reference
rate coefficients, similar to those in Heidlauf (2016), are given in Table 5.2. The remaining
parameters of the excitation-contraction coupling models were based on Campbell et al. (1993),
Aliev et al. (1996) and Campbell et al. (2001).

The average twitch response had a F twitch of 0.1225 (arbitrary units) and a time-to-peak
of 94ms. These values were then scaled to obtain the two extremes of the motor-unit pool;
multiplying by βmin = 1/3 and βmax = 3 to characterise motor-unit 1 and motor-unit 100,
respectively. The corresponding twitch responses are plotted in Figure 5.3b with valuesF twitch

1 =
0.0906 and TTP1 = 123ms and F twitch

100 = 0.377 and TTP100 = 35ms, for the slowest and fastest
motor-unit, respectively.
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Figure 5.3: Motor-neuron pool properties. (a) Innervation-ratio of each motor-neuron, expressed as a
percentage of total fibres (1.24× 105) (b) Twitch response extremes in the motor-unit pool, as normalised
αi(t) (Equation 5.14), for a three fold increase β100 = 3: red trace, and decrease β1 = 1/3: blue trace of
the average twitch rate coefficients.

Then, the rate coefficients η = {f , f ′, g, g′,h,h′} for the remaining i = 2 . . . 99 motor-units
were interpolated by scaling the respective rate coefficients non-linearly between βmin = 1/3
and βmax = 3, i.e.,

ηi = βi η where βi = βmin e
(i−1) η and η =

log(βmin/βmax)

1−NMU
. (5.19)

Table 5.2: Reference values for the rate coefficients determining the cross-bridge kinetics.

f/ms f ′/ms h/ms h′/ms g/ms g′/ms

50 500 8 6 4 0
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Resulting in each motor-unit having its own set of rate-coefficients. The peak twitch and time-
to-peak values for the motor-unit pool are plotted in Figure 5.4.
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Figure 5.4:The spread of normalised peak twitch forces (to the peak twitch force of the largest motor-unit)
and times-to-peak in the motor-unit pool.

If another stimulus is applied before a twitch force reaches zero, a summation of the force
occurs. When stimulated at a high enough frequency, the individual twitches fuse into the so-
called tetanus response. The rise- and fall-times of a motor-unit twitch determine this optimal
frequency, typically specified by the maximum stimulation frequency in the recruitment model
(Equation 5.2). The activities of the smallest and largest motor-units in response to constant
stimulations at various frequencies are shown in Figures 5.5a and 5.5b, respectively. A fixed
stimulus current Istim = 5 is supplied for a fixed duration∆t = 2.5ms at the various stimulation
frequencies.

Whole muscle activity

Motor-units do not contribute equally to muscle activity since each motor-unit is of a different
size. A popular approach to account for this is to weight the activity of a motor-unit by its
(fractional) size ĪR, or innervation-ratio (Equation 5.17). The total muscle activity can then be
approximated via

α(t) =

NMU∑
i=1

ĪRi αi(t). (5.20)

Since the activity of each motor-unit is bounded between [0, 1] and since the normalised
innervation-ratios must sum to unity, the activity of the entire muscle is also bounded between
[0, 1]. The muscle activity resulting from the excitatory drive, α-motor-neuron pool and motor-
unit twitch responses described in the previous sections is plotted in Figure 5.6a.

The effect of changing the number of motor-units which make up the pool, on the calculated,
total muscle activity is shown in Figure 5.6b. As a higher number of motor-units are considered,
the muscle activity becomes more steady. This is because increasing the number of motor-units
increases the “resolution” of force production, i.e., smaller increments in force can be made.
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Figure 5.5: Motor-unit activity in response to sustained stimulation at fixed frequencies. The traces are
colour coded from the lowest frequency: dark-blue, to the highest frequency: maroon. The frequencies for
motor-unit 1 = {5, 10, 20, 30, 40, 50Hz} and motor-unit 100 = {5, 20, 40, 60, 80, 100Hz}.
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Figure 5.6: Muscle activity computed as the weighted sum of individual motor-unit activity. (b) Effect of
the number of motor-units in the pool with dark blue: 20 units, cream: 50 units and maroon: 100 units.
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5.2 Reconstructing Skeletal Muscle Microstructure
Macroscopic skeletal muscle models forgo the modelling of the fibre microstructure, thus
significantly reducing model complexity and computational cost when compared to multiscale
models. Obviously, these models have their own drawbacks, such as the smearing of local
deformation across several fibres. More detrimentally, when fibres are removed from the
muscle, any connectivity information is also lost, i.e., the path traced by the fibres within the
muscle is no longer known. This makes the definition of anatomically realistic motor-units
very challenging, since a motor-unit occupies the region spanned by its constituent muscle
fibres.

In this thesis, this hurdle is overcome by reconstructing “microstructural fibre-scaffolds”
from the fibre orientation field. This is done via a streamline tracing method similar to Kupczik
et al. (2015), but with additional constraints placed on the seed-point definition such that they
form a two-dimensional manifold within the muscle. This is to ease the subsequent definition
of motor-unit anatomy.

5.2.1 Fibre orientation interpolation
The fibre orientation at a point Y in the muscle B0 can be computed by averaging the fibres in
a subregion Ω ⊂ B0 about Y . Repeating this process throughout the muscle yields a set of local
fibre directions; the fibre orientation field a0(Yk), where Yk (k = 1, . . . ,NFO), are the discrete
set of points at which the averaging has been performed. The streamline tracing method used
to (later) construct the fibre-scaffolds, however, requires fibre orientation at arbitrary locations
within the muscle geometry. Therefore, the fibre orientation field is spatially interpolated
via radial basis interpolation. First, the method is introduced using a generic example and is
subsequently adapted to fibre orientation interpolation.

Radial basis interpolation (RBI) is a mesh-less method that interpolates higher-dimensional
scattered data. The principle of RBI can be demonstrated with a one-dimensional example.
Consider a problem with a set of measurements mi (i = 1, . . . ,N ) at data sites Xi, RBI yields
a function s(X) which provides the measurement values at locations other than the data
sites. Furthermore, the RBI function is subject to the interpolation condition, meaning that it
must exactly equal the measured values at the data sites, i.e., s(Xi) = mi. Typically, a linear
combination of basis functions φ and weights τ may be used to determine s(X), i.e., s(X) =∑N

i τi φi. For example, the basis function may be a polynomial with φN
i = 1,X ,X2, . . . ,XN−1.

However, such an approach becomes impractical for higher-dimensional data. Alternatively, a
basis function can be chosen that translates to the data sites—the so-called basic function:

φi(X) = ‖X −Xi‖, (5.21)

which is the Euclidean distance from each data site and where X is the vector of the (one-
dimensional) data sites. This yields a set of basic functions, each centred about a data site. The
interpolation function then becomes

s(X) =
N∑
i=1

τi φi(‖X −Xi‖). (5.22)

Subject to the interpolation condition, the weights must be determined such that the interpola-
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tion function equals the measured values at the data sites. Then, the above equation can be
written as a linear system, i.e.,

B t = m, (5.23)

whereB is the matrix of basis functions evaluated by Bi,j = φi(‖Xi−Xj‖), and has dimensions
N × N , t is the matrix of (unknown) weights and m the matrix of (known) measurements,
each with dimensions N × 1. The above system of equations are solved for t, and then s(X)
can be determined via Equation 5.22.

Typically, the Euclidean distance is not used as the basic function since it is discontinuous at
the data site. There are several choices for the basic function (e.g. Chen et al., 2005), among
which is the multi-quadratic function;

φi(‖X −Xi‖) =
√

1+ (ε ‖X −Xi‖)2, (5.24)

where ε is a shape parameter.
Returning to the interpolation of the fibre orientations: the data sites and measured values

are now respectively Yk and a0(Yk), and the interpolation function is â0(‖X − Yk‖). The
matrix of basis functions B has components Bi,j = φi(‖Yi − Yj‖) and dimensions NFO ×NFO.
The weights and measurements both have dimensions of NFO × 3, since the fibre orientations
are specified in three-dimensions. Substituting these matrices into Equation 5.23 and solving
for t yields the weights.

Then, consider a set of points where the fibre orientation is desired Xmicro
r ∈ B0 (r =

1, . . . ,Nmicro). The fibre orientation at these points can be interpolated by using RBI, i.e.,

â0(‖Xmicro
r − Yi‖) =

N∑
i=1

τi φi(‖Xmicro
r − Yi‖). (5.25)

5.2.2 Seed-point surface generation and fibre-scaffold tracking
With the aim of defining anatomically congruent motor-unit territories, microstructural fibre-
scaffolds Fk (k = 1, . . . ,NFS) are constructed within the muscle. The fibre-scaffolds are com-
posed of a set of coordinates within the muscle, forming a path which conforms, locally, to
the fibre orientations (computed at each coordinate by radial basis interpolation). Once the
muscle is fully populated with (equidistant) fibre-scaffolds, they are used to generate motor-unit
anatomies within the muscle (Section 5.3).

The fibre-scaffolds are traced using streamline tracing, which has its application in fluid
dynamics. The streamline is the path traced by a particle within the velocity field of a fluid.
By replacing the velocity field with the fibre orientation filed, the streamline represents the
fibre-scaffold. Such an approach provides adequate agreement with experimentally measured
muscle fibre anatomy (Choi et al., 2013; Kupczik et al., 2015; Handsfield et al., 2017).

The requirements of fibre-scaffolds are two-fold: first, they should run from tendon-to-
tendon (or aponeuroses) and second, they should be uniformly spaced (perpendicular to their
main direction). The highly varied and complex nature of muscle architecture makes this
challenging, e.g., the masseter has attachment areas both to tendons and aponeuroses, or the
lateral pterygoid, which splits into multiple heads. This is addresses by placing restrictions on
the way the streamline computations are initiated.

The scaffold/streamline procedure requires a starting point or seed-point sk (k = 1, . . . ,NFS)
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per fibre-scaffold, i.e., the point at which the particle is “dropped into” the fluid. To meet
the demands mentioned above, the streamline tracing and seed-point generation are set to
occur iteratively. After each scaffold is traced, the mid-point is computed retroactively. At this
mid-point, a set of equidistant seed-points are generated. These neighbouring seed-points lie
on a plane perpendicular to the fibre direction of the previously traced scaffold’s mid-point.
If the newly generated seed-points either lie outside the muscle geometry or collide with
existing seed-points, they are deemed unfeasible and removed from subsequent streamline
computations. The streamline tracing is then repeated at the feasible seed-points, and the
process continues. In other words, the generation of fibre-scaffolds proceeds outwards from a
genesis fibre-scaffold until no feasible seed-points remain. The fibre tracing itself is discussed
later. This process yields a set of seed-points S = {s1, s2, . . . , sNFS}, located mid-way between
the fibre-scaffolds. The process is summarised in Algorithm 1.

The neighbouring seed-points q are determined via a fixed stencil (Algorithm 1, line 4).
Consider a generic point Xmicro

r in the muscle about which the neighbouring seed-points are
computed via

q = Λs We+Xmicro
r , (5.26)

where Λs is the perpendicular spacing (in mm), W is a weight-matrix and e contains the set of
basis vectors perpendicular to â0(X

micro
r ). The weight matrix W is chosen to give a stencil of 8

points, with a Chebyshev distance of Λs from Xmicro
r , then

q =



s1
s2
...

s8


, W =



1 0
−1 0
0 1
0 −1
1 1
1 −1
−1 1
−1 −1


, e =

[
e2
e3

]
. (5.27)

Tracking a single fibre-scaffold

Each fibre-scaffold is tracked using a deterministic streamline method and results in a set
of microstructural points per fibre-scaffold Fk = {Xmicro

r,k } (r = 1, . . . ,Nmicro
k ). Since tracing

begins from the mid-point of the scaffolds, it proceeds in both forward and reverse directions,
dictated by the tracing direction β = 1 or −1, i.e.,

Xmicro
r+1,k = Xmicro

r,k + β â0(X
micro
r,k ) Λf, (5.28)

where Λf is the spacing along the fibre (in mm) and the fibre orientation interpolation is
performed via Equation 5.25. The tracking proceeds until a fibre point lies outside the geometry
or collides with another fibre point. When this occurs, the process is returned to the seed-point
and proceeds in the reverse direction, i.e., β = −1. The tracking process is summarised in
Algorithm 2.
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Algorithm 1 Pseudocode to generate the seed-point surface.
1: choose a starting point Xmicro

1

2: S ← s1 = Xmicro
1 . S is the set of seed-points

3: â0(X
micro
1 ) = f(Xmicro

1 , t,B) . interpolate fibre orientation (Equation 5.25)
4: q̄1 = f(Xmicro

1 , â0(X
micro
1 ),Λs) . compute seed-point stencil (Equation 5.26)

5: q̄1 = q1 . assume all initial seed-points are viable
6: i = 1

7: while q̄i 6= ∅ do
8: S ← q̄i

9: track scaffolds at the viable seed-points→ Fi . Algorithm 2
10: q̄i ← midpoint(Fi) . compute fibre mid-points and update stencil loc.
11: â0(X

micro
i ) = f(q̄i, t,B) . interpolate fibre orientation at stencil locations

12: qi+1 = f(q̄i, â0(X
micro
i ),Λs) . compute next seed-point stencil(s)

13: check feasibility→ q̄i+1 . feasible if within muscle geometry and non-overlapping
14: i = i+ 1
15: end while

Algorithm 2 Pseudocode to track a fibre-scaffold from a seed-point.
1: given some seed-point sk ∈ S . S is the set of seed-points
2: start tracking fibre-scaffold Fk ←Xmicro

1,k = sk

3: edge_found = 0
4: r = 1

5: while edge_found < 2 do
6: β = 1− 2 edge_found . tracking direction
7: â0(X

micro
r,k ) = f(Xmicro

r,k , t,B) . interpolate fibre orientation (Equation 5.25)
8: Xmicro

r+1 = Xmicro
r,k + β â0(X

micro
r,k ) Λf . proceed along streamline

9: if Xmicro
r+1 is inside geometry and does not collide with another fibre point then

10: Fk ←Xmicro
r+1,k ←Xmicro

r+1

11: else
12: Xmicro

r+1 = sk . return to origin
13: edge_found = edge_found+ 1
14: end if
15: r = r + 1
16: end while
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5.2.3 Case-studies

The fibre tracking and seed-point surface generation methods were tested by application
to a variety of realistic muscle geometries. Given the multitude of demands placed on the
human musculoskeletal system, muscles are diverse in their shape and internal structure. The
architecture of muscles may be broadly classified as: parallel, fusiform, convergent, circular,
unipennate, bipennate, and multipennate. In addition to a “simple” fusiform muscle, dual-head
and multipennate muscles were used in the case-studies (Table 5.3).

Table 5.3: Overview of muscles for the seed-point generation algorithm case-study.

Muscle Architecture

lateral pterygoid parallel/dual head Figure 5.7
biceps brachii fusiform Figure 5.8
masseter multipennate Figure 5.9

Muscle geometries were derived from anatomical imaging and a (finite-element) mesh fitting
proceedure (Bradley et al., 1997), carried out in CMISS (Blackett et al., 2005). Briefly, magnetic
resonance images from the visible human project (Spitzer et al., 1996) were used to generate
a cloud of 3D data points, which served as a basis for the fitting procedure. By reducing the
error between the mesh surface and the data points, the anatomical shape is approximated.
Further details concerning the lateral pterygoid and masseter models are given in van Essen
et al. (2005) and for the biceps model, in Sprenger (2016) and Röhrle et al. (2017).

The fibre orientations within the models were defined semi-automatically within the commer-
cial finite element package Abaqus/CAE (v2017, Dassault Systèmes, France). First, a major-axis
describing the dominant fibre direction within each muscle was defined, and second the
major-axis was interpolated within the muscle volume such as to conform to selected muscle
boundaries.

The masseter was divided into two compartments by manually defining an oblique plane.
The plane was defined based on qualitative anatomical data and resulted in a smaller deep head
and a larger superior head. Separate major-axes were then defined within each masseter head.
The axis was pointed slightly posterio-cranially and anterio-cranially in the deep and superior
heads, respectively (e.g. Belser et al., 1986; Ebrahimi, 2015). For the lateral pterygoid and biceps
a single major-axis was defined, aligned along the main or long axes of the muscles.

For all muscles, the scaffold tracing process was started by using the muscle center-of-mass
as the initial seed-point (Algorithm 1, line 1). For the lateral pterygoid and biceps, the stencil
spacing was set as Λs = 2mm (Equation 5.26) with the spacing along scaffold as Λf = 2Λs
(Algorithm 2, line 8), and Λs = Λf = 1mm for the masseter.

The scaffold tracing algorithm was implemented in the programming language MATLAB
(R2018a, The MathWorks, Inc., USA). Details of the implementation, e.g., interface with the
finite element mesh are given in Section 6.3.1. The influence of the reconstructed microstructure
resolution on computation time was determined by generating the microstructure for the biceps
at various spacings: Λi

s = {2, 3, 4mm} and Λi
f = 2Λi

s and comparing the elapsed computational
times.
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(a) Boundary triangulation (b) Fibre orientations (c) Scaffolds and seed-points

Figure 5.7: Biceps brachii (fusiform muscle) microstructure reconstruction case-study. In (c) 50% of
fibre-scaffolds are randomly plotted and seed-points are shown in red.

Results

The scaffold tracing was performed on a desktop computer with a quad-core processor (Intel
Core i7-4790K @ 4GHz) with 24GB of memory. The triangulated surface mesh, semi automat-
ically generated fibre orientation field and results of the scaffold tracing algorithm are shown in
Figures 5.8, 5.7 and 5.9 for the biceps, lateral pterygoid, and masseter, respectively. The number
of tracked fibre-scaffolds for these muscles were 577, 1171, and 1154 respectively. The number
of scaffolds traced in the biceps for Λi

s = {2, 3, 4mm} were 577, 271 and 146, respectively. The
corresponding computational times were tcomp 564 s, 166 s and 68 s.
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(a) Boundary triangulation (b) Fibre orientations (c) Scaffolds and seed-points

Figure 5.8: Lateral pterygoid (parallel/dual head muscle) microstructure reconstruction case-study. In (c)
75% of fibre-scaffolds are randomly plotted and seed-points are shown in red.

(a) Boundary triangulation (b) Fibre orientations (c) Scaffolds and seed-points

Figure 5.9: Masseter microstructure (multipennate muscle) reconstruction case-study. In (c) 50% of fibre-
scaffolds are randomly plotted and seed-points are shown in red.
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5.3 Motor-Unit Anatomy in Three-Dimensional Skeletal
Muscle Models

The specific arrangement of a motor-unit’s fibres refers to its anatomy. Since the fibres of
a motor-unit are innervated by terminal axons of a single α-motor-neuron, the innervation
pattern of an α-motor-neuron is the basis of motor-unit anatomy. Skeletal muscles may
contain between 102 to 103 α-motor-neurons innervating between 103 to 106 fibres. While the
microstructure may be simplified in multiscale computational models, the numbers are still
at the lower end of this range. This makes the manual definition of the innervation pattern,
i.e., manually connecting individual α-motor-neuron terminal axons to individual muscle fibres,
quite tedious.

Motor-unit anatomy varies between muscles of an individual and between the same muscle
of different individuals. This is due to various factors, such as age, pathological conditions
and physical activity (e.g. Morris, 1969; Lexell et al., 1991; Cioffi et al., 2012; Messi et al.,
2016). However, some general anatomical features of mammalian motor-unit territories can be
observed: they are locally confined to a subregion of the muscle, they overlap with multiple
other territories, they have irregular shapes, and they have varying degrees of fibre-type
clustering within a territory (e.g. Edström et al., 1968; Bodine-Fowler et al., 1990; Roy et al.,
1995; van Dijk et al., 2016; Lapatki et al., 2019; Birkbeck et al., 2020). Furthermore, certain motor-
unit types may be located preferentially within certain regions of the muscle, for example, larger
motor-units are found deeper within the tibialis anterior (Mesin et al., 2010). Therefore, given
the lack of high resolution experimental data of motor-unit fibre distributions, a semi-stochastic
method is used that characterises motor-unit territories. This enables the definition of motor-
unit territories by a few of parameters, while capturing their hallmark anatomical features.

Innervation patterns exhibiting these properties are formed on the reconstructed micro-
structural fibre-scaffolds (Section 5.2), namely, by connecting each virtual α-motor-neuron
terminal axon in a semi-stochastic manner with the virtual neuromuscular-junctions of the
fibre-scaffolds. The method proceeds similarly to existing methods to generate innervation
patterns, i.e., first, motor-unit size is computed, second, a motor-unit territory centre is de-
termined, and third, fibres about the motor-unit territory centre are assigned to the motor-unit
(e.g. Schnetzer et al., 2001; Navallas et al., 2010; Röhrle et al., 2012). Key differences include
the ability to preferentially position smaller/larger motor-units over the muscle cross-section,
and to control the degree of territory clustering and overlap in a straightforward manner. The
virtual innervation parameters are characterised by using an idealised geometry to generate
100 motor-unit territories over approximately 120,000 fibres (Section 5.3.5).

5.3.1 Motor-unit size

Recall that the microstructure reconstruction yields fibre-scaffolds Fk (k = 1, . . . ,NFS) and
associated seed-points sk. The first step in the innervation procedure is to determine how many
fibre-scaffolds are to be innervated for α-motor-neuron i (i = 1, . . . ,NMU). The number of
(anatomical) fibres per α-motor-neuron is described by its innervation-ratio, modelled here by
an exponential distribution (Equation 5.16). The number of fibre-scaffolds is, however, typically
lower and therefore motor-unit size is recast according to

IRSP
i = dĪRi NFSe, (5.29)
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where d·e is the ceiling function, rounding up to the nearest integer. Assuming that the smallest
motor-unit must contain at least one fibre-scaffold, i.e., IRSP

1 = 1; the following must be satisfied

NFS ≥
1
dĪR1e

. (5.30)

The seed-point of each fibre-scaffold is located at its mid-point and may be thought of as the vir-
tual fibre’s neuromuscular-junction. In the following, the term seed-point and neuromuscular-
junction are used interchangeably.

5.3.2 Motor-unit territory location and overlap
The innervation process of an α-motor-neuron is described here in terms of its “central” axon
and “peripheral” axons. Note that this is for sake of explanation and no such distinction exists
in reality. Innervation of motor-units is performed from smallest (number 1) to largest (number
NMU). The innervation procedure for a given α-motor-neuron i (i = 1, . . . ,NMU) proceeds as
follows: First, the central axon innervates a random neuromuscular-junction sk, and is denoted
by ci. The superscript (·)i is introduced to signify that a quantity now belongs to motor-unit
i. Second, the remaining (IRSP

i − 1) peripheral α-motor-neuron axons continue to (randomly)
innervate “free” neuromuscular-junctions about the central axon ci, within a distance R (in
mm) (Figure 5.10b), i.e.,

fd(Su, ci) < R, (5.31)

where fd is a distance metric (discussed later) and Su is introduced as the set of currently
uninnervated neuromuscular-junctions.

Once the desired number of seed-points IRSP
i have been innervated, the central axon for α-

motor-neuron i+ 1 innervates another (uninnervated) neuromuscular-junction ci+1. Then, the
peripheral axons of α-motor-neuron i+ 1 subsequently seek out free neuromuscular-junctions
about ci+1. The process continues for the remaining α-motor-neurons. Since motor-unit sizes
are determined by the total number of seed-points, the following holds:

NMU∑
i=1

IRSP
i = NFS. (5.32)

Meaning that when allα-motor-neurons are linked to the seed-points, there are no uninnervated
seed-points or neuromuscular-junctions remaining, i.e., Su = ∅.

Each seed-point does not have the same probability of being innervated by an α-motor-
neuron’s central axon ci, since, the search space (for ci selection) is restricted to a subregion of
the muscle’s cross-section. This is achieved by (manually) selecting a reference point cMUT, and
limiting the neighbourhood for α-motor-neuron central axon innervation within a distance D
(in mm) (Figure 5.10a) about this point, i.e.,

fd(Su, cMUT) < D. (5.33)

This is analogous to Equation 5.31, however, whileR restricts the innervation of the peripheral
axons (of a given α-motor-neuron), D restricts the innervation of the central axons. The
reference point cMUT remains fixed for the entire innervation process.

As α-motor-neurons continue to innervate, a fewer number of uninnervated neuromuscular-
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cMUT

ci

ci+1
R

D

(a) Clustered

cMUT

ci

ci+1
R

D

(b) Overlapped

Figure 5.10: Schematic of select motor-unit territory distribution parameters combinations to highlight
(a) clustered territories with small territory search space (R) about the territory centers (b) overlapping
territories. In both examples, the distance D, controls the regional confinement of the territories. Recall
that smaller territories are assigned first. A Euclidean distance is shown for illustrative purposes.

junctions remain. This can lead to problems of over-crowding. First, the central axon may
not fit within fd < D about cMUT. Similarly for the peripheral axons, there may be no free
neuromuscular-junction within fd < R about ci. When this occurs, the selection distances R
and D are incremented by ∆R and ∆D (in mm), and the searches repeated. The pseudocode
to generate the innervation pattern is given in Algorithm 3.

5.3.3 Motor-unit territory shape
The distance metric fd, which defines the search space for the peripheral axons, influences
the shape of the innervation pattern and ultimately the motor-unit territory. For example, a
Euclidean distance would result in circular innervation patterns. Strictly speaking, since the
distance metric only influences the search space, the parameters R and D together with the
stochastic nature of the algorithm, also influence the final innervation pattern. The distance
measure is generalised to allow for increased control over motor-unit territory shape and is
taken as the generalised ellipsoidal distance, i.e.,

fd(a,b)2 = (a− b)V (a− b)T, (5.34)

where V is a weighting matrix which acts to scale the distance measure along its eigenvectors
v1, v2, v3 by the amount given by its eigenvalues, i.e., by λ1,λ2,λ3. For example, V = I
(identity matrix) gives the Euclidean distance (resulting in spherical search spaces). Setting
V = diag(λ1,λ2,λ3) results in a weighted Euclidean distance, which skews the search space
along the global axes. Yet the muscle may not necessarily be aligned with the global axes.
To account for this, a symmetric positive definite V is chosen, resulting in skewed distances
along arbitrary major axes, which are specified by the eigenvectors vi. The weighting matrix
V is computed by specifying the desired skew values λi, the major-axis v1 and at least one
perpendicular axis v2, then

V = TBTT, (5.35)
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where T = [v1, v2, v3] and B = diag(λ1,λ2,λ3).
In summary, by the choice of cMUT,D,∆D, R,∆R, vi and λi, i = 1, 2, 3, the distribution and

shape of the innervation pattern can be controlled, subject to stochastic nature of the selection
in the algorithm. Additionally, a “global distribution parameter” Π (in mm) is defined as the
sum of the clustering and overlap parameters, i.e.,

Π = (R +∆R) + (D +∆D). (5.36)

Algorithm 3 Pseudocode to label seed-points to motor-units.
1: select cMUT ∈ S
2: set Su = S

3: while Su 6= ∅ do
4: compute neighbourhood for central axon: Tc = s ⊂ Su | fd(Su, cMUT) < D

5: if Tc = ∅ then
6: D = D +∆D

7: go to line 4
8: end if
9: ci ← s = rand Tc . the central axon of α-motor-neuron i innervates a random

neuromuscular-junction
10: remove ci from Su

11: IRa
i = 0

12: while IRa
i ≤ IRSP

i do
13: compute neighbourhood for peripheral axons: Tp = s ⊂ Su | fd(Su, ci) < R

14: if Tp = ∅ then
15: R = R +∆R

16: go to line 13
17: end if
18: si ← s = rand Tp . the peripheral axon of α-motor-neuron i innervates a random

neuromuscular-junction
19: IRa

i = IRa
i + 1

20: remove si from Su

21: end while

22: i = i+ 1
23: end while
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Summary
The innervation process results in a set of labelled seed-points S → S̃ or sk → sik. The labelling
of the seed-points is mapped directly to the corresponding fibre-scaffolds Fk → F i

k. And since
each fibre-scaffold is composed of a set of microstructural points, the motor-unit assignment
is simultaneously mapped to these points as well, i.e., Xmicro

k,r → Xmicro,i
k,r . At this stage, the

motor-unit anatomy is described in a discrete sense in the muscle geometry. The discrete
motor-unit distribution parameter κi is defined by

κi(X
micro,j
r,k ) =

{
1 if i = j, ∀ {r, k}
0 otherwise,

(5.37)

where {i, j} = 1, . . . ,NMU iterate over the motor-units, k = 1, . . . ,NFS iterates over the fibre-
scaffolds and r = 1 . . . ,Nmicro

k iterates over the microstructural points within a fibre-scaffold.

5.3.4 Fibre distribution metric
To quantify the innervation patterns, a measure of fibre-type distribution is implemented. The
measure, the so-called co-dispersion index developed by Lester et al. (1983), describes the
distribution of (type-I and -II) fibre-types within a muscle biopsy. Note that smaller (type-S)
motor-units are composed of type-I muscle fibres, and larger (muscle-F) motor-units of type-II.
This classification is only to facilitate co-dispersion index calculation and does not dictate the
underlying fibre-types, which, as mentioned, have continuously varying twitch properties.

The co-dispersion index ranges from −1 to +1 and indicates the randomness of fibre-type
distribution. A value of 0 indicates a perfectly random mixture, larger negative values indicate
a tendency towards “regular intermixing” or a “checkboard” pattern and larger positive values
indicate segregation of fibre-types. The index is derived from a nearest neighbour search and
statistical (chi-squared) analysis. Further details can be found in the aforementioned literature.

5.3.5 Motor-unit anatomy: model characterisation
The algorithm to innervate the fibre-scaffolds and generate the innervation patterns was
implemented in MATLAB. The procedure to generate innervation patterns is governed by several
parameters, classified as: (i) placement parameter cMUT, (ii) distribution parameters D, ∆D,
R, and ∆R, and (iii) shape parameters vi and λi, i = 1, 2, 3. The influence of these parameters
is investigated by applying them to an idealised geometry. However, since the effects of the
placement and shape parameters are relatively straightforward to predict, only the distribution
parameters are varied, while the rest are kept constant.

Methods

To remove any geometrical effects, an idealised geometry with uni-directional fibre orientation
was used. The cuboid had dimensions Lx = 200mm and Ly = Lz = Lw = 40mm with the
fibre orientation aligned with the global x-axis. A perpendicular spacing Λs = 0.375mm and
(along) fibre spacing Λf = 2Λs were used to trace approximately 12,000 fibres.

A total of 100motor-units were modelled and the innervation-ratios computed via Equation
5.16. In terms of the fibre-scaffolds, this yielded innervation-ratios of IRSP

1 = 6 and IRSP
100 = 554
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Table 5.4: Parameter variations for innervation pattern generation. Values given as fractions of Ly =
Lz = 40mm, apart from Π which is given as an absolute value.

ID R/Lw mm D/Lw mm ∆R/Lw mm ∆D/Lw mm Π/mm

1

0.025

0.025

0.025 0.025

4
2 0.125 8
3 0.250 13
4 0.375 18

5

0.125

0.025 8
6 0.125 12
7 0.250 17
8 0.375 22

9

0.250

0.025 13
10 0.125 17
11 0.250 22
12 0.375 27

13

0.375

0.025 18
14 0.125 22
15 0.250 27
16 0.375 32

17

0.750

0.025 33
18 0.125 37
19 0.250 42
20 0.375 47

21

0.025 0.025

0.025
0.125 8

22 0.250 13
23 0.375 18

24

0.125

0.025 8
25 0.125 12
25 0.250 17
27 0.375 22



5.3 Motor-Unit Anatomy in Three-Dimensional Skeletal Muscle Models 87

for the smallest and largest motor-units, respectively (Equation 5.29).
The placement parameter cMUT = [100, 20, 20] mm was fixed at the center of mass of the

geometry. The shape parameters λ1 = 1, λ2 = λ3 = 2 were chosen to skew the territory
shapes slightly. An overview of the distribution parameter variations is given in Table 5.4. The
search space parameters (R and D) were varied in distribution IDs 1–20. The search-increment
parameters (∆R and ∆D) were varied in distribution IDs 21–27. The visual distribution of
muscle fibres as well as quantitative metrics, such as motor-unit territory area and co-dispersion
index were computed. The muscle fibres were plotted over the muscle’s cross-section and were
colour-coded from the smallest to largest motor-units to reveal the qualitative influence of each
distribution parameter.

Since the computation of the co-dispersion index requires classifying the fibres as either
type-I or -II, motor-units 1–75 were classified as type-S, i.e., comprising type-I fibres, and the
remaining as type-F. Another common experimentally obtained motor-unit territory metric is
its area or coverage, expressed as a percentage of total muscle cross-sectional area. This was
computed as by first taking the area created by a convex hull about the fibres of a given motor-
unit territory and dividing it by the muscle cross-sectional area (1600mm2).

Results

Innervation Patterns. A total of 27 distribution parameters variations were considered
(Table 5.4) with the program taking between 60–160 s to perform the assignments on a desktop
computer with a quad-core processor (Intel Core i7-4790K @ 4GHz) with 24GB of memory.

The motor-unit territories are shown in Figures 5.11 and 5.13 for distributions IDs 1–20 and
21–27, respectively. Additionally, boundaries of selected motor-unit territories are shown in
Figures 5.12 and 5.14.

A large variety of territory patterns were generated with a few parameters; increasing R and
D lead to an increasing overlap of the territories (Figure 5.11). IncreasingD alone, which can be
seen along the rows of Figure 5.11, lead to the dispersion of smaller territories throughout the
muscle cross-section. Conversely, increasing R alone, lead to an increased overlap of territory
fibres, seen along the columns of Figure 5.11. The individual effects ofR andD are more clearly
seen in the territory boundaries (Figure 5.13). While increasing the iteration parameters ∆R
and ∆D had a similar effect, this appeared largely on edges of the territories. A concentration
of fibres at the centre of the territory was observed (Figure 5.12). Again, this is more clearly
seen in the territory boundary (Figure 5.14).

Motor-unit territory areas. As the distribution parameters allow for a wider spread
of the territory fibres, the area of the territory increases. To compare the two, the global
distribution parameterΠ (Equation 5.36) is compared to themean territory area per distribution
(Figure 5.15a). Between the two, a highly statistically significant (p < 1× 10−3) relation was
observed, with a Spearman rank correlation coefficient of r = 0.81.

Further correlation metrics were analysed (not plotted): the correlation between mean
territory area and D was statistically insignificant (p > 0.05). On the other hand, R was
statistically significantly correlated to mean territory area (p < 1× 10−3) with a Spearman rank
correlation coefficient of r = 0.96.

Fibre-type mixing. Co-dispersion index values ranged between +0.14 and +0.94. The
influence of the global distribution parameter Π on the co-dispersion index is shown in Figure
5.15b. They were significantly correlated (p < 1× 10−3) with a Spearman rank correlation
coefficient r = −0.91. The co-dispersion index continued to fall as the distribution parameters
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Figure 5.11: Fibre distributions generated by varying R and D over the idealised muscle cross-section.
Corresponding parameter values are indicated along the top and left edges. Fibres belonging to the
smallest to largest units are colour-coded from dark-blue (to cream) to maroon, respectively.

rose until co-dispersion index ≈ 0, where increasing Π beyond ≈ 33 had little to no effect on
co-dispersion index.

Lastly, the outcome measures—the co-dispersion index and territory area—were compared
to each other (Figure 5.16). They showed a statistically significant (p < 1× 10−3) correlation,
with a Spearman rank correlation coefficient r = −0.92.
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Figure 5.12: Territory boundaries generated by varying R and D over the idealised muscle cross-section.
Corresponding parameter values are indicated along the top and left edges. Fibres belonging to the
smallest to largest units as well territory boundaries are colour-coded from dark-blue (to cream) to
maroon, respectively.
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Figure 5.13: Fibre distributions generated by varying∆R and∆D over the idealised muscle cross-section.
Corresponding parameter values are indicated along the top and left edges. Fibres belonging to the
smallest to largest units are colour-coded from dark-blue (to cream) to maroon, respectively.
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Figure 5.14: Territory boundaries generated by varying ∆R and ∆D over the idealised muscle cross-
section. Corresponding parameter values are indicated on the boundaries. Fibres belonging to the
smallest to largest units as well territory boundaries are colour-coded from dark-blue (to cream) to
maroon, respectively.
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Figure 5.15: Relationship between motor-unit anatomy and fibre dispersion and territory size. The marks
are colour-coded according to the value of R: maroon: R = 1mm, dark blue: R = 5mm, green:
R = 10mm, black: R = 15mm and yellow: R = 30mm. (a) Bars show interquartile range.
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Figure 5.16: Relationship between fibre dispersion and territory area. Colour-coding as in Figure 5.15, and
bars show interquartile range.
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5.4 Discussion
First, the implications and drawbacks of the motor-unit activity model are discussed (Section
5.4.1). The majority of the discussion then focuses on the motor-unit territory definition.
Starting with the reconstruction of the microstructure and the idealisations that accompany
it (Section 5.4.3). Then the approach to construct motor-unit territories is contrasted against
other models proposed in literature (Section 5.4.3). Lastly, the plausibility of the generated
motor-unit territories is discussed in relation to experimental observations (Section 5.4.4).

5.4.1 Motor-unit activity

Models of biophysical processes within the muscle microstructure, together with an α-motor-
neuron recruitment model, are used to compute motor-unit activity. The advantage of this
approach is that changes in biophysical processes can be altered to account for various muscle
states, for example, Ca2+ dynamics have been found to be responsible for twitch slow-down in
aged muscle (Larsson et al., 2018, and references therein).

The biggest obstacle to tuning these parameters is the lack of experimental data. The amalgam
of parameters in the source models: i.e., Fuglevand et al. (1993), Aliev et al. (1996) and Razumova
et al. (1999), are obtained from experiments performed by various research groups, over several
decades, on various muscles from various species of mammals. However, certain trends can
be observed for most healthy muscles. For example, Fuglevand et al. (1993) state “[t]he peak
firing rates that have been observed in human muscle during ballistic isometric contractions
have generally ranged from 20 to 45 imp/s” (see references therein). Such observations can
lead to a set of parameters and models which describe human motor-output in general, and
can reveal relative effects of neural input alterations on motor-output, e.g., influence of firing
synchronising on force output (Taylor et al., 2002).

The computation of certain models (such as the ones used currently) require miniscule
times steps leading to high computational times. Since, however, activity is pre-computed and
unidirectionally coupled with the mechanics model, the computational efficiency of the activity
computations has no bearing on the finite element simulation. But if a two-way coupling is
desired, then simpler models may become more attractive. For example, Ramírez et al. (2010)
forgo ionic and cross-bridge dynamics calculations and simply convolute fixed twitch-shapes
with firing times, which would reduce computational overhead drastically compared to the
biophysical models used presently. Further α-motor-neuron pool models (among others) can
be found in Röhrle et al. (2019).

Given the modular nature of the current approach, both the α-motor-neuron pool model and
the twitch force model can be matched to specific research questions or technical constraints.
The current models provide a good trade-off between model complexity and granular control
of motor-unit properties.

5.4.2 Reconstruction of microstructure

A deterministic streamline method was used to recover fibre connectivity by forming 1D fibre
scaffolds within the muscle. Both the spacing between and along the fibres governs the spatial
resolution of the microstructure, and the method requires interpolation of the fibre orientation
field at each of the microstructural points. This is computationally demanding as the cost
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increases exponentially with decreasing spacing ,e.g., reducing the inter-fibre spacing by a
factor of two resulted in an 8-fold increase in computational time.

Alternative methods to compute virtual fibres include laplacian methods (Bayer et al., 2012;
Choi et al., 2013; Sathar et al., 2015; Handsfield et al., 2017), and mapping methods (Blemker
et al., 2005a). These methods do not require a pre-existing fibre orientation field, but rather use
information about muscle geometry together with templates and/or inflow/outflow boundary
conditions to generate the virtual fibres. While these methods may be more computationally
efficient, the advantage of the present method is that a continuous seed-point plane is generated
automatically at the mid-point of the virtual fibres, which simplifies the subsequent motor-unit
anatomy algorithm. Nevertheless, the current work-flow to generate motor-unit anatomy is
not restricted to a specific fibre-reconstruction method.

Most fibre reconstruction methods assume that all fibres run end-to-end in the muscle. This
is not always the case in human skeletal muscles and non-spanning have been observed in
several muscles such as the sartorius, gracilis, biceps femoris, semitendinosus, brachoradialis
and semimembranosus muscles (Trotter, 1993; Lateva et al., 2010). Furthermore, in cats, non-
spanning motor-unit territories have been observed, which spanned about half of the tibialis
anterior length (Roy et al., 1995).

From the perspective of the method, inclusion of non-spanning fibres is relatively straight
forward. Once the fibre-scaffolds have been reconstructed, a maximum fibre length may be
(randomly) imposed, which would cleave existing fibre-scaffolds into multiple sections. This
would result in fibre segments that still conform to the muscle structure. The innervation
process may become slightly more complex since the seed-points, or neuromuscular-junctions,
no longer lie on a continuous surface, but this does not pose a major challenge. However, it’s
worth considering the difference between an anatomical and functional fibre; a fibre may be
anatomically split into segments, but if one of these segments contract, the force would still be
transmitted to the tendons via the connective tissues. In other words, the behaviour would
resemble an anatomically intact fibre. Therefore, non-spanning fibres were not considered in
the current method.

5.4.3 Motor-unit territory anatomy models

Over the past few decades, most research in constructing motor-unit anatomy has focused on
the relative size difference and overlapping of motor-unit territories. While the current method
to assign innervation patterns (and generate motor-unit territories) shares some similarities
with those found in literature, there are several key differences. The main similarity is that the
motor-unit territory definition is split into three steps; first, determining motor-unit size based
on innervation-ratio; second, definition of a motor-unit territory centre; and third, innervation
of fibres within the motor-unit territory boundary (e.g. Shenhav et al., 1986; Cohen et al., 1987;
Stashuk, 1993; Schnetzer et al., 2001; Navallas et al., 2010; Röhrle et al., 2012; Robertson et al.,
2017; Botelho et al., 2019), including the previous version of the current method (Saini et al.,
2018). Besides Röhrle et al. (2012) and Botelho et al. (2019), all algorithms were applied to
idealised geometries with idealised (circular) motor-unit territories shapes. Although this may
not be the limitation of these methods.

The key differences include the ability to confine certain motor-unit-types within a subregion
of the muscle cross-sectional area. For example, smaller (type-S) motor-units are preferentially
located in the superficial regions of the tibialis anterior (Henriksson-Larsén et al., 1985; Mesin
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et al., 2010). However, some muscles, such as the masseter, show evidence both for preferential
localisation (Eriksson et al., 1983; Tonndorf et al., 1994) and against it (van Dijk et al., 2016;
Lapatki et al., 2019).

Additionally, the current approach allows for heterogeneous fibre distribution within a
territory, which is not possible in several of the aforementioned methods, where motor-unit
fibre distribution is ordered about the motor-unit territory centre, e.g., Gaußian distribution
(Shenhav et al., 1986; Saini et al., 2018). Alternatively, some innervation strategies control for
certain anatomical statistics, such as enforcing a constant motor-unit fibre density throughout
the territory. But animal studies have shown that the distribution of fibres within a motor-
unit territory is heterogeneous and may be clustered (e.g Bodine et al., 1988; Bodine-Fowler
et al., 1990; Tonndorf et al., 1994; Roy et al., 1995). The clustering of territory fibres may be
influenced by neuromuscular development after birth, where muscle fibres undergo a pruning
process, being initially innervated by multiple α-motor-neurons, followed by elimination of all
but one of the synapses (e.g. Bennett, 1983; Pfeiffer et al., 1985; Dahm et al., 1988). This process
is thought to leave behind “holes” in territories, which are apparent in some distributions in
Figures 5.12 and Figures 5.14. Since the algorithm proceeds iteratively—from the smallest to
the largest motor-units—previously innervated fibres block the innervation of a subsequent
motor-unit and give rise to gaps or holes within the territory.

The novel combination of the virtual fibre reconstructionmethod and themotor-unit anatomy
method means that three-dimensional motor-unit territories can be defined, taking only muscle
geometry with a fibre orientation field as a starting point.

5.4.4 Plausibility of motor-unit territories

A large variety of patterns were generated with a few parameters. The range of co-dispersion
index ranged between +0.14 and +0.94 for the distributions considered. Healthy muscle of
young adults shows co-dispersion index values close to 0 (Brenner et al., 1987), or even slightly
negative, whereas older and neuromuscular-disordered muscles show more positive values,
e.g.,+0.74 for Charcot-Marie-Tooth disease (Lester et al., 1983). This suggests that, even without
cycles of denervation and reinnervation (Chapter 9), the algorithm is able to produce a range
of healthy and pathological motor-unit territories; at least in terms of the co-dispersion index
alone.

No negative co-dispersion index values were observed within the range of distribution
parameters tested. As the search-space for both the central α-motor-neuron axon and the
peripheral axons was increased, the chance of fibre-type mixing increases also. Resulting in
a reduction of the co-dispersion index. However, at some stage the search-space exceeded
the cross-sectional area of the muscle. Beyond this point, the fibre-type mixing only varied
minimally due to the stochastic nature of the algorithm and co-dispersion index hovered around
0.

A checker-board pattern gives rise to negative co-dispersion index values. This may be
incorporated in the current motor-unit anatomy algorithm by facilitating fibre-types to group
together. For example, Cohen et al. (1987) used a “repulsion factor” to repel certain fibre-types
from each other. It may seem counter-intuitive that fibre repulsion leads to clustering, for
example, if type-II fibres are repelled, then type-I clusters form between them, leading to the
aforementioned checker-board type pattern. There is some evidence for this in healthy human
muscles, albeit in a small number of subjects (Willison et al., 1980; Lester et al., 1983, e.g.). The
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co-dispersion index is but one of several ways in which fibre-type distribution is quantified,
(c.f. Jennekens et al., 1971; Venema, 1988; Sjöström et al., 1992) and the motor-unit anatomy
method is not restricted to its use.

Although, the co-dispersion index is computed via a pairwise analysis of neighbouring
fibres, it seems to be related to the motor-unit territory area, which requires the location of all
of its fibres simultaneously (Figure 5.16). The co-dispersion index values showed an inverse
relationship with the average territory area, with a linear-fit yielding an R-squared value of 0.78.
Consider small territory areas—the chances of finding mixed fibre-type neighbours decreases,
and co-dispersion index would increase. Conversely, larger territory sizes increase the changes
of fibre-type intermixing and reduce the co-dispersion index.

The relationship between co-dispersion index and territory area may only be observable
if the entire population of fibres is used for the fibre-mixing computation, as was the case in
this comparison. This is atypical for experimental measurements, where biopsy numbers are
kept as low as possible. However, a randomly selected biopsy may not be representative of the
(average) fibre mixing seen in the muscle. Such a model can provide insights into the optimal
number and size of biopsies which are still representative of the muscle fibre distribution. For
example, by taking variations on the size and number of virtual biopsies, and comparing the
biopsy co-dispersion index values to that obtained from the entire muscle.

The average of the 100 motor-unit territory areas between the 27 distributions considered
ranged between 2–67% of the muscle cross-sectional area. Mammalian muscle territories
occupy, on average, 24 % (range: 13–35%) of the cross-sectional area in rats (Kugelberg et al.,
1970; Larsson et al., 1991; Kanda et al., 1992) and 32% (range: 19–44%) of the cross-sectional
area in cats (Bodine et al., 1988; Rafuse et al., 1996). The distributions which produced territory
in these ranges were distributions 13–16 with mean territory area 27 % (range: 8–46 %) of the
cross-sectional area. In fact, only the parameterR seemed to affect the motor-unit territory area
size strongly (Figure 5.15a), as this parameter governs the search area of the peripheral α-motor-
neuron axons (Equation 5.31). The search distance for distributions 13–16 was R = 15mm
and considering the (ellipsoidal) shape, yields a search area of 353mm2—which is 22 % of the
muscle cross-sectional area. This corresponds well with the observed mean territory area. The
significantly strong relationship between territory area and the parameter R suggests that R
can be interpreted as mean territory size.





6 Integrating & Implementing the
Neural and Skeletal Muscle Models

Till now, the mechanical description of skeletal muscles (constitutive relation), motor-unit
anatomy (motor-unit discrete distribution factor), and motor-unit activity were treated in
isolation. This chapter integrates these components and also describes the implementation of
the integrated model, together with the required assumptions, modifications, and numerical
considerations required to do so.

In the current modelling framework, skeletal muscles are described at the macroscopic
scale by a continuum-mechanical constitutive relation. The constitutive relation averages
microstructural properties of skeletal muscle, for example, muscle fibres are described via a
fibre orientation field, fibre deformation via (local) stretch, and the force-length relationship
via a phenomenological model. Muscle activity is decomposed into spatial and temporal
components to account for individual motor-unit anatomy and activity, respectively. These
components, however, are described microstructurally, i.e., computed via cross-bridge dynamics
and individually reconstructed muscle fibres (Chapter 5). Therefore, the muscle activity must
be homogenised in order to be integrated with the skeletal muscle constitutive relation (Section
6.1).

By decomposing muscle activity into per-motor-unit activity and anatomy, certain assump-
tions are required on the spread of activity within the motor-unit. That is, the volumetric
motor-unit is scaled by a single time-varying activity, which requires the assumption that the
action-potential propagates instantly throughout the motor-unit once it arrives at the neur-
omuscular-junction. In reality, the action-potential propagates along the fibres of a motor-unit
in a finite amount of time. The impact of assuming instant action-potential propagation on the
mechanical response is investigated by using a multiscale, multi-physics skeletal muscle model
to simulate a contraction both with finite and infinite action-potential propagation (Section
6.2).

Prior to implementing the integrated model for use with a commercial finite element solver,
certain adaptations and numerical investigations are required. This includes: the re-expression
of the musculotendon complex constitutive relation in a local coordinate-system, investigation
of the incompressibility behaviour and element type performance (Section 6.3). Then, the
integrated model is demonstrated with an idealised geometry and compared to the status-quo
modelling approach (Section 6.4). Lastly, the limitations and plausibility of the integrated model
are discussed (Section 6.5).

6.1 Homogenising Motor-Unit Territories
The process of innervation pattern generation is briefly summarised—starting from the muscle
geometryB0 and the fibre orientationa0(X),X ∈ B0. First, themicrostructure is reconstructed
using a streamline tracing method (Section 5.2.2) resulting in a set of neuromuscular-junctions

97
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or seed-points S = {sk} (k = 1, . . . ,NFS) and corresponding fibre-scaffolds Fk. The fibre-
scaffolds comprise a set of microstructural points, i.e., Fk = {Xmicro

r,k } (r = 1, . . . ,Nmicro
k ).

Second, an iterative, semi-stochastic approach is used to innervate the NFS seed-points by NMU
α-motor-neurons (Section 5.3). This process yields a set of innervated seed-points, i.e., sk → sik.
Where the superscript indicates that the quantity belongs to motor-unit i.

Since each seed-point corresponds to a fibre-scaffold, the innervation of a seed-point by α-
motor-neuron i translates to the entire fibre-scaffold i.e., Fk → F i

k and to all microstructural
points that it contains, i.e., Xmicro

r,k → Xmicro,i
r,k . For clarity, the subscripts (·)r,k are omitted,

i.e., Xmicro,i. In summary, the innervation process yields each point Xmicro ∈ B0 grouped into
a motor-unit; thereby defining κi. The next step is the homogenisation of this microstructural
information to the macroscopic continuum-mechanical scale.

Recall, the concept of the representative volume element, which assumes that X ∈ B0
represents the averaged microstructure in the volume surrounding X . Basically, the size of the
representative volume element is one at which the microstructure can be no longer seen with
the naked eye. Below this scale the density and behaviour of the material starts to become
heterogeneous.

The challenge arises when microstructural properties below the scale of the representative
volume element need to be considered. Presently, this is the motor-unit territory distribution
described by the innervated Xmicro,i. A common approach to account for such heterogeneous
microstructural variations is the statistical volume element (e.g. Beran, 1968; Kröner, 1972;
Schröder et al., 2011).

Essentially, the probability of finding a microstructural point of motor-unit i in a region
about the macroscopic material point X is computed. Since the continuum body is spatially
discretised by the finite element method, the Gauß points are used as the material point about
which the statistical homogenisation is carried out.

Let the finite element mesh be composed of p = 1, . . . ,NGP Gauß points with coordinates
ξ0,p. Then, at each microstructural point Xmicro,i, a nearest neighbour search is carried out to
identify the closest Gauß point. Since the spatial resolution of the microstructural points is
much finer than the Gauß points, this results in multiple microstructural points having a single
Gauß point as their nearest neighbour.

For a Gauß point p (ξ0,p), let the number of associated microstructural points be Np
GP . Then,

the probability of finding a point of a given motor-unit about ξ0,p is computed by

κ̂i(ξ0,p) =
1

Np
GP

Np
GP∑

j=1

κi

(
Xmicro,i

j

)
. (6.1)

Recall that κi is the discrete motor-unit distribution with the property κi(X
micro
i ) = 1 (Equation

5.37). That is, about a given Gauß point, the total number of neighbouring microstructural
points that belong to a given motor-unit are divided by the total number of neighbours. This
assumes that all fibre-scaffolds are of the same diameter, whereas in reality muscle fibres show
varying sizes.

Since each Xmicro,i is assigned to at least one motor-unit, together with the equation above,
the following holds

NMU∑
i=1

κ̂i(ξ0,p)
!
= 1. (6.2)
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The distribution factor complements the motor-unit activity αi(t) and forms the second
pillar for the computation of muscle activity (now at the Gauß points) αM(t, ξp) (Equation 4.40),
restated here for convenience:

αM(t, ξp) =
NMU∑
i=1

αi(t) κ̂i(ξp). (6.3)

Analogous to Equation 4.41, the positions of the Gauß points in the current and reference
configuration are related by the placement function, i.e.,

ξp = χ (ξ0,p, t), (6.4)

where ξ0,p is the Gauß point in the reference configuration.

6.2 Muscle Activity Decomposition: Assumption on
Action-Potential Propagation

The models of excitation-contraction coupling describe the temporal change in membrane
potential and Ca2+ concentrations in a muscle cell, in response to current stimuli at the
neuromuscular-junction, and the subsequent cross-bridge dynamics (Section 5.1). Once de-
polarisation is initiated at the neuromuscular-junction, the action-potential propagates along
the fibre, leading to Ca2+ and cross-bridge dynamics in its wake. The time taken between
stimulation at the neuromuscular-junction and fibre-tension production is the so-called elec-
tromechanical delay and typically ranges between 8–100ms (Schmid et al., 2019, and references
therein).

The current model is developed to primarily investigate movements, where the time span is
typically in seconds. Since this is well above the electromechanical delay, the relative duration
of action-potential propagation is quite small. Therefore, the action-potential is assumed
to propagate instantly, synchronising the Ca2+ and cross-bridge dynamics along the fibre.
Furthermore, by assuming that the stimulus current arrives at all neuromuscular-junctions
of a motor-unit at the same time instance, the Ca2+ behaviour of the entire motor-unit is
essentially characterised by a single representative sarcomere. This greatly simplifies the
modelling framework since electrophysiology no longer needs to be modelled.

To assess the errors in force production introduced by this assumption, a multiscale and
multi-physics chemo-electro-mechanical skeletal muscle model is used (Heidlauf et al., 2014;
Heidlauf, 2016). The model is used to simulate a contraction, both with finite and infinite action-
potential propagation. Full details of the model can be found in the cited literature and only a
short description of the model follows.

The model links the physiological and anatomical structure of the neuromuscular system
and consists of one-dimensional muscle fibres embedded in a three-dimensional continuum-
mechanical model of skeletal muscle tissue. Within the fibres the entire excitation-contraction
coupling pathway is considered, including (i) the propagation of action-potentials along the
muscle fibres caused by the stimulus of α-motor-neurons, (ii) the induced calcium dynamics
serving as an intracellular second messenger to (iii) enable cross-bridge cycling and local
tension production in the fibre.

The microscopic muscle fibre models are then coupled to a macroscopic continuum-
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mechanical model to predict the deformations and reaction forces on the tissue scale. This is
done in a similar manner to that described in the previous section. Gauß point stresses are
computed by averaging the local tension contributions of the fibres in their neighbourhood.
The deformation of the macroscopic muscle geometry is, in turn, used to update the geometrical
configuration of the muscle fibres as the contraction proceeds.

6.2.1 Methods
To avoid geometrical influences, an idealised cuboid representation of a musculotendon complex
was used (Figure 6.1a), with length L, width W and height H of 40× 10× 10 cm. Both muscle
and tendon tissue had the same cross-section, with the muscle and tendon lengths of 5/7L
and 2/7L, respectively. The musculotendon complex was discretised by seven Taylor-Hood
elements, employing tri-linear and tri-quadratic Lagrangean shape functions.

The muscle was populated with 16 fibres, which were discretised by linear Lagrangean
finite elements. They were split into 5 motor-units with innervation-ratios of 2, 2, 2, 4 and 5,
respectively (Figure 6.1a). The territories were generated with parameters D = R = ∆R =
∆D = 1/4W , W = I and cMUT = [L/2,W/2,H/2].

The motor-units were stimulated with a fixed firing rate, taken as 27.8, 17.3, 14.0, 10.4 and
6.7Hz for motor-units 1 to 5, respectively, and recruited with an offset 10ms with respect to
the previous motor-unit (Figure 6.1b). The stimulation consisted of a current pulse injected into
the central node (virtual neuromuscular-junction) of the corresponding fibres. Instantaneous
propagation of action-potential was modelled by delivering the stimulus to all fibre nodes
simultaneously. It is important to note that for this case, the homogenisation of the microscopic
active stresses yields the same results as the activity mapping described in Section 6.1.

Besides the geometry, all model parameters were adapted from the baseline experiment in
Schmid et al. (2019). The computations were performed using the open source software library
OpenCMISS (Bradley et al., 2011) with a simulation time of 870ms.

6.2.2 Results
The simulations with and without action-potential propagation were performedwith OpenCMISS
on a desktop computer with a quad-core processor (Intel Core i7-4790K @ 4GHz) with 24GB
of memory, resulting in a computational times of 12 h and 6 h, respectively. Snapshots of both
models during various time steps are shown in Figure 6.2. The reaction forces for both, summed
over the nodes at the fixed tendon end, are shown in Figure 6.3.

The average difference in the time taken for the force to attain a given value, i.e., time-to-
force, between both models was 16.6ms, with both models reaching the same maximum force
magnitude of 39N. Further, electromechanical delay was calculated for both conditions by the
time difference between the (first) stimulus and the time at which the musculotendon complex
force increases by 1 % of the maximum (twitch) force (Mörl et al., 2012). The electromechanical
delays for the cases with and without action-potential were 18.8ms and 8.2ms, respectively.
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Figure 6.1:Multiscale neuromuscular simulation architecture and activation for action-potential comparis-
ons. (a) Maroon and light brown denote muscle and tendon, respectively. The top and side muscle surface
is removed to show the fibre distribution, which are colour-coded according to the motor-unit distribution,
motor-unit 1: red, 2: yellow, 3: light green, 4: light blue and 5: dark blue. (b) α-Motor-neuron firing
times in black, with the twitch response shown in red.

(a) t = 20ms. (b) t = 20ms.

(c) t = 120ms. (d) t = 120ms.

Figure 6.2: Snapshots of multiscale simulation (left) with and (right) without action-potential propagation.
Normalised transmembrane voltage between blue (0) and red (1) after stimulation of motor-unit 5.



102 Chapter 6: Integrating the Neural and Skeletal Muscle Models

6.3 Implementing the Neuro-Musculoskeletal Model
Neural information (motor-unit anatomy and activity) is computed via a workflow implemented
in MATLAB (R2018a, The MathWorks, Inc., USA) (Section 6.3.1) and takes as inputs: muscle
geometry (with a fibre orientation field) and excitatory drive. The former is used to perform;
microstructure reconstruction, α-motor-neuron innervation, and statistical homogenisation,
forming three-dimensional motor-unit territories in the muscle geometry κ̂i(X); and the
latter is used to compute individual motor-unit activities αi(t). Outputs from the neural
information workflow are integrated in the constitutive relation of the musculotendon complex
αM(αi(t), κ̂i(ξ)), which is modelled by a FORTRAN user-material, developed for the finite element
solver Abaqus/Explicit (v2017, Dassault Systèmes, France) (Section 6.3.2).

Before demonstrating the integrated finite element model, certain numerical aspects have to
be verified. First, recall that the incompressibility is controlled by a penalty-parameter (Section
4.2.1). The impact of the penalty-parameter on model-accuracy and computational-time was
quantified by comparing simulated results to a perfectly-incompressible analytical solution
(Section 6.3.3).

Second, the drawbacks inherent to some element formulations, such as volumetric locking or
“hourglassing”, should be minimised. The physical reliability of the elements was tested with a
convergence analysis (Section 6.3.4). Finally, an idealised integrated model was generated and
compared to a status-quo continuum model to demonstrate differences in activity and motor-
output (Section 6.4).

6.3.1 Pre-computing neural information in MATLAB
The workflow to compute individual motor-units activity αi(t) (i = 1, . . . ,NMU) and their dis-
tribution maps κ̂i(t), is implemented in MATLAB. This neural information is computed according
to the procedures described in Chapter 5. The workflow is organised in six main steps:

1. Read in and extract finite element mesh and fibre orientation information (de-
scribed below),

2. Compute the activation of all motor-units (Section 5.1),
3. Track fibre-scaffolds within the muscle volume (Section 5.2),
4. Generate innervation patterns on the seed-point plane (Section 5.3),
5. Generate motor-unit territories via homogenisation at Gauß points of the finite

element mesh (Section 6.1),
6. Generate output for the musculotendon user-material (described below).

A global settings file is used to govern key processes in the workflow and is divided into three
major sections: (i) script options, (ii) characterisation parameters, and (iii) plotting options.
Script options specify environment variables such as number of cores to be used, the operating
system on which the workflow is being executed and which steps to be performed, e.g., on
subsequent runs the extraction and tracking of fibres may no longer be necessary. The largest
section is the parameter section, which is further split into each of the steps as outlined above.
For example, information about the α-motor-neuron pool such as the number of motor-units
NMU and the innervation-ratios (Equation 5.16) or motor-unit territory distribution parameters
D and R (Algorithm 3) are specified here.
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Figure 6.3: Reaction force measured at the tendon for both models with action-potential propagation:
dark-blue trace, and without action-potential propagation: maroon trace.

Mesh extraction

The workflow to pre-compute the neural information is closely tied to the finite element
solver used, therefore several calls are made to Abaqus/Explicit to extract mesh information
automatically and for verification purposes. The geometry is imported from an Abaqus input-
deck, which contains the nodal coordinates N, element connectivities and per-element fibre
orientations.

The input-deck does not however, contain information about the Gauß points, and it must
be extracted by other means. A dummy user-material is used to access the ID numbers and
coordinates of the Gauß points. The element type can then be determined based on the number
of nodes and Gauß points per element (cf. Table 6.1). Note that muscle geometries with
mixed-element types are currently not supported.

An important aspect in the fibre-tracing algorithm is restricting the process within the
geometry of the muscle (Algorithm 2). The MATLAB function boundary returns a triangulated
surface K based on the node points N of the geometry, i.e.,

K = boundary(N, sf), (6.5)

where sf is a shrink factor, which yields a convex-hull when it is set to unity.
Based on this triangulation, voxelisation, and ray-tracing techniques are used to test if any

arbitrary point c lies within the surface via the function intriangulation (Aitkenhead, 2013;
Korsawe, 2016), i.e.,

intriangulation(c,K) =

{
1, if c is within the muscle boundary,
0, otherwise.

(6.6)
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6.3.2 Integrated neuromuscular model in Abaqus/Explicit
The finite element neuro-musculoskeletal model is constructed from two main parts; a file
describing the geometry, boundary conditions, material properties and solver settings—the
input-deck; and a file describing the constitutive relation of the muscle—the user-material.

The generation of an input-deck or input-file is routine in finite element analyses; whether it
describes the simulation of a single element or the simulation of a car crash, the structure of
such a file is essentially the same. Typically, the input-deck contains the descriptions required
for the solution of the initial boundary value problem (Section 3.1.7). In Abaqus, the input-deck
contains: geometrical information (e.g., nodal coordinates, element connectivity and fibre
orientations), material information (e.g., constitutive parameters), solver settings (e.g., solver
type and numerical damping), contact and boundary conditions, and output settings. For
further information, see Dassault Systèmes (2017).

What is more interesting, is the generation of the user-material—since the user-material
is where the integrated neuromuscular model manifests itself. In other words, it is the user-
material which integrates motor-unit activities αi(t), territory distribution factors κ̂i(ξ) and
combines them with the continuum-mechanical constitutive relation to compute passive and
active stresses at each Gauß point within the musculotendon finite element model.

Hyperelastic user-materials: special considerations

Non-standard constitutive relations are implemented in Abaqus/Explicit via a so-called user-
material. The user-material is executed at each Gauß point of the finite element model, at each
time increment tn. It must, at the very least, update the stress tensor at the current increment
σ(tn+1) = σn+1, depending on the deformation from the current increment (Un+1), which is
supplied to it via Abaqus/Explicit (cf. Equation 3.87). Alternatively, σn+1 can be computed
from the increment in displacement ∆U and the stress from the previous increment σn.

The user-material itself is written in FORTRAN. Rather than being called for each Gauß point
individually, blocks of Gauß points are passed to the user-material in a vector format (hence
the user-material is commonly referred to as a VUMAT, i.e., Vectorised User-MATerial). The block
size fluctuates between 64 and 128 points and is organised by Gauß point, for example, a block
of 64 may be called for the Gauß point with label 1 for 64 distinct elements.

The VUMAT expects the constitutive relation in a local coordinate-system, which co-rotates
with the material. In Chapter 3, all quantities (X ,F ,R, . . .) were embedded in a three-
dimensional Euclidean space with a fixed, global coordinate-system (or basis). Whether a
quantity was in the reference or current configuration, the same global basis (described by the
basis-vectors gi) was used. Note, the terms “reference basis” Ei and “local basis” ei are intro-
duced to refer to coordinate-systems in the reference and current configurations, respectively.
For the global coordinate-system considered till now, gi = Ei = ei.

In the local coordinate-system, the local basis rotates with the body, leaving the reference
basis behind, i.e., gi = Ei 6= ei

1. In the local coordinate-system, Ei is a uniquely oriented local
basis system at any point within the body in the reference configuration, which maps to ei in
the current configuration. The mapping to ei is defined by a pure rotational transformation of
Ei, i.e.,

ei = R̂Ei. (6.7)

1The global and reference coordinate-systems are not required to be co-linear, i.e., gi 6= Ei is also possible.
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Consider the deformation gradient F (Equation 3.7), rewritten in index notation and with
basis systems (in the global coordinate-system) as

F EE =
3∑

i,j=1

F EE
i,j (Ei ⊗ Ej) where F EE

i,j =
∂xE

i

∂XE
j

. (6.8)

Notice that since gi = Ei = ei are coincident, F EE = F . The superscripts (·)E and (·)e
specify the basis system of the quantity. For example, xE

i are the deformed coordinates of x
in the reference basis. The two-point tensor F EE has a double superscript to denote that both
configurations are described by the same (reference) coordinate-system. In the local coordinate-
system, typically gi = Ei 6= ei and the deformation gradient is thus

F =
3∑

i,j=1

F eE
i,j (ei ⊗Ej) =: F eE, where F eE

i,j =
∂xe

i

∂XE
j

. (6.9)

By combining 6.7, 6.8 and 6.9, it can be shown that

F EE
i,j = R̂i,k F

eE
k,j , or F EE = R̂ F eE (6.10)

in tensor notation (derivations and proofs are given in Nolan et al., 2019). SinceF is a two-point
tensor (cf. Equation 3.66), only one operation is required for the transformation between F EE

and F eE. Generally, for second-order tensors the standard transformation holds, i.e.,

AEE = R̂AeeR̂T, (6.11)

where Aee is a generic second-order tensor in the local basis system.
In the local coordinate-system, R̂ is given by the rotation tensor obtained via the polar

decomposition of the deformation gradient (Equation 3.10). Then Equation 6.10 can be written
as

F eE = RTF EE = RTRU = U , (6.12)

recalling that F EE = F . This shows that the deformation gradient equals the right Cauchy-
Green stretch tensor in the local coordinate-system. This is intuitive since the rotation of the
basis already accounts for the rotation, thus the deformation is based on the stretch alone.
Substituting this into the left and right Cauchy-Green deformation tensors (Equations 3.14 and
3.13, respectively), gives

bee = F eE (F eE)T = RTF EE (F EE)TR (6.13)
= RTRU UTRTR = U U , (6.14)

and

CEE = (F eE)TF eE = (F EE)TRRTF EE (6.15)
= UTRTRU = U U . (6.16)

Thus in the local coordinate-system,
b = C . (6.17)
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Consider the skeletal muscle fibre orientation a0 in the reference configuration, restating
Equation 4.21, in the local coordinate-system, and using Equation 6.12:

λae = F eE aE
0 = U aE

0 , (6.18)

where |a| = 1. Since the local coordinate-system rotates with the material as does the fibre
orientation (affine deformation assumption)—the fibre directions in the reference and current
configuration remain unchanged in this coordinate-system.

Recall, the velocity gradient l (Equation 3.22), substituting F = RU and using Equation
3.24, l can be written as

l = ṘRT +RU̇ U−1RT. (6.19)

Then the rate of deformation d (Equation 3.22), given by the symmetric part of l, becomes

dEE =
1
2
R
(
U̇ U−1 +U−1U̇

)
RT = RDEERT, (6.20)

whereDEE is called the rotated rate of deformation tensor. Note the superscripts are selectively
included to emphasise the basis. In the local coordinate-system, the mapping of the rate of
deformation d (Equation 6.11) gives

dee = RTdEER. (6.21)

Comparison of Equations 6.20 and 6.21 shows that

DEE = dee. (6.22)

That is, the rate of deformation tensor with respect to a local basis (rotating with the body)
equals the rotated rate of deformation with respect to a global basis (fixed in the reference
configuration), which is an intuitive result.

The Cauchy stress σ in the local coordinate-system σee is given by the mapping

σee = RTσEER = J−1USEE U , (6.23)

where the right most expression is obtained using Equations 3.10 and 3.332. Lastly, the stress
power (Equation 3.55) in the local coordinate-system is given by making the appropriate
substitutions (Equations 6.20 and 6.21) in Equation 3.55:

Pdef(t) =

∫
B0

JσEE : dEE dV =

∫
B0

JRσeeRT : RdeeRTdV (6.24)

=

∫
B0

Jσee :dee dV , (6.25)

since RTR = I . Via Equation 3.60, the integrand in the above equation is the internal energy
per unit volume, i.e., strain-energy. The strain-energy is used in simulation analyses to ensure
physical plausibility of the system, in that the artificial or stabilisation energies are not large
compared to the physical (strain-energy) of the system.
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Stress update with heterogeneous activity

The overall stress response of the musculotendon complex, at a given Gauß point ξp, can
then be updated at increment n+ 1 by combining Equations 3.87 and 6.23, i.e., (dropping the
superscripts that signify the coordinate-system)

σMTC
n+1 (ξp) = J−1Un+1(ξp)S

MTC
n+1 (ξp)Un+1(ξp), (6.26)

recalling that Un+1 is computed by an explicit central difference scheme (Equation 3.85). The
second Piola-Kirchhoff stress update is given by making the appropriate substitutions in
Equation 4.45, i.e.,

SMTC
n+1 = 2

(
cMTC
1 + I1,n+1 c

MTC
2
)
I − 2cMTC

2 U 2
n+1 + 2c Jn+1(Jn+1 − 1)U−2

n+1 − dU−2
n+1 (6.27)

+
(
2 cMTC

3 cMTC
4 (I4,n+1 − 1)c

MTC
4 −1 + 2 cMTC

5 cMTC
6 (I4,n+1 − 1)c

MTC
6 −1

)
M

+

(
1

I4,n+1
Pmax αM,n+1 fl(λn+1)

)
M ,

where the dependence on the Gauß point ξp has been dropped for clarity. The invariants are
updated by:

I1,n+1 = tr U 2
n+1, I2,n+1 = 1/2

[
(tr U 2

n+1)
2 − tr (U 4

n+1)
]
, (6.28)

I3,n+1 = det U 2
n+1 = J2

n+1, I4,n+1 = a0 ·U 2
n+1 a0 = λ2

n+1.

The activity in Equation 6.27, αM,n+1(ξp), is computed per increment, at the Gauß point
locations. The activities of the motor-unit pool are stored within the user-material via a matrix,
where each column represents the activity of motor-unit i (i = 1, . . . ,NMU) i.e.,

a(q, i) =


t̃1 α1(t̃1) . . . αNMU(t̃1)
t̃2 α1(t̃2) . . . αNMU(t̃2)
...

...
...

t̃end α1(t̃end) . . . αNMU(t̃end)

, (6.29)

where t̃ typically do not correspond with the finite element solver time steps tn and linear
interpolation is used to account for any mismatches.

Similarly, the territory distribution factors at the Gauß points ξ0,p (p = 1, . . . ,NGP) are stored
in a matrix km, i.e.,

km(IDGP
p , i) =


IDGP

1 κ̂1(ξ1) . . . κ̂NMU(ξ1)
IDGP

2 κ̂1(ξ2) . . . κ̂NMU(ξ2)
...

...
...

IDGP
NGP

κ̂1(ξNGP) . . . κ̂NMU(ξNGP)

, (6.30)

where IDGP
p is the ID of Gauß point p. Each column of km is the distribution factor of motor-

unit territory i within the muscle geometry. The rows of km represent the total motor-unit
distribution at a Gauß point and (must) sum to unity (cf. Equation 6.2). Note that the above
matrix is largely sparse, e.g., for smaller units non-zero distribution factors appear only at a few
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Gauß points. Therefore, compression techniques were used to reduce the size of the matrix.
At a Gauß point p and time increment tn+1, the muscle activity is computed in the VUMAT via

αM,n+1(IDGP
p ) = αM(tn+1, IDGP

p ) =

NMU∑
i=1

a(n+ 1, i) km(IDGP
p , i), (6.31)

assuming that the rows of a correspond to the solver time increments. At this stage, all
quantities required for the stress update are known, including the heterogeneous activity
computed via individual motor-unit activities and distributions. The stress update is then used
to compute the local accelerations in the muscle geometry at the next time step and the solution
process carries on (Section 3.2.3).

6.3.3 Incompressibility and element types

A nearly-incompressible formulation is used to model the isotropic behaviour of the mus-
culotendon complex (Section 4.2.1), where the penalty-parameter c controls the degree of
incompressibility. As c→∞, the behaviour approaches pure incompressibility. As the mater-
ial becomes more incompressible, the stress propagates across the element with ever increasing
speed and thus reduces the critical time step of the explicit finite element solver (Section 3.2.3).
Smaller time steps lead to longer computational times. Thus, the cmust be chosen appropriately
to balance material behaviour accuracy and computational speed. In addition to this, certain
element types are simply not well-suited for (nearly) incompressible behaviour, these should
be identified and excluded.

Methods

The incompressible analyses were performed under uniaxial loading, allowing the comparison
to a purely incompressible analytic-solution. A cubic geometry with Lx = Ly = Lz = L =
1mm was used and meshed with a single element for the hexahedral element types and 12
elements for the tetrahedral element types. Fibre orientation was aligned with the global
(vertical) y-axis (2−direction) and the muscle was constrained on the faces: ux(x = 0, y, z) = 0,
uy(x, y = 0, z) = 0 and uz(x, y, z = 0) = 0. The muscle was initially displaced vertically
downwards by uy = 0.4mm and then upwards by uy = 0.8mm. The material model as
described in Chapter 4 is used with material parameters given in Table 4.1.

The penalty-parameter c was increased and the forces obtained from the simulations were
compared to the analytical solution. The analytical response for the purely incompressible
behaviour was computed by Equations 4.59 and 4.60 (direction 2 is now the in-fibre direction)
and denoted as σ2, and compared to the stress responses from the simulations σ̃2 via

σerr =

√√√√ T∑
n=1

(σ̃2,n − σ2,n)
2

T
, (6.32)

where σerr is the root mean squared error (RMSE), and n = 1, . . . ,T are the increments. The
RMSE σerr was computed for each element type (Table 6.1) and for a range of penalty-parameters
c = [0, 10, 25, 50, 75, 100, 250, 500]. The computation time for each simulation was also recorded.
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Results

Across all element types, on average, increasing the penalty-parameter c from 0 to 500 reduced
the RMSE from 1.2× 10−2 MPa to 2.2× 10−6 MPa and increased the computational time by a
factor of 18 (Figure 6.4b). The degree of compressibility can be quantified by the change in the Jac-
obian J (Equation 3.42), where any deviation from J = 1 reflects (undesired) volumetric changes.
The values of the Jacobian at peak compression λ = 0.6 were J = [0.5071, 0.9974, 0.9995, 0.9999]
for c = [0, 10, 50, 100], respectively. Apart from C3D8I, all elements showed convergent beha-
viour with increasing c.
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Figure 6.4: Accuracy of incompressible behaviour and effect on computational time. (b) Normalised to
computational time at c = 0.

6.3.4 Convergence of element types
There are a plethora of element types in the finite element method, each suited to its own
niche application. At present, an element is required that can undergo large deformation with
nearly incompressible behaviour. The following is restricted to the (three-dimensional) element
library provided by Abaqus/Explicit; classified into hexahedral (C3D8, C3D8I, C3D8R) and
tetrahedral (C3D4, C3D10M) (Table 6.1). The C3D8 and C3D8I elements are fully integrated
with 8 Gauß points, with the latter augmented with incompatible modes. Elements with

Table 6.1: Element types available in Abaqus/Explicit with IP: Gauß points.

C3D8 C3D8I C3D8R C3D4 C3D10M

Shape hexahedral hexahedral hexahedral tetrahedral tetrahedral
Nodes 8 8 8 4 10
IPs 8 8 1 1 4
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incompatible modes have additional internal degrees of freedom with “[t]he primary effect … to
eliminate the so-called parasitic shear stresses that are observed in regular displacement elements
if they are loaded in bending” (Dassault Systèmes, 2017).

Both the C3D8R and C3D4 element types have 1 Gauß point, the former subjected to
(selective) reduced integration and augmented with hourglass control. Lastly, the C3D10M
element is a 10-node tetrahedral element with 4 Gauß points, employing amodified formulation2

including hourglass control.

Methods

To judge the convergence behaviour of the elements, an idealised geometry of the musculoten-
don complex was generated for each element type. The models were subjected to passive and
active deformations and repeated for various mesh refinements. The predicted deformations of
the models were compared to each other, i.e., an analytical solution was not computed given
the complex loading conditions.

A cuboid geometry with Lx = Lz = 2mm, Ly = 10mm was used (Figure 6.5). The tendon
was defined by setting γM = 0 (Equation 4.47) within regions 3mm from either ends of the
muscle. The fibre orientationwas alignedwith the global y-axis and the element was constrained
on the faces: uy(x, y = 0, z) = 0 and uz(x, y, z = 0) = 0. The material model as described in
Chapter 4 is used with material parameters given in Table 4.1.

For the passive scenario, a combined tensile and shear force was applied to the rectangular
musculotendon complex. A pressure load was applied to the top face (x, y = Ly, z) in the
y-direction py = 2× 10−2 MPa and simultaneously in the x-direction px = 1× 10−4 MPa.

For the active scenario, the top face was unconstrained, thus allowing the muscle to contract
freely. The activity was linearly ramped between 0 and 1, and was applied homogeneously
throughout the muscle, i.e., the muscle consisted of a single motor-unit.

For both scenarios, the tip-displacement utip
x and utip

y was measured at the (unconstrained)
top, corner node (x = Lx, y = Ly, z = Lz). The mesh was refined to produce Gauß points
between approximately 10× 101 to 10× 105 across all element types.

Results

For the passive scenario, the tip-displacements utip
x and utip

y are plotted against the number of
Gauß points for each element type in Figures 6.6a and 6.6b, respectively. Apart from C3D4,
all elements showed convergent tip-displacement with mesh refinement. The best rate of

x

y
z

Figure 6.5: Idealised geometry for element type convergence analysis. The muscle and tendon regions are
shown in maroon and grey, respectively. The Dirichlet and Neumann boundary conditions are shown on
the left and right, respectively. The node used for tip-displacement is marked on the top right.

2The modified formulation is a trade-secret and thus information is not given on its exact formulation.
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convergence were exhibited by the C3D10M element, followed by C3D8I, C3D8R, and C3D8
elements.

The active scenario tip-displacements are shown in Figures 6.7a and 6.7b. The tip-
displacements were more chaotic than the passive case, given the dynamic nature of the
deformation, i.e., unconstrained contraction. Nonetheless, they did show some convergence.
Again, C3D4 performed the worst, with the convergence behaviour for the remaining elements
following a similar trend as in the passive case: (best) C3D10M, C3D8I, C3D8R to C3D8 (worse).
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Figure 6.6: Convergence of different element types under mesh refinement—passive behaviour.
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6.4 Demonstration of the Integrated Model
The entire workflow to arrive at a continuum-mechanical skeletal muscle constitutive relation
that takes motor-unit territories (MUTs) and activities into account is summarised in the
following for a motor-unit pool with index i = 1, . . . ,NMU, One pillar of the computation
involves the computation of the individual motor-unit activities, i.e.,

E(t), t = [0, tend]
excitatory drive

→ Di | E(t) > Ri

recruitment
model

→ r(Di, . . .)→ A2,i(r(Di), . . .)→ αi(t)

excitation-contraction coupling model

→ a. (6.33)

The second pillar involves the computation of the motor-unit spatial distributions, i.e.,

B0, a0(Y )

muscle
architecture

→ {S ,F}
reconstructed
microstructure

→ {S̃ , F̃} → κi(X
micro)

discrete MUTs

→ κ̂i(ξ)

homogenised
MUTs

→ km. (6.34)

Lastly, these are integrated into a spatio-temporal weighted activity, which is used to scale
the active stress in the overall musculotendon complex stress response. This is done in the
user-material:

αM(t, ξ) = f(a,km)→ Sactive(t, ξ)→ SMTC(t, ξ). (6.35)

The integrated neuromuscular model is demonstrated with an idealised geometry. A ramped
excitatory drive is supplied to themusculotendon complex to recruit all motor-units sequentially
and produce a maximal contraction. The maximal contraction is compared to a status-quo
approach; where the same motor-unit activities are used to compute an equivalent, spatially
constant activity parameter that is applied uniformly throughout the muscle. Differences
between the two models are quantified by comparing the intramuscular pressure and tendon-
force.

6.4.1 Methods
Thegeometry used for the distribution parameter investigation (Section 5.3.5) was used here also,
i.e., a cuboid geometry withLx = 200mm andLy = Lz = 40mm populated with approximately
12,000 fibre-scaffolds. Additionally, tendons were defined by setting γM = 0 (Equation 4.47)
within regions 40mm from either ends of the muscle, and muscle fibre orientation was aligned
with the global x-axis. The tendinous ends were constrained, i.e., uy(x = 0, y, z) = 0 and
uz(x = Lx, y, z) = 0.

Fibre-scaffolds were innervated by 100 motor-units, with innervation-ratios following an
exponential distribution, detailed previously in Section 5.3.5 and shown in Figure 5.3a. The
motor-units were recruited by a linearly increasing excitatory drive E(t), which elicited a
maximum ramped contraction over 1 s. The remaining model components were specified as:

1. Motor-neuron-pool parameters in Table 5.1.
2. Twitch parameters in Table 5.2, and from Campbell et al. (1993), Aliev et al. (1996) and

Campbell et al. (2001).
3. Distribution parameters specified by ID 23 in Table 5.4 with shape parameters λ1 =

λ2 = λ3 = 1.
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4. Musculotendon material parameters in Table 4.1.
5. Numerical parameters c = 10 and element typeC3DI, with y-z plane element dimensions

2.5× 2.5mm with a x-direction dimension of 5mm.

The excitatory drive, together with items 1 and 2 from the list above yields the individual motor-
unit activities αi(t) (i = 1, . . . ,NMU). Discrete motor-unit territory distributions κi(X

micro) are
given by the distribution specified by item 3 in the list above. Applying statistical averaging
at the Gauß points ξ0,p (p = 1, . . . ,NGP) yields the homogenised motor-unit distribution
parameters κ̂i(ξ0,p). The total muscle fraction of each unit within the muscle is computed by
summing the motor-unit distribution parameter over the entire muscle, i.e., at all Gauß points,

Ki =

NGP∑
p=1

κ̂i(ξ0,p). (6.36)

Then, the equivalent constant activation αconst(t) can be computed by weighting motor-unit
activities by the total muscle fraction, i.e.,

αconst(t) =

NMU∑
i=1

K̄i αi(t), (6.37)

where K̄i is computed by dividing Ki by the sum of all total muscle fractions. As a side note,
the above expression is similar to Equation 5.20, but now the volumetric distribution, instead
of the innervation-ratio, acts as the weighting factor.

6.4.2 Results
The homogenisation process is qualitatively analysed. The fibre distributions of motor-units
61–80 (of 100, labelled from smallest to largest) were combined and plotted in the cross-section
of the musculotendon complex model (Figure 6.8). The discrete motor-unit distribution factor
κ61−80 is shown in Figure 6.8b. The homogenised distribution factor κ̂61−80 is shown in Figures
6.8c and 6.8d for a medium and coarse mesh, respectively. Note that the visualisation of field-
outputs in Abaqus/CAE occurs at the nodes, which averages contributions from neighbouring
Gauß points.

The reaction force magnitude was taken as the sum of nodal forces at a fixed tendon end over
the ramped maximal isometric contraction. They are denoted FMU(t) and F const(t) (in N) for
the motor-unit driven and constant-activity models, respectively. The relative force magnitude
was then computed by

F̄ (t) =
FMU(t)

F const(t)
, (6.38)

and is plotted against the spatially constant activity αconst(t) in Figure 6.9. The relative force
difference was minuscule, with an average difference of 2 % seen at αconst(t) < 10 %, and which
approached 0% beyond approximately αconst(t) > 30 % (Figure 6.9a).

A snapshot of the stresses along the fibre directions σ11 (in Voigt notation) at t = 0.42 s
(αconst ≈ 50 %) within the muscle cross-section for the two models is shown in Figure 6.10. The
differences in stress output were drastic. For the motor-unit model, those motor-units which
are active experience high stresses, whereas the inactive motor-units remain passive. In the
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(a) Fibre distribution of all units. (b) Fibre distribution of units 61-80.

(c) Homogenised distr. FE mesh I. (d) Homogenised distr. FE mesh II.

Figure 6.8: Homogenisation of motor-unit territories at different mesh sizes. (a) Shows all 100 motor-unit
territories, colour coded from smallest: dark blue, to largest: maroon. (b)-(d) Motor-unit territories 61-80
are shown: (b) discrete territory distribution κ61−80, (c) & (d) homogenised distributions κ̂61−80.

traditional model, a spatially constant activity yields a (near) constant stress throughout the
muscle cross-section.

Quantitatively, this can be seen in the plot of intramuscular pressure in Figure 6.9b. The
intramuscular pressure, taken as the hydrostatic stress σIMP (in MPa, Equation 3.37), is recorded
at each Gauß point within the muscle at t = 0.42 s, i.e., σIMP(0.42 s, ξp) (p = 1, . . . ,NGP).
Simultaneously, the activity is also recorded: αM(0.42 s, ξp) for the motor-unit model and
αconst(0.42 s, ξp) = αconst(0.42 s) for the constant-activity model. The pressures and activities
are then plotted against each other.

For the motor-unit model: the spread of σIMP(0.42 s, ξp) and αM(0.42 s, ξp) arises due to
the various motor-units at differing states of contraction, and shows a statistically significant
(p <1× 10−6) linear correlation, with a Spearman rank coefficient of r = −1.0. For the spatially
constant-activity model: since αconst(0.42 s) is constant, the pressures reflect this and all values
are concentrated on a single point.
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(b) Pressure at t = 0.42 s.

Figure 6.9: Comparison of motor-output from motor-unit driven and constant-activity models. (a) Com-
parison of force over the duration of the simulation. (b) Snapshot of pressure against activity throughout
the muscle.

(a) Heterogeneous activity. (b) Constant activity.

Figure 6.10: Comparison of stress (σ11) distribution between motor-unit driven and constant-activity
models at t = 0.42 s scaled between 0MPa: blue and 0.2MPa: green.
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6.5 Discussion

First, the modelling limitations are discussed, including instantaneous action-potential propaga-
tion and uniform fibre radii (Section 6.5.1). Second, the drawbacks imposed by the uni-
directional coupling of activity to the finite element musculoskeletal simulation are covered
(Section 6.5.1). The later part deals with the numerical behaviour of the element types, includ-
ing incompressibility behaviour (Section 6.5.3) and element choice (Section 6.5.2). Lastly, the
demonstrator simulation and comparison to the traditional modelling approach is discussed
(Section 6.5.4).

6.5.1 Modelling limitations

Errors introduced by homogenisation assumptions

By assuming that action-potential propagation (with velocity vAP) occurs instantaneously along
the fibre, certain errors were introduced in the mechanical response of the muscle model. These
errors were quantified by using a physiologically detailed multiscale and multi-physics skeletal
muscle model to simulate a contraction with vAP = 4.2m/s and vAP

∞ →∞, and comparing the
forces arising at the tendon: FAP(t) and F∞(t), respectively.

Following a stimulus at the neuromuscular-junction of the muscle fibre, the action-potential
propagates outwards with a certain speed vAP and causes tension production via excitation-
contraction coupling. The local fibre tension is then transmitted and summed at the tendons. The
rate at which force accumulates at the tendons (time-to-force) is influenced by vAP. Obviously
as vAP →∞, force accumulation at the tendon occurs more rapidly following a stimulus and
indeed lower time-to-force values were observed for F∞(t).

On average, the difference in time-to-force between the models (16.8ms) was smaller than
the time taken for the action-potential to propagate towards the fibre ends (34ms). This
implies that the musculotendon complex generates force rapidly following the activation of
sarcomeres at the neuromuscular-junction and therefore the impact on electromechanical delay
of instantaneous action-potential propagation cannot be computed simply via muscle geometry
and conduction velocity. Furthermore, F∞(t)was less steady, in that the influence of individual
motor-unit twitch forces were more clearly visible in the global force response. Again, this
is intuitive since the twitch forces are not “temporally smoothed” via the propagating action-
potential, instead being instantly transmitted to the muscle-tendon interface.

The time-to-force for 1 % maximal force, i.e., electromechanical delay, was computed as
18.8ms and 8.2ms for FAP(t) and F∞(t), respectively. Time-to-force and electromechanical
delay are influenced by several factors such as the relative and overall musculotendon complex
length, conduction velocity, mechanical properties of the musculotendon complex and the
twitch properties (e.g. Cavanagh et al., 1979; Hopkins et al., 2007; Nordez et al., 2009; Schmid et
al., 2019). These factorswould also increase the discrepancy in time-to-forcewhen instantaneous
action-potential propagation is assumed. For example, Schmid et al. (2019) showed that a
low muscle-to-tendon ratio, long fibres, stiff muscles and soft tendons act to (individually)
increase electromechanical delay (by approximately 20ms). These results in combination
with those currently presented, show that if the temporal resolution of interest is above
approximately 500ms, neglecting action-potential propagation has a negligible effect on the
predicted mechanical response of muscle contraction.
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Homogeneous fibre properties

The homogenisation of the discrete motor-unit (fibre) microstructure assumes that each fibre
has an equal diameter. In reality, type-I and -II fibres may differ in size, for example, Polgar
et al. (1973) reported human type-II fibres were (statistically significantly) larger than type-I
fibres in 30% of measurement sites; the opposite was true only for 2% of the sites. Furthermore,
mammalian fibre sizes may vary within fibre-types and have been shown to be normally
distributed about a mean diameter (e.g. Hegarty et al., 1971).

In addition to idealising muscle fibre cross-sectional area, the contractile properties of the
fibres may also be oversimplified. Factors which govern the peak force of a motor-unit in
the current model are: activation, specific tension and innervation-ratio. The activity of each
motor-unit is normalised (Equation 5.14) between [0, 1] and the specific tension is not specified
per fibre, but rather by the specific-strength of the whole muscle, i.e., Pmax, and is constant over
the entire muscle (Equation 4.38). Innervation-ratio varies between motor-units, determining
the volume that a motor-unit occupies in the muscle. Therefore, neglecting geometrical effects
and assuming full activation of all motor-units, differences in peak force between motor-units
depend solely on innervation-ratio.

Experimental measurement of individual motor-unit anatomy and function by Kanda et al.
(1992) on the rat’s gastrocnemius showed that innervation-ratio was indeed the dominant
factor in predicting peak motor-unit force. However, within a motor-unit type, the fibre
diameter and specific tension also played a role in predicting tension output. They showed
that mean muscle fibre cross-sectional area increased proportionally with innervation-ratio
(Figure 6.11a), meaning that determining motor-unit size by innervation-ratio alone may lead
to underestimations of its total volume. Second, as innervation-ratio increased, so did the
normalised specific tension, that is, the motor-unit force over the territory area (Figure 6.11b).
Therefore, not only do larger motor-units occupy more space, but they produce a greater force
per unit of area.

In the current model, both of these factors are neglected (Figure 6.11). In both figures, the
dotted line indicates the behaviour of the current model: fibre area and specific tension remain
flat across all motor-units. This means that the current model underpredicts not only the volume
occupied by larger motor-units but also their specific-strength. The differences in specific-
strength would lead to more heterogeneous motor-output, for example, the intramuscular
pressures would show a wider spread since some regions would contract with more force
than others (for the same level of activity). This may weaken the strongly linear relationship
observed between activity and intramuscular pressure. In short, taking such properties into
account would only enhance the functional heterogeneity of the muscle models. Methods to
compensate for this are discussed as part of the limitations and proposed solutions of the thesis
(Section 10.1).

Pre-computed neural activity

Pre-computing neural activity may be computationally efficient, but it prevents any feedback
from the muscle contraction from occurring. For example, regional variations in intramuscular
pressure within the muscle may influence blood flow (Sejersted et al., 1995, and references there
in) & (Sjøgaard et al., 1988) which has been associated with fatigue (e.g. Murthy et al., 2001).
And neural adaptations to the fatiguing muscle include a decrease in α-motor-neuron firing
rate, i.e., the so-called “muscle wisdom hypothesis” (Marsden et al., 1983) (cited in Garland et al.
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Figure 6.11: Dependence of motor-unit anatomy on innervation-ratio. Data obtained from Kanda et al.
(1992, Table 1) & normalised to smallest motor-unit. Dotted lines represent relationships in the current
model. (a) CSA: cross-sectional area.

(2002)). While the current approach can predict variations in intramuscular pressure in any
given motor-unit, this information cannot flow back to models of neural activity and affect
their firing rates.

Another example of feedback occurs via muscle spindles, which are sensitive to local stretch
and may influence the firing rates of their own muscle or even other muscles (e.g. Naito et al.,
1996). Afferent feedback is vital to explain and understand some diseases (e.g. de Vlugt et al.,
2012; Mugge et al., 2012). Again, while local stretch in the motor-unit is predicted, it is to no
avail since it cannot enter the neural activity computations.

In the current implementation framework, establishing a link between mechanical quantities
(such as intramuscular pressure and stretch) and neural activity is not straight forward. The
main challenge is the inability to pass information between different regions of the muscle,
i.e., between Gauß points. Stretch experienced by a single Gauß point in a motor-unit has,
therefore, no way of communicating with the rest of the motor-unit’s Gauß points. Adjusting
firing rates for the entire motor-unit must occur “outside” the user-material. Again, this is
because the user-material itself exists in isolation at each Gauß point.

One possibility to enable communication between the Gauß points is via the Abaqus user-
subroutine VUEXTERNALDB, which is executed at each increment of the analysis. Within this
subroutine communication to the “outside world” can be made (Dassault Systèmes, 2017). Com-
putational time is a concern with such an approach, which could be mitigated by simplifying
certain neural activity models, for example, the model in Ramírez et al. (2010) avoids ionic
and cross-bridge dynamics calculations and convolutes fixed twitch-shapes with firing times,
reducing computational overhead.
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6.5.2 Accuracy of incompressibility
Skeletal muscle tissue is incompressible, for example, Böl et al. (2014) reported for a volume
change of ∆J = 1% (J = 0.99) for a fibre stretch of λ = 0.7 (compression). The advantages
of an explicit finite element solution method is numerical stability, flexibility of user-material
modelling (i.e., tangent stiffness matrix is not required) and the ability to model high-dynamic
events with short time-steps, e.g., a single muscle twitch. The drawback is, however, that a
purely incompressible material cannot be modelled, due to the nature of the algorithm.3

Instead, a nearly incompressible formulation is used, where the degree of incompressibility
is controlled via the penalty-parameter c. And as c tends to infinity, the material approaches
purely incompressible behaviour, which comes at a computational cost (Figure 6.4). A good
balance between incompressibility and computational time is achieved for penalty-parameters
between 10–50. Perhaps, trial simulations may be run with lower values for sake of shorter
computational times and selected simulations subsequently rerun with high values. The
incompressibility would especially influence highly confined regions of the muscle and also
impact intramuscular and contact pressure values. But the choice of an appropriate penalty-
parameter can drastically reduce the errors introduced by the nearly incompressible formulation
presently used.

6.5.3 Element choice
Out of all element types tested, the linear tetrahedral C3D4 was the clear loser. The remaining
element types behaved similarly, especially at higher Gauß point numbers, converging to
a similar tip-displacement value. The choice between these element types comes down to
the application. Since musculoskeletal models typically have very complex geometries, it is
typically very difficult to obtain a purely hexahedral mesh. By process of elimination this results
in the C3D10M as the element of choice. This element showed good convergence behaviour
and in fact also gave good estimates even at lower resolutions.

6.5.4 Demonstration of the integrated model
The total reaction force produced by both models, referred to in the following as the motor-unit
driven activity model and (spatially) constant-activity model, was quite similar. The force
magnitudes converged above 30 % activation. In a sense, this provides assurance that the
motor-unit activity model is behaving properly. At full activation, all regions of the muscle are
active and both models are expected to converge. Conversely, differences should only arise
at lower activity levels, where differences in spatial activity exist. Yet this was seen only to a
small degree. This is (as will be seen in the next chapter) due to the idealised geometry and
uniform fibre directions—both of which do not hold in real muscles.

The structural heterogeneity of muscle architecture would only amplify the differences seen
in overall force output. Instead, what these results show is that, keeping everything equal,
activating a small region of the muscle more intensely produces a (slightly) higher force, than
smearing that same activity over the entire muscle. This may be due to changes is local stiffness,
changes in the force-length relationship, and how the force is transmitted to the tendon.

3The enforcement of the incompressibility constraint requires knowledge of the boundary conditions at the
current time increment, which only the implicit method is capable of.
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The stresses and intramuscular pressures on the other hand were drastically different between
the two approaches. At 50 % activation, the intramuscular pressure was strongly linearly related
to the activity in the motor-unit driven model. These results show that pressure, at least in
this very idealised case, is an excellent indicator of muscle activity, increasing locally where
the motor-units are contracting. While the constant-activity approach can be used to predict
pressure changes over time, only the motor-unit driven model is able to predict regional changes
in pressure at a snapshot of the contraction.



7 A Prototype Integrated
Neuro-Musculoskeletal Model: The
Masticatory System

Concerning skeletal muscles and their coordination in human movement, Roger M. Enoka and
Keir G. Pearson write (introduction to Chapter 34 in Kandel et al. (2000)):

Any action—ascending a flight of stairs, typing on a keyboard, even holding a pose—requires
coordinating the movement of body parts. This is accomplished by the interaction of the
nervous system with muscle. The role of the nervous system is to activate just those muscles
that will exert the force needed to move in a particular way. This is not a simple task: Not
only must the nervous system decide which muscles to activate and how much to activate
them in order to move one part of the body, but it must also control muscle forces on other
body parts and maintain posture.

In fact, as alluded to in previous chapters, the nervous system does not just coordinatemovement
at the level of entire muscles but can recruit certain regions of muscles, i.e., via the motor-
units, to achieve a desired movement. The variation of muscle architecture together with the
selective recruitment and positioning of motor-units is the basis for functional heterogeneity
in skeletal muscles. This phenomenon has many other names, including “selective activation”,
“inhomogeneous activation”, “task-dependence/specificity” and “functional[] complex[ity]” (e.g.
Pratt et al., 1991; Holtermann et al., 2005; Holtermann et al., 2009; Miyamoto et al., 2012).

The major muscles of the masticatory system—temporalis, pterygoid group and the
masseters—are prime examples of functionally heterogeneous muscles. Perhaps the most
studied muscle in terms of its functional heterogeneity is the masseter, which has been shown
to be preferentially active during different jaw movements or bite forces (e.g. Belser et al., 1986;
Hannam et al., 1994; Blanksma et al., 1997; Schindler et al., 2005; Ogawa et al., 2006; Schindler
et al., 2014). The nervous system is able to extract such functional diversity from the masseters
due to a combination of: the intricate internal architecture of the muscle, particular motor-unit
anatomy, and specialised recruitment strategies.

Bite force is a commonly used metric to asses and diagnose masticatory function, including
the evaluation of dental implant performance (e.g. Fontijn-Tekamp et al., 2000; Kogawa et
al., 2006; Kshirsagar et al., 2011; Hasan et al., 2016). Biomechanical models can reveal the
underlying mechanisms behind changes in bite force. These virtual models, however, typically
simplify the anatomy and neglect motor-unit anatomy of the masticatory muscles (e.g. Koolstra
et al., 1992; Korioth et al., 1992; Röhrle et al., 2007; Weickenmeier et al., 2017) and thus cannot
capture the functional heterogeneity of the masticatory muscles.

To both show-case the integrated neuro-musculoskeletal method developed in this thesis,
and to investigate the impact such a model would have on bite force prediction, a prototype
model of the masticatory system is developed and used to simulate a maximum voluntary
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bite force. The prototype model consists of the mandible, molar (with associated structures),
temporomandibular joints and masseters. First, physiological background of the masticatory
system, with a focus on the masseters, is provided (Section 7.1). Then the development of
the prototype model is described (Section 7.2). Lastly, the maximum voluntary bite force
simulations are covered (Section 7.3).

7.1 The Masticatory System: Introduction and Anatomy
The complex and varying functions of the masticatory system are facilitated by the arrangement
of muscles that attach to the mandible and drive it about the temporomandibular joints. Muscles
on either side of the mandible: masseters, temporalis, and pterygoid group, make up the muscles
of mastication (Figure 7.1). The anatomy of the masticatory system is briefly discussed in the
following with the focus on the internal organisation of the masseter, further details about
the remaining masticatory muscles can be found in Lund (1991), Hannam et al. (1994) and van
Eijden et al. (2001).

7.1.1 Other soft tissues and bones
Teeth are multi-layered structures, with a hard outer cap (enamel) surrounding a (relatively)
softer, intermediate region (dentin), and a central void filled with nerves and blood supply
(pulp). They insert into the mandible and maxilla via one or more roots and are attached to
the bone surface via the periodontal ligament. The periodontal ligament is largely composed
of collagen fibrils, which anchor into the surrounding bones to provide stabilisation and help
resist compressive forces. As with most bones in the human body, the mandible and maxilla
are composed of a hard outer shell (cortical bone) and a spongy inner core (cancellous bone).

The intricate movements required of the mandible during, for example, talking, chewing, and
biting, are made possible by the muscles of mastication and the temporomandibular joints. The
mandible is attached to the temporal bone of the skull on either side via the temporomandibular
joints. At first glance, it might appear that the temporomandibular joints act as a simple a hinge
joint, rotating the mandible about the axis constructed between the left and right mandibular
condyles. Although this rotary opening and closing dominates mandibular movement, rotations
about the remaining (posterior-anterior, cranial-caudal) axes also occur. In fact, the mandible
is also able to translate along either of the axes.

7.1.2 Masseters
The masseter is typically considered as comprising three heads: superior, intermediate, and
deep heads. The thicker, superior head arises from the anterior two-thirds of the zygomatic
arch and inserts from the angle of the mandible, anteriorly to the ramus. The thinner, inferior
head arises from the deep surface of the zygomatic arch and inserts on the upper part of the
ramus. The intermediate part lies between the superior and deep heads. Each head is separated
by aponeuroses arising from both the zygomatic arch and the mandible and are roughly aligned
with the sagittal plane. However, the arrangement and orientation of the aponeuroses can
show a large amount of variety between individuals (e.g. Cioffi et al., 2012).

Viewed in the sagittal plane, the fibres of the superior head are roughly aligned cranio-
anteriorly, i.e., between the zygomatic arch and the ramus of the mandible. Conversely, fibres
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Figure 7.1: Skeletal muscles of the masticatory system with major muscles of mastication labeled. Image
adapted from OpenStax (2020).

of the deep head are aligned cranio-posteriorly. Recalling that the fibres further show a
pennation with the aponeuroses.

Motor-unit recruitment and twitch properties

As with most muscles, the majority of motor-units in the masseter are recruited at low force
levels, with approximately 50 % of motor-unit being recruited for a 20 % bite force level (Scutter
et al., 1998). The summation of twitches starts at approximately 7Hz (Nordstrom et al., 1989),
with the fusion frequency ranging from approximately 37–64Hz in the masseters of rabbits
(Kwa et al., 1995a; Kwa et al., 2002).

Spike-triggered averaging was used to determine the range of twitch behaviours in hu-
man masseters. The twitch rise-times ranged between 25–67ms and peak-forces between
5× 10−3–1.3× 10−2 N (van Eijden et al., 2001, Table 4). The limitations of the spike-triggered
averaging approach, specifically in the masticatory system are investigated in a subsequent
case-study (Section 8.3).

Fibre distribution and motor-unit territories

The fibres in the masseter are largely of type-I, comprising approximately 60–70% of all muscle
fibres (Eriksson et al., 1983). These slow twitch fibres are not uniformly distributed across the
masseter but rather have the highest density in the anterior deep part, with the posterior and
superior portions having approximately equal amounts of type-I and -II (mostly IIb) fibres.
Given that there is a correlation between histochemical fibre-type and contraction properties,
the fibre-type distribution alone provides an indication of the distribution of type-S and type-
FR/-FF motor-units within the masseter. Recall that type-S motor-units are composed of type-I
fibres and type-FF/FR of type-II/IIb, respectively.

By combining (paired) needle electrodes, scanning electromyography (EMG) and magnetic
resonance imaging, McMillan et al. (1991) determined lengths of 32 motor-unit territories as
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ranging between 0.3–19mm (mean 6.1mm) and 0.1–10mm (mean 3.2mm) along the anterio-
posterior and medio-lateral axes, respectively. Also using scanning EMG, Tonndorf et al. (1994)
measured average motor-unit territory dimensions between 0.75–10.3mm (4–57% of medio-
lateral length) and found that 89 % of the motor-unit territories were confined within tendinous
sheets of the masseter.

More recent studies are able to decipher a larger number of motor-units, van Dijk et al. (2016)
measured the spans of 161 motor-units via needle EMG and found motor-unit spans ranging
between 0.7–8.6mm. Lapatki et al. (2019) used high-density EMG combined with advanced
signal-processing techniques to obtain 190 motor-units spans, ranging between 1.2–7.9mm.
Both these studies found no preference of smaller or larger motor-units being located either
deeper or superficially in the masseter.

Traditionally, drawing a concave boundary around the outermost fibres of the motor-unit was
used to identify themotor-unit territory. As such, masseter motor-unit territory shapes are often
generalised as being elliptical with the main axis oriented anterio-posteriorly (pigs—Herring
et al. (1991); humans—McMillan et al. (1991) and Tonndorf et al. (1994)). With the advent
of high-resolution medical imagining techniques, the deformation of a motor-unit can be
observed, and is typically taken as its territory. For example, intricate territory shapes have
also been observed (in the lower leg muscles), e.g., “crescent”, “circular” or “spider” as classified
by Birkbeck et al. (2020). Motor-unit territories in the masseter are typically smaller than those
of the limb muscles, i.e., they occupy a smaller percentage of the masseter cross-sectional area
(e.g. Stålberg et al., 1986).

Summary

Motor-unit territories in the masseter are relatively small compared to the limbs and are
generally confined within tendinous sheets. Regions of the cross-section may contain varying
fractions of certain types of motor-unit territories. Additionally, masseter motor-unit territories
are often elliptical in shape, with the main axis aligned posterio-anteriorly, but may also contain
more intricate shapes. This, combined with anatomical structure of the masseter—a broad
attachment area, internal compartmentalisation via several aponeuroses and varying fibre
orientations—permits the masseter muscle to produce a variety of force vectors depending on
the particular task and thus shows a high degree of task specificity. Regarding the internal
organisation of the human masticatory muscles, Hannam et al. (1994) state “[t]hese difference
in regional morphology clearly imply functional differentiation. It is logical to presume that there
are practical advantages to be gained by an internal architecture as complex as this”.

7.2 Modelling the Masticatory System
In broad terms, computer models of the human masticatory system typically consist of a
muscle-driven mandible model, which articulates about the temporomandibular joints. How-
ever, the complexity of the anatomical models of the bones, muscles, and other soft tissues
varies considerably, which can also be said of the material models and boundary conditions.
Masticatory muscles are either represented implicitly, i.e., via force or pressure boundary
conditions applied at their attachment areas, as one-dimensional (Hill-type) segments or, more
recently, as three-dimensional (continuum-mechanical) volumes.

Early biomechanical investigations of the masticatory system were carried out by Barbe-
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nel (1972), who used rigid models of the mandible to investigate the relationship between
occlusal force and temporomandibular joint kinematics in 2D. Osborn et al. (1985) used a sim-
plified three-dimensional model of the mandible with 26 individual muscle forces to generate
temporomandibular joint torques.

One of the first three-dimensional models with 6 degrees of freedom and a rigid mandible
driven by 16 individual muscle forces was proposed by Koolstra et al. (1988) and validated in
Koolstra et al. (1992). Anatomically realistic geometric information about skull size, muscle
attachments and cross-sectional areas were obtained from cadaveric studies. Alternatively
to treating the mandible as purely rigid, Korioth et al. (1992) introduced a simplified three-
dimensional deformable jaw model, where muscle actions were taken as pressures applied
directly onto the mandibular surface. Röhrle et al. (2018b) used a similar approach, together
with contact mechanics, to simulate a static bite of a rubber.

In recent decades, advances in medical imaging and segmentation procedures, computational
power and muscle modelling, among others, have found their way into dental biomechanics,
enabling medical-image derived three-dimensional models of masticatory bones, muscles,
and associated structures. Such models have shown deviation in muscle force lines of action
as muscle geometry and fibre orientation evolve during jaw movement (Röhrle et al., 2007).
Furthermore, volumetric muscle models allow prediction of structural changes such as muscle
thickening (Weickenmeier et al., 2017) during a static bite.

Typically, these models idealise the masseter, fusing the superior and deep heads. Further-
more, the muscle is activated using a spatially constant activity, i.e., regional contractions are
not modelled. This may oversimplify the masseter anatomy and function, which has a highly
individualistic and complex internal structure (Cioffi et al., 2012).

This section describes the development of an integrated neuro-musculoskeletal masticatory
system model, which models the mandible, temporomandibular joints, first (right) molar, and
associated dental structures. The masseter is divided into the deep and superior heads, each
with its own unique fibre orientation distribution. The masseters are additionally populated by
individual motor-units.

7.2.1 Geometry and meshing

The prototype model was developed in the finite element software Abaqus/CAE (v2017, Dassault
Systèmes, France). The development of the mandbile, articular discs, fossae, periodontal
ligament, pulp, dentin and enamel models is detailed in Röhrle et al. (2018b) and Saini et al.
(2020), and is only briefly covered in the followed. The focus here is instead on the masseters.

Data sources for the masticatory model were the visible human project (Spitzer et al., 1996)
(“VM-data”), and computed-tomography scans of one healthy male subject (age: 34 years,
weight: 105 kg) with no history of temporomandibular disorders (“subject-data”). All geo-
metrical models besides the masseters were based on subject-data. This model was used for
preliminary investigations, e.g., to investigate the influence of occlusal loading on the stress
distribution within the molar and mandible (Appendix A). Given the advantages of magnetic
resonance imaging in regards to soft-tissues, the VM-data based masseter models were used,
i.e., muscles were not segmented from the computed-tomography subject-data. The alignment
of the masseters and mandible is discussed below.
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Other soft tissues and bones

The model was based on anatomical images obtained from one healthy male subject with no
history of temporomandibular disorders (age: 34 years, weight: 105 kg). Computed-tomography
was used to obtain a series of images with a voxel size of 15.625 µm3.

The mandible, mandibular second molar and the left and right fossae were manually segmen-
ted. Only the outer cortical bone type was modelled. The mandibular second molar was split
into enamel, pulp and dentin. Since dentin and cementum have similar mechanical properties,
the two were fused. The geometries of the left and right articular discs were taken as the
volume between the mandibular condyles and the glenoid fossae. Similarly, the periodontal
ligament geometry was based on the mandibular molar root geometry and defined as a uniform
layer with an approximate thickness of 0.20mm. The resulting meshes were imported into
Abaqus/CAE. An overview of mesh statistics, including element types, is given in Table 7.1.

Masseters

Masseter geometries were based on the visible human project, and have been previously
presented in van Essen et al. (2005) and Röhrle et al. (2007). The visible human (VM) masseters
(“VM-masseters”) were imported into Abaqus/CAE and meshed with tetrahedral elements (Table
7.1). Additionally, the VM mandible (“VM-mandible”) was also imported.

The VM-masseters were combined with the subject-data mandibular model (and other dental
structures). This necessitated alignment of the VM and subject-data models. To align the
masseters with the subject-data mandible; first, mandibles from both data-sources were aligned,
and then the same transformation applied to the VM-masseters. More specifically: First,
landmark points on the VM-mandible were identified to construct a local coordinate-system
CVMmand. Second, the same landmark points were identified on the subject’s mandible to form a
second local coordinate-system CSBmand. Third, a transformation matrix Q was found to rotate

Table 7.1: Mesh details of the prototype masticatory model. The masseters element type was the 10-node
tetrahedral C3D10M, the remaining element types were the 4-node tetrahedral C3D4. Art.: articular and
lig.: ligament.

Elements Nodes

Dentin 15,031 3647
Enamel 10,289 2673
Periodontal lig. 8544 2902
Art. disc-left 5343 1308
Art. disc-right 5112 1251
Fossa-left 2471 879
Fossa-right 2614 765
Masseter-left 4345 7083
Masseter-right 4047 6604
Mandible 15,334 7628

Total 73130 34740
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and translate CVMmand to CSBmand. Neither models were scaled.
Then, the sameQwas applied to align the VM-masseters with the subject’s mandibular model.

Small, manual adjustments were further required due to model interpenetration caused by the
mismatch in mandibular and masseter geometry. Note that the jaw model was positioned such
that the left-right, posterior-anterior and caudal-cranial anatomical axes (order corresponds to
positive direction) were aligned with the global x-, y- and z-axes, respectively (Figure 7.2).

θV

θH

y
x

z

T

TZ1

TZ2

DH

SH

Figure 7.2: Schematic of the prototype masticatory model. The left fossa is not shown to reveal the articular
disc. Triangular symbols denote fixed displacement boundary conditions (indicated on the right side of
the model only) with the area over which they are applied indicated by dash-dotted lines. The muscle
architecture and muscle, tendon and transition regions are shown for the right masseter, where T: tendon,
TZ1−2: transition zone 1 and 2, DH: deep head and SH: superior head, with arrows symbolising fibre
directions in each head. The width of the mandible (taken posteriorly, between the widest points) is
≈ 115mm. Lastly, the coordinate system and the angular description of force vectors are also shown in
the middle of the figure, with the horizontal plane angle θH and elevation angle θV. The x, y, and z axes
are aligned with the posterior-anterior, left-right and caudal-cranial axes, respectively.

7.2.2 Masseter architecture and motor-unit pool

The architecture of the masseter was covered in Section 5.2.3, and additional details are given
here. Left and right masseter models were separated into a smaller, deep and a larger, superior
part. Splitting of the masseter heads and the subsequent assignment of fibre orientations were
based on qualitative literature and anatomical data, i.e., not based on direct anatomical imaging.

The fibre orientations within the finite element models were defined semi-automatically
within Abaqus/CAE via a two-step process. First, a vector describing the major-axis or pre-
dominant fibre direction within each part was manually defined. Second, this major-axis
was automatically interpolated within the muscle volume such as to conform to selected
(control) muscle surfaces. The major-axes for the deep and superior right masseter were
aR

dp = [0.5,−0.2,−1] and aR
sp = [0, 0.6,−1], respectively.
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The control surfaces for each head were selected as follows. For the superior head: the
superficial, posterior, anterior, and surface dividing the heads were selected as the control
surfaces. For the deep head: the same surfaces were selected except the superficial surface,
which was replaced with the deep surface, i.e., the surface closest to the mandible. The resulting
fibre orientation field for the left masseter is shown in Figure 5.9b.

The microstructure was reconstructed in the masseters as described in Section 5.2.3. Briefly,
both the spacing perpendicular to and along the fibre-scaffolds was Λs = Λf = 1mm. This
resulted in 1154 and 1105 fibre-scaffolds (and seed-points) in the left and right masseters,
respectively (Figure 5.9c).

The masseter was further divided (this time along the caudal-cranial axis) into different
regions representing the muscle belly, tendon, and two transition zones in between. This was
achieved by varying the parameter γM (Section 4.2.5) with γM = 1 for pure muscle, γM = 2/3
and γM = 1/3 for the transition zones TZ1 and TZ2, respectively and γM = 0 for pure tendon
tissue. The tendons were defined at either ends of the masseter; extending over the entire
cross-section. The selection of the tendinous and transition regions was done manually based
on qualitative anatomical data (Figure 7.2).

(a) (b)

Figure 7.3: Finite-element mesh of the prototype masticatory model, with node and element numbers
for each part given in Table 7.1. (a) The entire model, with the muscle, transition-zones and tendons
colour-coded as in Figure 7.2. The left fossa is not shown to reveal the articular disc. The width of
the mandible (taken posteriorly, between the widest points) is ≈ 115mm. (b) A zoom of the saggital
cross-section of the molar, with the: periodontal ligament in blue, dentin in cream, pulp in light-red, and
enamel in white. The distance from cusp to root of the molar is ≈ 22mm.

Motor-unit pool

The masseter was populated with 50 so-called “meta” motor-units or meta-units M̆Uk (k =

1, . . . , N̆MU). The breve symbol (̆·) differentiates meta-unit quantities from corresponding
motor-unit quantities. Meta-units were formed by grouping several motor-units in terms of
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their innervation-ratio. By doing so, the fibre distribution of a meta-unit, i.e., its territory, can
be thought of as an agglomeration of the fibre distributions of the motor-unit territories that it
contains.

Each masseter comprises NMU = 1452 motor-units (Carlsöö, 1958). This means that each
meta-unit, sequentially, corresponds to ρMU = NMU/N̆MU = 1452/50 ≈ 29 motor-units. For
example, M̆U1 = MU1 ∪MU2 ∪ . . . ∪MU29 or more generally

M̆Uk =

k ρMU⋃
i=(k−1) ρMU+1

MUi. (7.1)

First, innervation-ratios were computed for motor-units and subsequently grouped into
meta-units. Innervation-ratios of the motor-units are described by an exponential distribution
(Equation 5.17), and is characterised by: total number of motor-units NMU and the innervation-
ratios of the first (smallest) and last (largest) motor-units in the pool, here IR1 and IR1452.
The innervation-ratios for the remaining motor-units, IR2,...,1451, are exponentially distributed
between these two extremes. Innervation-ratios IR1 = 200 and IR1452 = 1479 were chosen and
yielded 929,182 fibres (computed by summing all innervation-ratios), which is similar to the
number reported in literature, i.e., 929,000 (Carlsöö, 1958).

The innervation-ratios for themeta-units were computed by simply summing the innervation-
ratios of the corresponding motor-units, i.e., (analogous to Equation 7.1)

ĬRk =

k ρMU∑
i=(k−1) ρMU+1

IRi. (7.2)

The number of fibre-scaffolds tracked in the left and right masseter wereNL
FS = 1154 andNR

FS =
1105, respectively (Section 7.2.2). The meta-unit innervation-ratios were recast accordingly.
For the left masseter, this yielded innervation-ratios of IRSP

1 = 8 and IRSP
100 = 53 for the smallest

and largest motor-units, respectively (Equation 5.29).
In summary, the mappings from the realistic number of fibres and motor-units to those used

in the model were (for the left masseter):

IRtotal = 929,000
NMU = 1479
real anatomy

ρMU−−−−−−→
IR1,IR1479

ĬRtotal = 929,182
N̆MU = 50
meta-units

NL
FS−−−−−−→ĬR

SP
total = 1154
N̆MU = 50
discretised
meta-units

.

Recruitment and twitch properties

From a recruitment perspective, grouping of motor-units into a meta-unit essentially synchron-
ises their discharge behaviour. The discharge times of the meta-units cannot be computed by
“summing” or collapsing the firing times of the underlying motor-units, as this would increase
the firing-frequency beyond physiological limits. Instead, an effective discharge frequency is
computed per meta-unit, which represents the average discharge behaviour of the motor-units
it contains.

The (meta) α-motor-neuron pool contains N̆MU = 50 neurons. Minimum and maximum α-
motor-neuron firing rates (F̆M and F̆ P) were taken as 7Hz and 34Hz, respectively. The range
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of firing rates (F̆D) was 64Hz. Motor-neuron recruitment thresholds were distributed such that
approximately 50 % of the α-motor-neuron pool was recruited at 20 % excitatory drive. Twitch
responses were characterised by the values in Table 5.2 and from Campbell et al. (1993), Aliev
et al. (1996) and Campbell et al. (2001). The time-to-peak and peak twitch force for the smallest
meta-unit were F̆ twitch

1 = 0.0906 and ˘TTP1 = 123ms, respectively. The largest meta-unit had a
time-to-peak a factor 3.0 shorter and a peak twitch force a factor of 35 larger.

Meta-unit territories

With the desired number of seed-points per meta-unit at hand, the way in which they are dis-
tributed, i.e., their territory within the masseter, was defined. Meta-unit territory distributions
were assigned by specifying the distribution and shape parameters (Section 5.2).

Smaller territories were assigned first, i.e., the algorithm proceeds sequentially by assigning
smaller meta-unit territories about the reference point cMUT before larger ones. The reference
points were chosen such that the initial assignment of small territories occurs anteriorly and
deep within the masseter. The reference points for the left and right masseters were specified
with respect to the center of the seed-point plane (ckCoP) as cL

MUT = cL
CoP + [11.9, 6.3,−0.2]mm

and cR
MUT = cR

CoP + [−12.2, 6.2,−2.3]mm for the left and right masseter, respectively. For the
masseters, the x-, y- and z- axes are approximately aligned with the left-right, posterior-anterior
and caudal-cranial directions (Figure 7.2).

Two distribution parameters are chosen as exemplary meta-unit fibre distributions—
distribution A and B. The distribution parameters were set as fractions of the masseter cross-
sectional area, with CSAL = 620mm2 and CSAR = 626mm2. For distribution A: Dk =
CSAk × 1.60× 10−2/mm, ∆Dk = CSAk × 3.125× 10−3/mm, Rk = CSAk × 1.60× 10−3/mm,
∆Rk = CSAk × 6.25× 10−3/mm, with k = {L, R}. For distribution B: all parameters were
identical as in distribution A, except Dk, which was increased by a factor of 10.

The distribution parameters were chosen to allow for slight overlapping of the territories, thus
keeping them locally confined within the muscle (Figure 7.4). For both distributions, the shape
parameters were constant, λ1 = 1,λ2 = λ3 = 5, and were chosen such that ellipsoidal- shaped
territories were formed, with their main-axis aligned along the masseters posterior-anterior
axis.

7.2.3 Constitutive modelling and characterisation
The masseters were modelled as transversely isotropic hyperelastic materials (Section 4.2) and
the remaining structures were treated as linear elastic (Section 4.3). The muscle model was
characterised by the parameters outlined in Table 4.1, with the muscle specific parameters
chosen as P̃max = 7.5 and λopt = 0.95. The former resulted in a specific-strength of Pmax =
1MPa. The linear elastic parameters and densities are given in Table 7.2.
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(a) Meta-unit territories: A. (b) Meta-unit fibre dist.: A.

(c) Meta-unit territories: B. (d) Meta-unit fibre dist.: B.

Figure 7.4: Meta-unit territory distribution in the left masseter simulation model of selected meta-units
shown in the seed-point plane of the left masseter. The cross-sections are oriented such that the following
page-to-anatomical direction relations hold: left-superior, top-posterior, right-medial (or deep), and
bottom-anterior. The dotted lines show the convex boundaries around the territory and the thick, solid
black boundary the outline of the muscle cross-section. Fibres belonging to the smallest to largest units are
colour-coded from dark-blue (to cream) to maroon, respectively. The cross-sectional area is approximately
630mm2.

7.3 The Influence of Masseter Motor-Units on Bite Force:
Comparison to the Status-Quo Models

The forces which arise between the mandibular and maxillary teeth are typically referred
to as bite forces or occlusal forces. Bite force is commonly used to evaluate masticatory
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Table 7.2: Material properties in finite element model of the masticatory system, where PDL: periodontal
ligament.

Material E/MPa ν source ρ/g cm−3 source

Cancellous
bone

1.37× 103 0.30

Moga et al. (2013)

0.55 O’Mahony et al. (2000)

Cortical bone 1.45× 104 0.32 1.79 Dechow et al. (1993)

Dentin 1.86× 104 0.31 2.14
Manly et al. (1939)

Enamel 8.00× 104 0.33 2.89

Pulp 2.10 0.45 0.70 -
PDL 68.9 0.45 0.70 Wang et al. (2015)

Disc 30.9 0.40 Hirose et al. (2006) 1.10 Bortel et al. (2017)

function, for example, according to gender (Miyaura et al., 1999), age (Peyron et al., 2004),
weight (Shiau et al., 1993) and ethnicity (Shinogaya et al., 2001), and is strongly connected
with dental status and masticatory performance (Fontijn-Tekamp et al., 2000). For example, the
maximum voluntary bite force may be used to diagnose pre-existing masticatory pathologies
such as temporomandibular joints disorders (Bonjardim et al., 2005; Kogawa et al., 2006; Testa
et al., 2018), malocclusion (Bakke, 2006) and mandibular fractures (Kshirsagar et al., 2011).
Furthermore, maximum voluntary bite force can be used to asses the performance of dental
implants through comparison of post-intervention and expected values (Fontijn-Tekamp et al.,
2000; Rismanchian et al., 2009; Biswas et al., 2013; Al-Omiri et al., 2014; Hasan et al., 2016).

Since the muscle forces which produce bite force cannot be measured directly, computer
models are vital in analysing bite force development. Often, such models represent masticatory
muscles as line-segments (e.g. Korioth et al., 1992; Ackland et al., 2017; Stansfield et al., 2018). A
couple of biomechanical studies have modelled the masseter as a volumetric muscle to simulate
jawmovement and bite force (Röhrle et al., 2007; Weickenmeier et al., 2017). While these models
account for structural changes in the muscle, such as changes in pennation angle and contact
with neighbouring tissues, they treat the masseter as a single contractile unit. Given that the
basis of masseter functional heterogeneity is the selective recruitment of its motor-units, these
models may not capture the subtleties of bite force development.

The prototype neuro-musculoskeletal model of the masticatory systemwas used to simulate a
maximal bite based on the regional contraction of the masseters. The masseters were populated
with meta-units, which were sequentially recruited to simulate a maximum voluntary bite force.
Then, the model is cloned to form a status-quo masticatory model, i.e., treating the masseters as
single contractile units and the bite force simulation is repeated. The comparison of bite force
and intramuscular pressure in the masseters quantifies the differences between the proposed
and status-quo modelling approaches.
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7.3.1 Methods
Boundary and interaction conditions

The molar occlusal surface, left and right fossae, and masseter origin were fixed in space
(Figure 7.2). The temporomandibular joints was modelled by affixing the articular discs to the
mandibular condyles, allowing them to glide (frictionless) along the surface of the fossae. The
masseters were attached (by a tie-constraint in Abaqus) to the mandible over manually defined
attachment areas, extending caudally from approximately the middle of the ramus to the angle
of the mandible.

In light of the occlusal boundary load investigations (Appendix A), the molar was not
fixed at a single or limited number of points, but rather over the entire occlusal area (shown
schematically in Figure 7.2) to prevent any stress concentrations. The bite force was taken as
the sum of forces over these occlusal surface nodes. In summary, no boundary conditions were
directly applied to the mandible. Instead, the mandible was held in place by attachments to the
articular dics, periodontal ligament and masseters.

Masseter architecture and meta-unit territories

The masseter architecture and meta-unit number was unchanged from the descriptions in
Section 7.2.2. The arrangement of the meta-unit territories was chosen as distribution A (Figures
7.4a and 7.4b).

Meta-unit activity

The models used to compute individual meta-unit activation are described in Section 5.1. An
activation protocol that elicits a maximal contraction was used. This was achieved by increasing
the excitatory drive E(t) linearly from 0 to 1.1 over ∆t = 0.7 s, the excitatory drive was then
held constant for 0.3 s. This resulted in individual activities ᾰi(t) for each meta-unit (Figure
7.5a), which were combined with their distribution factors ˘̄κi(ξ)

1 (where ξ are the Gauß points)
to compute the left and right masseter activity αL

MU(t, ξ) and αR
MU(t, ξ), respectively and is

referred to as the motor-unit model.
This spatially constant activity, representing status-quo models (Figure 7.5b), was computed

by a weighted sum of αi(t) and K̂i(ξ) (Equation 6.37), yielding equivalent activity αconst(t) for
each of the left and right masseters. The equivalent (spatially constant) activities were applied
(uniformly) to the masseters, i.e., ∀ ξ ∈ B and is referred to as the (spatially) constant-activity
model.

Maximal static bite simulation

Two prototype models were generated: one with individual meta-unit distributions and activ-
ities and one with where a single, equivalent activity was applied uniformly throughout the
masseters. The activities described above were supplied to both masseters to simulate a max-
imal static bite. The bite force, measured at the molar occlusal surface, and the intramuscular
pressure in the right masseter were used as markers of motor-output and compared between
the models to quantify the difference between the motor-unit and constant-activity approaches.

1The breve symbol differentiating the meta-unit and motor-unit quantities is neglected in the following, for
sake of clarity.
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(a) Individual meta-unit activity.
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Figure 7.5: Activation protocols for the maximal case for the (a) motor-unit model (meta-unit numbers
indicated), and the (b) constant-activity model. Fibres belonging to the smallest to largest units are
colour-coded from dark-blue (to cream) to maroon, respectively.

7.3.2 Results
All simulations were performed with Abaqus/Explicit (v6.14-3, Dassault Systèmes, France),
using an AMD Opteron 6373 (2.3 GHz, 32 cores) with 24GB memory,2 resulting in computation
times of approximately 10–15 h. The bite force components along the left-right, posterior-
anterior and caudal-cranial axes are denoted, respectively, F k

LR, F k
PA and F k

CC (in N). The
superscript k = {const,MU} denotes the constant- and motor-unit models. Snapshots of the
finite element masticatory model at different stages of the contraction are shown from an
oblique angle and in the horizontal plane in Figures 7.9 and 7.10, respectively.

Bite force magnitude

The peak forces along the caudal-cranial axis obtained from both models were within 1 % of
each other, with F const

CC (t = 0.84 s) = 701N. At this time instance, the forces along the left-right
axis were also within 1 % of each other, with F const

LR = −82N. For FPA a greater difference
was observed between the two models, with FMU

PA being 89% of the constant-activity model
F const

PA = 9.6 N.
The bite force components showed a greater difference between the two models below

maximal contraction. To highlight these force dissimilarities, the relative forces are plotted
over the masseter activity. The relative force components F̄j , j = {LR, PA, CC} are computed
by dividing the absolute values of each force-component of the motor-unit model by those
from the constant-activity model, i.e.,

F̄j(t) =
|FMU

j (t)|
|F const

j (t)|
, (7.3)

2Part of the LEAD cluster at the University of Stuttgart.
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Figure 7.6: Bite force output for the maximal activation protocol between motor-unit driven and constant-
activity models. The blue trace is of the caudal-cranial component, the red trace is of the posterior-
anterior component and the green trace of the left-right component. (a) Traces of the individual bite
force components taken at the right first mandibular molar for the model with spatially constant (dotted)
and motor-unit driven (solid) activations. (b) Relative force between the two models, *indicates that the
error curve has been scaled and offset by 0.9+ 0.1 F̄PA for visualisation purposes.

and are plotted in Figure 7.6b.
In general, all force components showed a convergent behaviour at higher levels of activity.

The component, F̄CC, showed the fastest convergence, falling below ±2 % difference at 20 %
activation. The F̄LR component dropped below a ±2 % difference after 40 % activation. The
F̄PA component showed the highest deviation and only dropped below 4% difference once the
masseters were fully activated.

The mean differences for the F̄CC, F̄LR and F̄PA below 50% activity were 5 %, 7 % and 26%,
respectively. The mean differences above 50 % activity were 1 %, 1 % and 18%.

Bite force orientation

The angles of the bite force in the horizontal plane θkH and in elevation θkV (in degree,
k = {const,MU}) are shown for the maximal activation protocol in Figures 7.7a and 7.7b,
respectively. The angles are computed according to

θkH = atan2
(
F k

PA,F
k
LR
)

and (7.4)

θkV = atan2
(
F k

CC,
√

(F k
LR)

2 + (F k
PA)

2)

)
, (7.5)

where atan2 is the four-quadrant inverse tangent. Snapshots of θkH at various time-steps are
also plotted in the horizontal (x-y plane) in Figure 7.10.

The elevation angle converged between the two models after 20 % activity, showing only
a ≈ 1° difference below the activation level. The horizontal plane angle, on the other hand,
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Figure 7.7: Angle of bite force components. The blue traces correspond to the constant-activity model and
the red trace to the motor-unit-activity model.

showed drastic differences. Initially pointed cranio-posteriorly in the motor-unit model, and
being reoriented to face cranio-posteriorly after approximately 30 % activity, and eventually
converging with the constant-activity model at full activation. The constant-activity model did
not show a reversal of the bite force, instead it was directed cranio-posteriorly for the entire
contraction.
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Figure 7.8: Snapshot of intramuscular pressure distribution in the right masseter during sub-maximal
contraction for both motor-unit- and constant-activity models. The snapshot is taken at ≈ 17 % activity.
The red marks and histogram represent the motor-unit model. The blue marks and histogram represent
the constant-activity model.
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Intramuscular pressure

While bite force reveals the overall masticatory system output, the motor-output within the
masseter was investigated via the distribution of intramuscular pressure. A snapshot of
intramuscular pressures σIMP (in MPa) and activity, at all points, in the right masseter muscle
was taken at approximately 17 % activity. The pressures and activities are correlated at each
point and plotted in Figure 7.8a, for both constant-activity and motor-unit models.

The motor-unit model showed a statistically significant (p < 1× 10−6) linear correlation
between activity and intramuscular pressure, with a Spearman rank coefficient of r = −0.84.
In the constant-activity model, since the activity is constant at a given time-step, the spread of
intramuscular pressures is localised at this activity level.

The same intramuscular pressure values are plotted as a histogram (Figure 7.8b). This reveals
the frequency of occurrence of the pressure in the right masseter at a given time snapshot.
Pressures in the constant-activity model were approximately uniformly distributed about a
mean pressure of −0.055MPa (negative is compressive). The motor-unit model exhibited a
non-symmetric, bimodal pressure distribution, indicating two distinct clusters of high and zero
pressure, with a larger portion of the muscle experiencing the latter. The high pressure region
was centred around −0.095MPa.
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(a) t = 0.1 s. (b) t = 0.27 s.

(c) t = 0.51 s. (d) t = 0.75 s.

Figure 7.9: Evolution of stress in the masseters during the maximal contraction simulation for the motor-
unit driven model. The finite element model is sliced every 10mm along the caudal-cranial axis. Stresses
are colour-coded between 0MPa: blue and 1MPa: yellow. The width of the mandible (taken posteriorly,
between the widest points) is ≈ 115mm.
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Figure 7.10: Spread of contraction in the masseter cross-section during the maximal contraction simulation
for the motor-unit driven model. Activity is colour-coded between αM(t, ξ) = 0: blue and αM(t, , ξ) = 1:
yellow. The width of the mandible (taken posteriorly, between the widest points) is ≈ 115mm. Plots of
the horizontal angle of the resultant bite force are plotted in the middle at the corresponding time steps,
with the dotted blue line representing the constant-activation case and the solid red line representing the
heterogeneous activation case.
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7.4 Discussion
First, the plausibility of the motor-unit anatomy in the masseters is discussed (Section 7.4.1).
Before moving onto model limitations, including the lack of other masticatory muscles and
artificial scaling of muscle strength (Section 7.4.2). Lastly, the implications of modelling motor-
units on bite force prediction, as compared to the constant-activity model, are discussed both
in terms of bite force and intramuscular pressure (Section 7.4.3).

7.4.1 Motor-unit anatomy
For distribution ID A, the placement parameters for masseters, ckMUT, k = {L, R}, were chosen
such that the smaller (or type-S) territories were located anteriorly and within the deep part of
the masseter. The distribution parameters, Rk, ∆Rk, Dk, and ∆Dk, k = {L, R}, were chosen
to limit the overlap between territories. This resulted in segregated territories with a strong
preference of smaller and larger units located in deep and superior heads respectively (Figure
5.10). Lastly, the shape parameters, λi, i = {1, 2, 3}, vk

1 and vk
2 , k = {L, R} were chosen such

that the territories were elongated along the posterior-anterior axis of the masseters, which has
been observed in humans (McMillan et al., 1991; Tonndorf et al., 1994) and for pig masseters
(Herring et al., 1991).

A larger portion of type-I fibres, i.e., those typically comprising type-S motor-units, were
found to be preferentially located in the deep portion of the human masseter (Eriksson et al.,
1983). Tonndorf et al. (1994) used scanning electromyography and found larger territories in
superior regions of human masseters. This has further been observed in several mammalian
masseters (van Eijden et al., 2001, and references therein).

More recent studies, using advanced scanning electromyography techniques, however,
provide evidence against this preferential location of motor-unit type in the masseter. For
example, van Dijk et al. (2016) found no significant difference between the sizes of superficial
and deeper motor-unit territories. Lapatki et al. (2019) found a weak correlation between
masseter depth and territory (medio-lateral) length, however both smaller and larger territories
were found throughout the muscle thickness.

Currently, recruitment of motor-units is governed by the size principle. That is, smaller
motor-units are recruited prior to larger ones. Therefore, functional heterogeneity is influenced
by preferential location of the territories. For example, if smaller motor-unit territories are
uniformly distributed over the muscle’s cross-section, then their recruitment would result in a
(close to) uniform contraction of the muscle.

However, it appears that the masseter can recruit sub-volumes of the muscle by recruiting
adjacent motor-units (e.g. Schindler et al., 2014). This may occur by modification of the
recruitment thresholds, for example, due to bite force direction (Ogawa et al., 2006) and/or
contraction velocity (Romaiguère et al., 1989). Such changes in recruitment thresholds may
alter the order of motor-unit recruitment and result in regional contraction of the muscle. That
is, neighbouring motor-units of different sizes may be recruited together. This implies that a
part of the functional heterogeneity of muscles arises at the level of motor-unit recruitment.
This is not possible in the current modelling frame-work, where motor-unit recruitment is
solely governed by their size.

Mammalian skeletal muscles typically show anywhere between 10-50 motor-unit fibres at
a given region of the muscle (Edström et al., 1968; Burke et al., 1973). For the meta-units,
corresponds to at least 2-3 overlapping territories, which was not the case in distribution A.
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The meta-territories, instead, showed only a slight overlap at their boundaries with 1-2 other
territories. This indicates that the territories in the current model may be more concentrated
than what may be found in reality. The influence of changes in motor-unit confinement is
investigated in the next chapter.

7.4.2 Modelling limitations

The consequences of grouping of motor-units into meta-units is not limited to the modelling of
the masticatory system and is therefore discussed in Section 10.1.2. The remaining limitations
are discussed below.

Other masticatory muscles

The bite force analyses were carried out only with the masseters. Obviously, in reality additional
muscles contribute to biting, namely the temporalis, and the pterygoid group, which are
typically co-activated in most masticatory tasks, even below maximum bite force (e.g. van
Eijden et al., 1990). Neglecting these muscles oversimplifies the bite, both in terms of force-
direction and -magnitude. But since the focus was on the comparison of two activity methods,
a relative difference in bite force, even produced by an idealised model, was sufficient. In fact,
the remaining masticatory muscles also show compartmental function (e.g. Blanksma et al.,
1997; Phanachet et al., 2003; Schindler et al., 2005), and their inclusion may lead to further
deviations between the two approaches.

Scaling of masseter specific-strength

The cross-sectional strength of the masseters in the prototype model was 1N/mm2, obtained
by scaling the reference value by 7.5 (Section 4.2.5). Typically, cross-sectional strength in
human muscles ranges from 0.17–0.21N/mm2 in muscle of the lower leg (Kent-Braun et al.,
1999; Maganaris et al., 2001), or 0.13N/mm2 for a single type-I fibre (Gollapudi et al., 2009), or
0.07–0.11N/mm2 in knee extensors (Maughan et al., 1983). The value used in the present study
were a factor 5-10 above these values.

While the current model captures some anatomical features of the masseter, the complex
internal organisation of multiple aponeuroses and varying pennation angles (e.g. Cioffi et
al., 2012) was neglected. Such an architecture would act to increase the physiological cross-
sectional area and increase masseter force output. The simplification of the internal masseter
structure was compensated by scaling the specific-strength (somewhat haphazardly). A rough
approximation shows that reducing the specific-strength by a factor of 5, i.e., ≈ 0.2 N/mm2,
would reduce the bite force (proportionally) to ≈ 140N. This is well below the range for
healthy adults (456±178N) (Röhrle et al., 2018a, Table 1). Regardless of the specific-strength,
given that the model was used to compare the relative behaviour between a status-quo and
motor-unit driven model, this may not be detrimental to the conclusions drawn from the
modelling comparisons.
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7.4.3 Comparison to constant-activity model
Bite force

Qualitatively, the spread of both muscle activity and stress in the masseters reflects the un-
derlying activity and structure of the motor-units (Figures 7.9 & 7.10). The anterior deep
region contracts first, and as the larger motor-units are recruited, the contraction spreads
posteriorly and superficially. The non-uniform stresses in the muscle also impact the stresses
in the tendons (top and bottom slices of Figure 7.9) and across the attachment area. Changes
in force transmission to the mandible influence the torque generated at the molar. Such an
evolution of muscle activity is obviously not seen in the constant-activity model, where muscle
activity is applied uniformly throughout the masseter.

At lower activation levels, the influence of individual motor-units is more pronounced
since only these muscle subregions are producing active stress, predominately in the direction
prescribed by their local-fibre orientation. The smaller motor-units were located anteriorly and
deep within the masseter, where the local fibre orientation is directed posteriorly. Therefore,
at low activation levels, the overall muscle force is dominated by these posteriorly oriented
motor-units and acts to retract and elevate the mandible (Figure 7.10). This retraction behaviour
was not observed for the constant-activity model.

The function of the deep region of the masseter to retract is supported by experimental
observations. For example, Belser et al. (1986) found that during jaw retraction, the respective
activity of superior and deep fibres was 5.5 % and 47.5 %. Additionally, Hannam et al. (1994)
and Blanksma et al. (1997) found that deep fibres in the masseter contributed predominantly
to jaw elevation and jaw retraction. Recording the activity of individual motor-units, Ogawa
et al. (2006) found that those motor-units located deep within the masseter started firing earlier
when the bite was oriented “posterio-laterally”, i.e., retraction of the jaw laterally. As the bite
force became more anterior, the motor-units in the superficial region became more active.

As the masseter approaches medium levels of activation, the muscle force beings to receive
contributions from a larger population of motor-units. In fact, at about 50 % activation, all
motor-units are recruited. Since the larger superior head of the masseter has fibres more
anteriorly directed, the recruitment of these motor-units causes the resultant force to be
directed anteriorly. This can be seen in the large variations in FPA as compared to FLR and FCC
over the range of activation.

At maximal activation all motor-units of the masseter are maximally recruited. Therefore, it
would be expected that the bite force coincides between the two models. If, however, the history
of deformation or muscle contraction was of interest than the two models would no longer be
equivalent. For example, a certain history of compartmental activity and the associated changes
in intramuscular pressure may lead to certain patterns of blood perfusion in the muscle.

When the masseters were modelled with a uniform motor-unit distribution (constant-activity
model), the bite force was more steady (in its direction and magnitude) as the masseters went
from inactive to fully-active. A non-smooth mandibular force was more pronounced below
medium activity levels, suggesting that motor-units should be considered for investigations
involving sub-maximal tasks such as speech and mastication. Additionally, since bruxism
involves sub-maximal contraction (e.g. Nishigawa et al., 2001), the direction of this sustained
force would be better predicted by considering compartmental activity of the masticatory
muscles.
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Intramuscular pressure

In the prototype motor-unit driven model, regional variations in intramuscular pressure were
observed at 17 % maximum voluntary bite force (Figure 7.8a). This resulted in regions of very
high pressure in the anterior deep region of the masseter, where the smaller motor-units were
active. The larger, more superficially located motor-units were inactive and thus did not raise
intramuscular pressure.

In the constant-activity model, pressure was distributed more uniformly within the massseter,
i.e., regions of very high and low pressure were not seen. The mean pressure occurred approx-
imately in the middle of the masseter. The spread of the pressure values despite a constant
activity is due to the architectural variations in the masseter, which causes changes in the
force-length relationship, and distributes the active stress non-uniformly within the muscle.

From a modelling perspective, these results show that neglecting motor-unit activity and
distribution leads to errors in both pressure magnitude and more importantly in the way it
is distributed throughout the muscle. This may impact predictions based on intramuscular
pressure, for example, blood perfusion within the muscle, which leads to metabolic changes
and influences fatigue (e.g. Sjøgaard et al., 1988; Murthy et al., 2001).

Intramuscular pressure was measured in the tibialis anterior and was found to hover around
1× 10−3 N/mm2 (10mmHg) and may rise to 2× 10−2 N/mm2 (200mmHg) during contraction
(Nakhostine et al., 1993). The pressure magnitudes in the simulation are an order of magnitude
higher than these observations, ≈ 1× 10−1 N/mm2 (750mmHg) at 0.35 activity. This is due
to the artificially scaled passive stiffness parameters, which were scaled together with the
specific-strength (see discussion above).

Conversely, passive stiffness was not scaled in the idealised case and here a lower pressure
was observed, i.e., ≈ 1.75× 10−2 N/mm2 (131mmHg) at 0.35 activity (Figure 6.9b). This is one
of the disadvantages when material parameters are (crudely) scaled to account for modelling
errors, and motivates the need for more precise muscle-architectural models. That is, by
modelling the aponeuroses of the masseter the mechanical advantages of pennated muscle
would yield a higher force-output, while keeping intramuscular pressure within physiological
limits.

Another drawback is that the intramuscular pressure in the simulation at rest is 0 N/mm2. This
is due to the theoretical framework, which operates from a stress-free, reference configuration.
Possible solutions include applying a baseline activity or pre-stretching the muscle to generate
this pressure passively.





8 Case-Studies Using the Integrated
Neuro-Musculoskeletal Masticatory
System Model

The prototype neuro-musculoskeletal model of the masticatory system, developed in the
previous chapter, opens up multiple avenues to investigate the relationship between motor-unit
anatomy, activity, and masticatory motor-output. Certainly, any conclusions drawn from such
analyses need to be interpreted with care, as only a single joint with a single anatomical layout
is considered. Despite this limitation, these exploratory case-studies can be used to discover
patterns, anomalies, and test hypotheses to help direct future analyses.

With this in mind, the masticatory model is used to address the following questions, each
being introduced in its respective section:

1. What is the influence of masseter motor-unit distributions on bite force? (Section
8.1)

2. How robust is masseter intramuscular pressure in the passive regions as a
predictor of bite force? (Section 8.2)

3. Is bite force an accurate representative of masseter motor-unit twitch force?
(Section 8.3)

Additionally,

4. How does the motor-unit remodelling that occurs during ageing and neuromus-
cular disorders manifest itself in bite force? Since this investigation extends the
motor-unit anatomy algorithm, it is treated in a separate chapter (Section 9).

8.1 Compartmental Activity of Masseters and Bite Force
The masseter has a complex internal architecture, with multiple and individually varying
aponeuroses compartmentalising the muscle (Cioffi et al., 2012). Masseter motor-units are
smaller compared to limb muscles (van Eijden et al., 2001) and may be largely confined within
the aponeuroses (Tonndorf et al., 1994). Furthermore, individual motor-units show a high
degree of functional selectivity, i.e., firing preferentially in certain bite directions (Ogawa et al.,
2006; Schindler et al., 2014). Given that motor-units are highly specialised in the masseters,
alterations in their architecture would impact motor-output. Furthermore, motor-unit anatomy
is individualistic due to factors such as gender (Jaworowski et al., 2002),1 age (Lexell et al.,
1991) and physical training (Howald, 1982; Messi et al., 2016). When injury or neuromuscular

1while not explicitly measuring motor-unit territory, the differences in fibre-type distributions may be taken
as a marker for territory arrangement
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disorders are considered, the variety in motor-unit anatomy increases even further (Johnson
et al., 1973b; Lester et al., 1983). The sensitivity of masticatory motor-output to changes in
masseter motor-unit anatomy has not been quantified.

To this end, a sensitivity analysis using the prototype masticatory system model (Section 7.3)
is carried out. By fixing the recruitment and firing rate of the α-motor-neurons, and changing
only the distribution of fibres they innervate in the masseters, the sensitivity of the resulting
bite force to changes in motor-unit anatomy can be quantified. A change in motor-unit territory
does not involve a structural change per se, rather it corresponds to a change in the fibres
recruited by an α-motor-neuron.

In a first set of variations, the amount of dispersion (via D and ∆D) and overlap with
neighbouring motor-unit territories (via R and ∆R) were varied. Then, in a second set of
variations, these dispersion and overlap parameters were fixed, and the relative position of
smaller and larger motor-unit territories were varied (via cMUT), e.g., smaller territories located
posteriorly/superiorly in one case and in the middle of the muscle in another.

8.1.1 Methods
Only meta-unit territory arrangements and meta-unit activities were altered in the following;
the rest of the prototype masticatory model, as described in the previous chapter, remained
unmodified. The co-dispersion index (Section 5.3.5) is used to quantify the meta-unit distri-
butions in the masseters. The calculation of the co-dispersion index requires a split between
type-I and -II fibres. Therefore, meta-units 1–37 were assumed to be type-S, i.e., composed of
type-I fibres, and the remaining, larger meta-units (38–50) were type-F.

Motor unit activity

Individual meta-unit activity was computed by supplying a sub-maximal excitatory drive E(t)
(Equation 5.2) to the same α-motor-neuron pool and biophysical models as described in Section
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Figure 8.1: Activation protocols for the sub-maximal case for the motor-unit driven model (meta-unit
numbers indicated).
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Table 8.1: Motor-unit anatomy parameters for the meta-unit territory distribution variations in the
masseter. Only changed parameters are shown, i.e., blanks refer to the parameters in distribution 0. All
parameters are multiplied with the cross-sectional area of the masseter in question; CSAk, k = {L,R},
for the left and right masseter being 620mm2 and 626mm2, respectively. The location of the central
anchor point cMUT is indicated by anatomical positions, A: anterior, D: deep, S: superficial, P: posterior
and M: middle.

ID k cL
MUT cR

MUT R/CSAk D/CSAk ∆R/CSAk ∆D/CSAk

0 A/D A/D 1.60× 10−3 1.60× 10−2 6.25× 10−3 3.125× 10−3

1 A/D A/D 2.40× 10−2

2 A/D A/D 1.60× 10−1

3 A/D A/D 3.125× 10−2

4 A/D A/D 9.375× 10−2

5 A/D A/D 2.40× 10−2 4.80× 10−1

6 A/D A/D 1.60× 10−2 1.60× 10−1

7 A/S A/S
8 P/D P/D
9 P/S P/S
10 M M

7.3.1. The excitatory drive E(t) was linearly increased from 0 to 0.375 over ∆t = 0.25 s held
constant for ∆t = 0.1 s and then decreased linearly to 0 over ∆t = 0.25 s.

Masseter architecture and meta-unit territories

Thedistribution used in the previous chapter—distribution A—is referred to here as the reference
meta-unit territory, with ID 0. Distribution B from the previous chapter is assigned ID 2. Note
that for all territory variations the parameters λ1 = 1,λ2 = λ3 = 5 (Equation 5.35), which
influence meta-unit territory shape, were kept constant.

Variations in meta-unit territory distributions (of both masseters simultaneously) were
produced by scaling distribution 0’s parameters (Table 8.1).2 The parameters were scaled
individually (distribution IDs 1-4), and simultaneously (distribution IDs 5 and 6). The motor-
unit territories (besides those in Figure 7.4) over the masseter’s cross-section are plotted in
the Appendix B. The co-dispersion index was computed for each distribution. Then, fixing the
distribution parameters to those in the reference distribution (ID 0), the reference point cMUT
was repositioned over the muscle’s cross-section (technically, the seed-point surface). Since
smaller territories are assigned prior to larger ones, the location of cMUT dictates the location
of the smaller meta-unit territories. This holds only when the distribution parameters allow
for local confinement of the territories, i.e., if D, R→∞, then the location of cMUT becomes
irrelevant.

2The influence of distribution parameter scaling on the motor-unit territory distribution can be seen in the
study performed on an idealised geometry (Section 5.3.5).
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Sub-maximal static bite simulation

Each of the 10 distribution parameter variations were used to generate a pair of masseters,
which, in turn, formed 10 separate prototype masticatory models. The same meta-unit activity
was supplied to each of the prototype models to simulate a sub-maximal static bite. The
spread of the bite forces was used to quantify the influence of the varying motor-unit territory
distributions.

8.1.2 Results
The bite forces, for k = {1, . . . , 10} distributions, were measured along the left-right, posterior-
anterior and caudal-cranial axes and are denoted as F k

LR(t), F k
PA(t) and F k

CC(t), respectively.
The magnitude of the bite force is denoted as F k

M. All forces are in N. The spread of bite forces
for distributions k = {1, . . . , 6} and IDs k = {7, . . . , 10} are shown in Figures 8.2a and 8.2b,
respectively.

0 0.2 0.4 0.6
−50

0

50

100

150

200

Time (t) [s]

Fo
rc
e
[N

]

(a) Dist. IDs 1–6.

0 0.2 0.4 0.6
−50

0

50

100

150

200

Time (t) [s]

(b) Dist. IDs 7–10.

Figure 8.2: Variation in bite forces with changing meta-unit anatomy. The solid line is from the distribution
ID 0; the blue, red and green shaded regions represent the force envelopes for the caudal-cranial, posterior-
anterior and left-right force components, respectively.

The orientation of the peak bite force is described by the elevation angle θkV and the angle in
the horizontal plane θkH (in degree), and the spread of these angles is shown in Figures 8.3a and
8.3b, respectively.

Territory spans were measured by inserting a virtual probe superficially into the masseter
and moving it medially, i.e., through the thickness of the muscle. The distance covered within
a certain meta-unit by the probe was taken as the span of the unit. These medio-laterial virtual
scans were repeated three times for each masseter; one located posteriorly, in the middle of
the muscle and anteriorly and all recordings were concatenated. Territory spans of selected
distributions (in mm), together with literature values, are given Table 8.2.

The peak bite force occurred at t = 0.34 s. The peak bite force components, magnitude,
angles, and statistics for all distributions are given in Table 8.3. The fibre-type co-dispersion
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Figure 8.3: Variation in bite forces angles with changing meta-unit anatomy. The red shaded region
corresponds to distribution IDs 1–6 and the blue shaded region to distribution IDs 7–10. The solid red
line is for distribution ID 0.

index of the distributions is also given in Table 8.3. The values of co-dispersion index for the
right masseter ranged between 0.05-0.90. To investigate the relationship between fibre-type
dispersion and bite force, the peak bite force magnitude F k

M is plotted against co-dispersion
index in Figure 8.4.

Table 8.2: Experimental and simulated motor-unit territory sizes in the human masseter. The method to
determine MUT size are iEMG and HDEMG for needle and high density electromyography, respectively.
†minimum and maximum values given as 10th and 90th percentiles, respectively

MUT length/mm

Method Min. Max. Source/comment

iEMG 0.3 19 McMillan et al. (1991)
iEMG 0.4 13.1 Tonndorf et al. (1994)
iEMG 0.7 8.6 van Dijk et al. (2016)
HDEMG 1.2 7.9 Lapatki et al. (2019)

Simulated
†0.7 †3.9 Distribution ID 0
†0.3 †8.2 Distribution ID 2
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Table 8.3: Sensitivity of bite force to masseter meta-unit anatomical variations.

ID CDI F k
LR/N F k

PA/N F k
CC/N F k

M/N θkV/deg. θkH/deg.

0 0.86 -12 -5 148 149 85 -114
1 0.69 -13 -2 148 148 85 -98
2 0.39 -16 3 144 144 83 -79
3 0.59 -14 1 147 148 85 -86
4 0.44 -12 3 145 145 85 -75
5 0.05 -15 5 143 144 84 -72
6 0.16 -18 4 142 144 83 -78

7 0.89 -15 33 162 166 77 -24
8 0.86 -17 -25 138 142 78 -145
9 0.90 -17 17 138 140 80 -45

10 0.79 -19 18 142 144 80 -48

mean 0.60 -15 5 145 147 82 -79
SD 0.29 2.4 14 6.3 6.6 2.8 32

range 0.86 8 58 24 26 8 121
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Figure 8.4: Variation of peak force magnitude with fibre dispersion, as measured by the co-dispersion
index. The marks in red are distributions with varying dispersion parameters but the same territory
positions. The marks in blue have the same dispersion parameters but varying territory positions. The
distribution parameter IDs are indicated directly above the marks.



8.1 Compartmental Activity of Masseters and Bite Force 151

8.1.3 Discussion

The force component that wasmost sensitive to changes inmeta-unit anatomywas the posterior-
anterior component (FPA), followed by the left-right (FLR) and caudal-cranial (FCC) components
(Figure 8.2). These differences in force sensitivity can be explained by the architecture of the
masseters. If the muscle had an approximately uniform fibre orientation and uniform geometry,
the particular region in charge of force production would have little impact on the resultant
force vector, e.g., this was seen with idealised geometry in Section 6.4. On the other hand,
the greater the variance in fibre orientation within the muscle, the larger the variation in the
resultant force vector when the α-motor-neuron innervation is altered. Since the greatest
variation of fibre orientation in the masseter was along the posterior-anterior axis, i.e., fibres
in the superior head face posteriorly and anteriorly in the deep head, FPA was impacted the
most by changes in meta-unit territory.

Motor-unit territory confinement and innervation-ratio

The force component sensitivity reveals the link between the neural organisation of the muscle,
its structural organisation and motor-output. That is, it would make sense that a muscle with a
complex and varying internal architecture had many locally confined territories. Only then
could the neuromuscular system exploit each region of the muscle effectively.

This has been observed in the masseter, which have smaller, more confined territories as
compared to muscles of the limbs—“suggest[ing] a more localized organisation of motor control
in masticatory muscles” (van Eijden et al., 2001). This enables such a muscle to produce a
variety of force vectors, e.g., the rabbit masseter produced “lines of action …at least as large as
the variation in fibre directions” (Turkawski et al., 1998). Additionally, Schindler et al. (2014)
found that small “sub-volumes” of the masseter were recruited under particular tasks via the
recruitment of adjacent motor-units. Ogawa et al. (2006) found motor-units of the masseter
that had a preferred “firing range”, meaning that certain units only contributed to certain bite
force directions.

These studies, among others, suggest that the masseter has both a highly specialised internal
architecture and small enough territories that these regional differences can be exploited. This
is reflected in the sensitivity study by the fact that altering the position of highly confined
territories had a much larger impact on bite force than did the amount of overlap. That is,
distributions 7–10 had a much larger influence than did 1–6.

In fact, given that only a fraction of the motor-unit pool is active, changes in overlap also
alter the (mean) position of the active territories. This can be seen in Figure 8.4, where larger
changes in force magnitude are observed for distributions 2, 4, 5 and 6 compared to 1 and 3,
since a more mixed distribution (co-dispersion index closer to 0) effectively repositions the
mean location of the territory. In other words, it appears that the effective center of activity
influences bite force to a higher degree than the overlap of the territories.

Furthermore, when highly confined distributions (co-dispersion index closer to 1) are reposi-
tioned, large changes in force magnitude are seen. This suggests that the relationship between
motor-unit anatomy and force output is likely:

territory overlap → mean territory location → force output.

As mean territory location shifts posteriorly, the force-magnitude decreases. This occurs for
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distributions 2, 4 and 6 and much more drastically for distributions confined territories: 8, 9
and 10. This reduction in bite force could be due to (i) changes in the force-length relationship
of skeletal muscles, (ii) force transmission through the muscle cross-section, (iii) muscle
architectural changes and (iv) modelling errors and the interplay between these factors.

First, the posterior region of the masseter is less confined by surrounding tissue as is the deep
region of the muscle. Since a large part of the deep region is attached to the mandible, this may
limit the stretch of this region (staying close to optimal length) as it is activated. Furthermore,
the model lacks connective tissues surrounding the muscle, i.e., the epimysium, which may
act to resist muscle contraction. Therefore, sarcomere lengths may undergo greater changes
when posteriorly located and thus cause the masseter to fall below its optimal length and lead
to reduced force production.

Second, force transmission occurs both along the fibres and transversely between fibres via
shearing effects (e.g. Huijing, 1999b). When the contraction occurs superficially in the masseter,
this laterally transmitted force may be “dissipated” (by elastic deformation of neighbouring
regions) leading to a lower force transmission at the tendons.

Third, the fibre orientation in the superior head may redistribute force away from the cranial
caudal component. This can be seen in the FLR force component, which in fact is higher for
distribution 9 than distribution 7, which has the highest overall magnitude.

Fourth, despite best efforts to model the jaw musculoskeletal system accurately, modelling
assumptions and errors will inevitably influence simulation results. In this case, the abrupt
changes in the geometry of the caudal end of the masseters may alter force transmission to the
mandible, which would otherwise be more efficiently transmitted given a smoother curvature
of the muscle.

8.1.4 Conclusion
Variation of motor-unit territory distributions in the masseters had a significant impact on the
bite force at the molars, both in terms of magnitude and orientation. The sensitivity of the bite
force components was closely linked to the masseter architecture. The posterior-anterior force
(and horizontal angle) was most sensitive to changes in territory location, which corresponds
to the large variety of posterior-anterior fibre orientation within the superior and deep heads.
This indicates that in muscles which have locally confined territories, individualistic motor-unit
territory distributions should be taken into account as this can impact joint force predictions,
especially at low to medium force levels. The results showed that territory location outweighs
territory overlap in governing overall muscle force output. And that changes in force elicited
by territory overlap could in fact be due to their influence on the effective territory location.

8.2 Compartmental Activity and Intramuscular Pressure
in the Masseters

A popular approach to infer muscle activity is intramuscular pressure, which measures the
hydrostatic fluid pressure in skeletal muscle as it contracts, and shows good agreement with
muscle force (e.g. Aratow et al., 1993; Ateş et al., 2018). Mechanically speaking, according to
the Law of Laplace, when curved fibres contract they exert pressures inwards proportional to
their tension and curvature. Given its mechanical nature, intramuscular pressure is further
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used to predict the stress-state in the muscle (Ward et al., 2007; Sadeghi et al., 2019).
However, this technique faces some challenges. For example, during dynamic contractions

the correlation to muscle stress breaks down (Ward et al., 2007), or that pressure measurements
are sensitive to catheter depth (Nakhostine et al., 1993). A more fundamental issue is that
pressure arises due to both active and passive muscle deformations. To circumvent this, pressure
measurements are typically supplemented with electromyography (e.g. Styf et al., 1995; Ateş
et al., 2018).

This situation becomes more complicated for sub-maximal contractions, especially for
muscles that show regional contraction (e.g. Holtermann et al., 2009; Schindler et al., 2014).
Under these conditions, portions of the muscle remain inactive. These regions, while not
generating electromyographic signals, would experience passive deformation, due to lateral
force transmission via connective tissues (e.g. Purslow, 2010). The ability of pressure in these
inactive regions to predict joint force remains unclear.

In order to address this, the prototype masticatory model was used to perform sub-maximal
contractions and the pressures in the active and passive regions were correlated to bite force.
Since intramuscular pressure measurements are (minimally) invasive, typically a single sensor
is used intramuscularly. The benefit of a simulation model is that intramuscular pressure can be
measured at any number of points throughout the muscle (a virtual high-density intramuscular
pressure measurement). Therefore, the correlation between the temporal-evolution of pressure
and bite force was performed at each spatial-point within the muscle, enabling statistical
analysis of the resulting correlation coefficients. Furthermore, to test the robustness of the
correlations between the active and passive pressures and bite force, the statistical analyses
were repeated for a variety of masseters, each with a unique meta-unit architecture.

8.2.1 Methods
The sub-maximal contractions and meta-unit architecture variations were identical to those
described in Section 8.1. Briefly, 33/50 meta-units in each of the left and right masseters were
recruited to simulate a sub-maximal static bite over the period t = [0, 0.6 s]. The bite force was
measured over the molar occlusal surface.

Whereas the previous study involved variations on both territory overlap and position; this
analysis is restricted to the former, i.e., distributions 0–6 (Table 8.1). Furthermore, pressures in
the right masseter are taken as representative of both masseters. Lastly, the pressures are only
correlated to the bite force magnitude FM(t), i.e., not the individual components.

Statistical Analysis

For clarity, the superscript (·)k, which denotes the distribution ID, is omitted (keeping in mind
that the analysis outlined below is performed for each distribution separately). To determine
the ability of intramuscular pressure in the active and passive regions to predict musculoskeletal
motor-output, the pressures in each region were correlated with the bite force. The main steps
in this analysis were:

1. Intramuscular pressures σIMP(t, ξp) (Equation 3.37) were extracted at all Gauß
points, p = 1, . . . ,NGP. This results in NGP pressure traces, over t = [0, 0.6 s].

2. Muscle activities αM(t, ξp) were also extracted at all Gauß points. This results in
NGP activity traces over t = [0, 0.6 s].
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3. Bite force magnitude FM(t) at the molars was extracted. This results in a single
force trace over t = [0, 0.6 s].

The pressure traces at each Gauß point were then correlated with the bite force to determine
the Spearman correlation coefficient, i.e.,

r(ξp) = rp = corr (σIMP(t, ξp),FM(t)), (8.1)

for p = 1, . . . ,NGP and where r = [−1, 1] with values closer to 0 implying a weaker
correlation. Then statistical analyses were performed on these coefficients, e.g., the mean
ravg = mean(r1, r2, . . . , rNGP) and standard deviation rsd = std(r1, r2, . . . , rNGP).

Based on the activity traces in the masseter αM(t, ξp), each point was classified as either
“active” or “passive”. This was done by computing the mean activity α̃M(ξp) over t = [0, 0.6 s],
and if this value was 0, the corresponding rp was classified as passive: rp → rpassp | α̃M,p = 0,
and as active otherwise: rp → ractp | α̃M,p > 0.

The mean active pressure correlation-coefficients were computed within a distribution (k) by
r̃act,k = mean(ract,kp ). Then, the mean correlation across all distributions can be computed by
˜̃ract = mean(r̃act,k). Similarly for the passive pressures.

In other words, r̃act,k and r̃pass,k, are scalar values that represent the mean-pressure to bite
force correlation in the active and passive regions of a single right masseter, respectively.
Whereas ˜̃ract and ˜̃rpass represent the mean-pressure to bite force correlation across the active
and passive regions of all right masseters (each with a unique meta-unit architecture).

Lastly, to isolate the relative predictive ability of the passive pressures, the mean passive
correlation-factors per masseter were divided by the active pressure correlations, i.e.,

τ k =
r̃pass,k

r̃act,k
. (8.2)

8.2.2 Results
Across all distributions, intramuscular pressure in the right masseter had a mean and standard-
deviation of 53± 10 kPa and 6± 1.7 kPa in the active and passive regions, respectively. The
descriptive statistics of the correlation coefficients for each meta-unit territory distribution
are shown via box-plots in Figure 8.5a. Intramuscular pressure within the active regions of
the masseter showed, on average, strong to very strong correlations to bite force across all
motor-unit distributions. The mean pressure-force correlations in the passive regions were not
correlated as strongly, and showed double the spread. The mean and standard-deviation of
the correlation coefficients for the active and passive pressures, across all distributions, were
˜̃ract = 0.86± 0.13 and ˜̃rpass = 0.78± 0.22, respectively.

Fibre-type distribution was taken as a marker for meta-unit overlap and quantified by the
co-dispersion index (Section 8.1.1). The relative ability of the passive pressures to predict bite
force was then plotted against the co-dispersion index in Figure 8.5b.

8.2.3 Discussion
The statistical analysis of the pressure-force correlation factors showed that not only are the
passive regions less strongly correlated than the active regions, on average, but also produce a
much wider spread in their force prediction ability. This implies that placing the intramuscular
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Figure 8.5: Correlations of active and passive compartmental pressures with bite force. (a) blue and red
boxes represent passive and active regions. Statistical significant shown with asterisks (p < 1× 10−3).
(b) The distribution parameter IDs are indicated directly above the marks.

pressure sensor within an active muscular region would increase the chances of measuring
pressure which correlates well with joint force.

Passive or lateral force transmission in muscles seems to be the main mechanism that allows
passive muscle regions to exhibit pressures which correlate well with overall muscle force
output. Connective tissues within the muscle, such as the perimysium and endomysium, enable
the transmission of force from active fibres, laterally, to neighbouring passive fibres. Therefore,
the passive deformation of these neighbouring fibres, and the pressure developed therein, is
closely coupled to the active behaviour of the muscle. The characteristics of force transmission
may be influenced by factors such as the material behaviour of the connective tissues and
muscle architecture such as geometry, aponeuroses, and fibre orientation.

The results showed that as the motor-unit territories become more evenly distributed, the
relative ability of pressures in the passive regions to predict bite force increased. At a very
low co-dispersion index, i.e., highly mixed fibres and highly overlapped motor-unit territories,
passive pressures performed as well as the active pressures in predicting bite force. As territory
overlap increases, the probability of a passive fibre to lie next to an active fibre increases and
thus via the lateral force transmission, deformation in the muscle becomes more uniform. Note
that the current modelling approach applies a homogenisation step between the discrete fibre
distributions and the mechanical simulation. This means that subtle changes in co-dispersion
index may not be captured since shearing between individual fibres is not captured.

The masseter showed drastic differences in the passive and active regions. Such regional
differences in pressure may be used to investigate muscle fatigue. For example, intramuscular
pressure seems to interact with arterial pressure and drive blood perfusion in the muscle (e.g.
Kirkebø et al., 1982; Sjøgaard et al., 1986). This may play an important role in regulating
motor-output during fatigue (e.g. Sjøgaard et al., 1988; Murthy et al., 2001).
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8.2.4 Conclusion
The difference of the force prediction capability between active and passive regions was reduced
when the fibre mixing was increased—even when a portion of the muscle was contracting. Such
fibre-type mixing is observed for young and healthy individuals. For these cases intramuscular
pressures sensor placement may not influence predictive ability. Conversely, for muscles
with confined motor-unit anatomy—such as that occurring during ageing and neuromuscular
disorders—sensor placement becomes more critical.

8.3 Determining Motor-Unit Twitch Properties in the
Masticatory System

Motor-unit twitch properties, such as contraction time and peak force, are commonly measured
via the spike-triggered-averaging technique (e.g. Stein et al., 1972; William et al., 1978; Roatta
et al., 2008), which involves simultaneously recording intramuscular electrical activity and joint
force and using motor-unit discharge times or “spikes”, as a trigger to average the joint the force
signal. While this technique provides a convenient way to measure in vivo twitch properties,
there are certain complications. Several of the shortcomings of spike-triggered-averaging
have already been investigated by experimental, simulation, and theoretical approaches (e.g.
Troiani et al., 1999; Taylor et al., 2002; Negro et al., 2014; Dideriksen et al., 2018). For example,
animal experiments on the non-linearity of twitch force summation (Troiani et al., 1999) or the
theoretical analysis of motor-unit synchronisation (during voluntary contractions) (Negro et al.,
2014). These, and other limitations, lead to mismatches even under ideal conditions (Negro
et al., 2014; Dideriksen et al., 2018). More recently, alternative methods have been proposed
to measure in vivo twitch properties. For example, Negro et al. (2017) use a deconvolution
approach on sub-populations of motor-units to determine the average twitch response.

Independent of the method to characterise in vivo twitch forces, measurements occur at
some point other than the muscle, i.e., at some point connected via biomechanical linkage to
the muscle. For example, in masticatory muscles, bite force is typically used as an indirect
measurement of their twitch properties (Yemm, 1977; McMillan et al., 1990). Whilemoment arms
may be used to account for this; such analytical methods typically oversimplify the anatomy.
For example, the geometry is typically treated as two-dimensional, or the biomechanical linkage
is treated as rigid, or that motor-unit location within the muscle is not taken into account.

The aim of this case-study is to use the prototype masticatory model to address these issues
and investigate the role of biomechanical linkage in the attenuation of the twitch response,
in an anatomically realistic three-dimensional model of the masticatory system. This is done
by stimulating individual motor-units in the masseter and comparing the twitch forces at the
muscle and over the molar. Additionally, the validity of the linear summation of twitches
measured at themolar is investigated by comparing algebraically summed twitches to equivalent
compound-twitches.

8.3.1 Methods
The geometries, material properties and boundary conditions of the masticatory system model
described in the Section 7.2 were used in the present investigation. The territory distribution
was described by the distribution parameters with ID 0 in Table 8.1 and is visualised in Figures
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7.4a and 7.4b.
To recap, the masseters were populated by 50 meta-units each, whose sizes were governed

by an exponential relationship (Equation 5.16). The numbering of the units proceeds from
smallest to largest. The twitch properties were spread continuously throughout the pool, with
the smallest units being those with the slowest and weakest twitch responses.

In the left masseter, four meta-units—number 10, 20, 30 and 40—were stimulated individually.
Forces (all in N) were recorded at a frequency of 2 kHz over the masseter origin (attachment
with the zygomatric arch) in the left-right, posterior-anterior and caudal-cranial directions
and are denoted: F LR

tw,origin, F PA
tw,origin and F CC

tw,origin, respectively. Peak twitch force is taken as the
maximum value of the magnitude of these components and is denoted Ftw,origin. Twitch forces
were similarly measured at the molar occlusal surface and are differentiated by the subscript
(·)molar.

The twitch force for a particular unit is specified via a superscript, e.g., F 10
tw,origin refers to the

peak twitch force of unit 10, measured at the masseter origin. By comparing the forces from
each measurement site, the effect of the biomechanical linkage between the masseter and tooth
was quantified along each axis. The difference in the force components was computed by

F j
tw,error = F j

tw,molar − F j
tw,origin, (8.3)

where j = {LR, PA, CC}. The relative error F̄ j
tw,error is computed by dividing the above equation

with the maximum force of the respective force component.
To verify the linear twitch forces summation, meta-units were stimulated together. The

particular combination of meta-units that are simultaneously stimulated are denoted with
a plus sign. The particular combination of stimulations were: 10 + 20, 10 + 20 + 30 and
10 + 20 + 30 + 40 and are referred to as compound twitches. By comparing the compound-
twitch forces (now measured only at the molars) to algebraic summations of the individual
twitch forces, discrepancies between the two can be quantified in all three directions.

To investigate impact of the linear summation on the local stress behaviour of the muscle,
the shear stresses (in Voigt notation) σ13 (in MPa), where the 1-direction is the local fibre-
direction, were compared between the two cases. However, since an overwhelming part of
the muscle is inactive during these simulations, the mean or standard deviation of σ13 would
obscure the differences. Alternatively, the skewness of the difference between the compound
and algebraically summed shear distributions was used. The differences in the shear stresses
were computed as follows:

1. For individual twitches, the shear stresses at the point of maximum twitch force
(the time-to-peak or TTP), throughout the masseter was recorded:

σ10
13(TTP, ξp), σ

20
13 , σ

30
13 and σ40

13 , p = 1, . . . ,NGP.

2. The individual shear stresses were added together to compute the “summed
shear”:

σ̃13(t = TTP, ξp)10+20+30+40 = σ10
13 + σ20

13 + σ30
13 + σ40

13 .

3. For the compound-twitch, the shear stresses at the point of maximum twitch
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force, throughout the masseter were recorded:

σ10+20+30+40
13 (TTP, ξp).

4. The difference between the summed and compound shear was computed:

σdiff
13 (TTP, ξp) = σ̃10+20+30+40

13 (TTP, ξp)− σ10+20+30+40
13 (TTP, ξp).

8.3.2 Results

Influence of twitch force measurement location

The range of peak-twitch forces, measured at the molar, predicted by the simulation was
between 0.62–6.2N for meta-unit 10 and 40 (of 50), respectively. The corresponding twitch
forcesmeasured over themasseter originwere between 0.69–8.7 N. The time-to-peak differences
were in the sub-millisecond range. The peak twitch forces and time-to-peak values for each
motor-unit at both measurement locations are plotted in Figure 8.8a.

The relative error in twitch force components, across all units, was between 20-40 %, barring
a couple of exceptions (Figure 8.6). For the left-right components, the molar twitch force was
higher than the masseter insertion twitch force; whereas for the caudal-cranial component, the
bite twitch always underpredicted insertion twitch. The posterior-anterior component showed
mixed results, with some units (10 & 30) producing higher twitch forces, while the others were
drastically lower (20 & 40).
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Figure 8.6: Relative error in twitch force components between measurements at the masseter insertion and
at the occlusal surface for independently stimulated meta-units. Where, maroon: meta-unit 10, dark
blue: meta-unit 20, green: meta-unit 30 and black: meta-unit 40.
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Difference in summed and compound-twitches

The linearly summed twitch forces generally underpredicted the actual compound-twitch force
(Figure 8.7). With the peak compound-twitch forces 10+ 20, 10+ 20+ 30 and 10+ 20+ 30+ 40
being 25 %, 26 %, and 31% higher than their linearly summed counterparts. This holds for all
combinations in the caudal-cranial direction, but not for the other directions. In fact, some
compound-twitch forces were not only weaker than their linearly summed counterparts, but
were also oriented in opposite directions.

The summed shear stresses σ13, at the point of maximum contraction, were higher than the
shear in the compound-twitches. This was evidenced by the fact that the differences (summed
shear minus compound shear) in the shear were skewed right—the skewness of σdiff

13 is computed
as −2.7 (Figure 8.8b).
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Figure 8.7: Linearly summed (dashed) and compound (solid) twitch forces. Where maroon: meta-unit
10+20, dark blue: meta-unit 10+20+30 and green: meta-unit 10+20+30+40.

8.3.3 Discussions
Influence of twitch force measurement location

Joint and muscle forces are typically linked via moment arms (e.g. An et al., 1984; McMillan
et al., 1990; Challis et al., 1994; Blemker et al., 2007; Miller et al., 2015). For example, when
muscles are modelled as line segments, the moment arms between insertion and origin points
and the joint-center are used to relate forces and moments. Similarly, when a region of a
three-dimensional muscle model contracts, the “center of force transmission” at the tendon
may also be slightly shifted, effectively altering the moment arm to the joint.

Since spike-triggered-averaging typically does notmeasure twitch force at themuscle directly,
moment arms are used to infer muscle twitch force (e.g. McMillan et al., 1990). Such approaches,
however, typically treat the mechanical linkages between the two points as rigid, enabling a
straight forward mathematical analysis. The advantage of computer simulations in solving the
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Figure 8.8: (a) Peak twitch force and TTP measured at the molar: dark-blue, and at the muscle origin: red
(b) distribution of shear stress differences obtained by: linearly-summed-twitch-shear minus compound-
twitch-shear.

mechanical problem is that this same principle (balance of momentum) can be applied at a
much higher resolution, and also account for the deformation of the components forming the
mechanical linkage.

Twitch forces at the molar do not match those at the muscle insertion and this mismatch is
not uniform between the twitch force components, i.e., there is a mismatch of the direction of
the twitch force. The contraction of the left masseter pulls on the mandible at the attachment
area, whose movement is resisted by both the left and right condyles and the right molar.
Passive stretching of the right masseter would also occur due to the movement of the mandible.
The direction, the mandible is pulled towards, depends on the local fibre orientation of the
motor-unit in the left masseter and the exact location of the unit within the masseter cross-
sectional area. For example, meta-unit 10 is located anteriorly and deep whereas meta-unit
40 is more posterior and superficial. The interplay of these factors means that, not only is the
resistive force distributed differently between the condyles and molar, but also that each force
component is affected differently.

These results suggest that, when measuring twitch force magnitude only, the bite twitch
seems to predict the muscle twitch quite well, albeit underpredicting the magnitude, with
mismatches becoming greater for larger units. Yet, when the twitch force direction is of interest,
it is unlikely that measurements at the tooth predict those at the muscle.

Difference in summed and compound-twitches

In the caudal-cranial direction, larger twitch forces were observed for compound stimulation
compared to isolated stimulation and linear summation (“greater than linear summation”).
This trend was not as clear-cut for the other components. Such mixed behaviour, i.e., greater
and less than linear summation, has been observed for twitch force magnitudes for various
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combinations of motor-units (e.g. Troiani et al., 1999).
For a compound-twitch, a larger volume of muscle contracts simultaneously when compared

to an isolated twitch. Meaning that there is less relative movement of different regions in the
muscle, i.e., less shearing within the muscle. Indeed, linearly summing the twitches lead to
a higher shear stress in the muscle compared to the compound-twitch. This may reduce the
lateral dispersion of energy in the muscle, and lead to more efficient force transfer towards the
tendons, resulting in a higher twitch force at the molars for the compound-twitch.

Certain combinations of the left-right and posterior-anterior directions showed less than
linear summation. This may also be explained in terms of the shear stress behaviour. The
flip-side of more efficient transfer of force towards the tendons may mean that the other
components receive a lower contribution. In other words, not only is the force magnitude
larger for a compound-twitch, but the distribution of force favours the dominant fibre direction,
which for the masseter is along the caudal-cranial direction (CC), then the posterior-anterior
direction (PA) and lastly the left-right direction (LR). This can be seen in the reduction of
the 10 + 20 + 30 + 40 compound-twitch force in relation to the equivalent summed twitch,
decreasing from the CC to the PA to the LR components.

8.3.4 Conclusion
The relationship between masseter twitch forces and those measured at the molar revealed that
the latter underpredicted peak twitch magnitude. Mismatches between the components was
related to the position of the motor-unit within the muscle cross-section and also on the local
fibre direction. The interplay of these factors makes it difficult to predict twitch force direction
from measurements carried out at some biomechanically linked point.

The compound-twitches elicited a higher twitch force than the linearly summed counter
parts. This was partly due to more efficient transfer of forces along the fibres towards the
tendons. This, additionally, acted to redistribute the force towards the dominant fibre direction
of the muscle, leading to some components being overpredicted by linear summation. Therefore,
models which linearly sum twitch force magnitudes may underpredict muscle forces. Linear
summation to predict twitch force direction should be approached with caution due to the
redistribution effects of the compound-twitches.





9 Extended Case-Study: Ageing and
Neuromuscular Disorders

The neuromuscular system is continually changing, due to, for example: healthy ageing (Lexell
et al., 1988), exercise (Howald, 1982; Messi et al., 2016), or neuromuscular disorders such as
Parkinson’s disease (Kelly et al., 2018), amyotrophic lateral sclerosis (ALS) (Morris, 1969), or
cerebral palsy (CP) (Rose et al., 1998). There is a tremendous variety in the degree, type, and
rapidity of the neuromuscular changes that occur during these processes, and are beyond the
scope of this thesis, for further details, see Shefner (2001), Mitchell et al. (2012), Henderson
et al. (2017) and Larsson et al. (2018). The remodelling of motor-unit anatomy is but one of
these changes, and is the focus of this chapter.

The dominant mechanism that facilitates motor-unit remodelling is the successive denerva-
tion and reinnervation of muscle fibres. Motor-neuron death causes the denervation of the
fibres it innervates, which are (gradually) reinnervated by α-motor-neurons of neighbouring
fibres (e.g. Engel, 1965; McComas et al., 1973). The reinnervation may, however, be incomplete,
leading to atrophy of these dormant fibres. The atrophied fibres in the muscle are replaced by fat
and connective tissue, for example, Lexell et al. (1988) reported that “for the younger individuals
approx. 70 % of the muscle area is composed of muscle fibres, while for the older individuals this
value is approx. 50 %”. This is synonymous with motor-unit loss, which either begins gradually
after age 20 or occurs more abruptly in the latter decades of life, reaching at least 50 % unit loss
by the age of seventy (Shefner, 2001, and references therein). Furthermore, type-I fibres (type-S
motor-units) appear to be slightly spared with age, with the average fraction of this fibre-type
increasing from 50% to 55% between the second and eighth decades of life (Lexell et al., 1988).

Similar neuromuscular changes occur in disease, and may be more drastic than in healthy
ageing. For example, in amyotrophic lateral sclerosis (ALS), between 50–70% motor-unit loss
can occur within 10–12 months (Arasaki et al., 1998; van Dijk et al., 2010b). Again, type-I fibres
appear to be spared in neuromuscular disorders, with fractions of these fibres increasing to
64% in ALS, 71% in alcoholic neuropathy, and up to 93% in carcinomatous neuropathy (Morris,
1969, Table 1). For some disorders, however, motor-unit remodelling is non-differentiable from
healthy ageing, for example, rates of age related motor-unit loss were similar to patients with
Charcot-Marie-Tooth disease (van Dijk et al., 2010a).

Muscle fibre atrophy is accompanied by, or leads to, an increase in fibre-type grouping (e.g.
Morris, 1969; Lexell et al., 1991). The distribution of fibre-types within young, healthy human
skeletal muscle appears to be close to random or even exhibit a slight checker-board pattern
(Willison et al., 1980; Lester et al., 1983; Lexell et al., 1991). During the cyclic denervation/rein-
nervation, fibres become less uniformly distributed and begin to cluster together by type (e.g.
Johnson et al., 1973b; Lester et al., 1983; Lexell et al., 1991).

The impact of muscle fibre atrophy and motor-unit remodelling is difficult to quantify via
experimental techniques, especially under in vivo conditions in humans. This is because motor-
unit remodelling is often accompanied by changes in fibre morphology, biochemistry, and
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recruitment strategies. For example, the exact degree to which the motor-unit fibre clustering
and muscle atrophy, in isolation, account for force loss is unclear (Mitchell et al., 2012).

The aims of this section are therefore two-fold. First, to extend the motor-unit architecture
algorithm to account for cycles of denervation and partial or complete reinnervation and thereby
account for motor-unit anatomy in healthy and pathological states (Section 9.1). Second, to
apply this process to the prototype masticatory model to compare the function (maximal static
bite) of healthy (young/old) and pathological masseters, where the only difference is motor-unit
remodelling (Section 9.2). By keeping all other aspects identical in the prototype models, the
sole impact of motor-unit remodelling can be quantified.

9.1 Modelling Denervation and Reinnervation
To model aged and pathological states of innervation, a reference motor-unit distribution is
subjected to cycles of denervation and reinnervation. The algorithm is based on Lester et al.
(1993) and is described briefly in the following.

The starting point is set of fibre-scaffolds Fk (k = 1, . . . ,NFS), which are innervated by NMU
α-motor-neurons. An innervated fibre-scaffold is indicated by the superscript (·)i, i.e.,F → F i.
The set of innervated fibre-scaffolds forms a certain motor-unit distribution in the muscle
(Section 5.2). Then, at a given time-instance, a denervation event takes place: a certain number
ndener of α-motor-neurons degenerate. This severs the connection between the α-motor-neuron
and the fibres that they previously innervated, i.e., F i → F . The denervation events occur
regularly, with a frequency of fdenir. The units of fdenir are 1/T, where T is an arbitrary time
unit, e.g., days, months, or years. The denervation process continues till some final time tfin (in
T).

Reinnervation occurs between the denervation events, during which, nerve sprouts from
α-motor-neuron of neighbouring fibre-scaffolds grow towards the denervated fibres. Nerve
sprout growth is governed by sprout growth rates: gI and gII (in mm/T) for type-S and -F α-
motor-neurons, respectively. After sufficient time has passed, a sprout of a neighbouring α-
motor-neuron reaches and innervates the previously denervated fibre-scaffold. At this point,
the fibre-scaffold is innervated by the neighbouring α-motor-neuron and is incorporated into
the motor-unit. If however, a neuromuscular-junction remains uninnervated or dormant for a
certain amount of time tdorm (in T), it atrophies and cannot be subsequently reinnervated. This
occurs since reinnervation proceeds only from immediate neighbours of denervated fibre; thus
for a cluster of atrophied fibres, those in the middle may lie dormant for several time instances.

The selective nature of denervation/innervation for type-S and -F neurons is considered by
setting a probability of type-S α-motor-neuron denervation at each time instance ρI

k, and using
various sprout growth rates for type-S and -F α-motor-neurons. For example, setting a low
likelihood that type-S α-motor-neurons are denervated (ρI

k = 20 %) and doubling their sprout
growth rate (gI = 2 gII) would result in a “take-over” of the muscle by type-I fibres.

Constitutive modelling considerations

To account for atrophied fibres in the musculotendon complex constitutive relation, they are
assigned to a dummy atrophy motor-unit, which exists outside the pool of active units. This
is achieved by numbering the atrophy motor-unit as NMU + 1. Since the NMU + 1th unit does
not, by definition (Equation 6.3), receive any activation, the fibres in the atrophy motor-unit
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remain inactive during the contraction. By expanding the pool of motor-units in such a way,
atrophied fibres are accounted for in a simple manner. The homogenisation is blind to the fact
that these fibres are atrophied and proceeds “as usual”, but now for NMU + 1 units. Again, the
only difference with the atrophy motor-unit is that it cannot be activated.

In summary, the set of parameters tfin, fdenir, tdorm, ndener, gI
r, gII

r and ρI
k characterises the

ageing/disease process. The cyclic denervation/reinnervation procedure is integrated into
the workflow prior to the homogenisation step. Restating Equation 6.34 with an additional
subscript (·)rm to denote the aged/pathological motor-unit architecture:

B0, f(Y )

muscle
architecture

→ {S ,F}
reconstructed
microstructure

→ {S̃ , F̃}
reference

distribution

→ {S̃rm, F̃rm}
reinnervated
distribution

→ κp,i(X
micro)→ κ̂p,i(ξ)→ km,

(9.1)
where i = 1, . . . ,NMU + 1, including the atrophy motor-unit.

Demonstration of aged and diseased fibre distributions
The idealised model as described in Section 5.3.5 was used to demonstrate the denervation/rein-
nervation model. Except, the number of fibres was reduced from approximately 12,000 to 3000.
Variations were taken on the type of denervation/reinnervation, for example, slow sprout
growth rates or denervation of more than one motor-unit at once; the characterisation paramet-
ers are given in Table 9.1. The parameters were chosen manually to elicit differing motor-unit
remodelling.

In addition to visualising fibre distributions over the cross-section at evenly spaced time
intervals, several common diagnostic statistics were recorded at the end of the process, namely:
co-dispersion index, fraction of atrophied fibres, fraction of remaining type-I fibres, and the
total number of denervated motor-units.

Table 9.1: Cyclic denervation/reinnervation parameters for the idealised geometry. Variables are explained
in Section 9.1.

ID tfin/T fdenir/T−1 tdorm/T ndener gI
r/mm · T−1 gII

r /mm · T−1 ρI
k

A 124 2 3 1 1 1 0.3
B 170 4 30 2 0.125 0.125 0.4
C 170 2 25 1 0.025 0.025 0.4

Results

Snapshots of the fibres in the muscle cross-section, at various time instances during the
denervation/reinnervation process, for the different parameter-sets, are shown in Figure 9.1.
The segregation or clustering of type-I and type-II fibres can be seen for parameter-set A and
B, respectively, and is quantified by the corresponding increase in co-dispersion index from
0.0 to +0.14 and +0.45, respectively. Furthermore, given the slow growth rate, the atrophy of
fibres was observed for parameter-set C.

At the end of the denervation and reinnervation process, diagnostic measures were computed
and are summarised in Table 9.2. The clustering of the fibres is reflected with increases in co-
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dispersion index. Reducing the sprout growth rate and increasing denervation frequency lead
to a 23 % fibre atrophy (parameter-set C). The slightly lower probability to denervate type-I
fibres lead to an increase of 17 % of this fibre-type (parameter-set B).

Table 9.2: Fibre distribution statistics at the end of the denervation/reinnervation cycles. Where atroph.:
atrophied, MUs: motor-units, and denerv.: denervated. The parameter sets are indicated via the IDs A-C
(see Table 9.1).

ID CDI %-atroph. %-type-I MUs denerv.

- 0.00 0% 75% 0
A 0.14 0% 92% 53
B 0.45 0% 63% 19
C 0.50 23% 82% 30

T = 0

A

T = 0.33 T = 0.66 T = 1

B
C

Figure 9.1: Evolution of fibre distribution during denervation/reinnervation cycles, viewed in the cross-
section of the idealised muscle geometry, with fibres oriented out of the page. Fibres belonging to the
smallest and largest motor-units are colour-coded from dark-blue (to cream) to maroon, respectively.
Additionally, white and black coloured fibres indicate denervated and atrophied fibres, respectively. Each
rectangular cross-section is 40× 40mm.
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9.2 Changes in Bite Force during Ageing and Disease
Proper and healthy functioning of the masticatory system significantly impacts the quality of
life of individuals (Gerritsen et al., 2010). Bite force is often used to diagnose healthy ageing (e.g.
Palinkas et al., 2010) and can also be used to diagnose neuromuscular disorders (e.g. Guimaraes
et al., 2007; Ueki et al., 2007; Riera-Punet et al., 2018). However, the atrophy that accompanies
ageing (and neuromuscular disorders) typically underpredicts the amount of force loss. For
example, for patients above 75 years of age, Dey et al. (2009) found a drop in grip-strength
of 18 %, even though fat-free tissue loss was only about 3 %. Further examples include a loss
of 16 % of knee-extensor strength despite only a 5 % loss of thigh muscle mass (Mitchell et al.,
2012, and references therein).

To determine the effect of neuromuscular reorganisation alone on motor-output; the pro-
totype model is used to simulate a unilateral maximal bite with healthy and reinnervated
masseters. The healthy masseter has a non-clustered, non-atrophied motor-unit architecture.
Then, other prototype models with varying degrees of fibre clustering and atrophy were gener-
ated by subjecting the healthy masseter to cycles of denervation and reinnervation. The twitch
properties, muscle geometries, recruitment strategies and excitatory drive were kept identical
between the models. Therefore, any changes in bite force arise solely due to the changes in
masseter architecture, including the degree of muscle atrophy.

9.2.1 Methods
The control (or healthy) model was generated by populating the right masseter with N̆MU = 50
meta-units, whose innervation-ratios are described in Section 7.3.1. Using the results of the
motor-unit distribution study (Section 5.3), the motor-unit distribution was characterised by
{R, D} >> CSAR, to ensure the maximal amount of fibre-type mixing. That is, the selection
spaces for central and peripheral axons were greater than the muscle’s cross-sectional area,
thus the motor-units were randomly distributed throughout the muscle. This yielded a co-
dispersion index of 0, which is observed in healthy, young adult muscle (Brenner et al., 1987).

Aged/disordered protoype models

The masseter of the healthy model was subjected to 3 types of denervation/innervation cycles
to produce a variety of fibre-type dispersion, atrophy, and proportional type-I fibres. All cycles
were run for tfin = 100 time intervals with varying parameters: frequency of denervation
events, period of dormancy prior to fibre atrophy, and growth-rate of neighbouring α-motor-
neuron-axons (Table 9.3). This yielded 4 prototype models, including the model with healthy
muscles.

The remaining parameters governing the denervation/innervation cycles were constant for
all cycle types: (i) per denervation event, a single α-motor-neuron was denervated ndener = 1,
(ii) the growth rate of the type-F α-motor-neuron spouts was identical to those of the type-S
neurons gII

r = gI
r, and (iii) the denervation was slightly biased to preserve type-S α-motor-

neurons ρI
k = 0.4.

It was assumed that initially the smallest 37/50 of meta-units were type-S, i.e., contained
type-I muscle fibres. Note that this classification is to facilitate the calculation of the co-
dispersion index only, and does not affect the twitch properties of the motor-units (which vary
continuously between the smallest to largest motor-unit). The innervation-ratio follows an
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Table 9.3: Cyclic denervation/reinnervation parameters and fibre distribution statistics in the masseter
model. Where CDI: co-dispersion index, atroph.: atrophied, MUs: motor-units, denerv.: denervated, and
the remaining variables are explained in Section 9.1.

ID tfin/T fdenir/T−1 tdorm/T gI
r/mm · T−1 CDI %-atroph. %-type-I MUs

denerv.

- - - - - 0.00 0% 75% 0
A 100 3 4 0.27 0.08 3% 56% 6
B 100 4 5 0.17 0.51 38% 84% 12
C 100 2 7 0.09 0.64 54% 84% 25

exponential distribution, with many small units and a few large units. Therefore, although 75%
of the meta-unit are type-S, this translates to about 50 % type-I fibres. This is similar to Enoka
et al. (2001).

Bite force simulation

A unilateral maximal bite was performed with each of the healthy, aged, and disordered
prototype models. All modes were supplied with identical excitatory drive: the meta-unit
pool of the right masseter was recruited (left masseter remains passive) via an excitatory drive
E(t) increasing from 0 to 1.1 over ∆t = 0.7s and held constant afterwards. For all models, the
recruitment and twitch properties were kept identical.

9.2.2 Results
All simulations were performed with Abaqus/Explicit (v6.14-3, Dassault Systèmes, France),
using an AMD Opteron 6373 (2.3 GHz, 32 cores) with 24 GB memory1 with computation times
of approximately 10–15 h. The force components along the left-right FLR, posterior-anterior
FPA and caudal-cranial FCC axes, together with the force magnitude FM, and angles (in the
horizontal plane θH and elevation θV) at maximum contraction are listed in Table 9.4. Forces
are in N and angles in degree.

Table 9.4: Influence of ageing and pathology on peak bite force.

FLR/N FPA/N FCC/N FM/N θH/degree θV/degree

- 65 11 376 382 80 83
A 63 12 363 368 79 83
B 30 7 185 187 79 83
C 16 7 113 114 68 85

As expected, force loss was positively correlated with masseter atrophy, however, atrophy
amount underpredicted the amount of force loss. Force magnitude dropped by 4%, 51 % and

1Part of the LEAD cluster at the University of Stuttgart.
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(a) Healthy. (b) ID A.

(c) ID B. (d) ID C.

Figure 9.2: Fibre distributions of the right masseter after cycles of denervation/reinnervation. Motor-unit
fibres are colour coded from smallest: blue to largest: maroon, with black coloured fibres indicating
atrophied fibres. The cross-sectional area of the masseter is approximately 630 cm2.

70 % for atrophy amounts of 3 %, 38 % and 54%, respectively. Force components FLR and FCC
showed similar trends, however FPA was less affected: 37 % at 54 % atrophy.

Bite force angles were less sensitive to the fibre redistribution and atrophy: both horizontal
and elevation angles showing virtually no change for parameter-sets A and B. For parameter-set
C, a slight change in θV of 2 % and a moderate change in θH of 15 % were observed.

Normalised bite forces, per parameter-set, were computed by:

F̄ j
M(t) =

F j
M(t)

max(F j
M)

, (9.2)

where j = {A,B,C,D} are the different parameter-sets, and are shown in Figure 9.3a. The
orientation of the bite force, in terms of its angle in the sagittal plane θjH, for each parameter-set
is shown in Figure 9.3b.
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Figure 9.3: Influence of ageing and pathology on bite force, where maroon: healthy, dark-blue: ID A, green:
ID B and black: ID C.

9.3 Discussion
In this case-study, the effect of masseter fibre-redistribution and -atrophy on static bite force
was investigated. The results show that, as expected, the amount of atrophy is positively
correlated with the loss of peak bite force magnitude. Surprisingly, even though all other
neuromuscular properties were unaltered, atrophy still could not explain the entire amount of
force loss. For example, force magnitude dropped by 51% for 38 % atrophy. Assuming that 38
out of 51 % of the force loss can be explained by the atrophy amount, the possible causes of the
remaining 13 % are discussed below.

Since denervation of type-F motor-units was preferred; a larger portion of, weaker, type-I
fibres survived as atrophy increased. This means that not only were there fewer total fibres in
the muscle, but those that remained, produced a lower peak force. Another contributing factor
is the shifting mean centre of activity within the masseter. As the sensitivity analysis revealed
(Section 8.1), this has a substantial impact on bite force.

This means that the conversion of fibre-type and architectural changes in motor-unit may
explain the remaining gap in the force loss. This is similar to the findings of Granger et al.
(1999), who when measuring a 50 % lower bite force for patients suffering from spinal muscular
atrophy (SMA) hypothesised that 10 % is due to changes in mechanical advantage, “suggesting
that the intrinsic jaw muscle strength is reduced by at least 40 % in SMA patients.”.

The normalised force shows that as the motor-unit reorganisation increases (atrophy and
increase in type-I fibres), a less smooth force is observed. This is because of the conversion
of the surviving fibres to smaller type-S motor-units, which means that these units grow in
relative size. The recruitment of the, now relatively larger, type-S units cause larger jumps
in the force magnitude. Since, the surviving (larger) type-F units are untouched; increases in
force unsteadiness are observed mainly in the low to medium force range.

Bite force orientation was not affected to the same degree as the magnitude, which remained
largely constant until more than half of the masseter was atrophied. The insensitivity of the
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bite force orientation to atrophy could be due to the spatial distribution of the atrophied fibres.
Consider an extreme case where all atrophied fibres are located in the deep head of the masseter;
this would of course heavily affect the bite force orientation (mainly in the posterior-anterior
axis). But the cross-sectional images of the fibre distribution (Figure 9.2) show that the atrophied
fibres were spread approximately uniformly.

Bite force reorientation above 50 % atrophy may be due to the effect of atrophy on overall
masseter contraction. For example, Hodges et al. (2003) observed marked changes in pennation
angle, muscle thickness and fascicle length below 50 % of maximum voluntary contraction,
above which these values stabilised. That is, when reducing force (or contraction amount) from
100% to 50 %, the muscle structure remains largely steady, and begins to change once it falls
below 50% contraction. Here, this means that once overall force drops below 50 % of maximum
voluntary bite force, changes in pennation angle could influence the bite force orientation. A
70% force loss was observed for 54 % atrophy, and for this case, the bite force orientation was
also drastically affected.

The mechanical behaviour of the musculotendon complex was unaltered, i.e., the passive
response of the atrophied and healthy muscle was identical. However, ageing and neuromuscu-
lar disease often leads to alterations (stiffening) in skeletal muscle mechanical behaviour (e.g.
Smith et al., 2011; Eby et al., 2015). These changes may be incorporated into the constitutive
model via a phenomenological approach or via more advanced homogenistion techniques that
account for microstructural changes in the muscle (collagen) ground matrix (e.g. Bleiler et al.,
2019; Bleiler et al., 2021).

Despite the limitations of this case-study, the limited scope being one of them, it highlights
the potential of investigating three-dimensional neuromuscular structure and musculoskeletal
functional output in an integrated sense. Atrophy explains about 70-80 % of the force drop,
the remaining 20-30 % stems from factors including fibre-type conversion and mean motor-
unit position. Force orientation does not seem to change till more than half of the muscle is
atrophied, although this may be due to the specific pattern of atrophied fibres considered in
the current study.





10 Discussion and Outlook
This thesis developed a method and workflow to embed motor-unit activity and anatomy
into three-dimensional, anatomically realistic, continuum-mechanical skeletal muscle models.
The fundamental element of force production—the motor-unit—was thus allowed to exert its
influence over musculoskeletal function at the joint-scale. A prototype masticatory system
model was used to demonstrate the integrated neuro-musculoskeletal modelling approach, and
was used to perform a variety of case-studies. The major contributions of the thesis were:

• A constitutive relation for the musculotendon complex, implemented in a
FORTRAN user-material, integrating the microstructurally derived neural activity,
anatomy, and allowing for atrophied fibres (Chapters 4 & 6).

• A method to compute motor-unit recruitment and twitch behaviour, implemen-
ted in MATLAB (Chapter 5).

• A method to approximate muscle microstructure in three-dimensions, for non-
trivial geometries such as bipennate and multi-pennate muscles (Chapter 5).

• A method to generate motor-unit anatomy, implemented in MATLAB, able to
reproduce typical features of mammalian motor-unit territories and undergo
cycles of denervation and reinnervation (Chapters 5 & 9).

• A workflow implemented in MATLAB to homogenise and integrate neural inform-
ation for use with finite element skeletal muscle models (Chapter 6).

• An anatomically realistic prototype, multi-muscle, neuro-musculoskeletal model
of the masticatory system, implemented in the commercial finite element soft-
ware Abaqus (Chapter 7).

The key results, including those from the case studies, were:

• The assumption of instantaneous action-potential propagation minimally affects
the mechanical response. For a 40 cm musculotendon complex (2.5 muscle-to-
tendon ratio) the force response reached the same magnitude but was advanced
by 17ms compared to the case with action-potential propagation (Section 6.1).

• Neglecting motor-unit structure and activity drastically impacts bite force at low
to medium activation levels. The impact was greater in force orientation (60°
difference at 50% MU-pool recruitment) than in force magnitude (12% difference
at 50% MU-pool recruitment) (Chapter 7).

• The “centre of activity” of a motor-unit territory affects bite force more than
territory overlap. The dispersion of fibres had a smaller impact on bite force mag-
nitude and direction. Altering territory-overlap and territory-position resulted
force-magnitude ranges of 5.5 N and 26N, respectively (Section 8.1).

• Intramuscular pressure in active compartments better predicts bite force than in
passive regions. Mean correlation coefficients, between intramuscular pressure
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and bite force, in the active and passive regions were r = 0.86 ± 0.13 and
r = 0.78± 0.22, respectively (Section 8.2).

• The higher the motor-unit territory overlap the better the correlations of pressure
in passive regions to bite force.

• Twitch force measured at the tooth under-predicts the force measured at the
muscle insertion. For the masseter, a 10% difference in force magnitude was
seen for MU 10 (of 50); and 20 % for unit 40 (Section 8.3).

• Linearly summed twitch forces under-predict compound twitches, by between
6-10% (both taken at the tooth).

• The greater the number of co-contracting motor-units, the lower the shear-stress
in the muscle, compared to the equivalent linearly summed case.

• Motor-unit atrophy explains about 80 % of the force reduction (Chapter 9).
• Fibre-remodelling during ageing/disease affects force orientation after about
50 % of the muscle has atrophied.

• Growth and atrophy of certain motor-units during ageing/disease causes less
steady force below about 80 % force.

These findings should be interpreted with care given the limitations of the models, case-
studies, and methods. While specific drawbacks were covered in their respective chapters, the
general limitations of the thesis, such as the limited scope and model idealisations, are covered
here (Section 10.1).

Despite these limitations, there were several key implications of the thesis. Again, the
specific implications of the methods and case-studies are covered in their respective chapters.
The focus here is on the general implications of the thesis in the field of musculoskeletal
simulation, and are discussed in Section 10.2. Lastly, a broader view is taken and future
research directions including augmenting experimental techniques and informing medical
interventions are highlighted, ending with concluding remarks (Section 10.3).

10.1 General Limitations and Proposed Solutions

10.1.1 Limited scope
A single joint-system—the masticatory system—with a single geometry and fixed fibre ar-
chitecture was used for both the modelling comparisons and the case-studies. The latter
were proof-of-concept investigations that were limited in scope from the outset. Modelling
comparisons highlighted the importance of including motor-unit activity and anatomy in
three-dimensional finite element simulations of motor-output. The generalisability of these
findings rests on the uniqueness of the masseter and the masticatory system. Masseters show
task-dependence or selective activation, for example, different regions of the masseter are
differently active during various jaw movements (Blanksma et al., 1997; Schindler et al., 2005;
Ogawa et al., 2006; Schindler et al., 2014). This was reflected in the prototype model by the
dependence of bite force on the particular subset of recruited motor-units.

Other joints and muscles that exhibit task-dependence, then, would also show altered motor-
output when regionally activated. Muscles which display such task-specificity include the:
lateral pterygoid (Schindler et al., 2005), biceps brachii (Holtermann et al., 2005), and triceps
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surae (Csapo et al., 2015) (other examples are given in Chapter 1). In other words, using a
model with three-dimensional motor-unit anatomy is crucial to understanding nuances in the
contractile function of these muscles, at low to medium activation ranges.

Furthermore, from an anatomical perspective, heterogeneous fibre-type distribution across
the muscle cross-sectional area may indicate functional heterogeneity. Since fast and slow
motor-units are, in turn, composed of fast and slow fibres, fibre-type can be used as a rough
marker for territory distribution. Such preferential location of fibre-types within regions of
muscle cross-sectional area is fairly common in human muscles. For example, this has been
observed for the: temporalis (Korfage et al., 1999), biceps brachii, deltoid, rectus femoris (lat.
head), vastus medialis (Johnson et al., 1973a), tibialis anterior (Johnson et al., 1973a; Henriksson-
Larsén, 1984), and vastus lateralis (Johnson et al., 1973a; Lexell et al., 1983). Further examples
can be found in Johnson et al. (1973a, Table 5).

The experimental evidence suggests that the functional heterogeneity of the masseter is
not unique. Therefore, the inclusion of such information in continuum-mechanical musculo-
skeletal models is paramount in understanding their function, especially during sub-maximal
contractions, which include day-to-day tasks and posture maintenance.

10.1.2 Number of motor-units and mesh size

In the prototype masticatory system model, motor-units were not individually modelled, but
instead were grouped into so-called meta-units. Recruiting a meta-unit thus recruited all motor-
units that it contained, effectively synchronising their activities. Furthermore, meta-units also
overestimate the size of motor-unit territories. For example, consider a meta-unit territory
formed from two motor-units that span the superior and deep heads of the masseter. If recruited
individually, the motor-units would produce forces aligned with their local fibre directions.
When recruited together, via the meta-unit, the (larger) force magnitude would be directed
along the averaged direction of the two motor-units.

Both temporal and spatial synchronisation of motor-units reduces the granularity of motor-
output within the muscle. Synchronisation of motor-units has been shown to reduce force
steadiness (e.g. Yao et al., 2000) and is typically observed during fatigue (e.g. Contessa et al.,
2009), rather than normal conditions. Additionally, using a low number of motor-units in a
multiscale model resulted in both a less steady force and a reduction in force magnitude (Röhrle
et al., 2012).

Therefore, peak forces predicted by the prototype model were likely less steady and lower in
magnitude than would be expected if a larger number of meta-units were considered. Regarding
the modelling comparison, however, the same number of meta-units were used to derive the
activation for both the motor-unit driven and status-quo models. Therefore, the relative, rather
than absolute bite force (and motor-output in general) was of primary concern.

The maximum number of motor-units that can be simultaneously considered in the model
is not an inherent limitation of the method itself, but is constrained by computational time.
For any finite element simulation, a finer mesh results in increased computational cost. For
a fixed muscle volume, as the number of meta-units increases, so does the spatial resolution
required to resolve them. Basically, the same (cross-sectional) area is being divided up into
smaller and smaller pieces. This means that a finer finite element mesh is required, since the
element dictates the area over which a motor-unit can transmit a (contractile) force. Such a
finer mesh would be required along the length of the muscle.
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Adaptive meshing is one way to mitigate the increased costs of mesh refinement, by setting
mesh size proportional to motor-unit size. This can be combined with model-order-reduction or
highly-parallel computing techniques (e.g. Mordhorst et al., 2017; Maier et al., 2019) to reduce
overall computational time.

10.2 General Findings and Implications
When compared to a traditional macroscopic model, the prototype model showed marked
changes in bite force and in masseter intramuscular pressure, especially at low to medium
activation levels. For example, as the motor-units in the deep region were active at lower
contraction levels, the bite force was directed posteriorly. As larger, more superior, motor-units
were recruited, the bite force was directed anteriorly. No such reversal was observed when
the masseters were uniformly activated, i.e., the status-quo modelling approach. Furthermore,
intramuscular pressure was drastically different between the two models. The status-quo model
not only underpredicted the mean pressure, but also distributed the pressure differently within
the masseter. The pressures in the prototype model clearly reflected the active motor-units.

As the muscle approached full activation, the entire population of motor-units were recruited
and the differences in motor-output between the two models vanished. The agreement between
the two approaches at maximal contraction would not hold, however, if the history of compart-
mental activation is taken into account. For example, blood perfusion between compartments,
which is influenced by intramuscular pressure (e.g. Sjøgaard et al., 1986), would likely reach a
different end-state given different histories of regional pressure.

The integrated neuro-musculoskeletal prototype masticatory model appears to be the first
time that the activity and distribution of individual motor-units was treated in the context of
joint-system function, in a three-dimensional finite element model. Given that the proposed
method shares similarities with both traditional macroscopic and multiscale models, it has
implications for both.

10.2.1 Implications for traditional macroscopic models
Motor-unit activities, along with their spatial distributions (motor-unit anatomy) are combined
to compute the muscle’s heterogeneous activity. Since this computation occurs during an offline
phase, the added computational cost during run-time, in comparison to traditional macroscopic
models, is minimal.

The nature of the proposed method to calculate neural information as a pre-computation
means that it could be incorporated into traditional macroscopic constitutive relations of
muscles in a relatively straight-forward manner. More specifically, in those relations where the
active stress is additively split—the activation parameter provides a convenient entry point, for
example, those of Gielen et al. (2000), Oomens et al. (2003), Blemker et al. (2005b), Röhrle et al.
(2007), Wu et al. (2014), Röhrle et al. (2017) and Ramasamy et al. (2018).

Computing skeletal muscle motor-output from motor-unit distribution and activity may
lead to more accurate predictions of local stresses and strains. This may improve, for example;
damage modelling, which is based on critical strains in the muscle (Ramasamy et al., 2018);
strain inhomogeneity within the muscle (Blemker et al., 2005b; Rehorn et al., 2010); contact
pressure between muscle and bone (Röhrle et al., 2017); muscle deformation and shape change
(Wu et al., 2014; Fan et al., 2017); and movement predictions for wide muscles with broad
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attachment areas (Péan et al., 2019). Selected examples are detailed below.
First, consider the model of the shoulder joint (Péan et al., 2019), where 23 muscles span the

shoulder joint. Certain muscles, such as the upper trapezius show task-dependence (e.g. Jensen
et al., 1997; Samani et al., 2010) and thus movement predictions may be improved by taking
individual motor-unit anatomy and activity into account.

Second, consider the static bite force simulation (Weickenmeier et al., 2017), which treats
the masseter as a single contracting unit. This, however, does not reflect the well documented
functional heterogeneity of the masseter (e.g. Hannam et al., 1994; Blanksma et al., 1995;
Blanksma et al., 1997; Schindler et al., 2005; Ogawa et al., 2006; Schindler et al., 2014) which
was highlighted by the prototype masticatory model.

Third, consider the case of muscle strains in the biceps (Blemker et al., 2005b). It has been
shown that supination/pronation activates task-specific motor-units in the biceps (e.g. van
Zuylen et al., 1988; Holtermann et al., 2005). Therefore, for such complex movements, the
modelling of individual motor-unit anatomy and activity may improve local strain predictions.

The results of the thesis showed that the impact of the motor-unit driven modelling approach
was more pronounced for certain muscle structures, motor-unit anatomy, and contraction
levels. As mentioned, in cases where maximal force is of interest, compartmental activation
seems to have little impact. Furthermore, simpler muscle geometries are less impacted in
their force generation by regional activation. For example, the compartmental activation
of the idealised geometry had virtually no impact on force-output—intramuscular pressure
was affected however. The anatomy of the motor-units plays a crucial role as well. As the
motor-units fibre distribution becomes uniformly spread throughout the muscle, they generate
uniform contractile stresses within the muscle when recruited. However, as discussed in Section
10.1.1, this is atypical for several human skeletal muscles.

10.2.2 Implications for multiscale models

In addition to muscle geometry, multiscale models require the coordinates of individual muscle
fibres in three-dimensional space. To simulate physiologically realistic muscle activation, these
virtual fibres are typically grouped into motor-units and stimulated at their neuromuscular-
junctions (e.g. Davidson et al., 2006; Röhrle et al., 2008; Röhrle et al., 2012; Heidlauf et al.,
2014; Mordhorst et al., 2014). The fibre geometries, their grouping into anatomically realistic
motor-units and virtual neuromuscular-junctions can be provided by the method proposed in
this thesis, both for healthy (young/old) and neuromuscular-disordered states.

10.2.3 Implications for other models

Tongue modelling. The tongue is a muscular hydrostat, being composed of several interlaced
muscle fibre groups. The selective activation of these groups allows the hydrostat to perform
complex movements. From a macroscopic modelling perspective, this means that each point
within the hydrostat contains various fractions of muscles.

This is analogous to the way in which motor-units are treated in the current approach. The
difference being that while motor-units always transmit force in the same direction, i.e., the fibre
orientation of the muscle, in a hydrostat this direction can vary depending on the combination
of muscles active at a point. Similar to the approach by Wang et al. (2013), muscle fibre groups
may be modelled via superposition of the structural tensor, with each tensor directing the
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active stress along a certain direction.
Simulation of electromyographic signals. Several motor-unit anatomy models are used

solely for the simulation of electromyography signals within a two-dimensional slice of the
muscle (taken perpendicular to the muscle fibres) (e.g. Stashuk, 1993; Schnetzer et al., 2001;
Carriou et al., 2016; Robertson et al., 2017). The motor-unit anatomy algorithm developed in this
thesis may directly provide these simulations with anatomically realistic muscle cross-sections,
with the possibility of extending it readily into three-dimensions.

Recently, Klotz et al. (2020), developed a (multi-domain) approach to model the electro-
physiological behaviour of skeletal muscle tissue in three-dimensional, macroscopic continuum-
mechanical models. The model uses volume-fractions of the intracellular phases as weighting of
a modified bi-domain model. By using the motor-unit distribution factors, i.e., the homogenised
motor-unit anatomy in 3D, to characterise these intracellular phases, electromyography may
be simulated within realistic muscle geometries. However, in order to model electrophysiology
and muscle contraction simulatenously, the assumption (made in this thesis) of instantaneous
action-potential propagation would no longer hold. In other words, the propagating potential
determined via the multi-domain approach would need to govern (local) muscle contraction.

10.3 Conclusion and Outlook
The prototype model and proof-of-concept case-studies, despite their limited scope, revealed
the potential of three-dimensional modelling of motor-unit driven musculoskeletal system
modelling. The linking of neural anatomy with musculoskeletal function opens up several av-
enues of future research. Having looked at the more direct implications in the previous section,
a wider perspective is now taken to consider applications that require further development
and planning.

10.3.1 Decoding experimental data

The integrated neuromuscular model developed within this thesis, provides a controlled and
transparent environment to augment the development and calibration of techniques that use
mechanical quantities to infer neural activity. For example, the integrated neuromuscular
model can predict regional changes in muscle velocity, pressure, etc., while knowing the exact
α-motor-neuron firing pattern and motor-unit distribution within this region.

Besides intramuscular pressure considered in a case-study, specific examples of these quant-
ities include: muscle thickness or tissue velocity for ultrasound (Peolsson et al., 2008; Dieterich
et al., 2014; Rohlén et al., 2020) and velocity-encoded magnetic resonance imaging (MRI) (Csapo
et al., 2015); strain for strain-tensor MRI (Englund et al., 2011); muscle vibrations for mechano-
myography (Farina et al., 2008); or muscle surface pressure for force-myography (Radmand
et al., 2016).

10.3.2 Augmenting control of human-machine-interaction devices

Human interaction with robotic devices is on the rise, from robot-human collaborative environ-
ments, to powered exoskeletons, orthoses, and prostheses; technological advances are enabling
a wide variety of human-machine-interaction applications (Tsarouchi et al., 2016). The coming
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together of human movement with robotic devices poses complex challenges. Human-machine-
interface devices need to decipher movement intent to improve their performance and ensure
the user’s safety. For example, with foreknowledge of a user’s movement, powered orthoses
can provide optimal assistive forces.

Towards this end, one of main challenges is to infer movement intent based on bio-signals
(primarily) from skeletal muscles. These raw signals need to be decoded to extract move-
ment intent and to inform control algorithms of human-machine-interaction devices. Muscle
bio-signals can be classified into two types: biomechanical and electromyographic. While
electromyographic signals remain the dominant method to classify movements (e.g. Dwivedi
et al., 2020; Lara et al., 2020), biomechanical signals have been gaining popularity in recent
decades. For example: ultrasound (Zheng et al., 2006), mechanomyography (Silva et al., 2005;
Antonelli et al., 2009), and high-density force-myography (Radmand et al., 2016).

Integrated neuro-musculoskeletal models at the joint-scale can shed light on the relationships
between neural activity and muscle function and aid the design of control algorithms for
human-machine-interaction devices. For example, high-density force-myography can be
replicated by confining the muscle circumferentially and recording the pressure development
as individual motor-units are recruited. Robust contact mechanics algorithms are in place
within the commercial finite element software package, enabling such an analysis in a relatively
straight-forward manner.

Techniques such as mechanomyography, which measure muscle “sound” between 5–100Hz,
require simulation data at a high temporal resolution. By its nature, the explicit finite element
solver (used in the current implementation) requires sub-millisecond incrementation steps.
This means that muscle displacement can be computed with a fine temporal resolution at
virtually no additional computational cost. Enabling, for example, frequency analysis of muscle
deformations in response to varying motor-unit activity.

A foreseeable limitation in applying the current model to such applications is the lack of
tissues surrounding the muscle, e.g., connective tissues, fat and skin. Non-invasive techniques,
as the name suggests, lie on the skin surface rather than directly on themuscle. This intermediate
tissue layer may attenuate the simulated mechanical quantities such as pressure and frequency.
The development of an anatomically realistic, three-dimensional finite element musculoskeletal
model, with independently modelled connective tissue, fat and skin layers remains a challenge
in the field of musculoskeletal simulations.

10.3.3 Improving motor-output predictions during fatigue

Fatigue affects the ability of a muscle to maintain desired force. Important factors contributing
to fatigue include alterations in metabolism caused by decreases in blood flow and muscle
oxygenation (e.g. Murthy et al., 2001, and references therein). Intramuscular pressure is
thought to impede blood flow once it rises above arterial pressure (e.g. Sjøgaard et al., 1988; van
Donkelaar et al., 2001). Furthermore, at lower levels of sustained contraction, some muscles
appear to vary motor-unit recruitment to shunt blood to different regions of the muscle,
reinvigorating fatiguing regions and allowing the muscle to sustain force (e.g. Sjøgaard et al.,
1986). This recruitment variation may occur via motor-unit substitution, where a motor-unit
becomes derecruited and another takes its place. If subsequently, they switch again, this is
described as motor-unit rotation (Bawa et al., 2009). Not only is motor-unit recruitment altered
during fatigue, but motor-unit discharge rates are also affected (Marsden et al., 1983).



180 Chapter 10: Discussion and Outlook

Given the heterogeneous distribution of motor-unit fibres in the muscle, as motor-units
are substituted or rotated and their discharge rates altered, the motor-output is also affected.
To use the integrated neuro-musculoskeletal modelling approach developed in this thesis to
analyse fatigue requires two major considerations. First, two-way coupling between muscle
contraction and neural activity is required (addressed in Section 6.5.1). Second, a model is
needed, which relates mechanical quantities (such as intramuscular pressure) to motor-unit
recruitment and discharge rate whether based on blood perfusion or a phenomenological model.
Such a model can shed light on the relationships between motor-unit recruitment strategies,
discharge rate, motor-output and fatigue.

10.3.4 Improving applicability of the neuro-musculoskeletal model

The applicability of computational biomechanical models can be improved by either personal-
isation or by generating data for statistical analyses, or both. While there are a large variety
of aspects within the current model that require such treatment, for example: joint geometry,
material behaviour of biological tissues, skeletal muscle fibre direction and -type composition;
the focus in this section is placed on the personalisation of motor-unit anatomy.

Histochemical staining techniques, where individual α-motor-neurons are stimulated to
identify the fibres they innervate, cannot be used on humans because of ethical reasons.
Therefore, most knowledge about fibre distributions within motor-unit territories comes from
animal (mammal) studies. For human muscles, biopsies reveal fibre-type distribution in general,
i.e., independent of the motor-unit they belong to. By combining both animal studies and human
biopsy data, a rough picture can be formed about territory distribution in human muscles
(as was done in this thesis). But the aim remains to identify whole muscle, individualised
motor-unit territories.

Non-invasive imaging and electromyographic techniques may be able to meet this challenge.
In the last decade or so, there have been several attempts to use these techniques to identify
territory locations, including: ultrasound (Deffieux et al., 2008), magnetic resonance imaging
(MRI) (Csapo et al., 2015), and (needle, bipolar, or high-density) electromyography (EMG)
(Vieira et al., 2011; Gallina et al., 2015; van Dijk et al., 2016; Luu et al., 2017). The accuracy of
these techniques varies; some identify “task groups” of motor-units while others demarcate
individual units. The trade-off seems to be specificity, for example, scanning (needle) EMG
yields high-resolution territory data, restricted to select muscle locations (e.g. van Dijk et
al., 2016). Alternatively, velocity-encoded-MRI scans multiple muscles but “only” uncovers
“neuromuscular compartments or task groups of motor-units” (Csapo et al., 2015).

More recently, Lapatki et al. (2019) used high-density EMG and advanced signal processing to
extract the lengths of 8–40 units, up to a depth of approximately 70 %, of the masseter. This was
during a voluntary bite force of approximately 20 % of maximal voluntary contraction. Using
medical imaging, Rohlén et al. (2020) apply ultra-fast high-resolution ultrasound to identify
motor-unit territories within a 4 cm× 4 cm cross-section of the biceps brachii. By analysing
tissue velocity, areas of contracting motor-units were demarcated, and approximately 44% of
the active territories were identified at 5% maximal voluntary contraction.

Also using medical imaging, Birkbeck et al. (2020) developed a novel “motor-unit MRI”
technique that combines electrical stimulation with diffusion weighted MRI, to obtain high-
resolution data of individual motor-unit territories in the muscles of the lower leg. Although
only 1-3 motor-units were identified per muscle, high fidelity data about individual territory
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shapes was obtained, enabling the classification of individual territory shapes.
These techniques show great potential in personalising motor-unit territory placement

in three-dimensional skeletal muscle models. In the absence of such high-resolution data,
the current method relied on a stochastic approach, supplemented by qualitative anatomical
descriptions, to place territories in the muscle.

As experiments reveal more quantitative information about the neuromuscular structure,
the stochastic element in the placement algorithms can be restricted. Motor-unit territories
can instead be directly defined by the experimental measurements. For example, the territory
depths in Lapatki et al. (2019) can be used to restrict the position of the territories, and the
ultrasound data from Rohlén et al. (2020) informing territory size.

10.3.5 Virtual test-bed for medical interventions
There has been increasing interest in the use of computational modelling in the medical field.
Programmes such as the AMSE V&V 401 and H2020 SC1-PM-16-20172 aim to standardise
both computational modelling for medical devices and in-silico trials for biomedical products.
Although these programmes focus on medical products and devices, they show promise for the
future use of biomechanical simulations in medicine.

Prediction of surgery outcomes and planning of rehabilitation protocols are examples of the
medical relevance of an integrated neuro-musculoskeletal limb-scale model. For example, in
cerebral palsy, motor-unit anatomy, and recruitment strategies are altered (Rose et al., 1998).
One approach to correct for pathological gait in cerebral palsy is to alter tendon length (e.g.
Rutz et al., 2011). An integrated model enables the simultaneous treatment of these factors
(motor-unit remodelling, changes in motor-unit recruitment and musculotendon complex
structure) and the impact this has on motor-output. This may improve the predictive ability of
a biomechanical model, compared with a traditional macroscopic modelling approach.

Functional electrical stimulation is another example of a medical intervention where motor-
unit anatomy plays a crucial role. Functional electrical stimulation involves cutaneous stim-
ulation of the muscle and is used to restore movement in paralysed or weak muscles, for
example, due to stroke (e.g. Howlett et al., 2015; Miller et al., 2017, and references therein). The
stimulation electrodes, when placed over the belly of the muscle, diffuse an electrical current
into the muscle and “recruit[] motor-units in a non-selective, spatially fixed, and temporally
synchronous pattern” (Bickel et al., 2011). Understanding the relationship between the local
motor-unit recruitment in three-dimensional muscles and joint or limb movement, may help
adjust parameters such as electrode size, placement, and stimulus strength.

10.3.6 Concluding remarks
This thesis developed a method to include motor-unit activity and anatomy in continuum-
mechanical, macroscopic muscle models. This was applied to a prototype musculoskeletal
model at the joint-scale to, for the first time, investigate the relationship between motor-unit
properties, activity, anatomy, volumetric muscle contraction, and three-dimensional motor-
output in an anatomically realistic model.

1American Society of Mechanical Engineers—Assessing credibility of computational modelling through
verification and validation: application to medical devices.

2European Commission—In-silico trials for developing and assessing biomedical products.
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By computing prototype model muscle activity as an ensemble of motor-unit anatomy and
activity, significant differences in motor-output were observed at low to medium contraction
levels when compared to a status-quo macroscopic model. Proof-of-concept case-studies
revealed novel insights into the relationships between motor-unit anatomy and motor-output.
For example, the contribution of motor-unit remodelling to the force loss that occurs during
ageing and neuromuscular disorders.

Although certain microstructural features were idealised, and only one joint-system was con-
sidered, the prototype model and proof-of-concept case-studies show the potential of the virtual
neuro-musculoskeletal environment. Such insights may aid the decoding of experimentally
obtained data, for example, by ultrasound, intramuscular pressure, and mechanomyography
and also augment control strategies for human-machine-interface devices. More broadly, such
models can help understand muscle function, such as fatigue, and inform medical interventions,
for example, by predicting surgery outcomes or planning (movement) rehabilitation protocols
related to ageing, trauma, or neuromuscular disorders.



A Occlusal boundary conditions:
case-study using implicit muscles

Note: Parts of this section have been previously published in Saini et al. (2020).
Computational modelling techniques can provide insights into the stresses and strains in

the dental structures not practically obtainable via experimental techniques. Such analyses,
however, require assumptions on boundary conditions such as the modelling of occlusal loads
and mandibular movement. Typically, in such studies, the occlusal loads are assumed to be
either single point forces (e.g. De Jager et al., 2005; Lanza et al., 2005; Baggi et al., 2008) or
multiple point forces across the occlusal surface (e.g. Bahrami et al., 2014; Verri et al., 2016;
Vootla et al., 2016) and the mandible is typically fixed in space (e.g. Verri et al., 2016; Vootla
et al., 2016). On the one hand, it has been shown that stresses incurred in the teeth are sensitive
to occlusal load direction and distribution (Rees, 2002; Eskitascioglu et al., 2004; Röhrle et al.,
2018a) and on the other hand, the need for appropriate muscle driven masticatory models in
producing realistic stress distributions has been highlighted (Röhrle et al., 2007).

It follows that even if appropriate and accurate mechanical models, i.e., geometrical and
constitutive models of dental structures would be used, the choice of modelling the occlusal
load as single or multiple point forces, would most likely lead to unrealistic stress predictions in
the dental structures. This is mainly due to the choice of boundary conditions, the discretisation
error or neglecting shear and compressive components. The sensitivity of the mechanical
response of dental structures to the type of occlusal loading, both in terms of loading direction
and distribution, remains poorly understood.

The aims of this section are therefore twofold: First, to predict the stress response of the first
molar dental structures during mastication using a simplified form of the model presented in the
preceding section. Second, to use this model to quantify the response of the dental structures
when occlusal loading is modelled as; a continuous, variable load distributed across the occlusal
surfaces; as a single point force; or as four point forces, i.e., representing occlusal load modelling
in typical computational studies; and by loading the occlusal surface with a sphere, i.e., as
in typical experimental testing scenarios in prosthodontic laboratories. Understanding the
influence of occlusal load modelling on the internal loading of the dental structures can lead to
better representation of masticatory states in both virtual and experimental dental analyses.
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(a) Rubber bite. (b) Sphere loading.

(c) Single point force. (d) Four point forces.

Figure A.1: Details of molar occlusal load case models.

A.1 Methods
Computational model development

The model described in the Section 7.2 is used to compute the stress distributions within the
dental structures during biting of a rubber sample (similar to Röhrle et al. (2018b)). The main
difference being that the muscles were modelled implicitly as pressure boundary conditions,
rather than as separate volumetric bodies.

Idealisation of masticatory muscles. Mandibular movement during biting of the rubber
sample between the first right molars was driven by the combined action of four muscle groups,
including the superior and deep masseter, the anterior, middle and posterior temporalis and
the superior lateral, inferior lateral and medial pterygoid.

The action of each individual muscle upon the mandible was represented by a muscle force
vector distributed over its entire area of mandibular attachment as previously described in
van Essen et al. (2005) and Röhrle et al. (2007). All muscle force vectors were computed
by multiplying unit vectors describing muscle directions by the corresponding muscle force
magnitudes. Themuscle force magnitudes were determined bymultiplying maximum voluntary
force muscle weights with scaling factors that represent the relative muscle activity during a
unilateral bite between the molars on the right side. The muscle-weights, scaling factors and
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unit vectors were based on literature (Nelson, 1986; Korioth et al., 1992; van Essen et al., 2005)
and were chosen to represent a maximal voluntary bite between the first right molars (Table
A.1).

Table A.1: Summary of muscle weights, scaling factors and unit vectors used to compute muscle forces
in the present study. Unit vectors of muscle forces are given for the right side of the jaw. For symbol
definitions, see the text.

Muscle group Muscle
weights/N

Scaling factors Unit vector (right)

R-WS L x y z

AT 158 0.72 0.58 -0.15 -0.04 0.99
MT 95.6 0.66 0.67 -0.22 0.5 0.84
PT 75.6 0.59 0.39 -0.21 0.86 0.47
DM 81.6 0.72 0.60 -0.55 0.36 0.76
SM 190.4 0.72 0.60 -0.21 -0.42 0.89
ILP 66.9 0.30 0.65 0.63 -0.76 -0.17
SLP 28.7 0.50 0.50 0.76 -0.65 0.07
MP 174.8 0.84 0.60 0.49 -0.37 0.79

The rubber sample used in the biting simulations had dimensions 20 × 20 × 5mm. The
material properties of the rubber sample were characterized by uniaxial compression testing
(Instron Model 3521, Parker Hydraulics, USA) and described using a frist-order isotropic,
hyperelastic and incompressible Ogden material law (Ogden et al., 1972), resulting in material
parameters c1 and c2 as 0.6725 and 7.264, respectively.

Biting simulations. The rubber-biting was simulated at maximal voluntary bite force effort
and is referred to as the gold-standard case (GS). The biting simulation was repeated by taking
the computed occlusal force magnitude and direction from the GS simulation and applying
it as: (i) an equivalent single concentrated force at the midcentral groove on the mandibular
molar (CF1 case), (ii) four equally split forces applied at the molar cusps (CF2 case), and (iii)
contact on the top of an 8mm diameter sphere (in the range of experimentally used diameters,
e.g., 6.4mm (Linn et al., 1994) and 9.5mm (Jantarat et al., 2001) sitting centrally between the
four cusps (SL case) (Figure 2). All simulations were performed using Abaqus/Standard (v6.14-
3, Dassault Systèmes, France) using an AMD Opteron 63731 (2.3 GHz, 32 cores) with 24GB
memory.

A.2 Results
Computation times during simulations were approximately 7 h for the GS case, 1.5 h for the SL
case and 1 h for both the CF1 and CF2 cases. The sum of all left- and right-side muscle forces
was 511N and 599N, respectively. The resultant bite force on the rubber sample was 578N,
with components 34N, 90N and 570N in the left, posterior and inferior directions, respectively.

1Part of the LEAD cluster at the University of Stuttgart.
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(a) Rubber bite. (b) Sphere loading.

(c) Single point force. (d) Four point forces.

Figure A.2: Stress distribution in the molar and mandible for a loading force of 578N in the sagittal plane
cross-section. Stresses are scaled between 0–50MPa.

The peak enamel stress for the GS, CF1, CF2 and SL case was 110MPa, 677MPa, 270MPa
and 305MPa, respectively (Figure A.2). The peak dentin stress for the GS, CF1, CF2 and SL
cases was 44MPa, 46MPa, 50MPa and 63MPa, respectively. This stress was concentrated on
the upper, lingual region of the dentin roots (Figure A.2). The CF1, CF2 and S cases produced
peak stresses closer to the lingual side, whereas the loading for the GS case resulted in a peak
stress located more distally.

A.3 Discussion

The prototype model of the masticatory system was driven by implicit muscles to predict the
stress response of the first mandibular molar during biting, and to evaluate the influence of
different occlusal load models on the resultant stress response. The peak simulated bite force is
validated by comparison to previously published studies. The simulated bite force was 578N,
which is similar to experimentally measured values for unilateral biting on the second molar,
determined using a force transducer (550N) (Fastier-Wooller et al., 2016) and an optical sensor
635N (Umesh et al., 2016).



A.4 Conclusion 187

The way in which occlusal load is modelled significantly influences the stress response of
the underlying dental structures, which has been previously observed for point forces (e.g.
Rees, 2002; Eskitascioglu et al., 2004) sphere contact loading (e.g. Röhrle et al., 2018a), and static
clenching contact (e.g. Benazzi et al., 2014); however, occlusal load has not previously been
modelled as a dynamic and variable load distributed over the occlusal surface during natural
mastication. The use of point loads to model occlusal loading requires the definition of their
number, location, magnitude and direction. Typically, a combination of literature values and
assumptions are used for these definitions (e.g. Baggi et al., 2008; Vootla et al., 2016; Röhrle et al.,
2018a), influencing the static equilibrium and stress distribution within the dental structures.
The choice of loading conditions directly impacts the stress distributions within the tooth and
may lead to stress concentrations due to the chosen discretisation and thus enamel loading
should be analysed with caution.

The impact can be observed by comparison to the ultimate compressive strength of enamel,
taken as 241MPa (Stanford et al., 1960; Chun et al., 2014). At 50 % of bite force effort, stresses
within the enamel were insufficient to cause yielding for the GS, CF2 and SL cases, while
yielding was already predicted for the CF1 case. At 100 % of bite force, stresses within the
enamel for the GS, CF1, CF2 and SL cases were 45 %, 281 %, 112 % and 126% of its compressive
yield strength, respectively. This suggests that the application of maximum bite force as a
concentrated force, or even sphere contact, may ultimately lead to failure of the crown enamel
unless the load contact area of the maximum force bite measurement is replicated. This finding
is in agreement with previous studies that showed enamel incurs most of the occlusal stress
and redistributes loading away from the crown towards the dentin roots and mandible (Yettram
et al., 1976; Wang et al., 1997), due to the high stiffness of enamel.

There are a number of limitations of the present study that ought to be considered. First,
bite force data were obtained from only one subject, i.e., one specific bite location and occlusal
surface morphology; however, the main finding of the dependence of dental structures on
the type of occlusal load may be generalized to other teeth and biting conditions. Second,
masticatory muscle forces were not personalized to the subject. While muscle force patterns
may vary between subjects, changes in the resultant bite force magnitude are unlikely to
change the major conclusion of this study describing the influence of occlusal loading on stress
distributions within the tooth and supporting structures.

A.4 Conclusion
The present study demonstrates that the magnitude, direction and distribution of forces on the
occlusal surface play an important role in the stress response of enamel during mastication,
while dentin was found to be relatively insensitive to the way in which occlusal loading
was modelled. Modelling occlusal loading during maximum force bite conditions with up to
four point forces, or using sphere contact, may result in yielding of enamel. The results may
be useful in designing computational and experimental studies to evaluate dental materials,
prosthodontic devices and teeth restorations, as well as in surgical planning.





B Simulated Motor-Unit Territories in
the Prototype Masticatory Model

As described in Chapter 8, the motor-unit territories in the prototype model’s left masseter for
IDs 1 and 3-10 are given here. For each of the figures below, the cross-sections are oriented such
that the following page-to-anatomical direction relations hold: left-superior, top-posterior, right-
medial (or deep), and bottom-anterior. The cross-sectional area is approximately 630mm2. The
motor-unit territories boundaries and virtual fibres are colour-coded from dark-blue (to cream)
to maroon, corresponding to the smallest and largest motor-units, respectively. Additionally,
extended statistics for the motor-unit territories are also given in Table B.1.

Table B.1: Masseter motor-unit territory statistics for various distributions, where CSA: cross-sectional
area, l̄ is the territory span or length, and the subscripts (·)min, (·)max, (·)10 and (·)90 correspond to the
minimum, maximum, 10th and 90th percentile, respectively.

ID %-CSAmin %-CSAmax %-CSA10 %-CSA90 l̄min/mm l̄max/mm l̄10 l̄90

0 0.4 19.0 0.8 6.0 2.0E-02 5.1 0.7 3.9
1 4.4 35.0 7.5 29.0 4.6E-03 13.0 0.2 4.3
2 0.1 42.0 1.1 13.0 4.6E-03 17.0 0.3 8.2
3 7.8 50.0 13.0 40.0 4.6E-03 8.7 0.2 6.4
4 0.3 36.0 0.9 11.0 6.8E-02 7.0 0.3 5.1
5 1.4 79.0 5.3 43.0 4.6E-03 20.0 0.2 8.5
6 2.1 49.0 3.8 24.0 1.8E-01 8.7 0.5 5.4
7 0.3 8.3 1.2 6.8 4.6E-03 5.5 0.2 3.1
8 0.4 10.0 0.6 6.2 4.4E-01 5.5 0.6 4.2
9 0.4 12.0 0.9 7.1 2.4E-01 12.0 0.5 4.2
10 0.5 67.0 0.9 6.9 9.1E-02 6.8 0.4 4.1
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(a) Meta-unit territories. (b) Meta-unit fibre distributions.

Figure B.1: Meta-unit territory distribution ID 1.

(a) Meta-unit territories. (b) Meta-unit fibre distributions.

Figure B.2: Meta-unit territory distribution ID 3.
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(a) Meta-unit territories. (b) Meta-unit fibre distributions.

Figure B.3: Meta-unit territory distribution ID 4.

(a) Meta-unit territories. (b) Meta-unit fibre distributions.

Figure B.4: Meta-unit territory distribution ID 5.
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(a) Meta-unit territories. (b) Meta-unit fibre distributions.

Figure B.5: Meta-unit territory distribution ID 6.

(a) Meta-unit territories. (b) Meta-unit fibre distributions.

Figure B.6: Meta-unit territory distribution ID 7.



193

(a) Meta-unit territories. (b) Meta-unit fibre distributions.

Figure B.7: Meta-unit territory distribution ID 8.

(a) Meta-unit territories. (b) Meta-unit fibre distributions.

Figure B.8: Meta-unit territory distribution ID 9.
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(a) Meta-unit territories. (b) Meta-unit fibre distributions.

Figure B.9: Meta-unit territory distribution ID 10.
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