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Deutschsprachige Zusammenfassung

Die Modellierung und Simulation des gesamten Bewegungsapparats wird heutzutage ger-
ne dazu genutzt, experimentelle Studien zu unterstützen, oder zu ersetzen. Insbesondere
auch dort, wo diese an ihre Grenzen stoßen, kommen Simulationen zum Einsatz. Bei-
spiele hierfür wären simulierte Crashtests in der Automobilindustrie, in denen der Fo-
kus auf dem Verhalten und Schutz der Insassen liegt, oder im medizinischen Bereich die
Verbesserung des Tragekomforts von Prothesen durch Simulationen des Übergangs von
Muskelstumpf und Prothesenschaft und den dort auftretenden mechanischen Kräften.
Als ein wesentlicher Bestandteil des Bewegungsapparats, ist insbesondere die Modellie-
rung der Skelettmuskulatur von großer Bedeutung. Aufgrund ihres komplexen struktu-
rellen und funktionellen Aufbaus ist dies allerdings eine sowohl herausfordernde, als auch
sehr rechenintensive Aufgabe. Die vorliegende Dissertation leistet einen wertvollen Bei-
trag für die Entwicklung eines numerisch stabilen und schnellen Skelettmuskelmodells,
welches in den oben genannten Beispielen seine Anwendung finden könnte. Dazu wur-
de ein dreidimensionales, dynamisches, inkompressibles und nichtlineares Skelettmuskel-
modell erstellt, mithilfe der Finite-Elemente-Methode im Raum und dem impliziten Eu-

ler Verfahren in der Zeit diskretisiert und die Struktur des resultierenden Di↵erenti-
algleichungssystems sorgfältig untersucht. Anschließend wurden die in der Modellreduk-
tion gängigen Methoden der Approximation durch reduzierte Basen (RB) und die Sin-
gulärwertzerlegung oder auch Hauptachsentransformation für ihre Anwendung auf die-
ses Skelettmuskelmodell angepasst und optimiert. Auf diese Weise konnte ein stabiles
reduziertes Skelettmuskelmodell erzeugt werden, welches durch ein Di↵erentialgleichungs-
system mit lediglich 15% der Größe des ursprünglichen Systems beschrieben werden kann.
Folgende Erkenntnisse wurden als hierfür wesentlich ausgearbeitet: (i) Um die Struktur
des ursprünglichen Skelettmuskelmodells im reduzierten Modell zu erhalten, muss als
Unterraum für die Geschwindigkeits-Freiheitsgrade derselbe gewählt werden wie für die
Verschiebungs-Freiheitsgrade. (ii) Die Größe des Unterraums für die Geschwindigkeiten
muss kleiner oder gleich groß wie die des Unterraums für die Verschiebungen sein. (iii)
Für die Berechnung der reduzierten Basen mittels der Singulärwertzerlegung sollte als
Norm jene gewählt werden, die zum jeweiligen Lösungsraum gehört. (iv) Die Stabilität
des reduzierten Skelettmuskelmodells wird hauptsachlich durch die Wahl der Größe des
Unterraums für den Druck im Verhältnis zur Größe des Unterraums für die Verschie-
bungen beeinflusst. (v) Eine Erweiterung des Unterraums für die Verschiebungen durch
sogenannte Supremizer wirkt sich vorteilhaft auf die Stabilität des reduzierten Systems
aus.
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Abstract

Computational models and simulations are widely used to substitute or support all sorts
of experiments. Especially in the field of biomechanics, they represent a great oppor-
tunity to provide further insight into structural and functional properties of biological
tissue. Modelling the musculoskeletal system in particular is a challenging and com-
putationally expensive task. Therefore, this contribution investigates the possibility to
reduce the computational e↵ort of a dynamic skeletal muscle model making use of model
order reduction (MOR) methods. For that purpose, a three-dimensional, nonlinear, dy-
namic skeletal muscle model based on the theory of incompressible finite hyperelasticity
is introduced. After discretisation in space and time, using the mixed Taylor-Hood

finite elements and the implicit Euler scheme, respectively, the obtained complex and
high-dimensional di↵erential algebraic equation system describing the three fields posi-
tion, velocity and pressure, is investigated from a theoretical as well as computational
point of view. Furthermore, the stability issues, encountered with a reduced-order model,
built by projecting each field of the high-dimensional model onto a reduced subspace, are
demonstrated. The reason for these problems is additionally investigated and confirmed
from the theoretical perspective. In order to propose a suitable approach for obtaining a
stable reduced-order skeletal muscle model, the well-established technique of combining
the reduced basis (RB) approximation with the proper orthogonal decomposition (POD)
needs to be customised. Therefore, the performance with respect to stability, e�ciency
and accuracy of di↵erent reduced-order models (ROM), built from various combinations
and sizes of subspaces, each of them again constructed from di↵erently calculated POD
bases, is compared. The key findings and resulting recommendations for the construction
of a stable reduced-order skeletal muscle model are (i) The velocity POD basis has to be
chosen equal to the position POD basis, i.e. the same subspace for both fields is required
in order to preserve the structure of the original high-dimensional model. (ii) For the
reduced sizes of the velocity and the position space, rv  ru has to hold. (iii) The POD
bases should be computed to be optimal in the inner product norm. (iv) The stability of
the ROM mainly depends on the ratio between the size of the reduced position space, ru,
and the reduced pressure space, rp. (v) Enriching the position (and velocity) POD basis
with approximate supremizer solutions is beneficial to gain stability. This way, a signi-
ficant dimensional reduction of the governing system of di↵erential algebraic equations
to around 15% of the original system size can be achieved, while preserving the original
structure and stability. Furthermore, considering that exclusively using the RB approx-
imation, the evaluation of nonlinear components still requires operations depending on
the original high dimension, an acceptable speedup of nearly 2 is obtained. With these
results, this work makes a valuable contribution towards the aim of providing a stable and
fast dynamic skeletal muscle model. It represents a step forward in making for example
many-query applications and real time simulations feasible.
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1 Introduction

Modelling the musculoskeletal system is by now a common approach to enhance or support
experimental studies. Especially in cases, where experiments face limitations, e.g. from an
ethical point of view or due to time and monetary constraints, modelling and simulation
can be utilised instead or supplementary in order to increase the understanding of the
considered problem. As a prominent application, car crash simulations, particularly also
in the context of autonomous driving, that aim to investigate the passenger behaviour
and develop strategies for passenger protection, can be named. Also in the process of
prosthesis design, skeletal muscle models are employed in order to e.g. improve the fitting
of the stump into the socket. Even simulating a scenario, where the stump controls a more
sophisticated prosthesis, is a possible application from the medical field. Lastly, modelling
the neuromuscular system by coupling neurophysiology and skeletal muscle mechanics
with the aim of improving the understanding of the complex involved processes and their
interactions, can be named as a motivational example.
For the given possible applications, continuum-mechanical models based on the theory
of finite hyperelasticity that have the advantage of adequately representing the complex
muscular structure and that are capable of not only predicting the mechanical behaviour
under external conditions, but also computing muscle and contact forces, are required.
However, these multiscale models mostly require very fine finite element discretisations
and thus are computationally expensive. Especially in the many-query context, which
for example can arise when patient-specific data is needed, or if parameter studies for
healthy and pathological conditions shall be conducted, the simulations become prohib-
itively expensive or even unfeasible. For this reason, one needs to find ways to speed up
the simulations and this is where the mathematical field of model order reduction (MOR)
suggests itself.

One possibility of reducing the computational e↵ort of simulating a high-dimensional
system of di↵erential equations, in the context of MOR referred to as full-order model
(FOM), is projection-based MOR. Essentially, this approach aims at reducing the number
of degrees of freedom (dof) of the system to solve by projecting it onto a lower dimen-
sional subspace of the original high-dimensional solution space. That way, a reduced-order
model (ROM) of lower dimension is obtained. For the determination of a suitable low-
dimensional subspace, the proper orthogonal decomposition (POD) is a well-established
and widely applied method. The idea of the POD is based on a split of necessary compu-
tations into an o✏ine and an online phase. Therein, it is assumed that during the o✏ine
phase time and resources are unlimited, i.e. computations involving high-dimensional op-
erations can be executed, while aiming at computing only operations of low-dimensional
complexity during the online phase. Since the POD yields the best approximation on
given training data and has the advantage of being very flexible in its application to dif-
ferent models, it was considered a suitable method to obtain a reduced skeletal muscle
model. In cases, where the system additionally contains nonlinearities, an exclusive use
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2 Chapter 1: Introduction

of the POD is not su�cient to obtain a computational speedup, since the evaluation of
reduced nonlinear terms still depends on the original high dimension. For those cases,
so-called hyperreduction methods need to be considered.

Assuming that the FOM is well defined, MOR generally seeks to preserve its structure in
the ROM. For that reason, this contribution tries to thoroughly set up and investigate the
full-order skeletal muscle model before proceeding further to the task of building a (stable
and fast) reduced-order skeletal muscle model. Properties of the FOM, which are focused
on are (i) dynamics, (ii) incompressibility and (iii) nonlinearity. The reason being that
they determine the structure of the di↵erential equation system to solve, while o↵ering
the possibility to enhance or exchange contributions like material models. Especially (i)
the dynamics and (ii) the incompressibility constraint, determine the overall structure,
yielding a di↵erential algebraic equation system (DAE) with three fields, namely the
position, the velocity and the pressure, to be solved for. Additionally, the nonlinearity
(iii) requires to perform a linearisation at some point of the solution procedure, which,
together with the other two main properties, leads to the task of solving a saddle point
problem.
The challenge of constructing a stable and fast skeletal muscle model thus lies in con-
sidering and preserving these structural properties of the FOM when trying to set up
a suitable method to obtain the ROM. The discretised incompressible Navier-Stokes

equations, describing an incompressible fluid flow, yield a similar structure as the incom-
pressible skeletal muscle model. Since they seem to be far more analysed and understood
from a mathematical perspective, their numerical treatment provides guidance for this
work, particularly in choosing suitable projection spaces for the three di↵erent fields. The
suggestion of enriching projection spaces with so-called supremizer solutions o↵ered by
Rozza & Veroy [41] and enhanced later by Ballarin et al. [4] is investigated additionally
to the POD in this contribution.

The intention of this dissertation is to provide the necessary details in a comprehensive and
comprehensible form, such that it can serve as a starting point for future investigations.
To that purpose, Chapter 2 first introduces the fundamental continuum-mechanical equa-
tions to describe a general incompressible solid in three dimensions in a dynamic setting.
Subsequently, this concept is extended to the specific case of the skeletal muscle model in
Chapter 3. Therein, for two reasons great care is taken to derive the discretised system
of equations and describe the necessary steps and di�culties of the solution procedure.
Firstly, this chapter shall o↵er guidance to future users or developers of the model and
the code, by providing the necessary details on the implementation. Secondly, as already
explained above, revealing the structure of the full model will be beneficial for the an-
ticipated application of projection-based MOR. The approach from general to specific is
adopted for the MOR part of this work as well. Chapter 4 describes the projection of a
general first-order di↵erential equation system onto a subspace and the calculation of a
POD basis in general, before these methods are extended to the skeletal muscle model in
Chapter 5. Equipped with the necessary theoretical details, the next two chapters show
the results using the proposed methods. Therefore, Chapter 6 introduces three di↵erent
examples with increasing complexity, which will be used in the second part of this chapter
to investigate and point out observed issues of the FOM, before they serve for the ana-
lysis of di↵erent ROM in Chapter 7. Finally, Chapter 8 concludes with a discussion of
the overall results and, based on that, suggestions for future work.



2 3D nonlinear incompressible solid
dynamics

This chapter introduces the fundamentals for modelling an incompressible solid in a
continuum-mechanical framework and a dynamic setting with a nonlinear material beha-
viour. Commonly, skeletal muscle tissue is considered a (nearly) incompressible material
(see e.g. [18] for a recent review), where incompressibility in this sense means that it does
not undergo any volumetric deformation. Furthermore, as most biological tissues, skeletal
muscle tissue exhibits a highly nonlinear material behaviour. Without going into specifics
of skeletal muscle tissue, here, the basic concepts and equations to describe a general
nonlinear, incompressible solid are introduced. For this purpose, the chapter is divided
into four sections. Section 2.1 provides the fundamental tools to describe a continuum-
mechanical solid. Then, this is extended to the case of incompressible solid dynamics in
Section 2.2, which means, that an additional constraint equation is introduced. These
sections are mainly based on introductory textbook knowledge, where the author can
particularly recommend the books of [10, 29]. Subsequently, a short introduction to con-
stitutive modelling is given in Section 2.3. As skeletal muscle tissue is (simply speaking)
composed of single muscle fibres, this is done on the basis of a transversely isotropic
hyperelastic material, which can account for the preferred direction. This section addi-
tionally suggests some specific strain energy functions suitable to describe such materials.
As we are dealing with nonlinear material behaviour, Section 2.4 concludes this chapter
by explaining the common procedures of linearising nonlinear constitutive laws.

2.1 Fundamentals of continuum mechanics

This section introduces kinematic relations, stress concepts and balance relations. It
is by no means exhaustive as this is not the focus of this work. However, it includes
the notations, equations and concepts that will be used herein. For a more detailed
introduction, e.g. into tensor notation and calculus, the reader is referred to e.g. [10, 29,
36].

Motion, deformation and strain measure

For a body ⌦0 ⇢ R3 at a time t = t0, each material particle can be described by a
coordinate vector X 2 ⌦0. Assuming that the body undergoes a deformation, the ref-
erential position X of each particle changes into an actual position at time t, which can
be described by a coordinate vector x 2 ⌦, with ⌦ ⇢ R3 being the body in the actual
configuration at time t. Mathematically, this deformation can be described by a so-called
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4 Chapter 2: 3D nonlinear incompressible solid dynamics

motion function

� : ⌦0 7! ⌦, X �! �(X, t) =: x(X, t) , (2.1)

which maps the referential position X 2 ⌦0 to the actual position x 2 ⌦.
To describe the relative spatial position of two neighbouring particles in the actual con-
figuration, one defines the deformation gradient F = F (x(X, t)) 2 R3⇥3 and additionally
the Jacobian J 2 R to relate the current to the referential volume,

F :=
@�(X, t)

@X
=

@x

@X
, J := det(F ) . (2.2)

As strain measure, which describes the relative position of neighbouring particles inside
the body, the right Cauchy-Green deformation tensor C 2 R3⇥3 is commonly used. It
is defined as

C := F
T
F , with det(C) = J2 . (2.3)

In general, within this work, we apply the Lagrange framework (also referred to as
material description) and describe physical quantities with respect to the referential co-
ordinates, i.e. in terms of x = �(X, t), such that the material time derivative and the
partial time derivative are equivalent. Therefore, with r(·) := @(·)

@X
, we denote the gradient

with respect to the state in the reference configuration. The same holds for the diver-
gence operator r · (·). Furthermore, concerning the tensor calculus notation employed
in this work, a double contraction is written by a single dot between the two tensors
(see e.g. Equation (2.9)), while a normal multiplication uses no symbol between the two
quantities (see e.g. Equation (2.3)).

Stress tensors

The internal forces, which neighbouring particles of the body exert on each other, are
described by stresses or stress tensors. The Cauchy stress tensor T , also referred to as
the true stress, is defined through the Cauchy theorem t = Tn, where t,n 2 R3 are the
traction vector and the surface outward unit normal vector respectively. Relating the ac-
tual surface force element to the actual area element, the symmetric Cauchy stress tensor
is evidently a quantity of the actual configuration. In order to enable a Lagrange for-
mulation, two additional stress tensors are introduced. First, the 1st Piola-Kirchhoff

stress tensor, P = det(F )TF
�T , which relates the the actual surface force element to the

referential area element. This tensor is a so-called two-field tensor, which has one basis in
the actual and one basis in the referential configuration and is (in general) not symmet-
ric. And second, the 2nd Piola-Kirchhoff stress tensor, S = det(F )F�1

TF
�T , which

lives completely on the reference configuration and is symmetric. From these definitions,
obviously, the relation

P = FS () S = F
�1
P (2.4)

between the 1st and the 2nd Piola-Kirchhoff stress tensors exist. This is employed in
the constitutive modelling process later in Section 2.3. There, additionally, use is made



2.2 Incompressible solid dynamics 5

of the concept of conjugate variables (strain and stress measures), where in the course of

this work, the two work conjugate pairs
n
P , Ḟ

o
and

n
S, 1

2
Ċ

o
are used.

Balance of linear momentum

The derivation of the balance principles in general, is done via axiomatically introducing
relations, that hold globally for the entire body. Subsequently, the equations that apply
for each material point, i.e. the local relations, are derived. The balance of linear mo-
mentum, also called Newton’s 1st law or Cauchy’s 1st equation of motion (c.f. e.g. [29])
characterises the resultant force. It is derived from the relation between the total linear
momentum L(t) and the resultant force f(t)

L̇(t) :=
d

dt

Z

⌦0

⇢0(X)
@x(X, t)

@t
dV

!
= f(t) , (2.5)

with ⇢0(X) 2 R being the density in reference configuration. In its local referential form
it is given as

⇢0(X)
@2x(X, t)

@t2
= r · P (F (X, t), t) + b(X, t) 8X 2 ⌦0 ⇢ R3 , (2.6)

where b(X, t) denotes the body force. This is the equation that describes the mini-
misation of mechanical energy and that needs to be solved to describe the dynamics of a
solid in a continuum-mechanical framework. The existence of a solution, i.e. a stationary
deformation state, can be guaranteed by choosing a polyconvex strain energy function
(whose derivative is inserted into P , c.f. Section 2.3) together with well-defined, compat-
ible boundary conditions. Details on the existence and uniqueness of local and global
minima of Equation (2.6) are a field on its own and lie outside the scope of of this work.
The interested reader is referred to e.g. Ball [3] for a start.

2.2 Incompressible solid dynamics

Materials that do not undergo volumetric changes are referred to as incompressible ma-
terials. As the determinant of the deformation gradient relates the actual volume to the
referential volume, these materials are characterised by det(F ) = 1. From a mathemat-
ical point of view, one has to solve a di↵erential equation, that is Equation (2.6), subject
to an additional (incompressibility) constraint equation to describe the dynamics of an
incompressible solid. The extended problem thus can be formulated as:

Find x(X, t) 2 ⌦ ⇢R3, such that 8X 2 ⌦0 ⇢ R3

⇢0(X)
@2x(X, t)

@t2
= r · P (F (X, t), t) + b(X, t)

subject to 0 = detF (x(X, t), t)� 1 . (2.7)

Again, the existence of a solution to this constraint problem, which is solved by the
method of Lagrange multipliers, can be assured by an appropriate choice of the con-



6 Chapter 2: 3D nonlinear incompressible solid dynamics

stitutive equation and the boundary conditions (seee.g. [3]). As nicely explained in [10],
it is a common procedure to separate the volumetric from the isochoric (or distortional),
i.e. the volume preserving components of the deformation, when dealing with constitutive
modelling of incompressible materials. This can be realised by a multiplicative split of the
deformation gradient and the strain measures and an additive split of the stress tensors.

Volumetric isochoric split of the deformation gradient

The deformation gradient F can be expressed in terms of a volumetric and a volume
preserving (isochoric) part as follows:

F = (J
1

3I)| {z }
volumetric

F̄|{z}
isochoric

, with F̄ := J� 1

3F . (2.8)

Evidently, det(F̄ ) = 1 holds for the isochoric contribution F̄ . This multiplicative split is
inherited by the right Cauchy-Green deformation tensor, whose isochoric part is given
as C̄ := J� 2

3C.

Volumetric deviatoric split of stress tensors

The Cauchy stress tensor can be additively split into an isochoric and a volumetric part:

T = TE � pI with p := �1

3
tr (T ) = �1

3
T · I . (2.9)

The isochoric part, the so-called “extra stress” tensor, T E, is trace-free,

tr (TE) = tr (T + pI) = tr

✓
T � 1

3
tr (T )I

◆
= tr (T )� tr

✓
1

3
tr (T )I

◆

= tr (T )� 1

3
tr (T )tr (I) = tr (T )� tr (T ) = 0 , (2.10)

and hence often also referred to as deviatoric (part of the) stress tensor.
The same split can be performed on the other stress tensors. For the 1st Piola-

Kirchhoff stress tensor, one has

P = PE � pJF�T with p := �1

3
J�1

P · F . (2.11)

And equivalently, for the 2nd Piola-Kirchhoff stress tensor

S = SE � pJC�1 with p := �1

3
J�1

S ·C . (2.12)

Note that for these two stress tensors, the traces of PE and SE do not vanish. However,
with the definition of a “generalised trace operator”, making use of the conjugate pairsn
P , Ḟ

o
and

n
S, 1

2
Ċ

o
, it holds that

trF (PE) := PE · F = 0 and trC(SE) := SE ·C = 0 . (2.13)
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2.3 Constitutive equations

To complete the equations that are necessary to describe an incompressible solid, as a last
step, the (1st Piola-Kirchhoff) stress tensor needs to be specified, i.e. a constitutive
equation, suitable to describe the behaviour of the material under consideration has to
be formulated. For details on the subject of constitutive modelling and the requirements
on thermodynamic consistency, the interested reader is referred to the book [50] and
references therein. Nevertheless, to be able to comprehend where the equations come
from, this section tries to show their derivation as short as possible, only including the
steps that are considered necessary.
An elastic material is defined as a material whose constitutive behaviour is only a function
of the current state of deformation. In the special case of a hyperelastic material, the work
done by the stresses during a deformation process depends only on the initial state at time
t0 and the final configuration at time t, i.e. the material behaviour is path-independent
(c.f. e.g. [35, 36]). For this case, the 1st Piola-Kirchhoff stress tensor can be derived
from the second law of thermodynamics (entropy balance) and a scalar-valued strain
energy function  , here  =  (F ).
We start the derivation with the Clausius-Planck inequality

Dint = P · Ḟ �  ̇ � 0 . (2.14)

Inserting the derivative of the strain energy function, one obtains

P · Ḟ �  ̇ = P · Ḟ � @ (F )

@F
· Ḟ =

✓
P � @ (F )

@F

◆
· Ḟ

!

� 0 . (2.15)

Since Equation (2.15) has to hold for arbitrary Ḟ , the expression in parentheses has to
vanish (Coleman-Noll argument) and therefore one obtains the 1st Piola-Kirchhoff

stress tensor from the strain energy function  as

P =
@ (F )

@F
. (2.16)

Note that this procedure becomes rather involved for more complex material behaviour
such as e.g. a viscoelastic formulation including internal variables. However, this is beyond
the scope of this work.

2.3.1 Incompressible hyperelasticity

For the case of an incompressible hyperelastic material, the deformation gradient F and
thus its time derivative Ḟ cannot take arbitrary values anymore, since the following
restriction exists,

det(F (X, t)) = J(X, t) ⌘ 1 , =) 0 = J̇ = JF�T · Ḟ . (2.17)

Therefore, Equation (2.16) does not hold any longer. From Equations (2.15) and (2.17)
it can be concluded that both terms left from the scalar dot, are orthogonal to the plane
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of admissible Ḟ and therefore proportional to each other, i.e.

P � @ (F )

@F
= �JF�T () P =

@ (F )

@F
+ �JF�T . (2.18)

for an arbitrary scalar � 2 R.
Remark:
This is illustrated nicely in [10]. Furthermore, they give the advise to retain the Jacobian
J in this equation also for the case of an incompressible material.

Relation to hydrostatic pressure

Recalling the volumetric deviatoric split of the stress tensors (c.f. Equations (2.11)),
one can relate the arbitrary scalar � to the hydrostatic pressure p. Insertion of Equa-
tion (2.18)2 into Equation (2.11)2, i.e. p = �1/3 J�1

P · F , yields

�p =
1

3
J�1

✓
@ (F )

@F
+ �JF�T

◆
· F

() �p =
1

3
J�1

@ (F )

@F
· F +

1

3
J�1�JF�T · F

() �p =
1

3
J�1

@ (F )

@F
· F +

1

3
�F�T

F
T · I

() �p =
1

3
J�1

@ (F )

@F
· F + � . (2.19)

It follows that �p = � if and only if @ (F )

@F
· F = 0. This is the case if @ (F )

@F
is deviatoric

(in the sense of trF (?) = (?) ·F ), which means that the strain energy can be expressed in
terms of the deviatoric component F̄ = J� 1

3F of the deformation gradient, i.e.  =  (F̄ ).
Thus, one defines

 ̄(F ) :=  (F̄ ) =) PE :=
@ ̄(F )

@F
and � p = � . (2.20)

Analogously, this can be done for the 2nd Piola-Kirchhoff stress tensor, such that one
obtains

SE := 2
@ ̄(C)

@C
= 2

@ (C̄)

@C
. (2.21)

Furthermore, Equation (2.4) also holds for the deviatoric extra stresses and thus

PE = FSE = 2F
@ (C̄)

@C
. (2.22)

Unfortunately, at least to the authors impression, the volumetric deviatoric split for in-
compressible materials and the consequences thereof, are rarely accurately formulated,
which results in misunderstanding and errors. Also the importance of keeping the Jac-
obian J in the expression of the (1st Piola-Kirchhoff) stress tensor at this point (at
least) for further derivations, is often neglected. Therefore, it is explained and derived in
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detail here.

2.3.2 Transversely isotropic hyperelasticity

This section shall just give a brief overview over the principles that need to be fulfilled
to derive the necessary equations to model a general transversely isotropic material. It is
kept short on purpose and the interested reader is referred to e.g. [50] for the complete
theory behind this.
In constitutive modelling, the principle of material objectivity requires the material re-
sponse to be invariant under rigid body motions of the actual configuration. However,
for an arbitrary rotation Q 2 SO(3) the equality  (QF ) =  (F ) does not necessar-
ily hold for arbitrary strain energy functions  . Therefore, the deformation gradient F

is not a suitable deformation measure for this application. In order to fulfil the invari-
ance condition, the strain energy function needs to be expressed in terms of the right
Cauchy-Green deformation tensor C , i.e.

 =  (C) . (2.23)

Another principle to consider is the principle of material symmetry. While the mechanical
behaviour of a purely isotropic material is independent of the orientation of the material in
the reference configuration with respect to the applied forces, the response of a transversely
isotropic material in contrast, depends on its orientation, e.g. due to fibres embedded in
a matrix. Therefore, a fibre direction a0 2 R3, ka0k2 = 1 is introduced. The associated
structural tensor M := a0 ⌦ a0 has the following properties:

MT = M , MM = M and tr (M) = 1 . (2.24)

The concept of transversal isotropy makes use of an additional quantity / measure, the
so-called fibre stretch �f := kak

2
, which is defined as the length of the fibre in the actual

configuration a := Fa0.
So, for a transversely isotropic material, the strain energy is a function of the tensors C
and M. Additionally, to obtain a consistent formulation of the constitutive equations,
it is convenient to express the dependency on these two tensor arguments in terms of
so-called scalar (mixed) invariants. This way, the constitutive equation becomes invariant
under rotations of the respective symmetry group of the considered material and thus the
principle of material symmetry is a priori fulfilled.

2.3.3 Introduction of invariants and their derivatives

The following principle invariants (I1, I2, I3) and mixed invariants (I4, I5) of the right
Cauchy-Green deformation gradient C and the structural tensor M are introduced:

I1 := tr (C) = C · I ,

I2 := tr (cof (C)) =
1

2

⇥
tr (C)2 � tr (C 2)

⇤
,

I3 := det(C) = J 2 ,
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I4 := tr (MC) = a0 ·C a0 = Fa0 · Fa0 = a · a = kak2
2
= �2

f
,

I5 := tr (MC
2) .

With those, the strain energy function for a transversely isotropic material is written as

 trviso =  trviso(I1, I2, I3, I4, I5) =  iso(I1, I2, I3) +  aniso(I1, I2, I3, I4, I5) . (2.25)

A common simplification (in particular for fibre reinforced materials) is to assume a
decoupling of isotropic and anisotropic energy terms, which leads to the form

 trviso =  trviso(I1, I2, I3, I4, I5) =  iso(I1, I2, I3) +  aniso(I4, I5) . (2.26)

As they are needed in the course of this chapter, the derivatives of the invariants with
respect to the right Cauchy-Green deformation gradient C are also derived at this
point. The general rule needed in this context is the derivative of the trace operator
with respect to a tensor, or even more general the derivative of the scalar product of two
tensors with respect to a tensor. For arbitrary tensors A,B,C 2 R3⇥3 it holds

@(A ·B)

@C
=

✓
@A

@C

◆T

B +

✓
@B

@C

◆T

A and thus (2.27)

@ tr (A)

@C
=
@(A · I)
@C

=

✓
@A

@C

◆T

I . (2.28)

Making use of this rule and keeping in mind that C and M are symmetric tensors, one
derives ∗

@I1
@C

=
@ tr (C)

@C
=

✓
@C

@C

◆T

I =

✓
(I ⌦ I)

23

T

◆T

I = (I ⌦ I)
23

T
I = I , (2.29)

@I2
@C

=
@ 1

2

⇥
tr (C)2 � tr (C 2)

⇤

@C
=

1

2


@ tr (C)2

@C
� @ tr (C 2)

@C

�

=
1

2


2 tr (C)I � @(C ·C)

@C

�
=

1

2


2 tr (C)I � 2 (I ⌦ I)

23

T
C

�

=
1

2
[2 tr (C)I � 2C] = I1I �C , (2.30)

@I3
@C

=
@ det(C)

@C
= det(C)C�T = I3C

�1 , (2.31)

@J

@C
=
@ I

1

2

3

@C
=
@ I

1

2

3

@I3

@I3
@C

=
1

2
I
� 1

2

3
I3C

�1 =
1

2
I

1

2

3
C

�1 =
1

2
JC�1 , (2.32)

@I4
@C

=
@ tr (MC)

@C
=
@(M ·C)

@C
= (I ⌦ I)

23

T M = M . (2.33)

The two subsequent sections introduce possible strain energy functions for the isotropic as

∗(I ⌦ I)
23
T is the fourth-order identity tensor, where (·)

23
T means a transpose of bases two and three. It

is also common to use the notation I.
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well as for the anisotropic contribution. The reason for this rather detailed introduction
lies in the incompressibility, which requires a thoughtful derivation of the extra stress
tensors.

2.3.4 Possible incompressible isotropic contributions

In this section, two specific strain energy functions for isotropic materials, namely the
Neo-Hooke and the Demiray material shall be introduced and the corresponding 1st

and 2nd Piola-Kirchhoff stress tensors are derived. As explained in Section 2.3.1, it
proofs useful to express the strain energy in terms of deviatoric measures in the case of
an incompressible material, thus

 iso =  iso(C̄,X) =  iso(Ī1, Ī2, Ī3) , (2.34)

with

Ī1 : = tr (C̄) = tr
⇣
J� 2

3C

⌘
= J� 2

3 tr (C) = J� 2

3 I1 (2.35)

Ī2 : = tr (cof (C̄)) =
1

2

h
tr (C̄)2 � tr (C̄

2
)
i
=

1

2

h
tr (J� 2

3C)2 � tr (J� 4

3C
2)
i

=
1

2

⇣
J� 2

3 tr (C)
⌘2
� J� 4

3 tr (C 2)

�
=

1

2
J� 4

3

⇥
tr (C)2 � tr (C 2)

⇤
(2.36)

= J� 4

3 I2

Ī3 : = det(C̄) = det
⇣
J� 2

3C

⌘
= J� 2

3 det(C) = J� 2

3 I3 (2.37)

= J� 2

3J2 = J
4

3

Note that there exists the dependency Īi = Īi(J, Ii), 8i 2 {1, 2, 3}. Again, for further
derivations, it is essential to keep the Jacobian in these expressions, even for the case of
an incompressible material.

Incompressible Neo-Hooke solid

The Neo-Hooke material is a simplification of the Mooney-Rivlin material and based
on the principle invariant I1 only. It depends on a single scalar material parameter
c10 [MPa] and is given in its general form (see e.g. [35, 36]) by,

 NH(I1, I2) =  NH(I1) = c10(I1 � 3) . (2.38)

Remark:
Sometimes the function is also formulated as  NH(I1) =

1

2
µ(I1�3). Here, one needs to pay

attention to the factor of two, when establishing material parameters found in literature.

For an incompressible Neo-Hooke material the strain energy is a function of I1 and J ,

 NH(C̄) =  NH(Ī1) = c10(Ī1 � 3) = c10(J
� 2

3 I1 � 3) =  NH(J, I1) . (2.39)
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It follows

@ NH(J, I1)

@C
=
@ NH(J, I1)

@I1

@I1
@C

+
@ NH(J, I1)

@J

@J

@C

= c10J
� 2

3I + c10

✓
�2

3

◆
J� 5

3 I1
1

2
JC�1

= c10J
� 2

3I � c10
1

3
J� 2

3 I1C
�1 (2.40)

= c10J
� 2

3

✓
I � 1

3
I1C

�1

◆
.

Inserting this result into Equations (2.21) and (2.22) respectively, the 1st and 2nd Piola-

Kirchhoff extra stress tensor for a Neo-Hooke solid are obtained as

S
NH

E
= 2c10J

� 2

3

✓
I � 1

3
I1C

�1

◆
, and (2.41)

P
NH

E
= 2c10J

� 2

3

✓
F � 1

3
I1F

�T

◆
. (2.42)

Remark:
There exist three reasons, why it is essential to keep the dependency on J at this point
also for the incompressible case.

1. Requirement of a stress-free reference configuration:

In the reference configuration, it holds F = I =) C
�1 = I, I1 = 3. Insertion into

Equations (2.41) and (2.42) yields S
NH

E
= P

NH

E
= 0. This would not be the case

without the deviatoric volumetric split and without retaining the dependency on J .

2. Further derivation of elasticity tensors:

Dropping the dependency on J at this point already, would result in missing terms
when deriving the elasticity tensors later on for the linearisation in Section 3.2.

3. According to [10] it is also improving the numerical performance of the FE-code,
when the J is kept in the formulation as numerical inaccuracies are balanced better.

This material law was chosen, as it represents one of the simpler isotropic material models
and shall thus be employed for first tests in the course of this work.

Incompressible Demiray solid

The Demiray strain energy function is one of the simpler exponential material laws,
accounting for the strain-hardening (of skeletal muscle tissue) by an exponential term.
In this work, it serves as example for demonstrating the e↵ect of an increasing mater-
ial complexity on the investigated methods. For further possible choices of hyperelastic
strain energy functions that are considered suitable for soft biological tissues, the inter-
ested reader is referred to the relatively recent review paper [15]. Like the Neo-Hooke

material, the Demiray strain energy is only I1-based. Furthermore, it depends on two
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scalar material parameters c1 [MPa], c2 [–] and is given in its general form as (c.f. [19])

 D(I1) =
c1
c2

✓
exp

✓
1

2
c2(I1 � 3)

◆
� 1

◆
. (2.43)

For an incompressible Demiray material, the derivative of the strain energy with respect
to the right Cauchy-Green deformation gradient C is obtained as

@ D(C̄)

@C
=
@ D(J, I1)

@I1

@I1
@C

+
@ D(J, I1)

@J

@J

@C

=
1

2
c1J

� 2

3 exp

✓
1

2
c2(J

� 2

3 I1 � 3)

◆
I (2.44)

� 1

3
c1J

� 5

3 I1 exp

✓
1

2
c2(J

� 2

3 I1 � 3)

◆
1

2
JC�1 .

Inserting this result into Equations (2.21) and (2.22) respectively, the 1st and 2nd Piola-

Kirchhoff extra stress tensor for a Demiray solid are given as

S
D

E
= c1J

� 2

3 exp

✓
1

2
c2(J

� 2

3 I1 � 3)

◆✓
I � 1

3
I1C

�1

◆
, and (2.45)

P
D

E
= c1J

� 2

3 exp

✓
1

2
c2(J

� 2

3 I1 � 3)

◆✓
F � 1

3
I1F

�T

◆
. (2.46)

Remarks:

1. Setting c2 = 0 corresponds to the Neo-Hooke stress tensors.

2. Insertion of F = I yields a stress-free reference configuration here as well.

2.3.5 Possible anisotropic contribution

Lastly, a specific strain energy function describing anisotropic material behaviour needs
to be introduced and the corresponding summands for the 1st and 2nd Piola-Kirchhoff

stress tensors shall be derived. As investigated and explained in e.g. [42] and [27], the
anisotropic strain energy needs to be expressed in terms of C and its invariants also in
the case of an incompressible material (not using the deviatoric measure C̄), i.e.

 aniso =  aniso(C,X) =  aniso(I4, I5) . (2.47)

Since the aim of this work is to provide and investigate a framework, which is suitable to
describe skeletal muscle material behaviour in general, we will not go into further details of
constitutive modelling, but consider it su�cient to choose one of the available anisotropic
strain energy functions and fit them to available experimental data (see Section 6.1.3).
For the time being, the strain energy function proposed by Holzapfel et al. [30], originally
developed for arterial walls, is chosen.
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Holzapfel strain energy function

The Holzapfel strain energy function is an exponential material law based on the fourth
(mixed) invariant, I4, and depends on two scalar material parameters a1 [MPa] and a2 [–].
It is given as (c.f. [30])

 HA(I4) =
1

2

a1
a2

�
exp

�
a2(I4 � 1)2

�
� 1
�
. (2.48)

Taking the derivative with respect to C yields

@ HA(I4)

@C
=
@ HA(I4)

@I4

@I4
@C

= a1(I4 � 1) exp
�
a2(I4 � 1)2

�
M . (2.49)

Inserting this result into Equations (2.21) and (2.22) respectively, the summands for the
1st and 2nd Piola-Kirchhoff extra stress tensors for the Holzapfel material are given
as

S
HA

E
= 2a1(I4 � 1) exp

�
a2(I4 � 1)2

�
M , (2.50)

P
HA

E
= 2a1(I4 � 1) exp

�
a2(I4 � 1)2

�
FM . (2.51)

For F = I, it is I4 = ka0k22 = 1 and thus it can easily be shown that the requirement of
a stress-free reference configuration is met here as well.

2.4 Linearisation of nonlinear constitutive material laws

In the special case of nonlinear solid mechanics, it is necessary to perform a linearisation
at some point of the solution procedure. This requires certain derivatives, which yield
higher-order tensors. Here, the necessary operations for this work are listed or derived.
The list is by no means complete. However, the aim is to provide the reader with the
necessary rules that are applied within the derivations. For more detailed explanations
and derivations see, e.g. [47]
In Section 2.3.3 the derivatives of the invariants with respect to the rightCauchy-Green

deformation gradient C have already been derived, as they were necessary to obtain
the specific forms of the 1st and 2nd Piola-Kirchhoff extra stress tensors. For the
linearisation within the setting established in this work, the derivative of the 2nd Piola-

Kirchhoff extra stress tensor with respect to the deformation gradient F , i.e. @PE

@F
is

needed. This fourth-order tensor is often referred to as the analytical tangent modulus or
elasticity tensor.

Tensor calculus: Product rules in general

The general product rules for derivatives of combinations of scalars, vectors and tensors,
that are used in the course of this section are listed in the following.
Let ↵, � 2 R be arbitrary scalars, u,v 2 R3⇥1 arbitrary vectors and A,B 2 R3⇥3
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arbitrary tensors. Then it holds

@(↵�)

@B
= ↵

@�

@B
+ �

@↵

@B
, (2.52)

@(↵A)

@B
= A⌦ @↵

@B
+ ↵

@A

@B
=) @(↵A)

@A
= A⌦ @↵

@A
+ ↵ (I ⌦ I)

23

T , (2.53)

@(AT
A)

@A
=
�
A

T ⌦ I
�23
T
+ (I ⌦A)

24

T , (2.54)

@(AB)

@B
= (A⌦ I)

23

T , if A 6= A(B) , (2.55)

@(AB)

@A
=
�
I ⌦B

T
�23
T
, if B 6= B(A) , (2.56)

@(Av)

@u
=

✓
@A

@u

◆23

T

v +A
@v

@u
. (2.57)

The last product rule (2.57) is additionally directly applied here in the context in which
it is used later in Section 3.3.3. Further, index notation is used in order to understand
where the transpose of the bases 2 and 3 comes from.

@P (u)nk

@uj
=
@Pabnk

b
ea

@uj

cec

=
@Pabnk

b

@uj

c

(ea ⌦ ec) =

✓
@Pab

@uj

c

nk

b
+ Pab

@nk

b

@uj

c

◆
(ea ⌦ ec)

=
@Pab

@uj

c

nk

b
(ea ⌦ ec) =

@Pab

@uj

c

(ea ⌦ ec ⌦ eb)n
k

f
ef =

✓
@P (u)

@uj

◆23

T

n
k (2.58)

Derivatives of some scalar invariants with respect to F

The derivative of terms with the invariants (i.e. scalars) of C and M, occurring in the
utilised stress tensors, with respect to the deformation gradient F , yield second-order
tensors:

@J�q

@F
=
@J�q

@J

@J

@F
= �qJ�q�1JF�T = �qJ�q

F
�T (2.59)

@I1
@F

=
@ tr (C)

@F
=

✓
@C

@F

◆T @ tr (C)

@C
(2.29)

=

✓
@(F T

F )

@F

◆T

I

(2.54)

=

�
F

T ⌦ I
�23
T
+ (I ⌦ F )

24

T

�T
I = 2F (2.60)

@I2
@F

=

✓
@C

@F

◆T @I2
@C

(2.31)

=

�
F

T ⌦ I
�23
T
+ (I ⌦ F )

24

T

�T
(I1I �C)

(2.60)

= 2I1F � 2FC (2.61)

@I4
@F

=

✓
@C

@F

◆T @I4
@C

(2.33)

= 2FM (2.62)
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Derivatives of some second-order tensors with respect to F

The derivatives with respect to the deformation gradient F of terms that include the
second-order tensors F , C and M, yield fourth-order tensors:

@F

@F
= I = (I ⌦ I)

23

T (2.63)

@F�T

@F
=

✓
@F�1

@F

◆12

T

=

✓
�
�
F

�1 ⌦ F
�T
�23
T

◆12

T

= �
�
F

�T ⌦ F
�T
�24
T

(2.64)

@(FM)

@F
(2.56)

= (I ⌦M)
23

T (2.65)

For the last derivative use was made of the symmetry of M.



3 Full-order skeletal muscle model

The aim of this chapter is to introduce a skeletal muscle model in a numerically accessible
algebraic formulation as basis for the subsequent chapters. In the context of model order
reduction, this will be referred to as the full-order model, and represent the starting point
for the application of model order reduction methods. The chapter is divided into three
sections. Section 3.1 supplements the 1st Piola-Kirchhoff stress tensor derived from
constitutive equations in the previous chapter with further terms that are necessary to
describe the specific material response of skeletal muscle tissue. Then, in Section 3.2,
the elasticity tensor needed in the linearisation step of the solution method is derived for
that specific material model. Starting from the continuous problem in its strong form,
deriving the continuous formulation in its weak form and discretising it by finite elements
in space and an implicit Euler scheme in time, Section 3.3 provides the finite element
matrix formulation of the skeletal muscle model.

3.1 Skeletal muscle specific material response

The complex architecture and function of skeletal muscle makes it quite a challenging
material to model. The interested reader is referred to the book of Fung [22] and the
elaborate review paper of Röhrle et al. [39] as an overview over the topic and a starting
point for deeper knowledge and further references. The muscle fibres embedded in the
extracellular matrix do not only contribute to the passive material behaviour, but addi-
tionally exhibit an active material response. Aspects that are considered important for
investigating and making universally valid statements of the performance of a full- and
a reduced-order model, and should therefore be incorporated in the model of this work,
are (i) dynamics, (ii) incompressibility, and nonlinear constitutive equations for the (iii)
isotropic passive material response of extracellular matrix and skeletal muscle fibres and
for the (iv) anisotropic passive and (v) active material response of skeletal muscle fibres.
As a lot of development and progress is going on in the field of constitutive modelling of
soft biological tissue in general and skeletal muscle tissue in particular, the aim of this
work is to provide a framework, where the specific material response could potentially be
easily exchanged to a newly developed, more appropriate material law.
Mathematically, the incorporation of these aspects can be formulated by the following
additive split of the 1st Piola-Kirchhoff stress tensor (c.f. Equation (2.11)),

P = P
nl

E
+ P

visc

E
� p JF�T , (3.1)

where P
visc

E
describes the viscous material response, and the nonlinear deviatoric extra

stress, P nl

E
, is further subdivided into the passive and active contributions from muscle

17
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fibres and extracellular matrix

P
nl

E
= P

iso

E
+ P

aniso

E
+ P

act

E
. (3.2)

For the incompressible isotropic contribution, P iso

E
, we will (depending on the desired

complexity) utilise either the Neo-Hooke or the Demiray material in the form derived
in Section 2.3.4. The anisotropic passive contribution, P aniso

E
, will be described by the

Holzapfel material law derived in Section 2.3.5.
Even though this work mainly intends to investigate the structure and stability of the
overall model and means to provide a proof of concept for a generally accepted skeletal
muscle material, one should mention at this point, that the transversal isotropic passive
material behaviour of skeletal muscle tissue is still a (controversially) discussed topic.
Böl et al. [9] for example showed, that the passive response of skeletal muscle tissue
is not simply comparable to the behaviour of general fibre reinforced materials, where
the fibres merely influence the response to applied traction forces, but that additionally
the fibres alternate the behaviour under compression. Furthermore, there is a lot of
research going on in improving and enhancing skeletal muscle material models, e.g. using
a microstructurally and homogenisation-based approach (c.f. [7]).
The two additional terms that were not discussed yet, are the active contribution and a
viscous contribution.

Active contribution

The active response of skeletal muscle originates from contractions within the skeletal
muscle fibres, or more specifically from contractions of the sarcomeres. This contribution
is naturally acting in fibre direction and thus, like the passive anisotropic contribution,
depends on the fourth (mixed) invariant, I4. Additionally, there exist complex force-length
and force-velocity dependencies, but since these aspects do not influence the structure of
the discretised equation system, they are omitted here. A very simple formulation of the
active stress tensor suitable for insertion into a continuum-mechanical model and su�cient
for a proof of concept (c.f. [39])

P
act

E
(↵, I4) = ↵ · pmax FM , (3.3)

was incorporated. Therein, ↵ 2 [0, 1] is the normalised active stress, which can be inter-
preted as an activation parameter with ↵ = 0 meaning that no active behaviour is present
and ↵ = 1 standing for a fully activated muscle. Furthermore, pmax [MPa] is a material
parameter denoting the maximum stress during an isometric contraction.

Viscous contribution

While experiments typically state the passive response of skeletal muscle tissue as visco-
elastic (e.g. [48]), most state of the art skeletal muscle models simply incorporate a hyper-
elastic material behaviour. Especially in a dynamic setting, however, Van Loocke et al.
[48] show that it is required and crucial to utilise a viscoelastic material model to appro-
priately capture the muscles dynamic behaviour. Since dynamics is one of the five aspects
(i)–(v) that we want to consider in the skeletal muscle model, the need to additionally
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incorporate a viscous contribution clearly exists. As a preliminary and rather simple ap-
proach, inspired by the response of a single dashpot (strain rate is proportional to stress),
this is incorporated into the stress response by adding the term

P
visc

E
= ⌘Ḟ , (3.4)

with ⌘ [MPa ms] being a parameter describing the dynamic viscosity. This formulation
corresponds to the Kelvin-Voigt model, represented by a single dashpot and an elastic
spring in parallel. Being aware of the shortcomings of the Kelvin-Voigt model that is
known to be incapable of properly describing stress relaxation and to react to a jump in
the strain variable with an infinite stress, this contribution surely is questionable. For
future work, it is advisable to replace this with an appropriate, more sophisticated vis-
coelasticity formulation, e.g. the one derived for large deformations by Reese & Govindjee
[38]. However, this is beyond the scope of this work, whose focus is supposed to be on
the model order reduction of an existing full-order skeletal muscle model.

3.2 Elasticity tensor for skeletal muscle material

Having all necessary contributions to the 1st Piola-Kirchhoff stress tensor for a specific
material response of skeletal muscle tissue at hand, the corresponding elasticity tensor,
which is needed in the linearisation step, can now be derived. At this point the importance
of keeping the Jacobian of the deformation gradient, J , in the stress tensor formulation,
even in the case of an incompressible material with J = 1, becomes obvious. Without
the additional dependency on J , many terms resulting from the partial derivatives with
respect to J would be missing.
Making use of the derivatives introduced in Section 2.4, the derivations for each term
are relatively straightforward, however, rather complex due to lengthy terms and nested
partial derivatives. For that reason, the following summarises only the results. They are
sorted by the occurring fourth-order tensor bases.

3.2.1 Incompressible isotropic contribution

Incompressible Neo-Hooke contribution

@P NH

E

@F
= 2c10J

� 2

3 (I ⌦ I)
23

T � 4

3
c10J

� 2

3

�
F ⌦ F

�T
�
� 4

3
c10J

� 2

3

�
F

�T ⌦ F
�

+
4

9
c10J

� 2

3 I1
�
F

�T ⌦ F
�T
�
+

2

3
c10J

� 2

3 I1
�
F

�T ⌦ F
�T
�24
T

(3.5)
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Incompressible Demiray contribution

For readability, the exponential expression that occurs repeatedly, is abbreviated with

exp [· · · ] := exp
h
1

2
c2(J� 2

3 I1 � 3)
i
.

@PD

E

@F
= c1J

� 2

3 exp [· · · ] (I ⌦ I)
23

T + c1c2J
� 4

3 exp [· · · ] (F ⌦ F )

�
✓
1

3
c1c2J

� 4

3 I1 +
2

3
c1J

� 2

3

◆
exp [· · · ]

�
F ⌦ F

�T
�

�
✓
1

3
c1c2J

� 4

3 I1 +
2

3
c1J

� 2

3

◆
exp [· · · ]

�
F

�T ⌦ F
�

(3.6)

+

✓
1

9
c1c2J

� 4

3 I2
1
+

2

9
c1J

� 2

3 I1

◆
exp [· · · ]

�
F

�T ⌦ F
�T
�

+
1

3
c1J

� 2

3 I1 exp [· · · ]
�
F

�T ⌦ F
�T
�24
T

Like previously for the stress tensor, for the elasticity tensor it holds as well that in the

case of c2 = 0 it is @P
D

E

@F
= @P

NH

E

@F
.

3.2.2 Anisotropic passive and active contributions

Holzapfel contribution

@P HA

E

@F
= 2c1(I4 � 1) exp

�
c2(I4 � 1)2

�
(I ⌦M)

23

T

+ 4c1 exp
�
c2(I4 � 1)2

� �
2c2(I4 � 1)2 + 1

�
(FM⌦ FM) (3.7)

Active contribution

@P act

E

@F
= ↵ · pmax (I ⌦M)

23

T (3.8)

3.2.3 Viscous contribution

Making use of the relation Ḟ = LF , where L := rẋ is the so-called spatial velocity
gradient, one obtains

@P visc

E

@F
=
@
⇣
⌘Ḟ
⌘

@F
= ⌘

@ (LF )

@F
= ⌘ (L⌦ I)

23

T . (3.9)

Remark:
Note that this part is only added for completeness at this point. Since during the dis-
cretisation process (c.f. Section 3.3) it is separated from the rest of the extra stress tensor
and contributes to the linear term Du

0(t) = Dv(t) of the problem, there is no need for
a further derivative with respect to F .
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3.3 Discretisation and implementation

Evidently, for the derived sophisticated di↵erential equations, no analytical solution is
available and thus numerical solution methods need to be employed in order to obtain
an approximate solution of the problem. For the spatial discretisation, the finite element
method, which is commonly used for problems in (solid) mechanics, is applied. For
detailed introductions into the theory of finite elements, the reader is referred to the
textbooks of e.g. Braess [11], Brenner & Scott [12], Ern & Guermond [20] and Zohdi [52].
The discretisation in time is carried out using the simple implicit Euler scheme. Cer-
tainly, there are more advanced higher-order time integration schemes or index reduction
methods for di↵erential algebraic equations available. However, in order to access and
investigate the overall solution procedure at any necessary step involved, a rather simple
self-implemented scheme was decided on.
The purpose of this section is to provide the necessary insights into the specific properties
of the full-order model. The first reason for a detailed derivation lies in the anticipated
application of model order reduction methods. As those methods aim at preserving the
structure and properties of the full-order system, one obviously has to be aware of those.
The second reason is to provide something like a manual for future users or developers
of the code. The model was implemented and solved within the Matlab library Ker-
Mor [51], which provides routines for model order reduction of dynamical systems using
subspace projection and nonlinear approximation. In order to understand and be able
to modify and enhance the implementation, it will hopefully be beneficial to provide the
details and a notation similar to that adopted for implementation.

3.3.1 Discretisation in space

The continuous formulation of the problem in its strong form was derived in the previous
sections and can be summarised as

Find x(X, t) 2 ⌦ ⇢R3, p(X, t) 2 R such that 8X 2 ⌦0 ⇢ R3

⇢0(X)
@2x(X, t)

@t2
= r · P (x(X, t), p(X, t), t)

subject to 0 = detF (x(X, t), t)� 1 (3.10)

with P (x(X, t), p(X, t), t) = P
nl

E
(x(X, t), p(X, t), t) + P

visc

E
(x(X, t), t)

� p(X, t) J(x(X, t))F�T (x(X, t)) .

Note that the body forces term b(X, t) is dropped here (and from here on), as one can
assume that those forces are negligibly small compared to the other forces that act on
the muscle. To make the continuous problem accessible to numerical solution methods,
its algebraic formulation is needed. To that purpose, as a first step, the continuous
formulation in its weak form is derived. This step is often referred to as the method of
weighted residuals and forms the starting point for the finite element method (as well as
the boundary element method).
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Continuous formulation in its weak form

Let Vu := Vu⇥Vu⇥Vu and Vp denote the position (or displacement) and pressure space,
respectively. It is common (c.f. e.g. [5, 24, 34]) to assume that the domain of the internal
elastic energy for the material under consideration is a subset of a Sobolev space. More
precisely, the material formulations are defined and derived in such a way, that they fulfil
certain criteria, e.g. polyconvexity (c.f. [3]), to make sure, that the solutions exist and lie
in the correct spaces. Therefore, we set

Vp := H0(⌦0) = L2(⌦0) := {p : ⌦0 ! R,X 7! p(X)| kpkL2 <1} (3.11)

as the space of square-integrable functions on the reference domain ⌦0 and

Vu := H1(⌦0) :=
�
u 2 L2(⌦0)|ru 2 L2(⌦0)

 
(3.12)

as the space of square-integrable functions on ⌦0, whose first partial derivative is square-
integrable as well.
Vp is equipped with the L2-norm, kpkVp

, which is induced by the inner product

hp, qiVp
:=

Z

⌦0

p(X) q(X) dX , =) kpk2Vp
:= hp, piVp

, for p, q : ⌦0 ! R . (3.13)

Moreover, Vu is equipped with the H1-norm, kukVu
, which is induced by the inner product

hu, viVu
:=

Z

⌦0

u(X) v(X) dX +

Z

⌦0

ru(X) ·rv(X) dX , (3.14)

=) kuk2Vu
:= hu, uiVu

, for u, v : ⌦0 ! R . (3.15)

With these inner product spaces at hand, the continuous formulation of problem (3.10)
in its weak form is obtained by multiplication with suitable test functions.

Find (x, p) 2 Vu ⇥ Vp such that 8 (x̂, p̂) 2 Vu ⇥ Vp (3.16)

Z

⌦0

⇢0(X)
@2x(X, t)

@t2
· x̂(X) dX =

Z

⌦0

[r · P (x(X, t), p(X, t), t)] · x̂(X) dX

s.t.

Z

⌦0

[detF (x(X, t))� 1] p̂(X) dX = 0 .

To further transform Equation (3.16) into the common form, the product rule of di↵eren-
tiation (c.f. Equation (3.17)) and the Gauss integral theorem (c.f. Equation (3.18)) are
applied. As those are not everywhere in literature consistently given or named and as
the notation varies a lot, they are introduced here in correspondence with the adopted
notation:

r ·
�
P

T
x̂
�
= (r · P ) · x̂+ P ·rx̂, (r · P ) · x̂ = �P ·rx̂+r ·

�
P

T
x̂
�

(3.17)
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Z

⌦0

r ·
�
P

T
x̂
�
dX =

Z

@⌦0

P
T
x̂· dA =

Z

@⌦0

P
T
x̂ ·N dA =

Z

@⌦0

PN · x̂ dA (3.18)

Note that the (surface) integral (3.18) vanishes for functions x̂|@⌦0
= 0. Therefore, di-

viding the surface @⌦0 := @⌦D

0
[ @⌦N

0
into disjunct Dirichlet and Neumann boundary

parts, defining a shifted subspace of test functions that fulfil homogeneous Dirichlet

boundary conditions

Tu :=
�
x̂ 2 Vu | x̂ = 0 on @⌦D

0

 
⇢ Vu , (3.19)

and omitting any Neumann boundary conditions at this point, the weak formulation of
problem (3.10) writes without loss of generality:

Find (x, p) 2 Vu ⇥ Vp such that 8 (x̂, p̂) 2 Tu ⇥ Vp (3.20)

Z

⌦0

⇢0(X)
@2x(X, t)

@t2
· x̂(X) dX = �

Z

⌦0

P (x(X, t), p(X, t), t) ·rx̂(X) dX

s.t.

Z

⌦0

[detF (x(X, t))� 1] p̂(X) dX = 0 .

Algebraic formulation

To formulate the finite element approximation of problem (3.20), two finite-dimensional
subspaces, dependent on the computational mesh size h > 0, are introduced.

Vh

p
⇢ Vp of dimension Np 2 N with orthonormal basis { i(X)}Np

i=1
(3.21)

Vh

u
⇢ Vu of dimension N 2 N with orthonormal basis {'i(X)}N

i=1
(3.22)

Note that the finite element approximation subspaces inherit the inner products and
norms of the exact spaces.
Furthermore, two bijections between RNp and Vh

p
for the approximate pressure ph 2 Vh

p

and RN and Vh

u
for the approximate position x

h 2 Vh

u
are defined for algebraic purposes:

ph(X, t) =

NpX

i=1

wi(t) i(X) = w with wi : [0, T ]! R , (3.23)

x
h(X, t) =

NX

i=1

u[i](t)�'[i](X) with u[i] : [0, T ]! R3 (3.24)

=
NX

i=1

u[i](t)'i(X) = u' as Vh

u
= Vh

u
⇥ Vh

u
⇥ Vh

u
.

Therein, u 2 R3⇥N andw 2 R1⇥Np are the coe�cient vectors for the approximate position
and pressure, while ' := ('i(X))N

i=1
2 RN⇥1,  := ( i(X))Np

i=1
2 RNp⇥1 contain the
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corresponding evaluations of basis functions respectively. In order to account for the
three-dimensionality of the problem, i.e. the x-, y- and z-direction, a triple index indicated
by square brackets

'[i] :=

0

@
'i

'i

'i

1

A ,u[i] :=

0

@
u[i]1
u[i]2
u[i]3

1

A =

0

@
u3(i�1)+1

u3(i�1)+2

u3(i�1)+3

1

A = u[i]nen 2 R3 , 8 i = 1, ..., N ,

and the Hadamard or Schur product, indicated by �, meaning a componentwise mul-
tiplication of the respective vectors, were introduced. Note that by introducing the triple
index, the summation always runs from i = 1, ..., N instead of i = 1, ..., 3N and therefore
one deals with 3⇥1 vectors and matrix-vector-multiplications instead of scalars and scalar
products of two matrices in the proceeding derivations. This is feasible, as (naturally)
the same basis {'i(X)}N

i=1
is chosen for the x-, y- and z- components of the approximate

position x
h 2 Vh

u
.

With Equation (3.24) and the definition ∗

'
r
i
:= r'i =

0

B@

@'i

@X1

@'i

@X2

@'i

@X3

1

CA =:

0

@
'r1

i

'r2

i

'r3

i

1

A = 'ro
i
eo 2 R3 , 8 i = 1, ..., N , (3.25)

one obtains the discrete representation of the deformation gradient as

F (xh(X, t)) = F (u(t)) =
NX

i=1

u[i]⌦'r
i
=

NX

i=1

u[i]
�
'

r
i

�T
(3.26)

=
NX

i=1

u[i]n'
ro
i

(en ⌦ eo) =:
NX

i=1

f i

no
(en ⌦ eo) .

Using a Galerkin projection approach the resulting algebraic formulation reads

Find (xh, ph) 2 Vh

u
⇥ Vh

p
such that

Z

⌦0

⇢0(X)
@2xh(X, t)

@t2
'k(X) dX = (3.27)

�
Z

⌦0

P
�
x
h(X, t), ph(X, t), t

�
'

r
k
(X) dX 8 k = 1, ..., N

s.t.

Z

⌦0

⇥
detF (xh(X, t))� 1

⇤
 k(X) dX = 0 8 k = 1, ..., Np . (3.28)

∗Note that for the index o Einstein summation convention is used.
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Finite element matrix formulation

This paragraph is kept as short as possible and as detailed as necessary. As the assembly
of the discrete system with all its integrands on the element level is important for the
work with the software environment and also might be important to future work for the
approximation of nonlinear contributions, these shall briefly be derived at this point. Note
that as a result of this approach, the notation is not exact, but the reader that is familiar
with the finite element method, should be capable of following and understanding the
necessary details.
To obtain a finite element formulation, the (reference) domain ⌦0 is now partitioned into
Ne 2 N smaller parts, the finite elements, i.e.

⌦0 =
Ne[

e=1

⌦e . (3.29)

Moreover, nodes are defined on the corners (and certain positions on the edges) of the
elements (here: in total N nodes for the position and Np nodes for the pressure) and
element numbers as well as global and local node numbers (Nb 2 N nodes per element)
are allocated. This construction is referred to as the finite element mesh. Each node
of the finite element mesh is assigned to a basis function (here: 'i for the position and
 i for the pressure), which is defined on a referential element and have a local support
only. This property later yields the sparse matrix structure of the system. Because of this
approach, each sum from i = 1, ..., N (Np) can be replaced by two sums over e = 1, ..., Ne

and n = 1, ..., Nb without accounting twice for any contributions.
For the so-called mixed finite elements, where two or more fields need to be approximated,
the basis functions have to fulfil certain conditions in order to obtain a stable finite
element formulation. In the case at hand with position and pressure field, this condition
is the so-called inf-sup condition. One choice to satisfy the discrete inf-sup condition (for

more details, see e.g. [5], [45]) are the hexahedral Taylor-Hood (Q(27)

2
�Q1) elements,

i.e. triquadratic shape functions for the position field (Nb := 27) and linear shape functions
for the pressure field (Nb := 8).
As a last step in the discretisation procedure, the continuous integrals need to be approx-
imated by Gaussian quadrature with a certain number of Gauss points Ng 2 N (here:
Ng := 33 = 27).
Summing up the previous paragraph and introducing the notation that is meant in the
following, we replace

Z

⌦0

NX

i=1

Ik
i

FE
===)

NeX

e=1

Z

⌦e

NbX

i=1

!eI
k

e,i

GQ

===)
NeX

e=1

NgX

g=1

NbX

i=1

!egI
k

eg,i
=)

X

p

!pI
k

i
.

Therein, Ik
i
means an integrand depending on the basis and test functions 'i/k ( i/k),

!↵, ↵ 2 {e, eg} is a weighting factor containing the weighting factors that result from
the finite element transformation between local (referential) and global coordinate system
(keyword: isoparametric concept) and the Gauss quadrature weights. The integrands
Ik
↵,i
, ↵ 2 {e, eg} mean, that the integrand is evaluated on the appropriate node with

the appropriate shape function at the appropriate Gauss point and so on. Instead of
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always writing these three sums, they are replaced by one summation over p for further
simplification.

Finally, the weak problem in its algebraic formulation (3.27)– (3.28) can be written down
in its finite element matrix form. Therefore, the position and pressure coe�cient vectors
u(t) 2 R3N and w(t) 2 RNp are introduced. The left hand side of Equation (3.27)
becomes the mass matrix times acceleration part Mu

00(t), where

M [[i][k]] :=

0

@
1

1
1

1

A ⇢0
X

p

!p 'i'k 2 R3x3 8 i, k = 1, ..., N . (3.30)

The right-hand side of Equation (3.27) is split into three discrete parts according to the
split of the 1st Piola-Kirchhoff stress tensor (c.f. Equation (3.10)): The linear viscous
damping contribution Du

0(t), where

D[[i][k]] :=

0

@
1

1
1

1

A ⌘
X

p

!p'
r
i
·'r

k
2 R3x3 8 i, k = 1, ..., N , (3.31)

the contribution of the nonlinear deviatoric extra stress

K[k](u(t)) :=
X

p

!pP
nl

E
'

r
k
2 R3x1 8 k = 1, ..., N , (3.32)

and the volumetric contribution A(u(t))w(t), which depends linearly on the pressure
coe�cients and nonlinearly on the position coe�cients. The matrix A(u(t)) 2 R3N⇥Np is
defined as

A[[k], i](u(t)) :=
X

p

!p i(detF )F�T
'

r
k
2 R3x1 8 k = 1, ..., N , 8 i = 1, ..., Np .

(3.33)

The incompressibility constraint, c.f. Equation (3.28), is nonlinear in the position coe�-
cients and its discretised components read

Gk(u(t)) :=
X

p

!p(detF � 1) k 2 R 8 k = 1, ..., Np . (3.34)

With these definitions, one finally arrives at the finite-dimensional problem in matrix form
of problem (3.10), which is a problem to be solved for the coe�cients in R.

8t 2 [0, T ] find (u(t),w(t)) 2 R3N ⇥ RNp , such that

M u
00(t) = � [Du

0(t) +K(u(t))�A(u(t))w(t)] (3.35)

s.t. 0 = G(u(t)) .
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Introducing a discrete velocity coe�cient vector v(t) := u
0(t) 2 R3N , this second-order

system can be further transformed into a first-order system:

8t 2 [0, T ] find (u(t),v(t),w(t)) 2 R3N ⇥ R3N ⇥ RNp , such that

u
0(t) = v(t)

M v
0(t) = �Dv(t)�K(u(t)) +A(u(t))w(t) (3.36)

s.t. 0 = G(u(t)) .

In a block matrix formulation one can assemble the whole system of full dimension
d̄ := 2⇥ 3N +Np (dependency on t dropped for improved readability) as

0

@
I 0 0
0 M 0
0 0 0

1

A

| {z }
=:M̄ 2Rd̄⇥d̄

0

@
u

v

w

1

A
0

| {z }
=:x̄0 2Rd̄

=

0

@
0 0 0
0 �D 0
0 0 0

1

A

| {z }
=:D̄2Rd̄⇥d̄

0

@
u

v

w

1

A

| {z }
=:x̄

+

0

@
v

�K(u) +A(u)w
G(u)

1

A

| {z }
=:K̄(x̄)2Rd̄⇥d̄

. (3.37)

This equation is the starting point for the model order reduction and in this context, it
is referred to as the full-order model.

Discrete inner products

As already mentioned, the discrete finite element approximation spaces Vh

p
,Vh

u
inherit the

inner products and norms of the exact spaces Vp,Vu respectively. Therefore, we introduce
the equivalent discrete inner products as ∗

8p, q 2 RNp : hp, qi
Hp

:= hHpp, qi2 where (Hp )ij := h i, jiVp
, (3.38)

8u,v 2 R3N : hu,vi
Hu

:= hHuu,vi2 where Hu [[i][j]] := h'[i],'[j]iVu
. (3.39)

The matrices Hp 2 RNp⇥Np , Hu 2 R3N⇥3N are often referred to as mass matrices.
However, in this work this might lead to confusion with the mass matrix M resulting
from the dynamics of the problem, therefore they will be called inner product matrices.
Making use of the definitions (3.13) and (3.14) of the inner products and the derived finite
element forms of the mass matrix (3.30) and the damping matrix (3.31), one can directly
see the equivalence for the assembly of the inner product matrices, whose components are
given as

(Hp )ij :=
X

p

!p  i j 2 R 8 i, j = 1, ..., Np . (3.40)

Hu [[i][j]] :=

0

@
1

1
1

1

A
 
X

p

!p 'i'j +
X

p

!p'
r
i
·'r

j

!
2 R3⇥3 8 i, j = 1, ..., N .

Note that Hu = ⇢�1

0
M + ⌘�1

D.

∗Note that the square brackets indicate the triple index and thus Equation (3.39) means a component
wise application of the inner product defined in Equation (3.14).
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Lastly, the overall inner product matrix for the first-order system is assembled in a block
form

H̄ :=

0

@
Hu

Hu

Hp

1

A 2 Rd̄⇥d̄ . (3.41)

3.3.2 Discretisation in time

As a last step, the first-order system of the form

M̄x̄
0(t) = D̄x̄(t) + K̄(x̄(t)) =: g(x̄(t)) () 0 = �M̄x̄

0(t) + g(x̄(t)) , (3.42)

with initial condition

x̄(0) =

0

@
u(0)
v(0)
w(0)

1

A =

0

@
u0

v0

0

1

A =: x̄0 2 Rd̄ , (3.43)

needs to be discretised in time. For implementation purposes, a right-hand side function
odefun g was defined as

g : Rd̄ ! Rd̄, x̄ 7! g(x̄) :=

0

@
0 0 0
0 �D 0
0 0 0

1

A

0

@
u

v

w

1

A+

0

@
v

�K(u) +A(u)w
G(u)

1

A . (3.44)

For stability reasons, an implicit time discretisation of Equation (3.42) is chosen, here
the implicit Euler scheme. For a time step size dt 2 R and discrete time instants
ti := i ·dt, i 2 N0, define the corresponding state x̄i := x̄(ti), i 2 N0. Then, the derivative
can be approximated by the di↵erence quotient x̄0(t) = 1

dt
(x̄i+1 � x̄i), and inserted into

Equation (3.42) to obtain the residuum formulation or implicit function

0 = f(x̄i+1) := �M̄ (x̄i+1 � x̄i) + dt g(x̄i+1) . (3.45)

This nonlinear equation can be solved in each time step by performing a Newton iter-
ation. Assuming the ith state is known, one sets the Newton initial guess and compute
the kth

Newton update

x̄
(0)

i+1
:= x̄i , (3.46)

x̄
(k+1)

i+1
= x̄

(k)

i+1
� Jf(x̄(k)

i+1
)�1

f(x̄(k)

i+1
) , (3.47)

by solving the following linear system of equations

Jf(x̄(k)

i+1
) ·�x̄

(k)

i+1
= f(x̄(k)

i+1
) (3.48)

for the Newton increment �x̄
(k)

i+1
:= x̄

(k)

i+1
� x̄

(k+1)

i+1
.
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Therein, one can provide the analytical Jacobian, which has the structure

Jf(x̄) : =
@f(x̄)

@x̄
= �M̄ + dtJg(x̄) (3.49)

=

0

BB@

�I dt I 0

dt
h
�@K(u)

@u
+ @A(u)w

@u

i
�M � dtD dtA(u)

dtA(u)T 0 0

1

CCA 2 Rd̄⇥d̄, (3.50)

as it holds that @G(u)

@u
= A(u)T 2 RNp⇥3N (c.f. next section, Equation (3.51)).

3.3.3 Derivation of Jacobian blocks

In Section 3.3.1 the discrete expressions for the implicit function f were derived. For
the linearised problem to be solved within each Newton iteration, one needs to provide
the derivatives of the discrete operators contained in the Jacobian (c.f. Equation (3.50)),
i.e. @G(u)

@u
, @K(u)

@u
and @A(u)w

@u
.

@G(u)

@u
=

0

BB@

@G1(u)

@u[1]
. . . @G1(u)

@u[N ]

...
. . .

...
@GNp (u)

@u[1]
. . .

@GNp (u)

@u[N ]

1

CCA 2 RNp⇥3N , where 8 k = 1, ...Np, 8 j = 1, ..., N

@Gk(u)

@u[j]
=
X

p

!p

�
'

r
j

�T
(detF )F�T k

(3.33)

= A[[j], k](u)T 2 R1⇥3 (3.51)

Therein, use was made of the derivative

@F (u)

@u[j]
(3.26)

=
@

@u[j]

 
NX

i=1

f i

no
(en ⌦ eo)

!
=

NX

i=1

@u[i]n'
ro
i

@u[j]k
(en ⌦ eo ⌦ ek)

=
@u[j]n'

ro
j

@u[j]k
(en ⌦ eo ⌦ ek) = �nk'

ro
j

(en ⌦ eo ⌦ ek) (3.52)

= 'ro
j

(ek ⌦ eo ⌦ ek) = 'ro
j
�io (ek ⌦ ei ⌦ ek)

= (ek ⌦ ei ⌦ ek ⌦ ei)'
ro
j
eo = (I ⌦ I)

23

T
'

r
j
.

For the discrete representation of the elasticity tensor, one obtains

@K(u)

@u
=

0

B@

@K[1](u)

@u[1]
. . . @K[1](u)

@u[N ]

...
. . .

...
@K[N ](u)

@u[1]
. . . @K[N ](u)

@u[N ]

1

CA 2 R3N⇥3N , where 8 k, j = 1, ...N

@K[k](u)

@u[j]
=
X

p

!p

@

@u[j]

h
P

nl

E
(u(t))'r

k

i
2 R3⇥3 . (3.53)
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The computation of the integrand works as follows (omitting the indices and dependency
on t for readability):

@

@u[j]

h
P

nl

E
(u)'r

k

i
(2.58)

=

✓
@P (u)

@u[j]

◆23

T

'
r
k
=

✓
@P (u)

@F

@F (u)

@u[j]

◆23

T

'
r
k

(3.52)

=

✓
@P (u)

@F
(I ⌦ I)

23

T
'

r
j

◆23

T

'
r
k
=

0

@
✓
@P (u)

@F

◆23

T

'
r
j

1

A'r
k

(3.54)

=

✓
@P (u)

@F

◆23

T

('r
k
⌦'r

j
) .

The derivation of the discretised volumetric part of the stress tensor is analogous, but
more complex to write down due to the additional multiplication with the discrete pressure
coe�cient vector w. One obtains

@A(u)w

@u
=

0

B@

@A(u)w[1]

@u[1]
. . . @A(u)w[1]

@u[N ]

...
. . .

...
@A(u)w[N ]

@u[1]
. . . @A(u)w[N ]

@u[N ]

1

CA ,2 R3N⇥3N , where 8 k, j = 1, ...N

@A(u)w[k]

@u[j]
=
X

p

!p p
h

@

@u[j]

h
(detF )F�T

'
r
k

i
2 R3⇥3 . (3.55)

Following Equation (3.54), the integrand is computed as

@

@u[j]

h
(detF )F�T

'
r
k

i
=

✓
@(detF )F�T

@F

◆23

T

('r
k
⌦'r

j
) =: (A)

23

T ('r
k
⌦'r

j
) ,

(3.56)

with

A :=
@(detF )F�T

@F
(2.53)

= F
�T ⌦ @(detF )

@F
+ (detF )

@F�T

@F
(2.64)

= F
�T ⌦ (detF )F�T + (detF )


�
�
F

�T ⌦ F
�T
�24
T

�

= (detF )

�
F

�T ⌦ F
�T
�
�
�
F

�T ⌦ F
�T
�24
T

�
. (3.57)

3.4 Implementational details of the FOM

As already mentioned, the dynamic skeletal muscle model was implemented and solved
within the Matlab library KerMor [51], which can be downloaded from GitHub
(https://github.com/KerMor). KerMor makes extensive use of object oriented program-
ming. It provides routines for model order reduction of (first-order, single-field) nonlinear
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dynamical systems using subspace projection and nonlinear approximation. Among other
sample applications, it provides the class +muscle, consisting of several routines for the
finite element simulation of the mechanics of an incompressible solid. More precisely, it
assembles and solves the discretised equation system consisting of the momentum balance
subject to the incompressibility constraint in its first-order form (3.37) as described in the
previous sections. It already contains assembly routines for the 2nd Piola-Kirchhoff

stress tensor, i.e. the nonlinear term K(u), and the corresponding elasticity tensor,
i.e. the block (Jg)

21
of the analytical Jacobian, for some simple constitutive laws such

as e.g. the Neo-Hooke material. Those are implemented in the functions evaluate()
and getStateJacobianImpl() respectively and subsequently used or called by routines
contained in the core class models.BaseSecondOrderSystem. The derivation and the
employed notation in the previous sections of this chapter tried to relate the theoret-
ical concepts as well as possible to the utilised implementational approach. The default
solution procedure calls the built-in Matlab solver ode15i.
However, several bug fixes, alterations and additions were necessary in order to cor-
rectly simulate the FOM, i.e. the dynamic skeletal muscle model as it was introduced
in this chapter. Most importantly those contained the correct implementation of the
consequences from the volumetric deviatoric split for incompressible materials (c.f. Sec-
tion 2.3). Not only the routines for the evaluation of the 2nd Piola-Kirchhoff stress
tensor had to be revised, but more importantly also the computation of the correspond-
ing discretised 4th-order elasticity tensor. The function getStateJacobianImpl() was
rewritten from scratch, now making use of the concepts of tensor calculus for higher-
order tensors. This way, the assembly procedure is not only readable and compre-
hensible for the common solid mechanics community, but additionally, it became a
lot easier to exchange the utilised constitutive law. During this process, several (as-
sembly) routines of the models.BaseSecondOrderSystem class have been reviewed and
if necessary they were modified. For example, the saddle point structure of the overall
Jacobian (c.f. Equation (3.50)) was implemented explicitly, making use of the relation⇣
@G(u)

@u

⌘T
= A(u) = @(�K(u)+A(u)w)

@w
, which became obvious during a clear re-derivation

of the discretised equation system. Despite those corrections and modifications, some con-
vergence issues remained when trying to simulate more elaborate examples. Therefore,
the solution procedure was changed to call a self implemented implicit Euler scheme
in combination with a modified Newton iteration. Additionally, the viscous damping
contribution was omitted (by setting the viscosity ⌘ = 0) in every performed simula-
tion. Being aware of the shortcomings of the implemented Kelvin-Voigt model and not
trusting the existing implementation in KerMor completely, this seemed to be the safest
choice considering that essentially, the aim of this work was to build a ROM based on an
existing FOM. More details on solver aspects and convergence issues of the FOM are de-
scribed in Section 6.2. Lastly, the implementation of three subclasses of the abstract class
models.muscle.AMuscleConfig for skeletal muscle simulations (c.f. Section 6.1), each of
them o↵ering di↵erent options with respect to e.g. geometry, discretisation, material law
or simulation scenario, is a noteworthy contribution to KerMor and its class +muscle.





4 Reduced-order modelling for
nonlinear dynamical systems

This chapter introduces the projection-based model order reduction technique by means of
calculating the reduced basis via the well-established proper orthogonal decomposition.
For an overview on (projection-based) model order reduction, the interested reader is
referred to e.g. Antoulas & Sorensen [1], Hesthaven et al. [28] and Quarteroni et al. [37].
The aim of this chapter is to provide the necessary theoretical background of the methods
employed, on the basis of a general first-order dynamical system.
As derived in the previous chapters, the dynamical system, which we aim to model in
this work, contains nonlinear terms. In order to obtain a significant speedup in that
case, it is not su�cient to merely project the equation system onto a lower dimensional
subspace, since that approach, standing alone, still requires computations depending on
the dimension of the full-order model. In order to overcome this issue, so-called hyper-
reduction methods have proven useful. There exist several methods for the additional
reduction of nonlinearities, e.g. the discrete empirical interpolation method (DEIM) ori-
ginally proposed by Chaturantabut & Sorensen [16] or the energy conserving sampling
and weighting method (ECSW), proposed by Farhat et al. [21]. Especially the ECSW
could be a promising method to investigate for the problem here, since it does not only
make use of the finite element structure by evaluating the nonlinear terms on a submesh,
but additionally preserves energetic aspects of the system. However, these methods are
not applied (yet) in this work, as they first require a stable projected model.

4.1 Reduced basis approximation

The idea of a reduced basis (RB) approximation is to replace a high-dimensional reference
model, referred to as full-order model (FOM), by a reduced-order model (ROM) that is
computationally less involved, i.e. that decreases the CPU time. This can be achieved
by finding a problem-specific subspace of the full solution space Vh, the so-called reduced
space Vr ⇢ Vh of lower dimension r̄, and performing a subspace projection of the full-order
system of dimension d̄. RB approximation subspaces again inherit the inner products and
norms of the FOM (here FE) spaces, i.e. also the ones of the exact spaces V . As relatively
recent introductory textbooks, the works of Hesthaven et al. [28] and Quarteroni et al.
[37] can be recommended for an elaborate overview.
Starting point for this section is the finite element matrix formulation of the discret-
ised problem, more specifically, the first-order system (c.f. Equation (3.42)) derived in
Section 3.3, i.e.

M̄x̄
0 = D̄x̄+ K̄(x̄) [= g(x̄)] () 0 = �M̄x̄

0 + g(x̄) . (4.1)

33
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Therein, the mathematical quantities may depend on a parameter vector
µ 2 P ⇢ Rp, p 2 N, and/or a discrete time instant ti 2 R, i = 0, ..., nt. However,
here these dependencies are not explicitly written down if not absolutely necessary.
In the context of this whole chapter, we will refer to Equation (4.1) as the (nonlinear
first-order) full-order model (FOM) of dimension d̄.
Furthermore, whenever it is necessary or wanted to keep the theory as general as possible,
we write e.g. an inner product as h·, ·iA, where A is a general symmetric matrix, mostly
A 2

�
I, H̄

 
, while just speaking of either orthogonal or orthonormal.

4.1.1 Link between the finite element and reduced spaces

Not only the ROM, but also already the FOM is a discrete approximation of the real state
that is described by the continuous equations. In both cases, one introduces approxima-
tion spaces and bijections between these spaces and coe�cient spaces in Rn, n 2 N. The
purpose of this section is to derive and show the relation between all those spaces and their
bases. Therefore, let s 2 V be the state of interest and ŝ 2 V̂ in any finite-dimensional
subspace V̂ ⇢ V its discrete approximation.
Then, for the finite element approximation, i.e. the FOM, one defines a subspace
(V̂ =)Vh ⇢ V of dimension d̄ with orthonormal basis {�i(X)}d̄

i=1
, and an approximate

state (ŝ =)sh 2 Vh. Moreover, a bijection between Vh and Rd̄ is stated by

sh(X, t) =
d̄X

i=1

x̄i(t)�i(X) = x̄
T
� , with x̄,� 2 Rd̄ , (4.2)

such that instead of solving for the state (ŝ =)sh 2 Vh one solves for the coe�cient vector
x̄ 2 Rd̄.
Equivalently, for the reduced basis approximation, i.e. the ROM, one defines a subspace
(V̂ =)Vr ⇢ V of dimension r̄ with orthonormal basis {⌫i(X)}r̄

i=1
, and an approximate

state (ŝ =)sr 2 Vr. Moreover, a bijection between Vr and Rr̄ is stated by

sr(X, t) =
r̄X

i=1

z̄i(t)⌫i(X) = z̄
T
⌫ , with z̄,⌫ 2 Rr̄ , (4.3)

such that instead of solving for the state (ŝ =)sr 2 Vr one solves for the coe�cient vector
z̄ 2 Rr̄.
As both, sh and sr, approximate the state of interest, one can establish a relation between
the two coe�cient vectors x̄ 2 Rd̄ and z̄ 2 Rr̄:

�
T
x̄ = x̄

T
� = sh = ŝ = sr = z̄

T
⌫ = ⌫T

z̄
��

T
=I d̄======) x̄ = �⌫

T

|{z}
=:R2Rd̄⇥r̄

z̄ . (4.4)

It is important, to emphasise here, that the matrix R 2 Rd̄⇥r̄, which relates the two
coe�cient vectors x̄ and z̄ is not a basis of the reduced space Vr. As will be seen later
in Section 4.2, the matrix R = V̄ is called a POD basis, when computed by means of a
POD, which might lead to confusion, as often, the terms basis or space and matrix are
used interchangeably.
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Rather, with respect to the bases the relation

⌫ = R
T
� =) 8 i = 1, ..., r̄ ⌫i(X) =

d̄X

j=1

rji �j(X) (4.5)

can be concluded from Equation (4.4). This means that the ROM basis functions

{⌫i(X)}r̄
i=1

of space Vr are solutions expressed with respect to the FOM basis {�i(X)}d̄
i=1

of space Vh by coe�cients that are the components of the columns of R (c.f. [4]).

4.1.2 Subspace projection

Let Vr,Wr ⇢ Vh be two subspaces of the FOM space, with
r̄ := dim(Vr) = dim(Wr)⌧ dim(Vh) =: d̄ and let V̄ , W̄ 2 Rd̄⇥r̄ be two orthonor-

mal matrices (V̄
TA V̄ = I r̄ = W̄

TA W̄ 2 Rr̄⇥r̄), whose column vectors span (in the
sense of (4.5), i.e. being the coe�cient vectors!) the subspaces Vr and Wr respectively.
As was shown in Equation (4.4), the full coe�cient vector x̄ 2 Rd̄ can be approximated
by x̄ ⇡ V̄ z̄, with a reduced coe�cient vector z̄ 2 Rr̄. Insertion of this approximation
into the residuum equation (4.1)2 yields

0 = �M̄V̄ z̄
0 + g(V̄ z̄) . (4.6)

The reduced coe�cient vector z̄ 2 Rr̄ can be determined through either a Galerkin

or a Petrov-Galerkin projection. That is, in case of a Galerkin projection, the
residual is imposed to be orthogonal to Vr. The latter case is an oblique projection onto
the so-called test space Wr. Given a FOM, a corresponding ROM is uniquely defined by
its associated (Petrov-)Galerkin projector ⇧A

V̄ ,W̄
:= V̄ (W̄

TA V̄ )�1
W̄

TA and ⇧A
V̄ ,W̄

again is uniquely defined by the subspaces spanned by the bases V̄ , W̄ (see e.g. Volkwein
[49] and Carlberg et al. [14]). As the Galerkin projection represents the specific case
of a Petrov-Galerkin projection with W̄ := V̄ , the concept of subspace projection is
now further explained by means of an arbitrary test space Wr.
Performing the projection, the di↵erential equation and initial condition of the reduced-
order system of dimension r̄ are obtained as

W̄
T
M̄V̄ z̄

0 = W̄
T
g(V̄ z̄) with z̄(0) = z̄0 := V̄

�1
x̄0 . (4.7)

Remarks:
Note here, that there exist two possibilities to define the reduced initial state.

1. The one chosen here follows a consistency argument, such that V̄ z̄(0)
!
= x̄(0) = x̄0.

• V̄
�1

means the Moore-Penrose pseudo inverse V̄
?
:=
⇣
V̄

T
V

⌘�1

V̄
T
.

• In this approach, for the case A = I, i.e. V̄
T
V̄ = I, one simply computes

z̄(0) = V̄
T
x̄0.

• In this approach, the initial condition is not influenced by the choice of whether
a Petrov-Galerkin or a Galerkin projection is performed.
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2. A second option follows from the oblique projection of the full state vector,

i.e. z̄ =
⇣
W̄

TA V̄

⌘�1

W̄
TA x̄, which naturally yields

z̄0 = z̄(0) =
⇣
W̄

TA V̄

⌘�1

W̄
TA x̄(0) =

⇣
W̄

TA V̄

⌘�1

W̄
TA x̄0 .

• For a Galerkin projection together with the choice A = I, this results in the
same as possibility one.

The reduced mass matrix is defined as

M̄
r
:= W̄

T
M̄V̄ 2 Rr̄⇥r̄ , (4.8)

and the reduced, low-dimensional right-hand side function is

g
r : Rr̄ ! Rr̄, z̄ 7! g

r(z̄) := W̄
T
g(V̄ z̄) . (4.9)

It can easily be seen that this way, the structure of the full-order system is inherited by
the reduced system. The same holds for the steps in the solution process of the reduced
nonlinear dynamical system, where equivalently to Equation (3.45) the reduced implicit
function is given as

0 = f
r(z̄i+1) := �M̄

r
(z̄i+1 � z̄i) + dt gr(z̄i+1) 2 Rr̄ . (4.10)

Likewise (c.f. Equation (3.49)), the reduced Jacobian is obtained from Equation (4.10) as

Jf
r(z̄) :=

@f r(z̄)

@z̄
= �M̄ r

+ dtJgr(z̄) 2 Rr̄⇥r̄ , (4.11)

where the nonlinear contribution is derived by applying the chain rule

Jg
r(z̄)

(4.9)

:=
@
⇣
W̄

T
g(V̄ z̄)

⌘

@z̄
= W̄

T
Jg(V̄ z̄)V̄ 2 Rr̄⇥r̄ . (4.12)

4.1.3 Projection error

To adequately choose the reduced spaces and assess their quality, it is common to look at
the projection error. For the (Petrov-)Galerkin projection, this can be decomposed
into two orthogonal components

" := x̄� V̄ z̄ = x̄� ⇧A
V̄ ,W̄

x̄+ ⇧A
V̄ ,W̄

x̄� V̄ z̄ (4.13)

= x̄� V̄

⇣
W̄

TA V̄

⌘�1

W̄
TA x̄+ V̄

⇣
W̄

TA V̄

⌘�1

W̄
TA x̄� V̄ z̄

=


I � V̄

⇣
W̄

TA V̄

⌘�1

W̄
TA
�
x̄+ V̄

⇣
W̄

TA V̄

⌘�1

W̄
TA x̄� z̄

�
.

The first error component is orthogonal to Vr and can be precomputed. Thus it is perfectly
suited to serve as an a priori error estimate.
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4.2 Proper orthogonal decomposition (POD)

From the explanations in the previous section, it becomes obvious that naturally one of
the main tasks in projection-based MOR is to obtain a suitable subspace. Suitable in this
context means that it should reduce the problem dimension as much as possible while
preserving accuracy and stability as well as possible. One way of determining an appro-
priate reduced basis is the proper orthogonal decomposition (POD). In the literature,
due to the di↵erent fields it was developed for and applied in, it is also referred to as
Hotelling-Transformation (c.f. [31]), principal component analysis (PCA), or Karhunen-
Loeve transformation (c.f. [44]). For a detailed introduction into the theory of POD,
the interested reader is referred to introductory textbooks or lecture notes, where among
others, Quarteroni et al. [37] and Volkwein [49] can be recommended.

4.2.1 O✏ine-online decomposition

The POD is based on a split of the necessary computations into an o✏ine (or training)
and an online phase. By performing this o✏ine-online decomposition, one aims at pre-
computing every expensive operation, depending on the full dimension d̄, in an o✏ine
stage (with basically no time limitation), while the online stage is supposed to only per-
form computations with the complexity r̄ of the reduced system. This can be achieved as
follows:

O✏ine phase

1. Definition of a set of n := (nt + 1) · np training parameters or tuples

⌅ :=
�
(ti,µj

) | ti 2 [0, T ],µ
j
2 P , i = 0, . . . , nt, j = 1, . . . , np

 
.

2. Precomputation of training data Sµj
:=
h
x̄µj

(t0), . . . , x̄µj
(tnt)

i
2 Rd̄⇥(nt+1),µ

j
2 P

and assembly of S :=
h
Sµ

1
, . . . ,Sµnp

i
2 Rd̄⇥n (also called snapshot matrix) with

rank m  min{d̄, n}.

3. Performing a POD (c.f. Section 4.2.2) on S, to obtain the reduced coe�cient matrix
V̄ 2 Rd̄⇥l (where 1  l  d̄ is the chosen maximum size for the POD basis), and
choosing the necessary size r̄ ⌧ l for the reduced system.

4. Precomputation of the linear contributions, i.e. the reduced matrices M̄
r
and D̄

r
.

Online phase

1. Selection of a (new) parameter µ 2 P .

2. Solving the reduced system (4.7) for z̄(t,µ) 2 Rr̄.

3. Reconstruction of the full state space solution x̄(t,µ) = V̄ z̄(t,µ) 2 Rd̄.

Remark:
Step 2 of the online phase becomes more intricate, when dealing with nonlinear systems.
As visible in Equations (4.9) and (4.12), the low-dimensional, nonlinear right-hand side
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function g
r and Jacobian Jg

r still require computations depending on the dimension of
the full-order model. This is where methods that additionally approximate projected
nonlinearities, like the already mentioned DEIM and ECSW, need to be applied in order
to achieve a su�cient computational e�ciency.

4.2.2 POD basis computation

POD seeks an orthogonal projector ⇧A
V̄ ,V̄

that minimises the integrated first component
of the projection error (c.f. Equation (4.13)), i.e.

TZ

0

���x̄(t)� ⇧A
V̄ ,V̄

x̄(t)
���
2

A
dt =

TZ

0

���x̄(t)� V̄ V̄
TA x̄(t)

���
2

A
dt . (4.14)

In a discrete setting with precomputed snapshot data S = [x̄1, ..., x̄n] 2 Rd̄⇥n for di↵erent
parameters and di↵erent time steps, this means to find

min
v1,...,vl2Rd̄

nX

k=1

�����x̄k �
lX

i=1

hx̄k,viiA vi

�����

2

A

s.t. hvi,vjiA = �ij 8 i, j = 1, ..., l (4.15)

for a chosen l 2 {1, ...,m}. Instead of solving problem (4.15), one can equivalently solve
the constrained optimisation problem

max
v1,...,vl2Rd̄

lX

i=1

nX

k=1

|hx̄k,viiA|
2 s.t. hvi,vjiA = �ij 8 i, j = 1, ..., l . (4.16)

The following Theorem states the relation between the POD and a singular value decom-
position (SVD) and can be looked up (including further details) e.g. in Volkwein [49].

Theorem 1 (POD computation)
Let S = [x̄1, ..., x̄n] 2 Rd̄⇥n be a given matrix with rank m  min{d̄, n}. Let

A 2 Rd̄⇥d̄ be a symmetric, positive definite matrix and define S
A := A 1

2S.

Further, let S
A = V̄

A
⌃
⇣
Ū

A
⌘T

be the singular value decomposition of S
A, where

V̄
A
=
⇥
v̄
A
1
, ..., v̄A

d̄

⇤
2 Rd̄⇥d̄ and Ū

A
=
⇥
ū

A
1
, ..., ūA

n

⇤
2 Rn⇥n are orthogonal matrices con-

taining the left and right singular vectors respectively, and the matrix ⌃ 2 Rd̄⇥n contains
the singular values �i 2 R, i = 1, ...,m, on a diagonal starting on the upper left.
Then, for l 2 {1, ...,m} the solution to problem (4.16) is given by the vectors v̄i :=

A� 1

2 v̄
A
i
, i = 1, ..., l. Moreover, argmax (4.16) =

lP
i=1

�2

i
.

Remarks:
1. For l 2 {1, ...,m}, the vectors {v̄i}li=1

are called POD basis of rank l. A vector v̄i

is often also called ith POD mode.

2. For all l  m, the POD basis is optimal in the mean among all rank l approximations
to the columns of S.
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3. For V̄ := [v̄1, ..., v̄l] = A� 1

2 V̄
A 2 Rd̄⇥l, l  m, it holds V̄

TA V̄ =⇣
A� 1

2 V̄
A
⌘T

A
⇣
A� 1

2 V̄
A
⌘

=
⇣
V̄

A
⌘T

V̄
A

= I l, i.e. V̄ is orthonormal in the in-

ner product norm and thus suitable as a projection (or reduced coe�cient) matrix.

4. For V̄ 2 Rd̄⇥l, l  m, the POD approximation error can be quantified using the

singular values �i, i = l + 1, ...,m, as argmin(4.15) =
mP

i=l+1

�2

i
. Therefore, the

singular value decay is considered an a priori error estimate, which helps to choose
an appropriate reduced model size r̄ ⌧ l.

5. If a POD basis was computed based on Theorem 1, this will be written here in short

as V̄ = A� 1

2 svd
⇣
A 1

2S

⌘
.

6. Instead of computing a singular value decomposition, one could equival-
ently solve the eigenvalue problem of the symmetric correlation matrix

C
A :=

�
S

A�T
S

A = S
TAS (often referred to as method of snapshots). However,

as 
�
C

A� = 
�
S

A�2, and due to round-o↵ errors introduced through the compu-
tation of CA, this might lead to inaccurate results for the modes associated with
small singular values (c.f. e.g. [37]). Therefore, computing the singular value de-

composition is preferred over solving the eigenvalue problem if the matrix A 1

2 is
available.

As a matter of fact, the POD basis is the best approximation on the given training
data in the mean-square sense. This of course raises the question, which data should be
computed during the o✏ine phase and included in the training data S. One suggestion
is to utilise a POD-Greedy procedure (see Haasdonk & Ohlberger [26], Haasdonk [25]),
during which the snapshots are computed iteratively, choosing the next parameter based
on the occurrence of largest errors. As in this work, the POD-Greedy method is not
applied, it is not further explained or discussed.





5 Reduced-order skeletal muscle model

5.1 Subspace projection for constrained and multi-field
problems

In the previous chapter, the reduced basis approximation for a general nonlinear dynamical
system of the form M̄x̄

0(t) = g(x̄(t)) was introduced. Now, these equations will be
derived for the specific case of the dynamic skeletal muscle model with its block structure
arising from the three fields contained in the system.
The full coe�cient vector of the first-order system, x̄ = (u,v,w)T 2 Rd̄, is replaced by a
reduced coe�cient vector z̄ = (zu, zv, zw)T 2 Rr̄, with zu 2 Rru , zv 2 Rrv , zw 2 Rrp and
r̄ := ru + rv + rp, where for the reduced dimensions of the three fields it is ru, rv ⌧ 3N
and rp ⌧ Np (with N and Np being the number of nodes for the position and the
pressure respectively). More detailed, the FOM construction (c.f. procedure described in
Section 4.1.1)

sh =
�
x
h, (xh)0, ph

�T
= x̄

T
� 2

�
Vh

u
⇥ Vh

u
⇥ Vh

p

�
(5.1)

with coe�cients x̄ =

0

@
u

v

w

1

A 2 Rd̄=3N+3N+Np and basis � =

0

@
[']
[']
 

1

A 2 Rd̄

is replaced by a ROM construction of the form

sr := (xr, (xr)0, pr)T = z̄
T
⌫ 2

�
Vr

u
⇥ Vr

v
⇥ Vr

p

�
⇢
�
Vh

u
⇥ Vh

u
⇥ Vh

p

�
(5.2)

with coe�cients z̄ =

0

@
zu

zv

zw

1

A 2 Rr̄=ru+rv+rp and basis ⌫ =

0

@
[⌫u]
[⌫v]
⌫w

1

A 2 Rr̄ .

This means, each field can be approximated by a di↵erent subspace Vr

?
, with basis ⌫?,

that is related to the FE basis by a matrix (R? =)V?, ? 2 {u,v,w}. The same holds
for the test spaces Wr

?
. These matrices are assembled in two orthonormal block-diagonal

matrices

V̄ :=

0

@
Vu 0 0
0 Vv 0
0 0 Vw

1

A 2 Rd̄⇥r̄ and W̄ :=

0

@
Wu 0 0
0 Wv 0
0 0 Ww

1

A 2 Rd̄⇥r̄ , (5.3)

with Vu,Wu 2 R3N⇥ru , Vv,Wv 2 R3N⇥rv and Vw,Ww 2 RNp⇥rp , such that x̄ ⇡ V̄ z̄.

The relation between the FOM and ROM bases can be stated in this block matrix shape

41



42 Chapter 5: Reduced-order skeletal muscle model

as
0

@
[⌫u]
[⌫v]
⌫w

1

A (4.5)

=

0

@
V

T

u
0 0

0 V
T

v
0

0 0 V
T

w

1

A

0

@
[']
[']
 

1

A =

0

@
V

T

u
[']

V
T

v
[']

V
T

w
 

1

A . (5.4)

Remark:
Note that the FOM basis fulfils the LBB (or inf-sup) stability condition∗. The POD
bases (coe�cient matrices) V? need to be chosen carefully such that the ROM basis fulfils
the LBB condition as well. This will be investigated further in Sections 5.2 and 5.3.

Following the steps in Section 4.1.2, now the reduced system components can be as-
sembled. The reduced initial condition is

z̄(0) =

0

@
zu(0)
zv(0)
zw(0)

1

A =

0

@
zu0

zv0

zw0

1

A :=

0

@
V

�1

u
u0

V
�1

v
v0

0

1

A (3.43)

=
(4.7)2,(5.3)1

V̄
�1
x̄0 2 Rr̄ . (5.5)

The reduced mass matrix is assembled with the definitions of Equations (4.8), (5.3) and
(3.37), yielding

M̄
r
= W̄

T
M̄V̄ =

0

@
W

T

u
0 0

0 W
T

v
0

0 0 W
T

w

1

A

0

@
I 0 0
0 M 0
0 0 0

1

A

0

@
Vu 0 0
0 Vv 0
0 0 Vw

1

A

=

0

@
W

T

u
Vu 0 0

0 W
T

v
MVv 0

0 0 0

1

A 2 Rr̄⇥r̄ . (5.6)

Inserting the Definitions (5.3) and (3.44) into Equation (4.9), yields the reduced right-
hand side function odefun of dimension r̄, as

g
r(z̄) = W̄

T
g(V̄ z̄)

=

0

@
0 0 0
0 �W T

v
DVv 0

0 0 0

1

A

0

@
zu

zv

zw

1

A+

0

@
W

T

u
Vvzv

W
T

v
[�K(Vuzu) +A(Vuzu)Vwzw]

W
T

w
G(Vuzu)

1

A . (5.7)

The nonlinear contribution of the reduced block Jacobian is derived from Equations (4.12)
and (5.7). It is

Jg
r(z̄) = W̄

T
Jg(V̄ z̄)V̄

=

0

BB@

0 W
T

u
Vv 0

W
T

v

h
�@K(Vuzu)

@(Vuzu)
+ @A(Vuzu)Vwzw

@(Vuzu)

i
Vu �W T

v
DVv W

T

v
A(Vuzu)Vw

W
T

w
A(Vuzu)TVu 0 0

1

CCA .

(5.8)

∗LBB stands for Ladyzhenskaya-Babus̆ka-Brezzi
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Note that the transpose of the reduced Jacobian block (Jgr)
23
, i.e.

⇥
W

T

v
A(Vuzu)Vw

⇤T
=

V
T

w
A(Vuzu)TWv 2 Rrp⇥rv is not equal to the reduced Jacobian block (Jgr)

31
=

W
T

w
A(Vuzu)TVu 2 Rrp⇥ru anymore for a Petrov-Galerkin projection and/or for ar-

bitrary matrices Vu 6= Vv. In particular, for dimensions ru 6= rv, they do not even have
the same size. We will further elaborate on this observation in Section 5.2. For future
use, we introduce the abbreviation (Ar(zu))

T for the reduced Jacobian block (Jgr)
31
, i.e.

A
r(zu) := V

T

u
A(Vuzu)Ww 2 Rru⇥rp . (5.9)

5.2 Options for subspace computations and combinations

Similar to Section 5.1, where the concept of the general subspace projection was extended
to the block structure of the dynamic skeletal muscle model, the POD basis computation
shall now be applied to this case with its coe�cient vectors u, v, w of the three fields
that need to be approximated as well. From now on, the case of a Galerkin projection
is considered, i.e. we set W̄ = V̄ and only need to focus on choices for the three blocks
Vu, Vv and Vw of Equation (5.3). Furthermore, the reduced bases are always computed
by means of di↵erent versions of a POD on snapshot data, thus we generally speak of a
POD-Galerkin ROM as it is also done e.g. in [4].
The training data or snapshot matrix for the case at hand consists of three parts,

S =

2

4
Su

Sv

Sw

3

5 2 Rd̄⇥n , (5.10)

where n was the number of training parameters, i.e. the number of snapshots obtained
during the o✏ine phase (see Section 4.2.1). Therefore, the obvious choice for the POD
bases is

Vu := A� 1

2 svd
⇣
A 1

2Su

⌘
2 R3N⇥ru with A 2 {Hu , I3N} ,

Vv := A� 1

2 svd
⇣
A 1

2Sv

⌘
2 R3N⇥rv with A 2 {Hu , I3N} , (5.11)

Vw := A� 1

2 svd
⇣
A 1

2Sw

⌘
2 RNp⇥rp with A 2 {Hp , INp} .

However, going back to the starting point, i.e. the discretisation of the (original) second-
order system, one could also think of another option. For the procedure followed so far,
the second-order system was first transformed into a first-order system and subsequently
this first-order full system was projected to obtain a first-order reduced system. This
way, a first-order system ROM was obtained (c.f. Section 5.1 and Equations (4.7), (5.3)
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– (5.7)), which for the case of a Galerkin projection has the form

0

@
V

T

u
Vu 0 0
0 V

T

v
MVv 0

0 0 0

1

A

0

@
zu

zv

zw

1

A
0

=

0

@
0 0 0
0 �V T

v
DVv 0

0 0 0

1

A

0

@
zu

zv

zw

1

A (5.12)

+

0

@
V

T

u
Vvzv

V
T

v
[�K(Vuzu) +A(Vuzu)Vwzw]

V
T

w
G(Vuzu)

1

A .

This procedure suggests a second option in inverse order, which would be to first project
the second-order system and subsequently transform the obtained reduced second-order
system into a first-order system ROM. To derive the final form of the system for the second
option, starting point is the constrained second-order system of dimension d̃ := 3N +Np

(c.f. Equation (3.35)) in block-matrix format

✓
M 0
0 0

◆

| {z }
=:M̃ 2Rd̃⇥d̃

✓
u

w

◆00

| {z }
=x̃

00 2Rd̃

=

✓
�D 0
0 0

◆

| {z }
=:D̃2Rd̃⇥d̃

✓
u

w

◆

| {z }
=:x̃

+

✓
�K(u) +A(u)w

G(u)

◆

| {z }
=:K̃(x̃)2Rd̃⇥d̃

. (5.13)

Then, the full coe�cient vector (u,w)T 2 R3N+Np can be approximated by a reduced
coe�cient vector as (zu, zw)T 2 Rru+rp

✓
u

w

◆
⇡
✓
Vu 0
0 Vw

◆✓
zu

zw

◆
, with Vu 2 R3N⇥ru ,Vw 2 RNp⇥rp . (5.14)

Inserting this approximation into Equation (5.13) and performing the Galerkin projec-
tion yields the ROM in its second-order system format

✓
V

T

u
MVu 0
0 0

◆✓
zu

zw

◆00

=

✓
�V T

u
DVu 0
0 0

◆✓
zu

zw

◆
(5.15)

+

✓
V

T

u
[�K(Vuzu) +A(Vuzu)Vwzw]

V
T

w
G(Vuzu)

◆
.

Introducing a reduced velocity coe�cient vector zv := z
0
u
2 Rru , this system can now be

transformed into the reduced first-order system

0

@
I 0 0
0 V

T

u
MVu 0

0 0 0

1

A

0

@
zu

zv

zw

1

A
0

=

0

@
0 0 0
0 �V T

u
DVu 0

0 0 0

1

A

0

@
zu

zv

zw

1

A (5.16)

+

0

@
zv

V
T

u
[�K(Vuzu) +A(Vuzu)Vwzw]

V
T

w
G(Vuzu)

1

A .

Comparing the two ROM, i.e. Equations (5.12) with (5.16), one can see that they are the
same only for the choice Vv = Vu.
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Remark:
For a matrix Vu that is orthonormal with respect to a weighted inner product, the

�
M̄
�
11

block in Equation (5.12) is not identity. However, the whole equation represented by the

first blocks can be multiplied by
�
V

T

u
Vu

��1

, yielding the identity when choosing Vv = Vu.

For completeness, we also look at the Jacobians of the reduced right-hand side function
odefun for the two ROM, i.e. Jgr(z̄) 2 Rr̄⇥r̄. For the first option, this was derived in
Section 5.1, c.f. Equation (5.8), and simplifies to

0

BB@

0 V
T

u
Vv 0

V
T

v

h
�@K(Vuzu)

@(Vuzu)
+ @A(Vuzu)Vwzw

@(Vuzu)

i
Vu �V T

v
DVv V

T

v
A(Vuzu)Vw

V
T

w
A(Vuzu)TVu 0 0

1

CCA (5.17)

in the Galerkin projection case. For the second option, we obtain

0

BB@

0 I 0

V
T

u

h
�@K(Vuzu)

@(Vuzu)
+ @A(Vuzu)Vwzw

@(Vuzu)

i
Vu �V T

u
DVu V

T

u
A(Vuzu)Vw

V
T

w
A(Vuzu)TVu 0 0

1

CCA . (5.18)

As already observed at the end of Section 5.1, for the first case (Jgr(z̄))T
23
6= (Jgr(z̄))

31
.

First of all, this means that the system of the ROM obtained this way has a di↵erent struc-
ture than the system of the FOM, where (Jg(x̄))T

23
= (Jg(x̄))

31
(c.f. Equation (3.50)).

Usually, this is something, which is avoided in MOR and a structure preserving method
is preferred. Secondly, one looses the saddle point property of the linear solve as part of
the Newton iteration in the first case (c.f. Benzi et al. [6])∗.
Another observation that could be an indication that the choice Vv = Vu is from a
theoretical point of view more appropriate than Vv 6= Vu, is the relation between the
FOM and ROM bases, c.f. Equation (5.4). Therein,

[⌫u] = V
T

u
['] and [⌫v] = V

T

v
['] . (5.19)

Again, if one wants to preserve the properties of the FOM in the ROM, one should
choose [⌫v] = [⌫u], i.e. Vv = Vu, as in the FOM the same FE basis ['] is used for the
displacement/position and for the velocity fields.

This consideration yields to the question of how to choose the basis Vu = Vv, as we have
snapshot data Su,Sv 2 R3N⇥n available that can be used for the computation. Setting

S
��

uv
:= [�Su, �Sv] 2 R3N⇥2n with �, � 2 [0, 1] , (5.20)

∗Note that the block rows one and two of the system need to be permuted to obtain a real saddle point
structure. However, the Matlab solvers seem to inherently perform such operations if necessary,
since it was observed that it makes no di↵erence whether a permutation was performed prior to the
linear solve or not.
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one can compute a POD basis

V
��

uv
:= A� 1

2 svd
⇣
A 1

2S
��

uv

⌘
2 R3N⇥ru with A 2 {Hu , I3N} , (5.21)

which in the limit cases represents the separate POD on the di↵erent training data
(V 10

uv
= Vu and V

01

uv
= Vv), while allowing di↵erently weighted combinations of the train-

ing data for �, � 2 (0, 1].

5.3 Supremizer enrichment

As a last theoretical consideration, the choices for the subspace sizes ru, rv, rp and their
combination shall be looked at. Usually, in the single field case, the singular value decay
of the computed POD is taken as a measure to determine the appropriate reduced size
(c.f. Section 4.2.2 Remark 4). Technically, this is possible here as well. During the o✏ine
phase, one obtains the singular values of the POD bases Vu, Vv, V

��

uv
, Vw. One could

look at each of those and choose the sizes ru, rv, rp accordingly. However, the conditions
ensuring that the FOM is solvable and stable, which are fulfilled by the choice of the
Taylor-Hood Q(27)

2
� Q1 elements, need to be met by a ROM as well. Therefore, it

seems essential, to have the right ratio not only between the reduced sizes ru and rv, but
also, maybe even more importantly, between ru (+rv) and rp.
The work of Rozza & Veroy (c.f. [4, 40, 41]) on the steady incompressibleNavier-Stokes

equations, investigates the stability of a ROM constructed by means of a reduced basis,
and proposes solutions for the stabilisation of the ROM. These are based on enriching the
velocity POD basis with so-called supremizers, which originate from the inf-sup condition
of the FOM. The proposed concept has also been successfully applied to optimal control
problems with constraints by e.g. Bader et al. [2].
Since the discrete equations of the steady incompressible Navier-Stokes problem yield
a saddle point problem as well, though only with two fields, the supremizer enrichment
suggests itself for the application to the skeletal muscle model with its incompressibility
constraint and three fields. In this section, the basic concept of the supremizer enrichment
shall briefly be introduced for the dynamic skeletal muscle model in its discretised form
derived in Chapter 3. For more details, the interested reader is referred to Ballarin
et al. [4]. Therein, the authors elaborately derive the concept for the POD-Galerkin

approximation of the parametrised steady incompressible Navier-Stokes equations and
that article served as a guide for the transfer to the incompressible skeletal muscle model.
Additionally, Bathe [5] and Brezzi [13] can provide a deeper theoretical background on
the conditions (ellipticity and inf-sup condition) ensuring the solvability and stability of
mixed finite element models in general.

5.3.1 Definition and computation of (approximate) supremizers

The inf-sup (or LBB) condition for the discretised FOM (c.f. the Jacobian in Equa-
tion (3.50), i.e. in the linear solve) is equivalent to the condition ker(A(u)) = {0} and
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states

9 �h > 0 such that inf
w 6=0

sup
u 6=0

w
TdtA(u)Tu

kukVh
u

kwkVh
p

� �h . (5.22)

It is satisfied by the choice of the Taylor-Hood FE spaces. As explained in [4], for any
w 6= 0, the element that realises the supremum in the inf-sup condition (5.22) is called
supremizer. It is given by the solution s = s(u,w) of the problem

Hu s(u,w) = dtA(u)w =) s(u,w) = H
�1

u
dtA(u)w 2 R3N . (5.23)

An equivalent inf-sup condition needs to be satisfied by the ROM. That is

9 �r > 0 such that inf
zw 6=0

sup
zu 6=0

z
T

w
dtAr(zu)Tzu

kzukVr
u

kzwkVr
p

� �h . (5.24)

Unfortunately, the reduced spaces Vr

u
,Vr

p
obtained by the POD-Galerkin projection as

described in the previous section, do not guarantee the fulfilment of the reduced inf-sup
condition (5.24), even though their basis functions are obtained through a FOM satisfying
the inf-sup condition (5.22), c.f. [4]. For this reason, the authors of [4, 41] suggest to
enrich the velocity space in a suitable way, more specifically with (exact or approximate)
supremizer solutions.
In order to transfer their approach of the approximate supremizer enrichment (see Ballarin
et al. [4, Algorithm 2]) to the dynamic skeletal muscle problem with three fields, the
following additions to the workflow proposed so far are made.
Steps 2 and 3 of the o✏ine phase (c.f. Section 4.2.1) are extended by further computations.
In step 2, the snapshot data

2

4
Su

Sv

Sw

3

5 =

2

4
· · ·ui · · ·
· · ·vi · · ·
· · ·wi · · ·

3

5 2 Rd̄⇥n, i = 1, ..., n , (5.25)

is computed in the usual way for all n training parameters. Afterwards, (approximate)
supremizer training data Ss 2 R3N⇥n is additionally computed by

si := s(ui,wi) = H
�1

u
dtA(ui)wi and Ss := [· · · si · · · ] , i = 1, ..., n . (5.26)

In step 3 an additional POD is performed on the training data Ss, yielding a supremizer
basis function matrix

Vs := H
� 1

2

u svd
⇣
H

1

2

uSs

⌘
2 R3N⇥rs . (5.27)

This way, together with (5.11) and (5.21), the o✏ine step 3 consists of (at least) five
di↵erent POD computations∗.

∗Note that in step 2, we compute vectors ŝi := dtA(ui)wi = Hu si and obtain a training data matrix
Ŝs = HuSs () Ss = H

�1
u

Ŝs. Therefore, subsequently in step 3, we compute the supremizer POD

basis by Vs = H
� 1

2
u svd

⇣
H

� 1
2

u Ŝs

⌘
.
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5.3.2 Stability considerations for projection with a supremizer
enriched basis

According to Ballarin et al. [4], there are (at least) two factors that influence the overall
stability of the system. These are the (i) approximation stability and the (ii) algebraic
stability. While the former is related to the inf-sup condition and therefore improved
by enriching the POD basis with supremizer solutions, the latter in enhanced by the
orthonormality of the basis functions.
However, the separate construction of an orthonormal position POD basis

Vu := H
� 1

2

u svd
⇣
H

1

2

uSu

⌘
2 R3N⇥ru , (5.28)

and an orthonormal supremizer POD basis

Vs := H
� 1

2

u svd
⇣
H

1

2

uSs

⌘
2 R3N⇥rs , (5.29)

as described in the previous section, and subsequently concatenating these two bases to
one basis

�
Vu Vs

�
2 R3N⇥ru+rs , does not yield an orthonormal POD basis. For this case

one would obtain
✓
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where the o↵-diagonal blocks are non-zero. Thus, this way, one gains approximation
stability only by the sacrifice of algebraic stability.
In order to construct a supremizer POD basis, such that Vu and Vs are mutually or-
thogonal, i.e. V T

u
HuVs = 0, one can make use of the idea utilised in the POD-Greedy

procedure (see Haasdonk [25]).
Adherent to the short notation introduced in Section 4.2.2, computing a POD basis

Vs := H
� 1

2
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⇣
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1

2

u

�
Ss � VuV

T

u
HuSs

�⌘
, (5.31)

means, it holds

H
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According to the properties of the singular value decomposition
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D
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and thus there exists a matrix C 2 R3N⇥3N with

V = C ·
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uVuV
T

u
HuSs

⌘
. (5.34)

It follows that the POD basis vectors of Vs constructed as in Equation (5.31) are ortho-
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normal to the POD basis vectors in Vu:
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Using this approach, it is possible to gain approximation stability while maintaining
algebraic stability.
Note that Vu should only contain those modes that are also later on used for building the
ROM, i.e. Vu 2 Rd⇥ru , ru ⌧ l, in order not to exclude more modes than necessary from
the additional space.

5.4 Implementational details of the ROM

KerMor provides a variety of routines and possibilities for the model order reduction of
first-order and single-field nonlinear dynamical systems using subspace projection and
nonlinear approximation. With those, a general problem of the form introduced in
Chapter 4 can be reduced e.g. by means of the described technique of RB approxima-
tion combined with the POD. However, for the dynamic skeletal muscle model with its
three fields and its block structure as a result from the additional constraint equation
and the transformation of the second-order system into a first-order system, the existing
routines had to be customised and extended to consider the aspects that were derived
from the theoretical perspective in the previous sections of this chapter.
To begin with, the precomputation of training data during the o✏ine phase 2 in the
function off2 genTrainingData() of the class BaseFullModel, was extended by the ad-
ditional calculation of approximate supremizer solutions as defined in Equation (5.26).
For the evaluation itself, a function getSupremizer() was implemented in the same
way as the existing functions evaluate() and getStateJacobianImpl() describing the
dynamics of the +muscle class. Since this computation requires the inner product mat-
rix Hu , this was computed (together with the inner product matrix Hp ) adopting the
same procedure as for the mass and damping matrix inside the +muscle.System class,
which is a subclass of the already mentioned class models.BaseSecondOrderSystem. The
function off3 computeReducedSpace() of the class BaseFullModel subsequently initi-
ates the computation of the POD on the precomputed training data. In order to ac-
count for the data of the three di↵erent fields and the approximate supremizers, this
routine was modified such that it runs over the four types of training data and each time
calls the function generateReducedSpace() with the correct corresponding arguments
(e.g. which dof to include, which ones to exclude, or which norm to choose). The ar-
guments are determined inside the spacereduction.BaseSpaceReducer class, where the
default choice can be altered by specifying (i.e. overwriting the superclass function) a
configureModelFinal() function in each of the three examples, i.e. the +muscle sub-
classes. The last important contribution to KerMor in the context of the reduced model
routines is the extension of the assembly procedure, i.e. the building of the reduced model,
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which is initiated by the function buildReducedModel() of the class BaseFullModel,
or more specifically, the function build() inside the ReducedSystem class. The func-
tion assembleProjectionMatrices() was extended to account for multiple projection
spaces and by the option of choosing those according to previously specified arguments,
which are passed to the buildReducedModel() call. The subsequent assembly of the
reduced system as it was derived in Section 5.1 (i.e. reduced initial condition, reduced
mass and damping matrix, evaluation of the reduced right-hand side function odefun

and the reduced Jacobian) is adapted by specifying several functions in a subclass
ReducedSecondOrderSystem, which overwrite and/or make use of the existing corres-
ponding superclass functions.



6 Analysis of the FOM

This chapter intends to investigate and verify the full-order model. For that reason,
Section 6.1 introduces three types of examples with increasing complexity. Those examples
are additionally used for the investigation of the POD-Galerkin reduction in Chapter 7.
Therefore, this chapter could also be considered as a documentation of the o✏ine phase
and is relatively detailed. Since already among these FOM simulations, stability issues
occur, instabilities arising later in the POD-Galerkin ROM possibly originate from the
FOM simulation. Hence Section 6.2 describes the issues that could already be observed
for some of the FOM simulations. It also provides more details on the solution procedure,
like Newton tolerance and maximum number of time steps and the like and tries to
find explanations for the problems that occur. As a final verification of the FOM a mesh
convergence study was performed for all examples and the results are summarised in
Section 6.3.

6.1 Testing examples

This section introduces three examples with increasing complexity, which are being used
throughout this work. The complexity increase is with respect to the material model
as well as the applied boundary conditions. The examples have di↵erent purpose from
validation of the FE code over investigating suitable solution and reduction methods to
investigations on the influence of the increasing complexity on the chosen methods.

6.1.1 Quasi-static examples with an analytical solution

In this section, three di↵erent examples, for which an analytical solution can be derived in
a quasi-static setting, are introduced. They will be used to compare the simulated time-
converged state with the quasi-static analytical solution. For the hyperelastic material the
nonlinear, but still simple Neo-Hooke material law (c.f. Equation (2.42)) is chosen. The
purpose of these three examples is mainly for validation of the implementations within
the FE code. They will be referred to as Example(s) 1A, 1B, 1C.
The general equations for an incompressible Neo-Hooke solid in the quasi-static setting
are (c.f. Equation (3.10))

r · P = 0 in ⌦0 , (6.1)

detF � 1 = 0 in ⌦0 , (6.2)

x = x
D on �D , (6.3)

PN = t on �N , (6.4)

P = P
NH(F ) = 2c10J

� 2

3

✓
F � 1

3
I1F

�T

◆
� pJF�T . (6.5)
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In the following, the basis notation, i.e. ei and (ei ⌦ ej) are omitted for improved read-
ability and for saving space.

6.1.1.1 Example 1A: Uniaxial extension

Derivation of the analytic solution

Let X 2 ⌦0 := [0, Lx] ⇥ [�Ly/2, Ly/2] ⇥ [�Lz/2, Lz/2]. The motion function or actual
position for an incompressible uniaxial extension in positive x-direction about a stretch
� := lx/Lx is given as
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�T , (6.6)

J = �
1p
�

1p
�
= 1 , I1 = �2 +

2

�
.

Furthermore, for uniqueness of the solution, Dirichlet boundary conditions need to be
applied. Here, all nodes on the zero x-face are fixed in x-direction and additionally, the
middle node of that face is fixed in y- and z-direction (see Figure 6.1 below).
In order to obtain the analytical expression of the pressure p in terms of the corresponding
stretch �, the stress tensor for the specific deformation needs to be derived.
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As for the unconstrained, uniaxial extension in x-direction the y- and z-directions are

free, the corresponding stress components P22 = P33

!
= 0. Thus, p is obtained as
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Note that the pressure does not depend on the location, i.e. that it is constant over the
domain ⌦.
If, instead of Dirichlet position boundary conditions on the positive x-face, it is neces-
sary or wanted to apply equivalent Neumann traction boundary conditions describing
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the same problem, the traction force vector on the face with unit normal N = (1, 0, 0)T

is required to be

t = P
NH

N = P
NH
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@
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0
0

1

A =

0

@
P11

0
0

1

A =

0

@
2c10

�
�� 1

�2

�

0
0

1

A . (6.9)

Now, for specific choices for the stretch � and for the material parameter c10, the values
for the corresponding traction force entry t1 and resulting pressure p can be calculated.

Simulated test case

For the tests to be performed with this Example 1A, the Neo-Hooke parameter was set
to c10 = 17.85 e�3MPa and the dimensions Lx = 1mm, Ly = Lz = 0.2mm together with
a stretch value � = 1.2, as visualised in Figure 6.1, were chosen. Insertion of these values
into Equations (6.9) and (6.8) derived above, yields a Neumann traction force entry of
t1 = 18.048 e�3MPa and a corresponding pressure of p = �7.219 e�3MPa.

Figure 6.1: The setup for the uniaxial extension Example 1A. Here exemplarily shown with a
spatial discretisation dx = 0.1 resulting in 40 elements. On the zero x-face, the
zero-Dirichlet boundary conditions are visible, where the grey spheres indicate
the nodes, where only the x-direction is fixed, while the black sphere indicates that
that node is fixed in all three directions. Moreover, the blue arrows indicate the
applied Neumann boundary conditions on the positive x-face. Left: Reference
configuration. Right: Final configuration for the stretch � = 1.2.
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Figure 6.2: The positions of the faces over time for the uniaxial extension Example 1A.
Left: x-position of the positive x-face. It is clearly visible that the converged solution
fulfils x1 = �X1 = 1.2 · 1 = 1.2.
Right: y-position of the positive (top line) and negative (bottom line) y-face. The
analytic quasi-static solution x2 =

1p
�
X2 ⇡ ±0.913 · 0.1 = ±0.0913 is also the re-

sult of the converged dynamic simulation. Note that the results are the same for
the z-direction.

As already mentioned, the time-converged state shall be compared with this quasi-static
solution. Therefore, during an entire simulation time of T = 30ms and a time step size
dt = 0.1ms, the traction force t was applied linearly increasing within the first 10ms
and subsequently kept constant until the end. The final pressure, the displacement in
x-direction of the loose end, i.e. the positive x-face (mean over nodal values), the dis-
placements in y-direction of the negative and positive y-faces (mean over nodal values)
and the displacements in z-direction of the negative and positive z-faces (mean over nodal
values) are extracted and used for the comparison (see Figures 6.2 and 6.3).
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Figure 6.3: The final pressure is constant over the domain and corresponds to the analytic
solution p = �0.0072MPa.
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6.1.1.2 Example 1B: Simple shear

Derivation of the analytic solution

Let X 2 ⌦0 := [0, Lx]⇥ [0, Ly]⇥ [0, Lz]. The motion function for an incompressible simple
shear deformation in the x-z-plane about a shear strain � is given as
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J = 1 , I1 = �2 + 3 .

Furthermore, for uniqueness of the solution, Dirichlet boundary conditions need to be
applied. Here, all nodes on the zero z-face are fixed in x-, y- and z-direction (see Figure 6.4
below).
In order to obtain the analytical expression of the pressure p in terms of the corresponding
shear strain �, again the stress tensor for the specific deformation needs to be derived.
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For this simple shear problem, boundary conditions are applied in x- and z-direction

while the y-direction is free. Thus, the corresponding stress component P22

!
= 0 and p is

obtained as
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Again, the pressure does not depend on the location, i.e. it is constant over the domain.
If, instead of Dirichlet position boundary conditions, it is necessary or wanted to apply
equivalent Neumann traction boundary conditions describing the same problem, the
traction vectors on the faces with unit normals N = (1, 0, 0)T , (�1, 0, 0)T and (0, 0, 1)T

are required to be
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There is no traction force on the y-faces. Now, for specific choices for the shear strain �
and for the material parameter c10, the values for the corresponding traction force vectors
and resulting pressure p can be calculated.
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Simulated test case

For the tests to be performed with this Example 1B, the Neo-Hooke parameter was
set to c10 = 17.85 e�3MPa and the dimensions Lx = 1mm, Ly = Lz = 0.2mm together
with a shear strain � = 0.35, as visualised in Figure 6.4, were chosen. Insertion of these
values into Equations (6.13) and (6.12) derived above, yields Neumann traction force
vector entries of tx

±
3

= ±12.495 e�3MPa and tz
+

1
= 12.495 e�3MPa and a corresponding

pressure of p = �1.458 e�3MPa.

Figure 6.4: The setup for the simple shear Example 1B. Here, exemplarily shown with a spatial
discretisation dx = 0.1 resulting in 40 elements. On the zero z-face, the zero-
Dirichlet boundary conditions are visible, where the black spheres indicate that
all nodes are fixed in all three directions. Moreover, the blue arrows indicate the
applied Neumann boundary conditions on the zero and the positive x-face as well
as on the positive z-face. Left: Reference configuration. Right: Final configuration
for the shear strain � = 0.35.

As already mentioned, the time-converged state shall be compared with this quasi-static
solution. Therefore, (like in Example 1A) during an entire simulation time of T = 30ms
and a time step size dt = 0.1ms, the traction forces t

x
±
and t

z
+

were applied linearly
increasing within the first 10ms before keeping them constant until the end. The final
pressure, the displacement in x-direction over time of the top, i.e. the positive z-face
(mean over nodal values) and the z- versus x-position of the right, i.e. the positive x-face
(mean over nodal values) are extracted and used for the comparison (see Figures 6.5 and
6.6).
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Figure 6.5: The extracted results for the simple shear Example 1B.
Left: The mean x-position of all nodes on the top surface (X3 = 0.2) over time. It
is x1 = X1 + �X3 = X1 + 0.35 · 0.2 = X1 + 0.07. As X1 2 [0, 1], one can see that
the converged dynamic solution corresponds to the analytic quasi-static solution.
Right: As a simple representation to show that the x-position of the other horizontal
node layers (X3 < 0.2) is correct as well and that x3 = X3 is satisfied, the x-
position of the right, i.e. the positive x-face, is plotted versus the z-position of
these nodes.
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Figure 6.6: The final pressure is constant over the domain and corresponds to the analytic
solution p = �0.00146MPa.

6.1.1.3 Example 1C: Pure shear

Derivation of the analytic solution

Let X 2 ⌦0 := [�Lx/2, Lx/2] ⇥ [�Ly/2, Ly/2] ⇥ [�Lz/2, Lz/2]. The motion function
or actual position for an incompressible pure shear deformation with elongation about a
stretch � := lz/Lz in z-direction while being shortened perpendicularly in y-direction is
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given as
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In order to obtain the analytical expression of the pressure p in terms of the corresponding
stretch �, the stress tensor for the specific deformation needs to be derived.
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For the pure shear problem, zero-Dirichlet boundary conditions are applied on the
positive and negative x-face in x-direction and Neumann boundary conditions on the
faces in z-direction (c.f. Figure 6.7), while the faces in y-direction are free. Thus, the

corresponding stress component P22

!
= 0 and p is obtained as
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Again, the pressure does not depend on the location, i.e. it is constant over the domain
⌦.
If, instead of Dirichlet position boundary conditions on the z-faces, it is necessary or
wanted to apply the equivalent Neumann traction boundary conditions describing the
same problem, the traction vectors on the faces with unit normals N = (0, 0, 1)T and
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(0, 0,�1)T are required to be
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Now, for specific choices for the stretch � and for the material parameter c10, the values
for the corresponding traction force vectors and resulting pressure p can be calculated.

Simulated test case

For the tests to be performed with this Example 1C, the Neo-Hooke parameter was set
to c10 = 5.0 e�3MPa and the dimensions Lx = Ly = 0.2mm, Lz = 1mm together with a
stretch value � = 2, as visualised in Figure 6.7 were chosen. Insertion of these values into
Equations (6.17) and (6.16) derived above, yields Neumann traction force vector entries
of tz

±
3

= ±18.75 e�3MPa and a corresponding pressure of p = �15.0 e�3MPa.
As already mentioned, the time-converged state shall be compared with this quasi-static
solution. Therefore, (like in Examples 1A and 1B) during an entire simulation time of
T = 30ms and a time step size dt = 0.1ms, the traction forces tz

±
were applied linearly

increasing within the first 10ms before keeping them constant until the end.

Figure 6.7: The setup for the pure shear Example 1C. Here exemplarily shown with a spatial
discretisation dx = 0.1 resulting in 40 elements. On the positive and negative x-
face, the zero-Dirichlet boundary conditions are visible, where the grey spheres
indicate that the nodes are fixed in x-direction only. Moreover, the blue arrows
indicate the applied Neumann boundary conditions on the negative and positive
z-face. Left: Reference configuration. Right: Final configuration for the stretch
� = 2.

The final pressure, the displacement in y-direction over time of the y-faces (mean over
nodal values) and in z-direction over time of the z-faces (mean over nodal values) are
extracted and used for the comparison (see Figures 6.8 and 6.9).
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Figure 6.8: The extracted results for the pure shear Example 1C. Clearly, the converged dy-
namic solution corresponds to the analytic quasi-static solution.
Left: The mean y-position of all nodes on the positive (top line) and negative (bot-
tom line) y-face over time. It is x2 =

1

�
X2 =

1

2
· (±0.1) = ±0.05.

Right: The mean z-position of all nodes on the positive (top line) and negative
(bottom line) z-face over time. It is x3 = �X3 = 2 · (±0.5) = ±1.0.
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Figure 6.9: The final pressure is constant over the domain and corresponds to the analytic
solution p = �0.015MPa.

6.1.2 Dynamic example with a simple material law

This example, with a moderate complexity, was chosen for tests concerning the stability
of the FOM as well as for testing the performance of di↵erent POD-Galerkin ROM. It
will be referred to as Example 2 and is supposed to fulfil the following requirements.

• Have the size of a human muscle.
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• Exhibit a deformation that includes extension and shear modes, in order to cover
the full possible range of motions.

• The deformation over the domain has to result in a pressure distribution that is of
higher order than linear and a distribution of higher order than quadratic for the
displacement and the velocity. This is important for the subsequent convergence
study in Section 6.3, since otherwise, the solution would already lie in the finite
element solution space and is independent of the mesh.

• It should have the possibility to vary at least one or even more parameters, such
that di↵erent training data can be collected during the MOR o✏ine phase (see
Section 4.2.1).

For those reasons, a cubic geometry of 20 ⇥ 20 ⇥ 20mm is chosen, which is fixed with
zero-Dirichlet boundary conditions in all three directions on the negative x-face, while
di↵erent traction boundary conditions can be applied to the positive x-face. This setup
is shown in Figure 6.10 on the left. By constraining the nodes on the negative x-face in
all directions, a non-uniform lateral contraction is achieved.
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Figure 6.10: Left: The geometrical setup of Example 2. Zero-Dirichlet boundary conditions
are applied to the nodes belonging to the negative x-face, while the positive x-face
is subject to a traction Neumann boundary condition.
Right: The location of the three points P1 := (20, 20, 20), P2 := (5, 0, 0) and
P3 := (�10,�20,�20) chosen for evaluation purpose.

The muscle material density is assumed to be 1.1 e�3 g/mm3 (c.f. [32]). As material
law, the rather simple, yet already nonlinear Neo-Hooke material is chosen. To obtain
a meaningful value for the parameter c10, the model is fitted to the experimental data
from Takaza et al. [46], who performed experiments on the pig longissimus dorsi muscle.
There, the true stress in x-direction, i.e. T11(�), during a uniaxial extension experiment
is documented. As derived in Example 1A (c.f. Equations (6.7)(6.8)), PNH
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This expression can now be fitted to the experimental data using the Matlab curve
fitting toolbox, which yields c10 = 38.18 e�3MPa. As can be seen in Figure 6.11, the
Neo-Hooke material law is not a good choice to approximate skeletal muscle material
as the exponential increase (J-like curve) cannot be captured. However, for the purpose
of Example 2, this is su�ciently complex.
Three di↵erent angles were chosen for the application of the Neumann force boundary
conditions on the positive x-face. These were 0 ° (BC1), 90 ° (BC2) and 45 ° (BC3),
resulting in final, deformed configurations as depicted in Figure 6.12. The total simulation
time covered 100ms and the chosen time step size was dt = 0.1ms. As in Example 1,
the traction force boundary condition was increased linearly up to a chosen maximum
value. Here it was applied within 50ms in the interval [10, 60]ms and subsequently kept
constant until the end.
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Figure 6.11: The fit of the Neo-Hooke material to the muscle data from Takaza et al. [46].

Figure 6.12: Examples for the final, deformed configurations of Example 2. Here exemplarily
shown with a spatial discretisation dx = 5 that results in 512 elements and (2 ⇥
13 872 + 729 =) 28 473 dof.
Left: BC1, the applied uniaxial force here is 0.1MPa.
Middle: BC2, the applied shear force here is 0.01MPa.
Right: BC3, the applied combined uniaxial and shear force here is 0.05MPa.
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Since dynamic processes are considered, also the deformation states in between the refer-
ence and the final configuration are of interest. Furthermore, deformation and pressure
for this Example 2 should vary in space. For these reasons, the positions and the velo-
cities in x-, y- and z-direction for three points roughly on a diagonal through the cube
(c.f. Figure 6.10) are monitored over time and plotted in a two-dimensional plot. In these
plots the inertia and damping e↵ects become visible. The points are P1 := (20, 20, 20)
(dashed lines), P2 := (5, 0, 0) (dotted lines) and P3 := (�10,�20,�20) (dash-dot lines).
Additionally, the final pressure distribution over the domain is displayed at each node.
Below, Figures 6.13–6.15 show the plots for the three types of boundary conditions for the
case of a spatial discretisation dx = 5. Note that due to the approximation of the pres-
sure with linear finite elements, while the displacements are approximated with quadratic
elements, the number of nodes in the pressure plots naturally is less than in the plots in
Figure 6.12 showing the final, deformed configurations.
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Figure 6.13: Example 2, case BC1, final applied force 0.1MPa:
Position (top left) and velocity (top right) of the three points P1, P2 and P3 in
x-, y- and z-direction over time and final pressure at nodal positions (bottom).

For the applied force boundary conditions, the results (c.f. Figures 6.13, 6.14, 6.15 position
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plots) show a maximum stretch � of around 1.6, 1.3 and 1.7 for BC1, BC2 and BC3,
respectively. As the material law was fitted to experimental data that ranges up to
a stretch of 1.3, one could of course and should question the validity of those results
in terms of how close they represent the behaviour of skeletal muscle tissue in reality.
Nevertheless, in the context of this work, these simulations are reasonable, since the
mathematical properties and the numerical behaviour of the model in general are of
interest. As already observed at the beginning of this section, a Neo-Hooke material
law is not capable of capturing the realistic skeletal muscle behaviour anyway. Though,
the experiments performed by [46] showed a failure of the pig skeletal muscle tissue at a
stretch of 1.65 in fibre direction, which then again additionally supports the adequacy of
the simulations.
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Figure 6.14: Example 2, case BC2, final applied force 0.01MPa:
Position (top left) and velocity (top right) of the three points P1, P2 and P3 in
x-, y- and z-direction over time and final pressure at nodal positions (bottom).

The maximum velocities in x-, y- and z- direction for each type of applied boundary
condition for this example are summarised in Table 6.1
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max vx max vy max vz max (vx + vy + vz)

BC1 0.8 0.2 0.2 1.2

BC2 0.3 0.1 0.5 0.9

BC3 0.8 0.3 1.8 2.9

Table 6.1: Approximate maximum velocities [mm/ms] for Example 2 in x-, y- and z-direction
for each of the three boundary conditions.
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Figure 6.15: Example 2, case BC3, final applied force 0.05MPa:
Position (top left) and velocity (top right) of the three points P1, P2 and P3 in
x-, y- and z-direction over time and final pressure at nodal positions (bottom).

6.1.3 Example with realistic skeletal muscle material behaviour

The main purpose of this third example is to show, how the most appropriate methods,
which were chosen based on the investigations with Example 2, are influenced when
the complexity of the underlying material (higher nonlinearity, adding anisotropy and
activity) and the geometry are increased.
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The material law as it was derived in Section 3.1 (c.f. Equation (3.2)) with the isotropic
Demiray and the anisotropic Holzapfel contribution is utilised here. Again, the ma-
terial parameters (4 altogether) have to be fitted to experimental data. For that purpose,
a two step procedure is carried out.
In a first step, the isotropic Demiray contribution is fitted to the experimental data from
Takaza et al. [46]. To this end, the expression for the TD

11
-component needs to be derived

for the uniaxial extension case. Insertion of F , F�T and I1 as in Equations (6.6) into the
expression derived for the 1st Piola-Kirchhoff extra stress tensor (c.f. (2.46)) yields
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With the knowledge of P22 = P33 = 0, the expression for the pressure can be derived as
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and inserted into Equation (6.20), yielding
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Thus, the expression for the true stress in x-direction during an uniaxial extension exper-
iment is given for the Demiray strain energy as
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Fitting this formula to the experimental data using the Matlab curve fitting toolbox
yields c1 = 33.49 e�3MPa and c2 = 10.45 [-]. The result is plotted in blue in Figure 6.16.
Now, in a second step, the material parameters for the Holzapfel strain energy need
to be determined. To this end, it is assumed that the muscle material response in fibre
direction is 20% sti↵er than in cross-fibre direction (c.f. e.g. [33]). Note that this assump-
tion is a controversially discussed topic and there exist di↵erent experimental results on
the muscle tissue sti↵ness in fibre and in cross-fibre direction. For this work and this
example in particular, however, the intention is to show the e↵ect of adding complexity
to the material model on the developed methods. Therefore, for this proof of concept, it
is not significant, whether the material is assumed to be sti↵er in fibre or in cross-fibre
direction. Again, the THA

11
-component needs to be derived for the uniaxial extension case.
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For muscle fibres in x-direction and a uniaxial extension in fibre direction, one has
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As can be seen from FM, the anisotropic contribution only adds up to the P11-component
and does not a↵ect P22 and P33, thus leaving the pressure expression as in the pure iso-
tropicDemiray case (c.f. Equation (6.21)). Inserting Equations (6.24) and (6.25) into the
expression derived for the 1st Piola-Kirchhoff extra stress tensor (c.f. Equation (2.51))
and multiplying with �, yields the expression for the true stress in x-/fibre-direction during
a uniaxial extension experiment in x-/fibre-direction for the Holzapfel strain energy,

THA

11
(�) = �PHA

11
(�) = 2a1(�

2 � 1) exp
�
a2(�

2 � 1)2
�
�2 . (6.26)

With this at hand, an additively composed true stress in x-direction

TD+HA

11
(�, a1, a2) := TD

11
[c1 = 33.49 e� 3, c2 = 10.45](�) + THA

11
(�, a1, a2) , (6.27)

depending on �, a1, a2 but with fixed parameters c1, c2 is defined. Subsequently, Equa-
tion (6.27) is fitted using the Matlab curve fitting toolbox to the experimental data from
[46] multiplied by the factor 1.2. This yields a1 = 4.345 e�3MPa and a2 = 1.434 [-]. The
corresponding curves are plotted in red in Figure 6.16.
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Figure 6.16: The fit of the passive material model to the muscle data from Takaza et al. [46].

The last parameter to be determined, is the maximum force pmax, needed in the (con-
siderably simplified) active stress contribution (3.3). According to [8] this is 0.2MPa.
Table 6.2 summarises the chosen material parameters for Examples 2 and 3.
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parameter value unit

muscle density ⇢0 1.1 e�3 g/mm3

Neo-Hooke c10 38.18 e�3 MPa

Demiray c1 33.49 e�3 MPa

Demiray c2 10.45 -

Holzapfel a1 4.345 e�3 MPa

Holzapfel a2 1.434 -

pmax 0.2 MPa

Table 6.2: The material parameters for Examples 2 and 3.

6.1.3.1 Example 3A: Cubic muscle geometry

This example shall demonstrate the di↵erence when increasing the complexity of the
material model. Therefore, the same geometrical setup and zero-Dirichlet boundary
conditions as for Examples 2 were chosen (c.f. Section 6.1.2, Figure 6.10). Furthermore,
the entire simulation time was 100ms and the time step size dt = 0.1ms.
As a first test scenario, referred to as BCxz, Neumann force boundary conditions were
applied in a 45 °-angle to the positive x-face, again increased linearly in the interval
[10, 60]ms to a chosen maximum value and subsequently kept constant (c.f. Example 2,
BC3). Thus, anisotropy and a stronger nonlinearity are added to the material law in
comparison to Example 2, BC3.
In a second test scenario, referred to as BCxact, Neumann force boundary conditions
were applied to the positive x-face at an angle of 0 °. Again, the force was increased
linearly in the interval [5, 55]ms up to a maximum value of 75 e�3MPa and subsequently
kept constant (c.f. Example 2, BC1). Additionally, the muscle was subsequently activated
for 20ms in the interval [60, 80]ms up to a chosen maximum activation level ↵max 2 (0, 1].
That is, anisotropy, a stronger nonlinearity and activation are added to the material law
in comparison to Example 2, BC1. Figure 6.17 shows the simulation protocol and the
final deformed configuration.
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Figure 6.17: Example 3A BCxact. Left: The simulation protocol. Right: The final, deformed
configuration for the case of a complete activation, i.e. ↵max := 1.

Like for Examples 2, the position and the velocity in x-, y- and z-direction are monitored
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over time and plotted in a two-dimensional plot for the points P1 := (20, 20, 20) (dashed
lines), P2 := (5, 0, 0) (dotted lines) and P3 := (�10,�20,�20) (dash-dot lines) (c.f. Fig-
ure 6.10). For BCxz, only the final pressure distribution over the domain is displayed
at each node, while for BCxact, additionally the pressure at time t = 57ms, i.e. before
the activation starts but after the maximum force level was reached, is displayed. Below,
Figures 6.18 and 6.19 show the plots for both types of boundary conditions for the case
of a spatial discretisation dx = 5.
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Figure 6.18: Example 3A, case BCxz with µ3 = 0.045 [MPa]:
Position (top left) and velocity (top right) of the three points P1, P2 and P3 in
x-, y- and z-direction over time and final pressure at nodal positions (bottom).

For case BCxz and an applied force of 0.045MPa, the maximum stretch is around 1.55
(c.f. Figure 6.18 top left). This is very similar to the stretch obtained in Example 2, BC3
(stretch of 1.7 when applying a force of 0.05MPa). Further, one can observe that the
oscillations are a lot more pronounced in this example than in Example 2, BC3. This
becomes also obvious in the maximum velocity, especially in x-direction, which is four
times higher for this material. The maximum velocities for Examples 3 are summarised
in Table 6.3.
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max vx max vy max vz max (vx + vy + vz)

Ex3A, BCxz 3.5 0.5 2.0 6.0

Ex3A, BCxact 2.0 0.5 0.5 3.0

Ex3B 0.1 0.7 0.2 1.0

Table 6.3: Approximate maximum absolute velocities [mm/ms] for Examples 3 in x-, y- and
z-direction for each of the three test cases.

0 20 40 60 80 100

�20

0

20

40

time [ms]

p
os
it
io
n
[m

m
]

x y z
P1 P2 P3

0 20 40 60 80 100

�2

�1

0

1

time [ms]

ve
lo
ci
ty

[m
m
/m

s]

x y z
P1 P2 P3

�20

0

20

�20

0

20

�20

0

20

x [mm] y [mm]

z
[m

m
]

�20

0

20

�20

0

20

�20

0

20

x [mm] y [mm]

z
[m

m
]

�0.09 �0.05 0 0.05 0.11

pressure [MPa]

Figure 6.19: Example 3A BCxact with ↵max := 1:
Position (top left) and velocity (top right) of the three points P1, P2 and P3 in
x-, y- and z-direction over time and pressure at nodal positions at time t = 57ms
(bottom left) and at the end (bottom right).

For Example 3A, BCxact, the applied traction force of 0.075 MPa yields a maximum
stretch of around 1.25 (c.f. Figure 6.19 top left). Compared with the maximum stretch
obtained in Example 2, BC1 (stretch of 1.6 for applied force of 0.1MPa), this shows a
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material response that is sti↵er in fibre direction. This observation is as expected, since
the anisotropic term was added to the passive material, which was assumed to be 1.2 times
sti↵er (fitted to a 1.2 times sti↵er stress-strain curve). Furthermore, this means that this
test case is in the range of the experiments performed by Takaza et al. [46]. While only
applying the traction force, the extension of the material leads to negative pressure values.
Then, when adding activation, the muscle contracts and the pressure becomes positive
(c.f. Figure 6.19). The maximum absolute velocity of 2.0mm/ms in x-direction is reached
for this example when the active material response starts.

6.1.3.2 Example 3B: Idealised fusiform muscle geometry

This last example shall show the di↵erence in the performance of the methods, when
not only increasing the complexity of the material model but additionally choosing a
more complex geometry resulting in a non-uniform mesh. For that purpose, an idealised
fusiform muscle geometry was chosen, where both ends are fixed with zero-Dirichlet

boundary conditions (c.f. Figure 6.20 left). The test scenario covered a total simulation
time of 50ms. The time step size was chosen as in the previous examples (dt = 0.1ms).
During the interval [10, 40]ms, the muscle activation was linearly increased up to a chosen
maximum activation level ↵max 2 (0, 1]. This caused a muscle contraction and resulted in
a more pronounced convexity in the middle of the muscle, while the ends became thinner
(c.f. Figure 6.20 right). Naturally, this e↵ect is stronger, the higher the final maximum
activation level.

Figure 6.20: The setup for Example 3B with the idealised fusiform muscle geometry. The length
of the muscle is 50mm, and the diameter in the referential state ranges between
13mm at the muscle’s thickest area and approximately 3.6mm at the end points.
Here, exemplarily shown with a spatial discretisation dx ⇡ 2.5mm resulting from
choosing (1 + 2) ⇥ 4 ⇥ 20 = 240 elements. On the y-faces, the zero-Dirichlet

boundary conditions are visible, where the grey spheres indicate that the nodes are
fixed in y-direction only, while the black sphere indicates that this node is fixed
in all three directions. Left: Reference configuration. Right: Final configuration
at time t = 50ms for the case ↵max = 1. Herein, the black arrows illustrate the
reaction force.

Here again, we want to be able to observe the dynamics of the simulation and thus track
the position and the velocity of three points over time. These are roughly P1 = (0, 25, 6.5)
(dashed lines), P2 = (1.66, 35, 1.66) (dotted lines), P3 = (1.8, 50, 0) (dash-dot lines).
Furthermore, the final pressure at nodal positions is extracted. The location of the three
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points together with the way the geometry is divided into finite elements is illustrated in
Figure 6.21.
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Figure 6.21: Sketch of Example 3B: The division into finite elements and the location of the
three points P1 = (0, 25, 6.5), P2 = (1.66, 35, 1.66), P3 = (1.8, 50, 0) chosen for
evaluation purpose. For the spatial discretisation the muscle is cut into slices in its
y-direction (see bottom). Depending on the chosen number of layers, the number
of elements per slice varies (see top). If one layer is chosen (blue quadrant), each
slice is built up of 1 ⇥ 4 = 4 elements, when choosing two layers (red quadrant),
each slice is built up of 3⇥4 = 12 elements, and when choosing four layers (yellow
quadrant), each slice is built up of 10⇥ 4 = 40 elements.
Note that the depicted nodal positions are merely a rough location and thus not all
the nodes of a coarser mesh necessarily have an equivalent in a finer discretisation.

Similar to Example 3A, BCxact, the contraction of the muscle happens relatively quickly
after the activation starts. This is also the instant when the peak velocity is reached.
For this scenario the peak velocity is roughly 0.7mm/ms (c.f. Figure 6.22 right). The
maximum velocity values for this test case are already included in Table 6.3 above. Fig-
ure 6.22 also shows that in the final state, the pressure at the ends, where the muscle is
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clamped (e.g. representing the attachment of a tendon to a bone in reality) is negative,
while inside in the middle of the muscle, the pressure is positive.
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Figure 6.22: Example 3B, results for the case (20⇥ 12) = 240 elements and ↵max = 1:
Position (top left) and velocity (top right) of the three points P1, P2 and P3 in
x-, y- and z-direction over time and final pressure distribution (bottom).

6.2 Observations and issues with the testing examples

For each example (Ex2, Ex3), several simulations were performed, for which not only
the discretisation but also the maximum force and maximum activation (serving as para-
meters) were varied. First of all, those were conducted for investigations of the FOM,
e.g. correct implementation, appropriate solution scheme, behaviour in stronger or weaker
dynamics conditions, and a mesh convergence study. Secondly, varying the maximum force
and activation, these simulations can already serve as a collection of training data (o✏ine
phase) for the final goal of this work, i.e. for obtaining a ROM. During these simulations
of the FOM, di↵erent issues or di�culties already occurred.
As major factors that influence the stability of the FOM, (i) the spatial discretisation dx,
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(ii) the temporal discretisation dt, (iii) the (maximum) number of Jacobian updates in
the Newton iteration, and (iv) the parameter range were identified.

# converged simulations, dx =
parameter range # sim 40 20 10 5 2.5

Ex2 BC1 µ3 2 [�10, 100] e�3MPa 10 10 10 10 10 10

Ex2 BC2 µ3 2 [�10, 20] e�3MPa 8 8 8 8 8 7

Ex2 BC3 µ3 2 [�10, 50] e�3MPa 6 6 6 6 6 4

Ex3A BCxz µ3 2 [5, 45] e�3MPa 5 5 5 5 3 –

Ex3A BCxact ↵max 2 [0.2, 1.0] 5 5 5 5 5 –

Table 6.4: The details of the conducted simulations with testing Examples 2 and 3. The entry
“–” means that the simulations were not conducted.
Remark: The details for Ex3B with the fusiform muscle geometry are not listed here,
as the discretisation is di↵erent and there were no convergence issues for the chosen
activations and discretisations.

Every scenario was solved by means of the implicit Euler scheme together with a New-

ton iteration as already roughly described in Section 3.3.2. As the evaluation of the
analytical Jacobian (c.f. Equation (3.50)) is the most expensive calculation in the solu-
tion process, a slightly modified version of the Newton algorithm was applied. Therein,
the Jacobian is only updated if the number of Newton iterations for the time step at

hand exceeds 15, or if for the implicit function
���f(x̄(k)

i+1
)
���
H̄

> 0.75 ·
���f(x̄(k�1)

i+1
)
���
H̄

holds.

This is a slightly extended/modified variant of an inexact Newton method introduced by
Shamanskii [43], referred to as Shamanskii-Newton-Raphson scheme. Furthermore,
we performed a LU-decomposition (Matlab function lu()) of the calculated Jacobian
(Jf = LU ) and solved for the increment (c.f. Equation (3.48)) by using Matlab’s back-
slash operator (�x̄ = U\(L\f)). The Newton tolerance was set to 1 e�10 and the
maximum number of Newton iterations per time step to 100. If nothing else is stated,
we allow for a maximum of 20 Jacobian updates for a single simulation, as we observed
that when more updates were needed, that simulation did not converge at all, not even
when increasing this number. Certainly, there are more advanced solvers (e.g. Matlab’s
solver ode15i) than the implicit Euler method. However, we chose to stick to the self
implemented scheme described above in order to exactly know what is happening during
the solution process and to have a comparable simulation time for the ROM in relation
to the FOM.
Table 6.4 summarises the conducted simulations using this approach for Examples 2 and
3. As can be seen, convergence problems occurred in Example 2 for the finest spatial
discretisation of dx = 2.5. For BC2 the simulation with µ3 = 20 e�3MPa and for BC3
the simulations with µ3 = 40 e�3MPa and µ3 = 50 e�3MPa did not converge, while
those cases did not cause any problems for the coarser discretisations dx � 5 (factors (i)
and (iv)). For Examples 3A, the maximum number of Jacobian updates (factor (iii)) was
increased to 50 for discretisations dx  10 as one means to overcome convergence issues
for those cases. Unfortunately, for BCxz and dx = 5 this was still not su�cient and the
simulations with µ3 = 35 e�3MPa and µ3 = 45 e�3MPa did not converge. Having the
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CFL condition∗ in mind, we tried to decrease the time step size dt (factor (ii)) as an
additional means. This was successful in the case of BCxz, dx = 5. With a decreased
time step size of dt = 0.025, all simulations converged. Unfortunately neither increasing
the maximum number of Jacobian updates, nor decreasing the time step size were means
to achieve convergence in the failed cases of Example 2.
Tables 6.1 and 6.3 summarised the maximum velocities in x-, y- and z-direction together
with max (vx + vy + vz) for Examples 2 and 3. One can see that the maximum value
for (vx + vy + vz) is 6.0 for all simulations. Calculating the Courant number C for all
chosen spatial discretisations dx = 40, 20, 10, 5, 2.5mm and a temporal discretisation of
dt = 0.1ms leads to

C40 = 0.0025 · 6.0 = 0.015 , C20 = 0.005 · 6.0 = 0.03 , C10 = 0.01 · 6.0 = 0.06 ,

C5 = 0.02 · 6.0 = 0.12 , C2.5 = 0.04 · 6.0 = 0.24 .

For all cases the values are (a lot) smaller than 1. This means, the CFL condition is
fulfilled and indicates that the convergence problems cannot (mainly) be a result from
the chosen ratio between the spatial and temporal discretisation.
Furthermore, in Examples 1, the finest spatial discretisation yields dt/dx = 4 with values
for max (vx+vy+vz) around 0.2, i.e. a Courant number quite close to 1 and nevertheless
those cases are converging. Thus, one possible explanation for the convergence problems
might lie in the still missing viscous damping e↵ects. While the oscillations are hardly
present in Examples 1 with their small dimensions (i.e. negligible inertia e↵ects), they
are quite pronounced in some testing cases of Examples 2 and 3. Adding an appropriate
viscous damping contribution in the material model (c.f. Section 3.1) might thus lead to
a distinct equilibrium state and help to overcome the convergence issues.

6.3 Convergence study

To further analyse the FOM, we perform a mesh convergence study on the examples
introduced in Section 6.1. The analysis is conducted for all three examples to investigate
the e↵ects of both, the transition from a quasi-static to a dynamic simulation and the
increasing complexity from a simple and passive to a more complex and active material
behaviour.
To keep the notation as straightforward and clear as possible, we will not distinguish
(i.e. will not introduce an additional variable) between the vector of a discrete solution for
a single time step and a matrix containing the discrete solution vectors for all time steps.
For Examples 1, where only the final converged state is of interest for the comparison and
we do not consider the velocity, this means

x̃ := x̃(tnt) =

✓
u(tnt)
w(tnt)

◆
2 Rd̃⇥1 . (6.28)

While for Examples 2 and 3, where also the states in between the reference and final

∗
Courant-Friedrichs-Lewy (CFL) condition: For the three-dimensional case with an equidistant
grid, the Courant number C is calculated as C := dt

dx (vx + vy + vz). Typically, for explicit solvers,
C  1 needs to hold, while for implicit solvers also larger values for C might be tolerated (c.f. [17]).
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configuration are of interest, the solution x̄ means

x̄ := [x̄(t0), . . . , x̄(tnt)] =

2

4

0

@
u(t0)
v(t0)
w(t0)

1

A , . . . ,

0

@
u(tnt)
v(tnt)
w(tnt)

1

A

3

5 2 Rd̄⇥(nt+1) , (6.29)

whereas the solution for a single time step ti, i 2 {0, . . . , nt}, is described using Matlab

notation for addressing the i th column

x̄(:, ti) := x̄(ti) 2 Rd̄⇥1 . (6.30)

Moreover, for Examples 1, the discretisation errors are expressed in the discrete L2-norm
k·kL2 , while Examples 2 and 3 use the discrete energy norm k·k

H̄
based on the discrete

inner product as it was derived in Section 3.3.1.

6.3.1 Quasi-static examples with an analytical solution

Here, the final converged state x̃ = (u,w)T 2 Rd̃ for four di↵erent mesh sizes is
compared with the analytical solution derived in Section 6.1.1 on the nodal positions
x̃
a := (ua,wa)T 2 Rd̃. The chosen spatial discretisations together with the resulting

number of elements and dof for the Examples 1 are listed in Tables 6.5 and 6.6.

dx [mm] elements u/v-dof (3N) w-dof (Np) total dof

0.2 5 297 24 2⇥297 + 24 = 618

0.1 40 1 575 99 2⇥1 575 + 99 = 3 249

0.05 320 9 963 525 2⇥9 963 + 525 = 20 451

0.025 2 560 70 227 3 321 2⇥70 227 + 3 321 = 143 775

Table 6.5: The chosen discretisations and resulting number of elements and dof for the conver-
gence analysis of the quasi-static examples with an analytical solution.

Example 1A Example 1B Example 1C
dx [mm] u/v-dof system dof u/v-dof system dof u/v-dof system dof

0.2 286 596 198 420 231 486

0.1 1 548 3 195 1 260 2 619 1 365 2 829

0.05 9 880 20 285 8 856 18 237 9 225 18 975

0.025 69 936 143 193 66 096 135 513 67 473 138 267

Table 6.6: As di↵erent zero-Dirichlet boundary conditions are applied, this results in a dif-
ferent number of total system dof for Examples 1A, 1B and 1C. However, note that
the Dirichlet dof are reinserted in the state vectors for the error computation.

We computed the errors "(?) and relative errors, "(?)
rel
, (?) 2 {x̃,u,w}, in the discrete
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L2-norm, meaning e.g.

"x̃L2 := kx̃a � x̃kL2 ⇡
p
dx3 · kx̃a � x̃k

2
=
p
dx3 ·

vuut
d̃X

k=1

(x̃a

k
� x̃k)

2 (6.31)

and

"x̃
rel,L2 :=

kx̃a � x̃kL2

kx̃akL2

=

vuut
d̃X

i=k

(x̃a

k
� x̃k)

2

,vuut
d̃X

i=k

(x̃a

k
)2 . (6.32)

For each example, Figures 6.23–6.28 below contain six plots. The first row shows the
error decays for the whole state x̃ as well as separately for the position dof u and the
pressure dof w. Additionally, the second row shows the errors of the position in x-, y-
and z-direction separately. The reason for this separation is the fact that the errors in
the di↵erent type of dof sometimes vary in several orders magnitude and therefore, the
discretisation error of the whole state x̃ only captures the behaviour of the component
with the largest error. Furthermore, each plot contains the linear (dashed) and quadratic
(dash-dotted) slope for comparison.
The first observation that can be made is, that the discretisation errors in Example 1A
are several orders of magnitude higher than the discretisation errors obtained in Examples
1B and 1C. While the absolute and relative discretisation errors in Example 1A are in
the range 1 e�4 to 1 e�8, they are between 1 e�10 to 1 e�14 and 1 e�18 (i.e. already
machine precision) for Examples 1B and 1C, respectively. As expected, for each of the
examples, the error component that dominates the overall discretisation error is the one
in that direction where the largest displacements occur, e.g. the x-direction in the uniaxial
extension Example 1A. Furthermore, for Examples 1A and 1C hardly any slope is visible,
i.e. the error only decreases very little when refining the mesh. This is most pronounced
for the relative errors in Example 1A (c.f. Figure 6.24), where the error plots are basically
horizontal lines. For Example 1B (c.f. Figures 6.25 and 6.26), all error decays are in
between the linear and the quadratic slope. Recalling that the three analytical solutions
derived in Section 6.1.1 are linear in the position and constant in the pressure field,
they lie in the Ansatz space of the chosen Q(27)

2
� Q1 elements, which therefore should

theoretically be capable of exactly representing the solutions with a single element already.
However, we compare a time-converged dynamic solution with the quasi-static solution
and therefore error propagation, due to errors arising from the time discretisation and
from the Newton iteration has an additional e↵ect. This might be one explanation for
the rather marginal slopes.



78 Chapter 6: Analysis of the FOM

10
�2

10
�1

10
0

10
�8

10
�7

10
�6

10
�5

dx

"x̃ L
2

10
�2

10
�1

10
0

10
�8

10
�7

10
�6

10
�5

dx
"u L

2
10

�2
10

�1
10

0
10

�8

10
�7

10
�6

10
�5

dx

"w L
2

10
�2

10
�1

10
0

10
�8

10
�7

10
�6

10
�5

dx

"u
x

L
2

10
�2

10
�1

10
0

10
�8

10
�7

10
�6

10
�5

dx

"u
y

L
2

10
�2

10
�1

10
0

10
�8

10
�7

10
�6

10
�5

dx
"u

z

L
2

Figure 6.23: Absolute errors in the discrete L2-norm for Example 1A.
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Figure 6.24: Relative errors in the discrete L2-norm for Example 1A.
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Figure 6.25: Absolute errors in the discrete L2-norm for Example 1B.
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Figure 6.26: Relative errors in the discrete L2-norm for Example 1B.
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Figure 6.27: Absolute errors in the discrete L2-norm for Example 1C.
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Figure 6.28: Relative errors in the discrete L2-norm for Example 1C.
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6.3.2 Dynamic example with a simple material law

For Example 2 an approximate discretisation error is calculated. This is due to the lack
of an analytical solution for these cases. Instead, the errors are calculated with respect
to the solution computed on the finest mesh, which is considered the true solution. The
chosen spatial discretisations together with the resulting number of elements and dof for
the Examples 2 are listed in Table 6.7. The time step size was set to dt = 0.1ms for every
simulation.

dx [mm] elements u/v-dof (3N) w-dof (Np) total dof

40 1 81 8 2⇥81 + 8 = 170

20 8 375 27 2⇥375 + 27 = 777

10 64 2 187 125 2⇥2 187 + 125 = 4 499

5 512 14 739 729 2⇥14 739 + 729 = 30 207

2.5 4 096 107 811 4 913 2⇥107 811 + 4 913 = 220 535

Table 6.7: The chosen discretisations and resulting number of elements and dof for the conver-
gence analysis of Example 2.

For (?) 2 {x̄,u,v,w}, let (?)f be the solution on the finest mesh (dx = 2.5 or dx = 5)
and (?)c the solution on the coarse mesh dx = 40, 20, 10 (, 5) respectively∗. For each
time step tk, k = 0, ..., nt, we compute the errors "(?)(tk) in the discrete energy norm k·k

H
,

e.g.

"x̄
H
(tk) :=

��x̄f (:, tk)� x̄
c(:, tk)

��
H̄

(6.33)

=
q

[x̄f (:, tk)� x̄c(:, tk)]
T
H̄ [x̄f (:, tk)� x̄c(:, tk)] .

Subsequently, the overall absolute discretisation error is computed as the mean over all
time steps

"(?)
H

:=
1

nt + 1

ntX

k=0

"(?)
H
(tk) . (6.34)

The computation of the relative errors, "(?)
rel
(tk) for each time step could not be done as

straight forward as in the Examples 1 due to zero velocity and/or zero pressure coe�cients
for some time steps (especially in the beginning of the simulation). Therefore, we choose

"x̄
rel,H

(tk) :=

��x̄f (:, tk)� x̄
c(:, tk)

��
H̄

kx̄f (:, tk)kH̄
, "u

rel,H
(tk) :=

��uf (:, tk)� u
c(:, tk)

��
Hu

kuf (:, tk)kHu

,

∗Note the minor imprecision in the notation here for (?)f , which doesn’t make a di↵erence between the
solution on the finest grid with all its dof and with the ones that correlate with the nodal positions
for solutions on the coarser meshes, used for the calculation of the absolute di↵erences.
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i.e. as usual for the complete state dof vector x̄ and position dof vector u, and deviant

"v
rel,H

(tk) :=

8
><

>:

kvf
(:,tk)�v

c
(:,tk)k

Hu

max

⇣
kvf (:,tk)k

Hu

,kvc(:,tk)kHu

⌘ , if max

⇣
kvf

(:,tk)k
Hu

,kvc
(:,tk)kHu

⌘
6= 0

0 , if max

⇣
kvf

(:,tk)k
Hu

,kvc
(:,tk)kHu

⌘
= 0

for the velocity dof v and

"w
rel,H

(tk) :=

8
><

>:

kwf
(:,tk)�w

c
(:,tk)k

Hp

max

✓
kwf (:,tk)k

Hp
,kwc(:,tk)kHp

◆ , if max

✓
kwf

(:,tk)k
Hp

,kwc
(:,tk)kHp

◆
6= 0

0 , if max

✓
kwf

(:,tk)k
Hp

,kwc
(:,tk)kHp

◆
= 0

for the pressure dof w. The overall relative errors "(?)
rel,H

are computed in a similar manner
as the absolute errors (c.f. (6.34)). However with the di↵erence that only the non-zero
entries are considered, i.e.

"(?)
rel,H

:=
1

nnz

X

k,nz

"(?)
rel,H

(tk) . (6.35)

Again, the discretisation errors were calculated separately for the di↵erent dof types and
the di↵erent spatial directions. Therefore, for each boundary condition type of Example
2, Figures 6.29–6.34 contain ten axes. The left column of each figure contains the errors
for the whole state x̄ and the errors in the pressure dof w. The middle column contains
the errors in the overall position coe�cient vector u in the top row, and additionally, in
the rows below, the position errors separated in x-, y- and z-direction. The same is done
in the right column, merely for the velocity coe�cient vector v in this case. Furthermore,
each axis contains several plots, since the simulations were performed for the di↵erent
parameters listed in Table 6.4.
For those Examples 2 now, which were deliberately chosen with a su�cient complexity,
the results show the expected behaviour of a quadratic asymptotic convergence rate in the
u and v dof and a linear asymptotic convergence rate in the pressure dof w. This is the
case for the absolute as well as the relative errors. Note that the discretisation errors for
an applied compression and traction force with the same absolute value are very similar
and thus the two curves cannot be distinguished and it might look as if a plot is missing,
which is not the case. While the discretisation error increases with increasing dynamics,
the asymptotic convergence rates remain unchanged, as they should. Additionally, one
can observe that the absolute errors in v are smallest for all three boundary condition
types. This is reasonable, since mainly small velocities occur during the simulations. For
the relative discretisation errors in v, naturally the opposite is the case due to the division
by small norms. As the absolute values for the pressure dof w are smaller in magnitude
than the ones for u and v, they do not influence the slope of the overall state x̄, which
is dominated by the u and v errors. Further, for the separately calculated errors in x-,
y- and z-direction, one can observe that there is no significant di↵erence in the values as
well as the slopes among them.
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Figure 6.29: Absolute errors in the discrete energy norm k·k
H

for BC1.
Each of the axes shows the results from ten simulations performed with a di↵er-
ent final magnitude of the applied, linearly increasing compression/traction force
µ3 [MPa] to the right end together with a linear (dashed line) and a quadratic
(dash-dotted line) slope.
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Figure 6.30: Relative errors in the discrete energy norm k·k
H

for BC1.
Each of the axes shows the results from ten simulations performed with a di↵er-
ent final magnitude of the applied, linearly increasing compression/traction force
µ3 [MPa] to the right end together with a linear (dashed line) and a quadratic
(dash-dotted line) slope.
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Figure 6.31: Absolute errors in the discrete energy norm k·k
H

for BC2.
Each of the axes shows the results from seven simulations performed with a di↵er-
ent final magnitude of the applied, linearly increasing compression/traction force
µ3 [MPa] to the right end together with a linear (dashed line) and a quadratic
(dash-dotted line) slope. Note the missing curve for µ3 = 20 e�3 due to the
convergence issues described in Section 6.2.
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Figure 6.32: Relative errors in the discrete energy norm k·k
H

for BC2.
Each of the axes shows the results from seven simulations performed with a di↵er-
ent final magnitude of the applied, linearly increasing compression/traction force
µ3 [MPa] to the right end together with a linear (dashed line) and a quadratic
(dash-dotted line) slope. Note the missing curve for µ3 = 20 e�3 due to the
convergence issues described in Section 6.2.
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Figure 6.33: Absolute errors in the discrete energy norm k·k
H

for BC3.
Each of the axes shows the results from six simulations performed with a di↵er-
ent final magnitude of the applied, linearly increasing compression/traction force
µ3 [MPa] to the right end together with a linear (dashed line) and a quadratic
(dash-dotted line) slope. Note that these plots were generated with dx = 5 as fine
solution due to convergence issues for some parameters in the simulation with
dx=2.5 (c.f. Section 6.2).
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Figure 6.34: Relative errors in the discrete energy norm k·k
H

for BC3.
Each of the axes shows the results from six simulations performed with a di↵er-
ent final magnitude of the applied, linearly increasing compression/traction force
µ3 [MPa] to the right end together with a linear (dashed line) and a quadratic
(dash-dotted line) slope. Note that these plots were generated with dx = 5 as fine
solution due to convergence issues for some parameters in the simulation with
dx=2.5 (c.f. Section 6.2).
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Lastly, a comment on the magnitude of the discretisation errors: For the absolute errors,
they are in the range of 1 e+1 for the finest discretisation even, which at first thought
seems relatively large. However, thinking about the way the errors are calculated and how
fine the spatial and temporal discretisations are, one could say that requiring each node
to be at exactly the same position as the corresponding node for every single time step,
might be a too strict error measure. After all, for such dynamic simulations including
oscillations, one could argue that it is su�cient to capture the overall behaviour correctly.

6.3.3 Example with realistic skeletal muscle material behaviour

For Examples 3, an approximate discretisation error is calculated in the same way as
for Examples 2. For the cubic geometry, i.e. Example 3A, BCxz and BCxact, the same
spatial discretisations as for Examples 2 were chosen (c.f. Table 6.7). However, due to
time constraints and the observed convergence issues in Examples 2 with dx = 2.5, here
with a finest spatial discretisation of dx = 5. For the idealised fusiform geometry in
Example 3B, the number of elements and dof are di↵erent due to the di↵erent meshing
strategy as explained in Figure 6.21. Those are listed in Table 6.8. The time step size
was set to dt = 0.1ms for every simulation, except for the BCxz scenario, where it had
to be decreased to dt = 0.025ms (c.f. Section 6.2).

elements u/v-dof (3N) w-dof (Np) total dof

5⇥ 4 = 20 825 54 2⇥825 + 54 = 1 704

10⇥ 4 = 40 1 575 99 2⇥1 575 + 99 = 3 249

20⇥ 12 = 240 7 011 357 2⇥7 011 + 357 = 14 379

20⇥ 40 = 800 21 771 1 029 2⇥21 771 + 1 029 = 44 571

40⇥ 40 = 1 600 43 011 2 009 2⇥43 011 + 2 009 = 88 031

Table 6.8: The chosen discretisations and resulting number of elements and dof for the conver-
gence analysis of Example 3B. The first factor in the multiplication for the number
of elements stands for the number of slices, while the second one results from the
chosen number of layers (1 layer corresponds to 4 elements in each cross section
slice, 2 layers to 12 and 4 layers to 40).

For Example 3B with the fusiform muscle geometry, not every node of the coarser meshes
always has a matching node in the finest mesh. This is due to the meshing strategy
(c.f. Figure 6.21), which for a di↵erent number of layers recalculates the nodal positions
instead of e.g. simply inserting additional nodes to the already existing ones from coarser
meshes. This entailed di�culties in the error computation for the convergence study,
which were overcome by simply including only those nodes in the error computation that
had a matching node in the finest mesh. For the meshes resulting from one layer, i.e. the
20 elements mesh and the 40 elements mesh, 84% of the nodes had a matching one in
the 1 600 elements mesh (231 out of 275 and 441 out of 525 nodes, respectively), while for
the 240 elements mesh resulting from two layers, 1 845 out of 2 337 nodes are found in the
finest mesh. This corresponds to 79% and was considered to be su�cient for producing
meaningful results.
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Figure 6.35: Absolute errors in the discrete energy norm k·k
H

for Example 3A, BCxz.
Each of the plots shows the results from five simulations performed with a di↵erent
final magnitude of the applied, linearly increasing traction force µ3 [MPa] to the
right end together with a linear (dashed line) and a quadratic (dash-dotted line)
slope.
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Figure 6.36: Relative errors in the discrete energy norm k·k
H

for Example 3A, BCxz.
Each of the plots shows the results from five simulations performed with a di↵erent
final magnitude of the applied, linearly increasing traction force µ3 [MPa] to the
right end together with a linear (dashed line) and a quadratic (dash-dotted line)
slope.
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Figure 6.37: Absolute errors in the discrete energy norm k·k
H

for Example 3A, BCxact.
Each of the plots shows the results from five simulations performed with a di↵erent
final activation ↵max together with a linear (dashed line) and a quadratic (dash-
dotted line) slope.
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Figure 6.38: Relative errors in the discrete energy norm k·k
H

for Example 3A, BCxact.
Each of the plots shows the results from five simulations performed with a di↵erent
final activation ↵max together with a linear (dashed line) and a quadratic (dash-
dotted line) slope.
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Figure 6.39: Absolute errors in the discrete energy norm k·k
H

for Example 3B.
Each of the plots shows the results from five simulations performed with a di↵erent
final activation ↵max together with a linear (dashed line) and a quadratic (dash-
dotted line) slope.
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Figure 6.40: Relative errors in the discrete energy norm k·k
H

for Example 3B.
Each of the plots shows the results from five simulations performed with a di↵erent
final activation ↵max together with a linear (dashed line) and a quadratic (dash-
dotted line) slope.

As the 800 elements mesh was constructed with four layers, i.e. the same number of layers
as the finest mesh, and merely refined by duplicating the number of slices, here all nodes
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had a corresponding node. Furthermore, the meshes for this realistic geometry have a
non-uniform mesh size dx not only di↵erent in x-, y- and z-direction, but also varying
along the y-axis due to the decreasing diameter of the muscle while keeping the number
of elements in the cross section constant. Therefore, the absolute and relative errors are
plotted against the number of elements instead against dx and thus the convergence plots
show a decreasing slope here. Figures 6.35–6.38 show the results for Examples 3A, i.e. the
ones, where the material complexity was increased. For the BCxz case, which, concerning
the applied force boundary conditions, corresponds to the BC3 case of Example 2, the
discretisation errors behave very similar to those cases. As anticipated, the errors in the
u and v dof show a quadratic asymptotic convergence rate and the ones in the pressure
dof w decay linearly. Merely the absolute values of the errors are around one order of
magnitude higher for the more complex material in this Example 3A. For the BCxact case,
which is the first test case with additional active material behaviour, the discretisation
errors decrease very nicely and there is no significant di↵erence whether the muscle was
fully activated (↵max = 1) or just to a fraction.
Figures 6.39–6.40 show the results for Example 3B, i.e. the fusiform muscle geometry.
While the discretisation errors, both the absolute and the relative one, in the pressure dof
w again show a linear decay, the errors in the u and v dof show asymptotic convergence
rates a little less than quadratic. This is still in a reasonable range and as visualised in
Figure 6.21, the mesh is rather irregular containing some not really well defined elements,
which explains the slight worsening. All other observations are similar to the ones made
for the previous examples.



7 Analysis of di↵erent ROM

The purpose of this chapter is to find a suitable combination of projection spaces for
the three di↵erent types of coe�cient vectors u, v, w. This means that not only the
calculation of the POD bases Vu, Vv, Vw themselves, but also the investigation on how
they perform in combination and the choice of the size of each reduced spaces needs to be
investigated. Suitable in this context shall mean that the obtained reduced-order model
is not only faster than the full-order model, but also, or as a first aim more importantly
even, at least as stable as the full-order model, i.e. converging for the chosen parameter
ranges with a su�cient accuracy. These investigations are carried out in Sections 7.1–7.3
utilising Examples 1 and Examples 2.
Subsequently, in Section 7.4, the most satisfactory approach is applied to Examples 3 in
order to examine its suitability for models with increasing complexity.

7.1 The influence of the combination of reduced position
and velocity space

For all simulations in this section, training data S = [Su,Sv,Sw]
T 2 Rd̄⇥n,

n := (nt + 1) · np, is computed during the o✏ine phase. The training parameter is the
applied force, whose final magnitude, µ3, varies in a chosen interval. If no further spe-
cification is made, the setup of the examples is the same as described in Chapter 6. Every
POD basis is computed by means of a simple svd (S?), i.e. setting A := I.
During the online phase, the reduced system is assembled and subsequently tested for
the same parameter values as chosen in the o✏ine phase, i.e. we are merely interested in
reproducing the same test cases and compare the performance of di↵erent reduced models.
This way, the solutions obtained by the FOM during the o✏ine phase can serve as the
true solution to compare with.
Similar to the discretisation error for the convergence analysis, the absolute error "(?)L2 ,
(?) 2 {u,v,w} in the discrete L2-norm is computed. Let (?)F be the FE-solution and
(?)R the corresponding solution obtained by the reduced model. For each time step tk,
k = 0, ..., nt, we compute e.g.

"uL2(tk) :=
��uF(:, tk)� u

R(:, tk)
��
L2
⇡
p
dx3 ·

��uF(:, tk)� u
R(:, tk)

��
2

=
p
dx3 ·

vuut
3NX

i=1

(uF

i
(:, tk)� uR

i
(:, tk))

2
, (7.1)
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and subsequently

"(?)L2 :=
1

nt + 1

ntX

k=0

"(?)L2 (tk) , (7.2)

i.e. the mean over all time steps.

7.1.1 Results and problems when using the naive approach

In this section, Examples 1A, 1B and 1C (c.f. Section 6.1.1) are used for a first investigation
of building a ROM. The intuitively obvious choice described in Section 5.2, of computing
V? = svd (S?), ? 2 {u,v,w}, is investigated here. The results show that, unfortunately,
obtaining a ROM is not as straight forward as one might have assumed or hoped for.

O✏ine phase - computation of training data

For the FOM, the discretisation dx = 0.05mm resulting in 320 elements and roughly
(2⇥ 9 000 + 500 ⇡) 20 000 system dof is chosen (c.f. Tables 6.5,6.6). The intervals/values
of the final magnitude of the applied force and hence the dimensions of the obtained
snapshot matrices are

1A: µ3 2 {�1,�0.1, 0.1, 1, 10, 100} e�3MPa, i.e. np = 6 logarithmically spaced values,

=) Su,Sv 2 R9 880⇥1 806, Sw 2 R525⇥1 806,

1B: µ3 2 {�10,�1,�0.1, 0.1, 1, 10} e�3MPa, i.e. np = 6 logarithmically spaced values,

=) Su,Sv 2 R8 856⇥1 806, Sw 2 R525⇥1 806,

1C: µ3 2 {�0.1, 0.1, 1, 10} e�3MPa, i.e. np = 4 logarithmically spaced values,

=) Su,Sv 2 R9 225⇥1 204, Sw 2 R525⇥1 204.

Subsequently the SVD was performed on each of the snapshot matrices.

O✏ine phase - POD and investigation of POD bases

As explained in Section 4.2.2 (see Remark 4) the singular value decay usually serves
as an a priori error estimate, which helps to choose an appropriate reduced model size.
Figures 7.1–7.3 show the singular values for each of the three examples and each of the
three coe�cient types.
Additionally, it is interesting to look at the POD vectors, corresponding to the largest
singular values, often referred to as the first POD modes. If the subspaces represented
by the POD bases are suitable, the first modes should correspond to characteristic de-
formation states, as every deformation should be representable by a linear combination of
those. Figures 7.4, 7.6, 7.8 show the mth mode, m 2 {1, 2, 3}, for the SVD of the position
coe�cients u, or more precisely,

u0 + � Vu(:,m) (7.3)

is plotted in a three-dimensional plot for � = ±10.
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Figure 7.1: The singular value decays of Example 1A. The plots for u and v are cut at the
800th singular value. For each of the plots some characteristic positions are labelled
with their respective values.
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Figure 7.2: The singular value decays of Example 1B. The plots for u and v are cut at the 700th

singular value. For each of the plots some characteristic positions are labelled with
their respective values.
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Figure 7.3: The singular value decays of Example 1C. The plots are cut at the 500th singular
value. For each of the plots some characteristic positions are labelled with their
respective values.

Furthermore, Figures 7.5, 7.7, 7.9 show the first three pressure modes for each of the
examples. As for these simulated cases, the pressure is (at least roughly) constant over
the domain for each time step, the first POD mode should represent a constant pressure
state. This is the case for all the three examples. Besides, at least from this point of view,
further pressure modes should not be necessary for an accurate reduced simulation.

Figure 7.4: The first deformation POD modes of Example 1A:
Each column contains one of the three first deformation modes Vu(:,m), m = 1, 2, 3,
added to the initial configuration u0. In the top row multiplied by � = �10, in the
bottom row multiplied by � = +10.
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Figure 7.5: The first three pressure POD modes Vw(:,m), m = 1, 2, 3, of Example 1A at each
node in the reference configuration.

Especially for the uniaxial extension case, Example 1A, the first two modes of Vu nicely
show the two main deformation modes. While mode 1 leaves the cross section fixed
and merely stretches or shortens the body in x-direction, mode 2 keeps the length at
1mm and only a↵ects the cross sectional area. Every possible deformation state for this
simple example should be representable by a linear combination of those first two modes.
Furthermore, one can see that mode 3 is already representing an unusual deformation
state and thus, at least from this point of view, should not be necessary to be included
in the POD basis. Similar observations can be made for Examples 1B and 1C, i.e. the
simple and pure shear deformation. While the first two modes still capture characteristic
deformation states, the third and further modes show a rather uncharacteristic state.

Figure 7.6: The first deformation POD modes of Example 1B:
Each column contains one of the three first deformation modes Vu(:,m), m = 1, 2, 3,
added to the initial configuration u0. In the top row multiplied by � = �10, in the
bottom row multiplied by � = +10.
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Figure 7.7: The first three pressure POD modes Vw(:,m), m = 1, 2, 3, of Example 1B at each
node in the reference configuration.

Figure 7.8: The first deformation POD modes of Example 1C:
Each column contains one of the three first deformation modes Vu(:,m), m = 1, 2, 3,
added to the initial configuration u0. In the top row multiplied by � = �10, in the
bottom row multiplied by � = +10.

Similar to the visualisation of the pressure modes, Figures 7.10–7.12 show the first three
velocity modes plotted over the reference domain. For visualisation purpose, the velocity
modes were split into their components in x-, y- and z- direction.
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Figure 7.9: The first three pressure POD modes Vw(:,m), m = 1, 2, 3, of Example 1C at each
node in the reference configuration.
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Figure 7.10: The first three velocity POD modes Vv(:,m), m = 1, 2, 3, of Example 1A separ-
ated into velocity in x-, y- and z- direction, plotted at the nodes in the reference
configuration. (The axes labels are the same as in the previous figures of this
example. They are removed on purpose for reasons of saving space.)



104 Chapter 7: Analysis of di↵erent ROM

For Example 1A, mode 1 in x-direction shows the largest velocity at the right end, where
the force is applied. This makes sense as well as e.g. mode 3 in x-direction, which could
represent the swinging back after the final force is applied, as it shows a negative velocity
at the nodes of the right end. Moreover, the velocity POD modes in y- and z� direction
are the same, simply rotated 90 degrees around the x-axis, correctly reproducing the
symmetry of the problem. Modes 2 nicely visualise the change in cross sectional area,
where the middle nodes do not move, i.e. have zero velocity, while the nodes to the positive
and negative y-/z-direction have negative and positive velocities respectively.
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Figure 7.11: The first three velocity POD modes Vv(:,m), m = 1, 2, 3, of Example 1B separ-
ated into velocity in x-, y- and z- direction, plotted at the nodes in the reference
configuration. (The axes labels are the same as in the previous figures of this
example. They are removed on purpose for reasons of saving space.)

For Example 1B, the main characteristic feature, which is nicely represented by the first
velocity POD modes, can be observed for mode 1 in x-direction, where the upper half
of the nodes move faster than the lower ones, which are close to the zero Dirichlet

boundary condition. The fact that no significant deformations and thus velocities should
occur in y- and z- direction here, is correctly captured by modes 1 for both directions.



7.1 The influence of the combination of reduced position and velocity space 105

�0.1

0.1 �0.1

0.1

�0.5

0

0.5

mode 1

�0.1

0.1 �0.1

0.1

�0.5

0

0.5

mode 2

�0.1

0.1 �0.1

0.1

�0.5

0

0.5

mode 3

�5 · 10�10

0

3 · 10�10

vx [mm/ms]

�0.1

0.1 �0.1

0.1

�0.5

0

0.5

�0.1

0.1 �0.1

0.1

�0.5

0

0.5

�0.1

0.1 �0.1

0.1

�0.5

0

0.5

�0.025

0

0.025

vy [mm/ms]

�0.1

0.1 �0.1

0.1

�0.5

0

0.5

�0.1

0.1 �0.1

0.1

�0.5

0

0.5

�0.1

0.1 �0.1

0.1

�0.5

0

0.5

�0.035

0

0.035

vz [mm/ms]

Figure 7.12: The first three velocity POD modes Vv(:,m), m = 1, 2, 3, of Example 1C separ-
ated into velocity in x-, y- and z- direction, plotted at the nodes in the reference
configuration. (The axes labels are the same as in the previous figures of this
example. They are removed on purpose for reasons of saving space.)

Lastly, for Example 1C, all three velocity POD modes in x-direction are zero. This
correctly represents the zero Dirichlet boundary condition applied to all nodes of the
x-faces in that direction. Similar to the uniaxial extension case, Example 1A, mode 2 in
y-direction and mode 1 in z-direction nicely show the shrinking and extension respectively,
i.e. have velocities in opposite directions.
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Online phase - building and simulating the ROM

In order to investigate the reduced model(s) that can be assembled through the POD
basis computations described above, several sizes ru, rv, rp 2 N of the reduced spaces and
combinations thereof were tested. The two main foci here were (i) on whether a reduced
simulation converged or not and (ii) on the resulting error in the displacements, velocities
and pressure coe�cients computed as specified in Equations (7.1)–(7.2).
Based on observations of the singular value decays c.f. Figures 7.1–7.3. and roughly cutting
o↵ each of them at singular values around 1 e�6 to 1 e�8, values and combinations as
listed in Table 7.1 were chosen for a first investigation.

Ex1A Ex1B Ex1C

ru 16 : 2 : 30 (8) 14 : 2 : 26 (7) 10 : 2 : 22 (7)

rv 10 : 2 : 26 (9) 10 : 2 : 24 (8) 8 : 2 : 24 (9)

rp 6 : 2 : 10 (3) 5 : 2 : 11 (4) 3 : 2 : 7 (3)

np 6 6 4

# simulations 216⇥ 6 = 1 296 224⇥ 6 = 1 344 189⇥ 4 = 756

# non / converged 132 / 1 164 165 / 1 179 26 / 730

Table 7.1: The ROM simulations performed with Examples 1. For the intervals of the reduced
space sizes, Matlab notation is used.
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Figure 7.13: Absolute errors and non-converged simulations of the ROM simulations performed
with Example 1A.

For each example and for each of the ru � rv � rp reduced size combination, a reduced
model was built and the simulation performed for each of the np parameters from the
training data set. Figures 7.13–7.15 show the resulting absolute L2-errors plotted over
the size combinations. This is done separately for u, v and w dof and for each of the
np parameters. Additionally, the black circles on the x-axis indicate those combinations,
where the ROM did not converge for one or even several parameters. The sequence of the
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ru � rv combinations in one of the rp-intervals (which are indicated by the grey vertical
lines) is such that first, ru is kept at its value, while rv is increased, then, ru is increased
and rv starts from the beginning of the interval (i.e. r1
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Figure 7.14: Absolute errors and non-converged simulations of the ROM simulations performed
with Example 1B.
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Figure 7.15: Absolute errors and non-converged simulations of the ROM simulations performed
with Example 1C.

With respect to focus (i), whether a reduced simulation converged or not, one can observe
that 5�15% of the performed simulations did not converge. The exact numbers are listed
in Table 7.1. For simple examples like those chosen here and for such small intervals of
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chosen sizes, this performance is very unsatisfactory as one cannot always test several
possible sizes and combinations thereof, when one is interested in a stable and fast model.
Additionally, huge di↵erences in the absolute L2-errors (focus (ii)) between the simulated
size combinations are present. Merely changing e.g. the reduced size rv by 2 can have
an e↵ect of increasing the error by more than 5 orders of magnitude. Generally, one can
observe the tendency that surprisingly less pressure modes yield better convergence and
smaller errors, especially in the w dof. The errors in the position dof u are the smallest
from the three fields. However, as can be seen not only in Figures 7.13–7.15, but also in
Tables 7.2–7.4, where the smallest and largest occurring errors in u, v and w obtained
with the ROM simulations are listed, there are large variations in the errors of up to 15
orders of magnitude. Thus, simply taking each of the singular value decays as a measure
for the quality and accuracy of the respective ROM is not su�cient in the case of the
incompressible skeletal muscle model. Other properties, indicators, and measures need to
be found and investigated in order to have an a priori knowledge on what is essential to
build a stable ROM.

µ3 = �1 µ3 = �0.1 µ3 = 0.1 µ3 = 1 µ3 = 10 µ3 = 100

FOM time 2 435 2 358 2 343 2 357 2 823 18 409

ROM
(best)

time 1 928 1 880 1 877 1 933 2 092 15 154

"uL2 1 e�9 1 e�11 1 e�11 1 e�9 1 e�9 1 e�8
"vL2 1 e�8 1 e�11 1 e�11 1 e�8 1 e�8 1 e�7
"wL2 1 e�11 1 e�12 1 e�12 1 e�11 1 e�10 1 e�9

ROM
(worst)

time 24 610 30 378 31 125 27 527 30 489 32 480

"uL2 1 e�3 1 e�4 1 e�4 1 e�3 1 e�4 1 e�4
"vL2 1 e+2 1 e+1 1 e�4 1 e�2 1 e�2 1 e�3
"wL2 1 e�1 1 e+3 1 e+3 1 e�1 1 e�2 1 e�4

Table 7.2: Example 1A: The simulation times [sec] of the FOM simulations (µ3 in e�3MPa)
compared to those obtained with the ROM simulations, where for the ROM sim-
ulations a best case and a worst case value from the size combinations is shown.
Additionally, the smallest (best) and largest (worst) occurring errors in u, v and w

obtained with the ROM simulations are listed.

Tables 7.2–7.4 additionally list the solution times for each of the three examples and each
of the np parameters needed by the FOM simulation and a best case and a worst case of the
ROM simulations. The overall time to solve the system of equations is mainly dominated
by the necessary number of Jacobian updates, which is related to the condition of the
linear system to solve during each Newton iteration. A badly conditioned reduced
system seems to need more Jacobian updates, and as that evaluation depends on the
dimension d̄ of the full-order system, some ROM simulations take even longer than the
original FOM simulation. Reducing the total system dof to around 0.2% of the full system
(from roughly 20 000 to ±40) yielded in the best cases simulation times around 80% of
the FOM, i.e. an insignificant speedup of 1.25. On the other hand, in the worst cases, the
online simulation with a ROM could take 14 times as long as the same simulation with
the FOM.
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µ3 = �10 µ3 = �1 µ3 = �0.1 µ3 = 0.1 µ3 = 1 µ3 = 10

FOM time 2 597 2 160 2 053 2 032 2 176 2 579

ROM
(best)

time 2 195 1 919 1 893 1 902 1 924 2 199

"uL2 1 e�9 1 e�12 1 e�13 1 e�13 1 e�12 1 e�9
"vL2 1 e�8 1 e�12 1 e�13 1 e�13 1 e�12 1 e�8
"wL2 1 e�9 1 e�9 1 e�13 1 e�13 1 e�9 1 e�9

ROM
(worst)

time 26 987 17 787 25 366 31 598 31 362 25 384

"uL2 1 e�8 1 e�5 1 e�4 1 e�2 1 e�5 1 e�4
"vL2 1 e�2 1 e�1 1 e�2 1 e�1 1 e�1 1 e�2
"wL2 1 e�6 1 e�1 1 e+5 1 e+2 1 e+1 1 e�3

Table 7.3: Example 1B: The simulation times [sec] of the FOM simulations (µ3 in e�3MPa)
compared to those obtained with the ROM simulations, where for the ROM sim-
ulations a best case and a worst case value from the size combinations is shown.
Additionally, the smallest (best) and largest (worst) occurring errors in u, v and w

obtained with the ROM simulations are listed.

µ3 = �0.1 µ3 = 0.1 µ3 = 1 µ3 = 10

FOM time 2 503 2 506 2 704 9 189

ROM
(best)

time 2 028 2 032 2 125 5 640

"uL2 1 e�12 1 e�13 1 e�12 1 e�9
"vL2 1 e�12 1 e�12 1 e�11 1 e�8
"wL2 1 e�13 1 e�13 1 e�11 1 e�10

ROM
(worst)

time 5 613 32 969 15 878 32 658

"uL2 1 e�7 1 e�4 1 e�7 1 e�6
"vL2 1 e�2 1 e�3 1 e�2 1 e�2
"wL2 1 e�3 1 e+2 1 e�6 1 e�6

Table 7.4: Example 1C: The simulation times [sec] of the FOM simulations (µ3 in e�3MPa)
compared to those obtained with the ROM simulations, where for the ROM sim-
ulations a best case and a worst case value from the size combinations is shown.
Additionally, the smallest (best) and largest (worst) occurring errors in u, v and w

obtained with the ROM simulations are listed.

In order to further investigate this problem and to make use of the information extracted
from visualising the POD modes, some even smaller reduced models starting with a
number of total system dof of 2+1+1 = 4 were created and tested in the same way. The
chosen values and combinations are listed in Table 7.5.
As before, the resulting absolute L2-errors in the u, v and w dof are plotted separately
over the size combinations ru�rv�rp, together with black circles on the x-axis indicating
those locations, where the ROM did not converge (c.f. Figures 7.16–7.18).
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Ex1A Ex1B Ex1C

ru  � 2 : 2 : 10 (5) �!
rv  � 1 : 2 : 9 (5) �!
rp  � 1 : 1 : 3 (3) �!
np 6 6 4

# simulations 75⇥ 6 = 450 75⇥ 6 = 450 75⇥ 4 = 300

# non / converged 88 / 362 150 / 300 76 / 224

Table 7.5: The second set of ROM simulations performed with Examples 1.
Here, the same reduced sizes were chosen for each of the three examples.

Unfortunately, also for these smaller combinations, many of the simulations did not con-
verge, even though one would have expected the reduced spaces to be adequate by looking
at the first POD modes. Table 7.5 lists the numbers of non-converged and converged sim-
ulations. In this chosen size range, even more, namely 20�35% of the performed simula-
tions did not converge. Again, it is conspicuous that with less pressure POD modes, more
simulations converge. In Examples 1A and 1C this is the case even for all simulations
performed with rp = 1. But also among those, the di↵erences in the absolute L2-errors
are huge among di↵erent ru � rv size combinations. Generally, one can observe that the
errors of the best simulations with the smaller ROM are only insignificantly higher (by
1� 3 orders of magnitude) compared to the larger ROM.
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Figure 7.16: Absolute errors and non-converged simulations of the smaller ROM simulations
performed with Example 1A.
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Figure 7.17: Absolute errors and non-converged simulations of the smaller ROM simulations
performed with Example 1B.
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Figure 7.18: Absolute errors and non-converged simulations of the smaller ROM simulations
performed with Example 1C.

7.1.2 Choice of velocity space with respect to position space

Based on the observations made in Examples 1A, 1B and 1C in the previous section,
the choice of the POD bases Vu and Vv shall now be investigated further. Given a
reduced space Vr

u
, the question of how to choose the reduced space Vr

v
, which already

arose from the theoretical point of view in Section 5.2, appears now also from the simu-
lation/experimental studies. Without going into investigations on how to best compute
the POD basis Vu, this section compares the performance of a ROM (a) that is construc-
ted with Vv 6= Vu with a ROM (b), where Vv = Vu is chosen. The investigation was
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made using Example 2, which will also be used throughout the rest of this chapter. More
specifically, now, only the BC1 case the way it was set up in Section 6.1.2 is used.

O✏ine phase - computation of training data and POD

Using the FOM with spatial discretisation dx = 5mm, which means 512 elements and
(2⇥ 14 739 + 729 =) 30 207 total dof (c.f. Table 6.7), choosing np = 10 values for the final
magnitude of the applied force in the o✏ine phase, namely

µ3 2 {�10,�5,�1, 1, 5, 10, 25, 50, 75, 100} e� 3MPa (7.4)

(see also the convergence study in Section 6.3.2), and accounting for the zero Dirichlet

BC, the dimensions of the obtained snapshot matrices are

Su,Sv 2 R13 872⇥10 010 , Sw 2 R729⇥10 010 . (7.5)

Figure 7.19 shows the singular value decays of the subsequently performed
svd (S?), ? 2 {u,v,w}, on each of the three snapshot matrices.
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Figure 7.19: The singular value decays of Example 2, BC1. The plots for u and v are cut at
the 5000th singular value. For each of the plots some characteristic positions are
labelled with their respective values.

For the u and v dof, values of magnitude 1 e�5 are reached around the 150th singular
value. After the 1200th singular value, where values of magnitude 1 e�13 for u and
magnitude 1 e�12 for v, are reached, no significant decay occurs. This corresponds to
less than 10% of the original full size. The singular value decay for the w dof shows a
steep decay of 4 orders of magnitude between the 135th and the 136th singular value from
1 e�9 to 1 e�13. This corresponds to less than 20% of the original full size of the pressure
space.
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Online phase - building and simulating the ROM

In the online phase, two types of reduced models were built:

(a) Vu := svd(Su), Vv := svd(Sv), Vw := svd(Sw), and

(b) Vu := svd(Su) =: Vv, Vw := svd(Sw).

Both ROM types were always built with the same reduced size ru = rv for the position
and the velocity space. Then, in order to reduce the number of computations, for each
ROM three out of the ten training cases, µ3 = �10, 10, 100 e�3MPa, were tested for
convergence. Table 7.6 summarises the results.

rp ru = rv

150 250 1 000 1 200

(a) (b) (a) (b) (a) (b) (a) (b)

136 � � � � � 3 � 3

140 � � � � � 3 � 3

Table 7.6: For both ROM types, (4⇥2 =) 8 size combinations were tested for the three parameter
values. Here, the number of converged simulations is listed, where ’�’ means, none
converged.

As none of the ROM of type (a) converged, while for type (b) at least both larger ones
converged for all the tested parameter values, the conclusion of this investigation is clear:
One has to choose the same reduced space for the velocity as for the position field, i.e. use
the same POD basis Vv = Vu.

7.1.3 Examination of the ratio between the reduced sizes of position
and velocity space

The investigations of both previous sections still leaves the open question of how to choose
the size rv with respect to the size ru. Furthermore, it is not clear, which ratio between
the size rp of the pressure space and the sizes ru and rv of the displacement and the
velocity spaces needs to be maintained for obtaining a stable ROM. In this section, the
focus lies on answering the first question, while the second one is investigated further in
Section 7.3.
Here, for all test cases, we compute the simple SVD with A = I of the two snapshot
matrices Su and Sw, i.e. svd (S?), ? 2 {u,w}, and set Vu := svd(Su) =: Vv, Vw :=
svd(Sw).

O✏ine phase - computation of training data and POD

To avoid accidental observations, which might only be valid for, or occur in, a specific
scenario, the investigation is performed with all the three boundary condition cases of
Example 2. As FOM the finite element model with discretisation dx = 5mm, which
means 512 elements and (2⇥ 14 739 + 729 =) 30 207 total dof (c.f. Table 6.7) is used. The
np values for the final magnitude of the applied force in the o✏ine phase were chosen the
same as for the convergence analysis in Section 6.3.2:
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BC1: µ3 2 {�10,�5,�1, 1, 5, 10, 25, 50, 75, 100} e�3MPa, i.e. np = 10,

BC2: µ3 2 {�10,�5,�1, 1, 5, 10, 15, 20} e�3MPa, i.e. np = 8,

BC3: µ3 2 {�10, 0, 10, 20, 30, 40, 50} e�3MPa, i.e. np = 7.

Accounting for the zero Dirichlet boundary conditions, the dimensions of the obtained
snapshot matrices are:

BC1: Su(,Sv) 2 R13 872⇥10 010 , Sw 2 R729⇥10 010 ,

BC2: Su(,Sv) 2 R13 872⇥8 008 , Sw 2 R729⇥8 008 ,

BC3: Su(,Sv) 2 R13 872⇥7 007 , Sw 2 R729⇥7 007 .

Figures 7.19 (see previous section), 7.20 and 7.21 show the singular value decays of the
subsequently performed SVD on each of the three snapshot matrices for BC1, BC2 and
BC3 respectively. Note that Sv is only included for completeness at this point and that
the POD bases obtained from the singular value decomposition of these training data sets
are not used for the assembly of the ROM for this investigation.
Comparing the singular value decays of BC1, BC2 and BC3, one can generally observe
faster decays in all three dof types, i.e. steeper curves, for BC1 than for BC2 and BC3.
For the pressure data, Sw, the di↵erence is very pronounced. While for the BC1 case,
the kink occurs at the 136th singular value with a magnitude of 10�13, this magnitude is
reached a lot later, around the 500th singular value, for the BC2 and BC3 case and a kink
followed by a gradual decline occurs only at the very end. Considering the larger number
of dof in the position data, Su, the di↵erence is not very significant. For BC1 a kink in
the values occurs at the 1 200th singular value with a magnitude of 10�13. BC2 and BC3
are again very similar. A slope of nearly 0 is reached around the 1 350th singular value
with a magnitude of 10�11.
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Figure 7.20: The singular value decays of Example 2, BC2. The plots for u and v are cut at
the 5000th singular value. For each of the plots some characteristic positions are
labelled with their respective values.
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Figure 7.21: The singular value decays of Example 2, BC3. The plots for u and v are cut at
the 5000th singular value. For each of the plots some characteristic positions are
labelled with their respective values.

Online phase - building and simulating the ROM

Based on the above observations of the singular value decays (c.f. Figures 7.19, 7.20,
7.21), and roughly cutting o↵ each of them at the most obvious kinks (with the exception
of svd(Sw) for BC2 and BC3, where the gradual decline happens very late), values and
combinations thereof as listed in Table 7.7 were chosen for a first investigation.

BC1 BC2 BC3

ru 1 000 : 10 : 1 200 {1 320, 1 340, 1 520, 1 540}
rv 1 000 : 10 : 1 200 1 320 : 20 : 1 540

rp 140 170

�10 e�3 �10 e�3 20 e�3
(5.6 hrs) (7.9 hrs) (7.4 hrs)

online µ3 values 10 e�3 1 e�3 40 e�3
(CPU time FOM) (5.1 hrs) (4.2 hrs) (9.3 hrs)

100 e�3 20 e�3 50 e�3
(8.8 hrs) (14.3 hrs) (10.0 hrs)

Table 7.7: The ROM simulations performed with Examples 2. The upper part of the table
contains the chosen reduced sizes ru, rv and rp. In the lower part, the µ3 values
chosen for the online computations and comparison with the FOM are listed. Here,
the CPU time of the FOM simulation for that trajectory is added in parentheses.

For each of the examples, np = 3 values (c.f. Table 7.7) out of the training data set for the
applied maximum force were chosen for the online ROM simulations. Subsequently, the
L2-errors, "L2 , in u, v and w with respect to the FOM were computed. The logarithm of
the resulting errors for each simulated case are plotted in a 2-dimensional surface plot and
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shown in Figures 7.22–7.24 together with the CPU time in percent of the FOM CPU time
for each of the ROM simulations. For the absolute CPU times of the FOM see Table 7.7.
In each of the three figures, the columns one to three contain the results for each of the
three µ3 values, while the first three rows show the errors in u, v and w respectively and
the last row shows the percentage CPU time.
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Figure 7.22: The errors in u, v and w and the percentage CPU time for each of the chosen µ3

parameter values for the BC1 test of Example 2. Each surface plot contains the
result for each of the tested ru � rv combination with fixed size rp = 140. Note
here that the white squares in the top left corner of each surface plot mean that
the simulation(s) performed with that size combination did not converge.
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Figure 7.23: The errors in u, v and w and the percentage CPU time for each of the chosen µ3

parameter values for the BC2 test of Example 2. Each surface plot contains the
result for each of the tested ru � rv combination with fixed size rp = 170. Note
here that due to time constraints, the twelve rv sizes were tested with four ru sizes
only, which explains the constant values/colours in the middle part of the squares.

The most obvious observation, a diagonal separating the cases rv > ru and rv  ru, can
be made in the L2-error in v for the BC1 case (c.f. Figure 7.22, row 2). While simulations
performed with a ROM, where rv  ru, yield a small L2-error in the range of 1e�9, the
L2-error increases around two to three orders of magnitude, when rv is increased only
slightly about 10, which corresponds to 1%. Further increase of rv to 20% more reduced
dof than ru even results in a non-converging reduced simulation for this case. The same
behaviour can be observed in BC2 and BC3. Here it merely doesn’t become as obvious
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due to the coarser grid of tested ru sizes. For BC3, the same behaviour is also present
in the L2-error in u (c.f. Figure 7.24, row 1). However, looking at the colour bar range,
with only one order of magnitude, it is not as pronounced as for the L2-error in v. Due to
large di↵erences in the L2-error in u among the di↵erent µ3 values it is hard to identify
a specific behaviour in the BC2 case.
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Figure 7.24: The errors in u, v and w and the percentage CPU time for each of the chosen µ3

parameter values for the BC3 test of Example 2. Each surface plot contains the
result for each of the tested ru � rv combination with fixed size rp = 170. Note
here that due to time constraints, the twelve rv sizes were tested with four ru sizes
only, which explains the constant values/colours in the middle part of the squares.

In the BC1 case the L2-error in u seems quite random at first glance. For µ3 = 10 e�3,
unstructured patches of smaller errors are present and for µ3 = 100 e�3 the error even



7.1 The influence of the combination of reduced position and velocity space 119

improves when increasing rv while keeping ru constant, i.e. an opposite behaviour can
be observed (at least within a certain interval). But for smaller ru sizes this results in
the aforementioned non-converging simulations, when rv becomes too large. As for the
L2-error in w, one can clearly recognise in the BC1 case (c.f. Figure 7.22, row 3) that it
decreases with increasing ru (and rv) size. This fact could also be inversely interpreted,
stating that the L2-error in w decreases, when rp decreases, which supports the observa-
tion from Section 7.1.1. There it was observed that more simulations converge when less
pressure POD modes are accounted for. This rather counter-intuitive behaviour will be
further investigated in Section 7.3. Knowing, what one is looking for, the same tendency,
although not as strong (note the small colour bar range), can be seen in the surface plots
of the L2-error in w for BC3. Lastly, one can say that no significant di↵erence in the
CPU times of the simulated ROM cases can be observed within the chosen size intervals.
This is the same for all the three boundary condition cases and a good and important
fact as it allows to focus on the error, which is a lot more susceptible to changes in the
ru � rv � rp combination. For obvious reasons, there is no significant speedup yet, as the
computation of the nonlinear right-hand side and the nonlinear Jacobian (c.f. Section 5.1,
Equations (5.7) and (5.8)) still depend on the full dimension d̄. The simulation times of
the ROM are in the range of 60� 80% of the FOM CPU time.
Generally, as already remarked for the discretisation error in Section 6.3, measuring the
error by comparing the position of each node at each time step, might be a relatively strict
quality measure, especially for very fine spatial and temporal discretisations. This could
be an explanation for the larger errors occurring throughout all size combinations of BC
3 (c.f. Figure 7.24), which is quite a dynamic simulation case with additional oscillations.
Small temporal shifts might simply accumulate over the simulated time interval and lead
to a large total error, while the overall behaviour might be captured very well. For the
purpose of this section, i.e. as a measure to compare the quality of di↵erent ru � rv size
combinations, however, it is suitable. Nevertheless, one might have to think about other
error measures, when the absolute value is of interest, e.g. one could define a certain output
of interest and just calculate the error specifically for that. The reason behind the even
larger errors of magnitude 1 e+2 in the BC2, µ3 = 20 e�3 case (c.f. Figure 7.23), might
lie in the fact that for this simulation, the mesh of the FOM becomes a little distorted
towards the maximum applied force and thus an error computation with respect to the
FOM could be problematic.
Furthermore, it should be mentioned that the results documented in this section were
not the only tested size combinations. Keeping rp as in the shown examples above and
e.g. decreasing the ru, rv values to intervals around 250 and 500 for BC1 and BC2/BC3
respectively, most of the ROM built with these reduced sizes did not converge for any of
the µ3 values. Similarly, for the BC3, µ3 = �10 e�3 case, only very few ROM built with
the above size combinations converged, and thus that parameter value was not suitable
for visualising the conclusion of this section.
Certainly, there are many more size combinations that could be tested. However, that
approach would be neither an e�cient nor a satisfying strategy and one has to come
up with additional rules in order to know how to assemble a stable and e�cient ROM
previously to the online phase. At least, from this section we can already conclude that,
for the ratio between the number of reduced displacement dof, ru, and the number of
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reduced velocity dof, rv,

rv  ru (7.6)

has to hold, i.e. an upper bound for rv is given by the chosen reduced size ru. As for
a lower bound, i.e. how much smaller than ru one could choose rv, and whether that is
necessary after all for a potential speedup, this question remains open for now.

7.2 Investigating di↵erent ways of POD basis
computation

The purpose of this section is to investigate the influence of the chosen POD bases
Vu(= Vv) and Vw on the e�ciency and accuracy of the corresponding ROM. The question,
which of the available training data Su,Sv should be used for the basis construction of the
ROM was already raised in Section 5.2 (c.f. Equations (5.20) and (5.21)). Furthermore,
the POD bases can be computed optimal in the L2-norm (i.e. A = I), or optimal in the
H1-norm (i.e. A = H).
Therefore, Section 7.2.1 compares ROM obtained by means of setting

(Vv =)Vu = A� 1

2 svd
⇣
A 1

2Su

⌘
2 R3N⇥ru with A 2 {Hu , I3N} , (7.7)

and Vw = A� 1

2 svd
⇣
A 1

2Sw

⌘
2 RNp⇥rp with A 2 {Hp , INp} . (7.8)

Subsequently, Section 7.2.2 compares ROM, where all POD bases are constructed optimal
in the H1-norm (i.e. A = H), but with di↵erent combinations of the available training
data, i.e.

S
��

uv
:= [�Su, �Sv] 2 R3N⇥2n with �, � 2 [0, 1] . (7.9)

Specifically, we employ four di↵erent POD bases for Vv = Vu, namely V
10

uv
, V 01

uv
, V 11

uv
and

V
�̄�̄

uv
with �̄ := 1

maxSu
, �̄ := 1

maxSv
.

As before, the comparison is drawn by calculating the CPU time in percent of the FOM
and by computing the errors with respect to the FOM solutions u,v,w. Additionally,
we compare the necessary number of reduced Jacobian updates, which could give a hint
on the stability of the ROM. Here, in correlation to the POD bases construction, we
calculate the absolute errors "(?)

H
, (?) 2 {u,v,w}, in the discrete H1-norm. Let (?)F be

the FE-solution and (?)R the corresponding solution obtained by the reduced model. For
each time step tk, k = 0, ..., nt, we compute

"(?)
H
(tk) : =

��(?)F(:, tk)� (?)R(:, tk)
��
H(?)

(7.10)

=
q

[(?)F(:, tk)� (?)R(:, tk)]
T
H(?) [(?)F(:, tk)� (?)R(:, tk)] ,
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and subsequently

"(?)
H

:=
1

nt + 1

ntX

k=0

"(?)
H
(tk) , (7.11)

i.e. the mean over all time steps. Note that the choice of comparing the absolute and not
the relative errors is secondary, as the focus of this section is on the comparison between
the di↵erent ROM and not on absolute error values. Besides, both errors turned out to
be similar and show the same di↵erences between the ROM.
As in Section 7.1.3, Example 2 with BC1, BC2 and BC3 and the discretisation dx = 5
are chosen and the same training data is used. During the online phase, ROM built with
11 di↵erent reduced sizes for ru = rv are simulated with two chosen parameters µ3 2 P
for each of the boundary condition types. These are listed in Table 7.8 and utilised for
both, the A = I versus A = H (Section 7.2.1) as well as the V

10

uv
, V 01

uv
, V 11

uv
versus V �̄�̄

uv

(Section 7.2.2) comparison.

BC1 BC2 BC3

ru = rv 1 000 : 20 : 1 200 1 200 : 20 : 1 400

rp 140 170

µ3 {�10, 100} e�3 {�10, 1} e�3 {20, 50} e�3

Table 7.8: The size combinations for building the ROM and the performed simulations used for
the comparisons in this section.

7.2.1 The influence of the chosen norm

In order to investigate the e↵ect of the chosen norm for the POD basis computation on
the subsequently built ROM, two di↵erent POD bases are computed for each of the three
boundary condition types. Training data Su and Sw are utilised to construct the POD
bases Vv = Vu and Vw.

O✏ine phase - POD and singular value decay

In the first case (solid lines), we set A = I, i.e. simply perform a singular value decom-
position svd

�
S(?)

�
, (?) 2 {u,w}. In the second case (dashed lines), we set A = H(?),

i.e. V(?) = H
� 1

2

(?)
svd

⇣
H

1

2

(?)
S(?)

⌘
, (?) 2 {u,w}. Figures 7.25–7.27 each show the four

corresponding singular value decays for BC1, BC2 and BC3.
For all the three boundary condition types, the behaviour of the singular value decays is
very similar for the cases A = I and A = H . Especially the change from a steep decay
to a slope of (nearly) 0 occurs at similar singular values. This is the case for the SVD
on the displacement as well as on the pressure training data. Merely the magnitude of
the singular values is insignificantly higher for the A = H case, i.e. for the optimality
in the H1-norm. For the singular values obtained from the BC1 displacement data, this
di↵erence is bigger than in all other cases. Here, for the smallest singular values, the
di↵erence is three orders of magnitude between the cases A = I and A = H . However,
the plateau is reached faster, already at around the 900th singular value.
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Figure 7.25: Example 2, BC1:
The comparison of the singular value decays obtained by means of

A� 1

2 svd
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⌘
with A = H(?) (dashed lines) and A = I (solid lines) for

(?) 2 {u,w}. The plots for u are cut at the 5000th singular value.
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Figure 7.26: Example 2, BC2:
The comparison of the singular value decays obtained by means of
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with A = H(?) (dashed lines) and A = I (solid lines) for

(?) 2 {u,w}. The plots for u are cut at the 5000th singular value.
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Figure 7.27: Example 2, BC3:
The comparison of the singular value decays obtained by means of
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with A = H(?) (dashed lines) and A = I (solid lines) for

(?) 2 {u,w}. The plots for u are cut at the 5000th singular value.

Online phase - building and simulating the ROM

Due to the similar singular value decays and for easy comparability, the reduced sizes
ru = rv and rp (c.f. Table 7.8) were chosen equal for both ROM types and the intervals
selected based on the results of Section 7.1.3. Then, for each simulation, the CPU time
of the ROM simulation in percent of the corresponding FOM simulation is computed.
Furthermore, the number of reduced Jacobian updates is extracted. These two values
are considered as indicator for the e�ciency and the stability of the ROM. The ROM
simulation time obviously is dominated by the operations that still depend on the full
dimension d̄, i.e. on the number of RHS evaluations (f r) and the number of Jacobian (Jf r)
updates. As it was observed that not only an increase in the dynamics of a simulation,
but also an increase in the condition number of the (reduced) Jacobian resulted in an
increasing number of Jacobian updates, this value is not only an indicator for the e�ciency
but also for the stability of the ROM. Aside from that, the reduced simulations also
seemed to diverge when too many Jacobian updates were necessary. Thus, the maximum
number of allowed reduced Jacobian updates was set to twice the number of necessary
Jacobian updates in the FOM case. However, for the chosen reduced sizes intervals and
combinations, every performed ROM simulation at least converged, which is already a
considerable improvement on the previously performed tests.
As a measure for the accuracy of the di↵erent ROM, naturally, the errors of the ROM
solution with respect to the FE solution were computed, again separately for the u-, v- and
w-dof. For the investigation at hand, the errors were calculated in both norms, the discrete
L2-norm (c.f. Equations (7.1) and (7.2)) and the discrete H1-norm (c.f. Equations (7.10)
and (7.11)). This decision was taken, as here the two types of POD bases were computed
optimally in each norm and hence in order not to overreach one case or the other.
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Figure 7.28: Example 2, BC1 - influence of utilised norm:
Each of the two columns contains the ROM simulation time in percent of the
FOM simulation time, the necessary number of Jacobian updates and the errors
in the u-, v- and w-dof for each simulated reduced size for one of the two chosen
parameter values µ3 from the training data set P.
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Figure 7.29: Example 2, BC2 - influence of utilised norm:
Each of the two columns contains the ROM simulation time in percent of the
FOM simulation time, the necessary number of Jacobian updates and the errors
in the u-, v- and w-dof for each simulated reduced size for one of the two chosen
parameter values µ3 from the training data set P.
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Figure 7.30: Example 2, BC3 - influence of utilised norm:
Each of the two columns contains the ROM simulation time in percent of the
FOM simulation time, the necessary number of Jacobian updates and the errors
in the u-, v- and w-dof for each simulated reduced size for one of the two chosen
parameter values µ3 from the training data set P.
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The results for each of the three boundary conditions are displayed in Figures 7.28–7.30.
Starting by assessing the accuracy of the two ROM types, one can generally say that
there is no significant di↵erence between the errors in the A = I and the A = H case.
For BC2 and BC3, all three errors, "u, "v and "w, lie in the range of 10�6 to 10�3. This
is the case for the discrete L2-norm as well as the discrete H1-norm. Only if one has a
very close look, one can observe that the errors in the A = I ROM are slightly better.
The errors for the BC1 simulations are three orders of magnitude smaller, they lie in
the range of 10�10 to 10�6. Here, the di↵erence between both ROM types seems more
pronounced. It is more evident that the A = I ROM perform slightly better. However,
as the range of the errors is three orders of magnitude smaller, this is merely a misleading
observation. Thus, as the errors for both ROM types are of the same magnitude, the
di↵erence in the accuracy is negligible. While for BC2 and BC3 all the errors do not
vary significantly between the di↵erent reduced sizes ru = rv, there are two noticeable
features in the pressure error plots of the A = I ROM in the BC1 simulations. In the
µ3 = 10 e�3 case, the error "w decreases uniformly with increasing size ru = rv. This
e↵ect has already been observed previously in Section 7.1.3 (c.f. e.g. Figure 7.22). An
oppositional e↵ect occurs in the more dynamic µ3 = 100 e�3 case. Here the error "w for
the A = I type ROM abruptly jumps up one order of magnitude, between the reduced
sizes ru = rv = 1140 and ru = rv = 1160 and increases even further afterwards. This
observation could mean that ROM built with POD bases computed by means of setting
A = H are less susceptible to (small) changes in the chosen reduced sizes and size ratios
and thus, from this (stability) point of view, are preferable to the A = I type ROM.
Interpreting the time plots and the plots showing the number of reduced Jacobian up-
dates, we can draw a conclusion regarding the e�ciency and stability of the two ROM
types. In four out of the six cases, the number of reduced Jacobian updates is equal, while
in two cases, the ROM built by means of A = H needs one update less. These two cases
represent more dynamic simulations, where stability seems to be more of an issue. Hence,
this observation speaks in favour of the A = H ROM type. Furthermore, this factor
should also be reflected in the CPU time needed for the reduced simulation. However,
there the plots show some contradictory results. While for the BC2 and BC3 cases, most
(39 out of 44) simulations performed with the A = H type ROM are faster than the
corresponding A = I type ROM simulation, this is the opposite for the BC1 simulations,
where only in 7 out of 22 simulations the A = H type ROM is faster than the cor-
responding A = I type ROM simulation. Nevertheless, considering all the simulations,
this adds up to 46 out of 66 simulations, where the A = H type ROM performs better
than the A = I type ROM from the speedup point of view. Additionally, in each of the
six simulated cases (three boundary condition types times two chosen parameters), the
fastest result was achieved with a ROM built from a POD basis optimal in the H1-norm.
Taking all these observations and interpretations into account, one can conclude that it
is advisable to compute the POD bases optimal in the H1-norm, which is also employed
from now on in all the following investigations.

7.2.2 The influence of the chosen training data

Based on the results of the previous section, every POD basis in this section is constructed

optimally in the H1-norm. The pressure POD basis Vw = H
� 1

2

p svd
⇣
H

1

2

p Sw

⌘
is combined
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with four di↵erent bases Vu = Vv for the position and velocity dof. The aim is to
investigate the e↵ect of the chosen training data on the performance of the ROM.

O✏ine phase - POD and singular value decay

At the beginning of Section 7.2, the chosen combinations of the available training data
Su and Sv for this investigation are specified. Again, we analyse the e↵ects for all the
three boundary condition cases. Figures 7.31–7.33 each show the four di↵erent singular
value decays resulting from the corresponding training data combination together with
the singular value decay for the pressure.
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Figure 7.31: Example 2, BC1: The singular value decays obtained by means of
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Figure 7.32: Example 2, BC2: The singular value decays obtained by means of
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Figure 7.33: Example 2, BC3: The singular value decays obtained by means of
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For all the three boundary conditions, no significant di↵erences exist among the respective

singular value decays. The decays for S = Sv and S =
h

1

maxSu
Su,

1

maxSv
Sv

i
are a little

slower than the ones for S = Su and S = [Su,Sv], but this e↵ect is really insignificant.

Online phase - building and simulating the ROM

Based on the singular value decays, we again chose the reduced sizes ru = rv and rp as
before (c.f. Table 7.8) for all four ROM types. Equivalent to the previous section, for
each example and each parameter value µ3, the CPU time of the ROM with respect to
the corresponding FOM, the number of Jacobian updates and the discrete H1-errors "(?)

H
,

(?) 2 {u,v,w}, are extracted or computed for the 11 di↵erent reduced sizes ru = rv. The
results are shown in Figures 7.34–7.36.
For the errors in u and v it makes no noteworthy di↵erence, with which combination
of the available training data the POD basis of the corresponding ROM was computed.
This is the case for all the three boundary condition types. The errors range from 10�3 to
10�8, depending on the boundary condition type and the parameter value. The accuracy
in the pressure dof, i.e. the error "w

H
, is slightly more influenced by this choice. In the

case V
10

uv
, the error is smaller than in the V

11

uv
and V

�̄�̄

uv
cases for all reduced sizes. For

BC2 and BC3, they still lie in the same order of magnitude and this marginal di↵erence
can be neglected. For BC1 however, especially the V

�̄�̄

uv
case performs worse. Here, the

error for the first half of the chosen reduced sizes ru = rv is one order of magnitude larger
than in the V

10

uv
ROM. The errors of the V

11

uv
ROM lie in between. This result is rather

surprising as one would expect a more accurate ROM the more information it contains.
However, it seems like adding the information of the velocity training data Sv does not
improve the ROM at all and maybe it even yields a worse performance.
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Figure 7.34: Example 2, BC1 - influence of utilised training data:
Each of the two columns contains the ROM simulation time in percent of the FOM
simulation time, the necessary number of Jacobian updates and the H1-errors in
the u-, v- and w-dof for each simulated reduced size for one of the two chosen
parameter values µ3 from the training data set P.
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Figure 7.35: Example 2, BC2 - influence of utilised training data:
Each of the two columns contains the ROM simulation time in percent of the FOM
simulation time, the necessary number of Jacobian updates and the H1-errors in
the u-, v- and w-dof for each simulated reduced size for one of the two chosen
parameter values µ3 from the training data set P.
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Figure 7.36: Example 2, BC3 - influence of utilised training data:
Each of the two columns contains the ROM simulation time in percent of the FOM
simulation time, the necessary number of Jacobian updates and the H1-errors in
the u-, v- and w-dof for each simulated reduced size for one of the two chosen
parameter values µ3 from the training data set P.
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Evaluating the resulting times and number of reduced Jacobian updates yields no indic-
ation as to which of the ROM should be favoured. The number of Jacobian updates is
the same for every single simulation. The simulation times all range roughly between
40� 70% of the FOM time and are rather randomly distributed, such that no tendency
can be revealed. Counting how often each of the ROM types is the fastest also doesn’t
reveal any useful information, as it is fairly balanced among all cases (V 10

uv
: 20, V 11

uv
: 21,

V
�̄�̄

uv
: 23 times the fastest).

The thorough reader might have noticed the lacking results for the ROM built with
the POD basis V

01

uv
. This is due to convergence issues with these ROM, for which not

a single simulation, for none of the boundary condition types and none of the chosen
reduced sizes, converged. As reason for this problem, the reduced initial condition
zu0

:=
�
V

01

uv

��1

u0 (c.f. Equation (5.5)) and accordingly the reconstructed initial con-
dition u0 ⇡ V

01

uv
zu0

, which is needed for the evaluation of the nonlinear parts, was
identified. The reduced initial condition was computed using the Matlab function
lsqminnorm(), i.e. computing zu0 = lsqminnorm(V, u0). Figure 7.37 shows the dif-
ference between the original initial condition u0 and the reconstructed initial condition

V (?)zu0
, V (?) 2

n
V

10

uv
,V 11

uv
,V �̄�̄

uv
,V 01

uv

o
for each dof exemplarily for BC1.
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Figure 7.37: The di↵erence between the original and the reconstructed initial conditions plotted
for each dof. Here exemplarily done for BC1 and for the four chosen POD bases.
Additionally, on the bottom right, the reconstructed initial condition V

01

uv zu0
is

plotted in the three-dimensional space.

One can observe that this procedure works very well for the cases V 10

uv
, V 11

uv
and V

�̄�̄

uv
, where

the di↵erences are of magnitude 10�13 (see Figure 7.37 top row). For the V 01

uv
case, though,

the di↵erences are in the interval [�1, 1], thus far too big. Here, the reconstructed initial
condition was additionally plotted in the three-dimensional space, where the problem
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becomes even more obvious (see Figure 7.37 bottom right). As we have zero velocity initial
conditions, no problems occur for those (reduced) dof, since zv0

is also zero. Therefore, it
seems like the POD basis V 01

uv
is badly conditioned. To make sure, no coding mistake or

similar is the reason for this problem, the orthonormality property was checked and as it
should, it holds

�
V

01

uv

�T
HuV

01

uv
= I. The idea of computing the reduced initial condition

by

zu0
:=
�
V

01

uv

�T
Huu0 (7.12)

instead, yielded the same result and so did the Matlab function mldivide(). This issue
needs to be addressed in the future.
The hope of finding a di↵erence between the other three ROM types from the initial
condition plots, which could have helped in the decision process on how to combine the
available training data, has unfortunately not been fulfilled. As the observed di↵erences
between the three ROM types were rather insignificant, and other factors seem to have
a stronger influence on the performance of the ROM, we refrained from further investig-
ations of weighting the training data V

��

uv
= [�Su, �Sv] with more �, � 2 [0, 1], at this

point. Instead, aspects that seem to have a stronger influence, like the ratio (ru = rv)/rp
between the reduced sizes for the position/velocity space and the reduced size for the
pressure space, shall be investigated further in the following Section 7.3.
As conclusion of this section, we will from now on calculate the position (and velocity)

POD basis by means of H
� 1

2

u svd
⇣
H

1

2

uSu

⌘
, i.e. optimal in the H1-norm and simply using

the position training data Su. The latter choice was made, since including the velocity
training data Sv so far was not beneficial and additionally rather unpredictable e↵ects
might occur and thus complicate interpretation. Furthermore, the pressure POD basis is

always computed through H
� 1

2

p svd
⇣
H

1

2

p Sw

⌘
.

7.3 The influence of the combination of reduced position
and pressure space

This section further examines the e↵ect of the combination of the reduced position (and
velocity) space and pressure space on the performance of the ROM. For this purpose,
Section 7.3.1 first investigates the influence of di↵erent ratios between the reduced size ru
and the reduced size rp on stability, accuracy and e�ciency of the ROM. Subsequently, in
Section 7.3.2, the e↵ect of enriching the position (and velocity) space with approximate
supremizer solutions is investigated.
As in the previous section, Example 2 is utilised here with all the three boundary condition
cases and the same training data (c.f. Section 7.1.3 - o✏ine phase). For both investigations,
ROM with four di↵erent reduced sizes rp were built. The sizes rp were chosen based on the
kinks shown in the singular value decays (c.f. Figures 7.41–7.43) and smaller, i.e. already
making use of the results from the previous sections. Ballarin et al. [4] give the advice to
choose the number of supremizer modes, rs, to enrich the position space with, smaller or
equal to the number of pressure modes, i.e. rs  rp. Therefore, for each of the reduced size
rp, the ROM with a supremizer enriched position (and velocity) POD basis, were built
choosing two di↵erent reduced sizes ru combined with four di↵erent sizes rs  rp. In order
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to appropriately compare the ROM obtained with and without supremizer enrichment,
the reduced sizes for the pure position spaces, here named rus, were chosen such that the
obtained sizes of the overall ROM were equal, i.e. setting rus := ru + rs. Tables 7.9 and
Tables 7.10 list the chosen reduced sizes.

rus rp

80 100 120 140

ru {920, 1 120} {900, 1 100} {880, 1 080} {860, 1 060}
rs {20, 40, 60, 80} {40, 60, 80, 100} {60, 80, 100, 120} {80, 100, 120, 140}

rus {940, 960, 980, 1 000, 1 140, 1 160, 1 180, 1 200}

Table 7.9: Example 2, BC1:
The size combinations for building the ROM used for the comparison of di↵erent
ratios rp/ru on the one hand, and for investigating the e↵ect of adding rs supremizers
to the position and velocity space on the other hand.

rus rp

110 130 150 170

ru {1 090, 1 290} {1 070, 1 270} {1 050, 1 250} {1 030, 1 230}
rs {50, 70, 90, 110} {70, 90, 110, 130} {90, 110, 130, 150} {110, 130, 150, 170}

rus {1 140, 1 160, 1 180, 1 200, 1 340, 1 360, 1 380, 1 400}

Table 7.10: Example 2, BC2 and BC3:
The size combinations for building the ROM used for the comparison of di↵erent
ratios rp/ru on the one hand, and for investigating the e↵ect of adding rs suprem-
izers to the position and velocity space on the other hand.

7.3.1 Examination of the ratio between the reduced sizes of position
and pressure space

Figures 7.38–7.40 show the results obtained for BC1, BC2 and BC3, respectively. Each of
the two columns contains the H1-errors in the u-, v- and w-dof, the necessary number of
reduced Jacobian updates and the ROM simulation time in percent of the FOM simulation
time, for each simulated reduced size combination ru with rp for one of the two chosen
parameter values µ3 from the training data set P . The largest reduced sizes ru were, as
before, chosen based on the kink in the singular value decays. Recalling the property of
the remaining singular values as a priori error estimate, and theoretically being satisfied
with less accurate results, further sizes were chosen smaller than that.
For all the three cases, one can observe that, at least within the chosen range, the reduced
size ru (= rv) has only an insignificant influence on the errors, which are obviously dom-
inated by the choice of the size rp of the reduced pressure space. Merely for the error in
the pressure coe�cients w of BC3 (c.f. Figure 7.40, row 3), one can see a minor positive
e↵ect, when increasing the number of reduces position modes included in the POD basis.
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On the other hand, increasing the size rp from roughly 10% of the FOM size Np to 20%
in the BC1 case and from 15% of the FOM size Np to 25% in the BC2 and BC3 case,
results in a decrease of all errors (u,v and w) around one to two orders of magnitude.
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Figure 7.38: Example 2, BC1: Results for ROM built with di↵erent ratios ru/rp.
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Figure 7.39: Example 2, BC2: Results for ROM built with di↵erent ratios ru/rp.

The number of Jacobian updates is the same for all simulations performed within the
chosen intervals for ru and rp. Thus, this cannot give any advice (at least for the examples
investigated in this section) on the ratio between the size of the reduced position and
pressure space. Maybe for future work it is advisable to additionally look at e.g. a mean
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condition number of the reduced Jacobians.
As for the di↵erences in the simulation time of the reduced models, if at all, an opposite
e↵ect compared to the errors can be noted. For increasing sizes rp, the simulation time
tends to increase for most of the simulations. However, the time plots also contain a lot
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Figure 7.40: Example 2, BC3: Results for ROM built with di↵erent ratios ru/rp.
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of random e↵ects and no clear pattern can be recognised. To summarise, it seems im-
possible to give an advice or come up with a heuristic criterion on how to choose the
reduced sizes ru and rp based on the results of this section.

7.3.2 The benefit of supremizer enrichment

Now, the influence of enriching the position space with approximate supremizer solutions
shall be investigated. As described in Section 5.3, for this purpose, the o✏ine phase needs
to be extended by additionally computing approximate supremizer solutions and a POD
basis Vs. Tables 7.9 and 7.10 list the two chosen reduced sizes ru for each of the four
chosen sizes rp. As described in Section 5.3.2 it is beneficial to construct the supremizer
POD basis Vs orthonormal to the position POD basis Vu. This means that prior to
the computation of Vs, one needs to specify the size of the space Vu that needs to be
excluded. Here, it was necessary to compute eight di↵erent supremizer POD bases for
each of the boundary condition cases. The corresponding singular value decays are shown
in Figures 7.41–7.43.
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Figure 7.41: Example 2, BC1: The singular value decays of the POD on the supremizer data
Ss together with the (already previously plotted) singular value decays of the dis-
placement and the pressure data. The supremizer data singular value decays are
similar for each size ru of the excluded space Vu.

Every ROM in this section, constructed with the chosen combination of POD bases and
reduced sizes, converged. This is already a good result. The simulation times of the ROM
range between 30�75% of the corresponding FOM simulation time. This represents quite
a wide range. While one might be satisfied with a ROM that yields results three times
faster than the FOM, an insignificant speedup of 1.3 does not really compensate for a
time-consuming o✏ine phase. Even keeping in mind that the nonlinear components are
not approximated yet.
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Figure 7.42: Example 2, BC2: The singular value decays of the POD on the supremizer data
Ss together with the (already previously plotted) singular value decays of the dis-
placement and the pressure data. The supremizer data singular value decays are
similar for each size ru of the excluded space Vu.
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Figure 7.43: Example 2, BC3: The singular value decays of the POD on the supremizer data
Ss together with the (already previously plotted) singular value decays of the dis-
placement and the pressure data. The supremizer data singular value decays are
similar for each size ru of the excluded space Vu.

Figures 7.44–7.46 show the results of the reduced simulations in more detail. As before,
the simulation time in percent of the corresponding FOM simulation time, the number of
reduced Jacobian updates and the errors in the u, v and w dof are plotted in each figure
for the two chosen parameters µ3 2 P in two columns.



7.3 The influence of the combination of reduced position and pressure space 141

940 1 000 1 140 1 200
30

35

40

45

50

55

ru (+rs)

ti
m
e
[%

F
O
M
]

µ3 = �10 e�3

940 1 000 1 140 1 200

1

ru (+rs)

#
J
f
r
u
p
d
at
es

940 1 000 1 140 1 200
10

�7

10
�6

10
�5

ru (+rs)

"u H

940 1 000 1 140 1 200

10
�7

10
�5

ru (+rs)

"v H

940 1 000 1 140 1 200
10

�10

10
�9

10
�8

10
�7

ru (+rs)

"w H

940 1 000 1 140 1 200
50

55

60

65

70

75

ru (+rs)

ti
m
e
[%

F
O
M
]

µ3 = 100 e�3

940 1 000 1 140 1 200

3

ru (+rs)
#

J
f
r
u
p
d
at
es

940 1 000 1 140 1 200
10

�8

10
�7

10
�6

10
�5

ru (+rs)

"u H

940 1 000 1 140 1 200
10

�8

10
�7

10
�6

10
�5

10
�4

ru (+rs)

"v H

940 1 000 1 140 1 200
10

�10

10
�9

10
�8

10
�7

10
�6

ru (+rs)

"w H

rp = 140 rp = 120 rp = 100 rp = 80

without supremizers with supremizers

Figure 7.44: Example 2, BC1:
Comparing the performance of the ROM built with and without supremizer en-
richment of the position POD basis for di↵erent reduced sizes.
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Figure 7.45: Example 2, BC2:
Comparing the performance of the ROM built with and without supremizer en-
richment of the position POD basis for di↵erent reduced sizes.
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Figure 7.46: Example 2, BC3:
Comparing the performance of the ROM built with and without supremizer en-
richment of the position POD basis for di↵erent reduced sizes.
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To begin with, one can observe no significant di↵erence between the simulations performed
with and without the supremizer basis enrichment. Whether a ROM of overall size 2 ⇥
rus+ rp was built purely with POD modes from Vu or with a combination of POD modes
from Vu and Vs has only little influence on the error. Taking a close look, one can
identify that adding the supremizer modes slightly increases the error in the u and v dof,
whereas the error in the w dof decreases. However, this e↵ect is as expected and appears
negligible. Again, it becomes obvious that the choice of the reduced size rp of the pressure
space dominates the error. This is the case for the position, velocity and pressure dof in
each of the three scenarios that were tested.
The number of necessary Jacobian updates does not di↵er among the di↵erent ROM
and thus cannot give any advice on which method to favour. The same holds for the
simulation times, which are very randomly distributed again. While sometimes the ROM
with supremizer basis enrichment is faster than the ROM of corresponding reduced size
without added supremizers, the opposite is the case just as often.
An important fact to mention here is that ROM built with POD bases, where the su-
premizer POD basis Vs was not constructed orthonormal to the POD basis Vu, did not
converge. Thus, preserving the algebraic stability seems to be more important than im-
proving the approximation stability. Again, one could suggest to look additionally at the
condition numbers of the reduced Jacobians as additional means to decide which of the
ROM to choose. Since no tendency could be revealed so far, both approaches will be
applied in the next section for Examples 3, i.e. the models with increasing complexity.

7.4 Results for models with increasing complexity

In this section, the method that seemed to have proven most suitable, by looking at the
results from all previous investigations, shall be applied to the Examples 3 in order to
see how it performs if one goes towards the goal of the dynamic skeletal muscle model.
Summarised, this means:

• Utilising training data Su, Sw to compute POD bases Vu, Vw that are optimal in
the inner product norm, i.e. setting A = H .

• Looking at the corresponding singular value decays and choosing reduced sizes ru
and rp that seem appropriate.

• Choosing the same approximation space and reduced dimension for the velocity dof,
i.e. Vv = Vu and rv = ru.

• Computation of approximate supremizer training data Ss based on the available
training data and constructing a POD basis Vs that is orthonormal to Vu (already
using the chosen size ru).

• Construction of a ROM, either

�: simply using the position POD basis Vu, or

+: enriching with supremizers and thus choosing rs  rp and approximating with
(Vu Vs) .



7.4 Results for models with increasing complexity 145

This approach is first applied to Example 3A with its increasing material complexity
in Section 7.4.1 for the two di↵erent simulation scenarios. Then, in Section 7.4.2 it is
applied to Example 3B with its more complex, fusiform shaped muscle geometry. Finally,
in Section 7.4.3, the methods are examined for a case, where the online simulation is not
contained in the training data used for the generation of the POD bases.

7.4.1 Increasing the material complexity

As FOM, Example 3A, i.e. the cubic geometry, with a discretisation dx = 5mm is used.
For recalling details on the setup, the reader is referred to Sections 6.1.3 and 6.3.3.

O✏ine phase - computation of training data

For the scenario BCxz, the training parameter is the applied traction force, i.e. µ3. For
the scenario BCxact, the maximum activation ↵max is the training parameter. np = 5
parameter values were chosen for the generation of training data in both cases,

BCxz: µ3 2 {5, 15, 25, 35, 45} e�3MPa ,

BCxact: ↵max 2 {0.2, 0.4, 0.6, 0.8, 1.0} .
Accounting for the zero Dirichlet boundary conditions and the four times finer time
discretisation in the BCxz case, the dimensions of the obtained snapshot matrices are:

BCxz: Su,Ss 2 R13 872⇥20 005 , Sw 2 R729⇥20 005 ,

BCxact: Su,Ss 2 R13 872⇥5 005 , Sw 2 R729⇥5 005 .

Figures 7.47 and 7.48 show the singular value decays of the subsequently performed SVD
on each of the snapshot matrices.
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Figure 7.47: Example 3A, BCxz:
The singular value decays of the POD on the supremizer data Ss together with the
singular value decays of the position and the pressure data. The supremizer data
singular value decays are very similar for each size ru (see below) of the excluded
space Vu, thus only one case is plotted here.
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Figure 7.48: Example 3A, BCxact:
The singular value decays of the POD on the supremizer data Ss together with the
singular value decays of the position and the pressure data. The supremizer data
singular value decays are very similar for each size ru (see below) of the excluded
space Vu, thus only one case is plotted here.

Online phase - building and simulating di↵erent ROM

The range for each of the reduced sizes ru (rus) and rp for the di↵erent ROM was chosen
based on the obtained singular value decay and the values are listed in Tables 7.11 and
7.12. As in the previous section, it was made sure that the sizes rus := ru + rs were set in
such a way that a comparison of ROM with the same overall size is possible.
For the online simulation with the di↵erent ROM, again two parameters out of the train-
ing parameter set P were tested. Figures 7.49 and 7.50 show the results of all simulations
performed with the various reduced size combinations for the case BCxz and BCxact
respectively. As before, the simulation time in percent of the corresponding FOM simu-
lation time, the number of reduced Jacobian updates and the errors in the u, v and w

dof are plotted in each figure for the two chosen parameters µ3 2 P or ↵max 2 P in two
columns.

rus rp

365 385 405 410

ru {2 155, 2 745} {2 135, 2 725} {2 115, 2 705} {2 110, 2 700}
rs {320, 340, 360, 365} {340, 360, 380, 385} {360, 380, 400, 405} {365, 385, 405, 410}

rus {2 475, 2 495, 2 515, 2 520, 3 065, 3 085, 3 105, 3 110}

Table 7.11: Example 3A, BCxz:
The size combinations for building the ROM used for the comparison of di↵erent
ratios rp/ru on the one hand, and for investigating the e↵ect of adding rs suprem-
izers to the position and velocity space on the other hand.
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rus rp

115 130 135 140

ru {705, 945} {690, 930} {685, 925} {680, 920}
rs {90, 105, 110, 115} {105, 120, 125, 130} {110, 125, 130, 135} {115, 130, 135, 140}

rus {795, 810, 815, 820, 1 035, 1 050, 1 055, 1 060}

Table 7.12: Example 3A, BCxact:
The size combinations for building the ROM used for the comparison of di↵erent
ratios rp/ru on the one hand, and for investigating the e↵ect of adding rs suprem-
izers to the position and velocity space on the other hand.

For the BCxz case, the following observations can be made. First of all, and maybe most
importantly, for the case without supremizer enrichment, 6 out of the 64 reduced simula-
tions did not converge, while the ROM of corresponding size, but built with supremizer
enriched position and velocity POD basis, did. This occurred for the two larger values
rp and the more dynamic load case µ3 = 45 e�3MPa in combination with some of the
smaller reduced sizes ru. This observation stands in high favour for enriching the ROM
with approximate supremizer solutions. Additionally, this can be supported by the neces-
sary number of Jacobian updates. For this more complex Example 3 now, this number
varies a lot among the di↵erent ROM, and as shown in the second row of Figure 7.49,
is not always, but frequently lower for the supremizer enriched ROM. Especially for the
smaller ROM and the more dynamic load case µ3 = 45 e�3MPa, this is evident. Here, for
ROM built with supremizer enriched POD basis, the necessary number of updates is best
between 15 and 25, while it is between 35 and 40 for all ROM built without considering
supremizer solutions. Naturally, this is reflected in the solution time as well. The best,
i.e. fastest simulations were performed with the supremizer enriched ROM. As for the
errors, the observations from Section 7.3 are confirmed. Adding the supremizer modes
slightly increases the error in the u and v dof, whereas the error in the w dof decreases.
However, compared to the e↵ect, which the reduced size rp of the pressure space has on
the error, this is again negligible.
For the BCxact case, generally one can observe that the di↵erences among the ROM
without and with supremizer enrichment are not very pronounced. They seem more
random again, as for the Examples 2. However, they are also not contradictory to the
statements made for Example 3, BCxz. A single inconstancy appears in the error in w,
which is also present in the BCxz case. Choosing rp too large with respect to ru has a
negative e↵ect on the error in w in the supremizer enriched ROM (see blue + in the last
rows of Figures 7.49 and 7.50).
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Figure 7.49: Example 3A, BCxz:
Comparing the performance of the ROM built with and without supremizer en-
richment of the position POD basis for di↵erent reduced sizes.
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Figure 7.50: Example 3A, BCxact:
Comparing the performance of the ROM built with and without supremizer en-
richment of the position POD basis for di↵erent reduced sizes.
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7.4.2 Increasing the geometrical complexity

As FOM, Example 3B, i.e. the fusiform muscle geometry, discretised with 800 elements
is used here. Details on the setup can be recalled by looking back into Sections 6.1.3 and
6.3.3.

O✏ine phase - computation of training data

In this scenario, the maximum activation ↵max is the training parameter. Again, np = 5
parameter values ↵max 2 {0.2, 0.4, 0.6, 0.8, 1.0} were chosen for the generation of training
data. Accounting for the zero Dirichlet boundary conditions and the shorter time
interval for the simulation (only 50ms here), the dimensions of the obtained snapshot
matrices are Su,Ss 2 R21 413⇥2 505, and Sw 2 R1 029⇥2 505. Figure 7.51 shows the singular
value decays of the subsequently performed SVD on each of the snapshot matrices.
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Figure 7.51: Example 3B: The singular value decays of the POD on the supremizer data Ss

together with the singular value decays of the position and the pressure data. The
supremizer data singular value decays are very similar for each size ru of the
excluded space Vu, thus only one case is plotted here.

Online phase - building and simulating di↵erent ROM

Again, the range for each of the reduced sizes ru (rus) and rp was chosen based on the
obtained singular value decay. The values are listed in Table 7.13.
For the online simulation with the di↵erent ROM, again two parameters out of the training
parameter set P were tested. Figure 7.52 shows the results of all simulations performed
with the various reduced size combinations. Like in the activation case with the cubic
geometry, no significant di↵erence can be made between the ROM with and without
supremizer enriched position and velocity basis. The errors in u and v for this case
can be called the same. The error in w again is negligibly smaller in the ROM without
supremizer enrichment.
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Figure 7.52: Example 3B:
Comparing the performance of the ROM built with and without supremizer en-
richment of the position POD basis for di↵erent reduced sizes.
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rus rp

80 105 120 122

ru {342, 437} {317, 412} {302, 397} {300, 395}
rs {38, 63, 78, 80} {63, 88, 103, 105} {78, 103, 118, 120} {80, 105, 120, 122}

rus {380, 405, 420, 422, 475, 500, 515, 517}

Table 7.13: Example 3B: The size combinations for building the ROM used for the comparison
of di↵erent ratios rp/ru on the one hand, and for investigating the e↵ect of adding
rs supremizers to the position and velocity space on the other hand.

While the number of necessary Jacobian updates does not vary among the ROM here,
the simulation times range between 70 and 110 percent of the FOM simulation time.
Especially the ROM with larger reduced size rp and smaller ru stand out negatively here.
Thus, this example again confirms that the performance of the ROM is very sensitive
concerning the chosen size of the pressure space with respect to the position space.

7.4.3 Simulating a scenario not included in the training data

The idea behind this test case is to have a selection of reduced-order muscles, which were
e.g. trained with di↵erent boundary conditions, loading directions and activation states.
Then, those could potentially be assembled in a multi-muscle and multi-body system to
obtain an overall simulation, that is much faster than one performed with full-order muscle
models. Example 3A, i.e. the cubic muscle geometry with the more complex material,
with discretisation dx = 5mm serves as FOM for this investigation.

O✏ine phase - computation of training data

During the o✏ine phase, two di↵erent loading cases are simulated, each of them for
several parameter values µ3. Those are, in correspondence with the BC1 and BC2 case of
Example 2, an applied traction force in x-direction (0°), referred to as BCx, and an applied
traction force in z-direction (90°), referred to as BCz. Thus, the muscle is once subject to
a uniaxial force and once exposed to a shear loading. In total, np = 9 simulations served
as training data. Those are

BCx: µ3 2 {5, 10, 25, 50, 75} e�3MPa , i.e. 5 di↵erent values,

BCz: µ3 2 {1, 5, 10, 15} e�3MPa , i.e. 4 di↵erent values.

Accounting for the zero Dirichlet boundary conditions, the dimensions of the obtained
snapshot matrices are: Su,Ss 2 R13 872⇥9 009, and Sw 2 R729⇥9 009. Figure 7.53 shows
the singular value decays of the subsequently performed SVD on each of the snapshot
matrices. Since during the online phase, the di↵erent ROM shall simulate the BCxz
test case (i.e. with 45° an angle between the BCx and BCz case), the singular value
decays obtained with Example 3A, BCxz are added in Figure 7.53 using dashed lines.
Interestingly, the singular values of the position and the supremizer POD decay faster for
the separate calculation of BCx and BCz.
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Figure 7.53: Example 3A, BCx concatenated with BCz:
The singular value decays of the POD on the supremizer data Ss together with
the singular value decays of the position and the pressure data. The supremizer
data singular value decays are very similar for each size ru of the excluded space
Vu, thus only one case is plotted here. Additionally, the singular value decays for
the Example 3A, BCxz are plotted with dashed lines for comparison, since this
will be the online scenario to simulate with the constructed ROM.

Online phase - building and simulating di↵erent ROM

The range for each of the reduced sizes ru (rus) and rp was chosen based on the respective
singular value decay. Note that due to the faster decay a lot smaller values for rus =
ru + rs were chosen here compared to the direct test case BCxz. The values are listed in
Table 7.14.

rus rp

310 375 405 410

ru {1 390, 1 880} {1 325, 1 815} {1 295, 1 785} {1 290, 1 780}
rs {210, 275, 305, 310} {275, 340, 370, 375} {305, 370, 400, 405} {310, 375, 405, 410}

rus {1 600, 1 665, 1 695, 1 700, 2 090, 2 155, 2 185, 2 190}

Table 7.14: Example 3A, BCx concatenated with BCz:
The size combinations for building the ROM used for the comparison of di↵erent
ratios rp/ru on the one hand, and for investigating the e↵ect of adding rs suprem-
izers to the position and velocity space on the other hand.

The di↵erent ROM were tested for µ3 2 {15, 45} e�3MPa. The full solutions obtained
during the o✏ine phase of Example 3A, BCxz served as reference solutions here. Note
that those were obtained with a smaller time step size dt = 0.025ms and that the online
simulation for the test scenario at hand was also conducted using this time step size,
while for the generation of the separate training data BCx and BCz, the time step size
dt = 0.1ms was used.
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Figure 7.54: Example 3A, BCxz simulated with a ROM built from training data BCx concat-
enated with BCz: Comparing the performance of the ROM built with and without
supremizer enrichment of the position POD basis for di↵erent reduced sizes.
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As before for the direct BCxz scenario, some of the reduced simulations performed with a
ROM without supremizer enrichment did not converge, while the ROM of corresponding
size, but built with supremizer enriched position and velocity POD basis, did. Here it
only occurred for 2 out of the 64 reduced simulations, more specifically for the two larger
values rp in combination with the smallest reduced sizes ru and the more dynamic load
case µ3 = 45 e�3MPa. Figure 7.54 shows the results of the converged simulations.
For this example now, every chosen measure speaks in favour of the supremizer enriched
ROM. Especially the ROM built with the two smaller reduced sizes rp in combination
with a supremizer enriched POD basis Vu perform better than the rest (see the yellow
and purple + in Figure 7.54). The errors for each component u, v and w are smaller
for solutions obtained with a supremizer enriched ROM. However, one should notice that
the magnitude of all errors is a lot larger here than for the previous examples and ranges
between 1 e�3 and 1 e+1. Maybe one should additionally look at the magnitude of the
relative errors here. Checking the solutions by looking at the video over all time steps
confirmed that something reasonable is computed, i.e. that the overall behaviour was
captured correctly by the ROM. Thus, it could again mean that the comparison of each
node at each single time step is simply an error measure, which is too strict. Comparing
these ROM with the ones obtained in Example 3A, BCxz, one should also keep in mind
the di↵erence between the chosen range for the reduced size ru, due to the di↵erence in the
singular value decays. While here we have rus 2 [1 000, 2 190], for Example 3A, BCxz it
was rus 2 [2 475, 3 110]. This might explain the di↵erence in the errors of around 4 orders
of magnitude. On the other hand, this observation somehow demonstrates again that the
singular value decay, i.e. the sum of the remaining singular values, cannot appropriately
serve as an a priori error measure for this three field muscle model. Looking at the
number of necessary reduced Jacobian updates and the simulation times with respect
to the FOM, one can also conclude that the supremizer enriched ROM outperform the
ones simply using the position POD basis. The necessary number of Jacobian updates,
e.g. for rp = 375 in the µ3 = 45 e�3MPa case, is around 10 to 15 for the supremizer
enriched ROM, and between 30 and 40 for other one. This is evidently also reflected in
the simulation times.
Lastly, not only focusing on the comparison between ROM built with or without suprem-
izer enriched bases, this example again shows the enormous e↵ect of the ratio between
the reduced position size ru and the reduced pressure size rp. Increasing the size ru (with
respect to the chosen size rp) does not only yield an improvement in terms of the errors,
but more significantly also in the number of Jacobian updates and the computation times.
First of all, those are smaller for larger ru, but additionally, there is not as much deviation,
when varying the size rp and between the ROM with and without supremizer enrichment.
This could be an indication as to greater stability in this case.





8 Summary, discussion and outlook

Using continuum-mechanical models to predict the behaviour of the musculoskeletal sys-
tem is a useful approach to enhance or support experimental studies. However, it is
also a challenging and computationally expensive task. This dissertation makes a valu-
able contribution towards the aim of providing a stable and fast skeletal muscle model,
applicable for complex simulations and investigations. Therefore, the structure of a three-
dimensional, dynamic, incompressible and nonlinear skeletal muscle model was derived
in detail and thoroughly investigated. Subsequently, the well-established methods of re-
duced basis approximation and proper orthogonal decomposition were customised to be
suitable for the application on the highly complex skeletal muscle model. This way, a sig-
nificant dimensional reduction of the governing system of di↵erential algebraic equations
to around 15% of the original system size could be achieved, while preserving the ori-
ginal structure and stability. Furthermore, considering that approximating the nonlinear
components still remains an open task, an acceptable speedup of nearly 2 was obtained.

The equations suitable for describing the mechanical behaviour of skeletal muscle were
reviewed and a reasonably complex continuum-mechanical dynamic skeletal muscle model
was set up. To that purpose a brief introduction into constitutive modelling of incom-
pressible, transversely isotropic hyperelasticity was given. The governing equations were
discretised in space and time, using the mixed Taylor-Hood finite elements and the
implicit Euler scheme, respectively, to make the continuous problem accessible to nu-
merical solution methods. The numerical implementation of the obtained di↵erential
algebraic equation system describing three fields, namely the position, the velocity and
the hydrostatic pressure, was realised in the Matlab library KerMor. A reasonably
stable full-order model (FOM) was obtained, which was investigated from the theoretical
and computational point of view. The computational analysis by means of a mesh con-
vergence study was carried out using three di↵erent examples with increasing material
and geometrical complexity, which each were derived to adequately serve their specific
purpose.
Subsequently, the technique of projection-based model order reduction (MOR) was re-
viewed and the proper orthogonal decomposition (POD) was considered to be an appro-
priate method to obtain the reduced subspaces. Since the full-order skeletal muscle model
consists of three fields, the projection of the system onto a subspace or onto di↵erent sub-
spaces is not straightforward. This was first investigated from a theoretical point of view
and later demonstrated with computations performed with the derived examples. There-
fore, di↵erent ROM were built and their performance with respect to stability, e�ciency
and accuracy were compared. Various combinations and sizes of subspaces, each of them
again described by di↵erently calculated POD bases, were tested. The results led to the
following conclusions or recommendations for the construction of a stable reduced-order
skeletal muscle model: (i) The velocity POD basis has to be chosen equal to the position
POD basis, i.e. the same subspace for both fields is required in order to preserve the
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structure of the FOM. (ii) For the reduced sizes of the velocity and the position space,
rv  ru has to hold. (iii) The POD bases should be computed optimal in the inner product
norm. (iv) The stability of the ROM mainly depends on the ratio between the size of the
reduced position space, ru, and the reduced pressure space, rp. (v) Enriching the position
(and velocity) POD basis with approximate supremizer solutions proved to be beneficial
to gain stability.
Following these recommendations, a ROM with a satisfying performance could be con-
structed. Nevertheless, especially the last two points are not analysed to complete sat-
isfaction, since the performance of the di↵erently constructed ROM was highly problem-
specific, i.e. depending on the characteristics of the underlying FOM, and thus exact
rules or heuristic criteria could not be established. This leads to an outlook on possible
improvements and general suggestions for future work on this topic.

Starting with the full-order model, it would certainly be valuable to conduct a deeper,
more problem-specific theoretical analysis of the di↵erential algebraic equation system and
resultant requirements on the solution procedure. For example, theoretical work on the
inf-sup condition, often available for simpler quasi-static and linear problems, should be
revised and written down thoroughly for this more complex problem. Also the employed
numerical solution scheme leaves room for improvement. While some di↵erent approaches,
like an index reduction of the di↵erential algebraic equation system prior to solving it, were
already tested and considered ine↵ective, further methods or algorithms, e.g. operator
splitting methods, di↵erent time integration schemes, damped Newton schemes, or the
work of Glowinski & Le Tallec [23], are certainly worth looking at and might reveal larger
convergence regions. With respect to increasing the stability of the full-order skeletal
muscle model, including the viscous damping term should also have a positive e↵ect. A
proper viscous damping term should decrease the oscillations that are clearly visible in
the more dynamic test cases. As explained in Chapter 3, this has been omitted in the
presented simulations for the sake of reducing the complexity and potential sources of
errors. However, looking at the discretised equation system and the Jacobian, i.e. the
linear solve, in particular, it should clearly be beneficial. This contribution shows that
issues, already occurring in the FOM are inherited by the ROM and might become even
more pronounced, which is why it should be emphasised that a profound understanding
of the FOM before starting any model reduction procedure is inevitable.
With respect to building a reduced-order skeletal muscle model, this o↵ers various inter-
esting possibilities for future research, which can be divided roughly into the two aims
of preserving stability and gaining computational speedup. The former has already been
thoroughly investigated in this thesis. As already mentioned during the discussion of
the obtained results, further analysing the condition number of the reduced Jacobian
matrices for the di↵erent POD bases and combinations thereof might give more insight as
to which option to favour. Moreover, this could provide an additional means to find rules
or heuristic criteria how to choose the ratio between the size of the reduced position space,
ru, and the reduced pressure space, rp. The application of a greedy snapshot selection,
which automatically considers the importance of each snapshot u and v and selects based
on certain criteria, which ones to include in the POD, would certainly prove beneficial.
Enriching the position and velocity POD basis by approximate supremizers turned out
to be a promising approach for improving the stability of the ROM. Again, this can be
investigated further, also or especially from the theoretical point of view, based on the



159

suggested revision of the inf-sup condition for the FOM. Lastly, the issue of computing
the reduced initial condition in the case of exclusively choosing the velocity training data
Sv for the computation of the position and velocity POD basis, still needs to be solved.
Maybe this problem arises due to the oscillations on the one hand and relatively small
velocities on the other hand. If that was the case, adding the viscous damping term in the
FOM might already o↵er a remedy by removing the oscillatory response. Additionally,
this should be beneficial from a theoretical point of view. The reduced Jacobian con-
tains the term V

T

u
[�M + dtD]Vu, which is close to the identity matrix (multiplied by

some scalar factor) for a POD basis that was constructed to be orthonormal in the inner
product norm. The latter aim, gaining computational speedup, is strongly related to the
nonlinear operations, i.e. the evaluation of the reduced right-hand side function g

r and
the reduced Jacobian Jg

r. Those are still evaluated exactly in this work, thus depending
on the dimension of the FOM and impeding a significant computational speedup. Their
approximate evaluation, by additionally applying e.g. the ECSW or the DEIM in a cus-
tomised form, is definitely required in future research. However, from experiences made so
far, this additional task is only recommendable, once a stable projected ROM is available.
Furthermore, it would also be extremely interesting to look into the structure of those
operators in more detail, once one has a particular material model and simulation scenario
in mind. Exactly knowing the features and the structure of such an assembled reduced
nonlinear operator, one could exploit those to develop specific suitable hyperreduction
methods. This could potentially be the microstructurally and homogenisation-based ma-
terial model by Bleiler et al. [7], where for instance use could be made of the a�nity
assumption and a resulting additive decomposition of energy contributions of di↵erent
microstructures.
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Towards a fast and stable
dynamic skeletal muscle model

Mylena Mordhorst

vorgelegt an der

This thesis investigates the possibility to reduce the computational e↵ort

of a dynamic skeletal muscle model making use of model order reduction

methods. For that purpose, a three-dimensional, nonlinear, dynamic

skeletal muscle model based on the theory of incompressible finite hyper-

elasticity is introduced. After discretisation in space and time, using the

mixed Taylor-Hood finite elements and the implicit Euler scheme,

respectively, the obtained complex and high-dimensional di↵erential al-

gebraic equation system describing the three fields position, velocity and

pressure, is investigated from a theoretical as well as computational point

of view. Furthermore, the stability issues, encountered with a reduced-

order model, built by projecting each field of the high-dimensional model

onto a reduced subspace, are demonstrated. The reason for these prob-

lems is additionally investigated and confirmed from the theoretical per-

spective. In order to propose a suitable approach for obtaining a stable

reduced order skeletal muscle model, the well-established technique of

combining the reduced basis approximation with the proper orthogonal

decomposition needs to be customised. The performance with respect to

stability, e�ciency and accuracy of di↵erent reduced-order models, built

from various combinations and sizes of subspaces, each of them again

constructed from di↵erently calculated POD bases, with and without

enrichment by approximate supremizer solutions, is compared.
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