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A variety of materials, such as biological soft tissues, exhibit large inter-
and intra-subject microstructural variations that cannot be captured
with individual material tests on the macroscopic observation scale. In
such scenarios, multiscale modelling approaches are used instead, which
explicitly incorporate the microstructure and provide macroscopic quan-
tities through suitable homogenisation methods. This enables the de-
scription of biological soft tissue behaviour arising from microstructural
changes, for example, those caused by disease. This thesis, therefore,
deals with the multiscale continuum-mechanical modelling of materials
and the particular application of such methods to the description of skele-
tal muscle tissue. Besides a general introduction to the subject, novel
analytical estimates for the effective macroscopic potential of two-phase,
hyperelastic, incompressible solids are presented. These are based on the
so-called tangent second-order homogenisation method and are applica-
ble for highly nonlinear, anisotropic material behaviour at large strains.
Subsequently, a novel multiscale model for skeletal muscle is presented,
which describes the macroscopic behaviour of soft tissue as a direct con-
sequence of properties at smaller scales, such as the stiffness and arrange-
ment of individual collagen fibres. The methods and models presented
in this thesis are discussed by means of representative examples, thus
demonstrating their merits in comparison to alternative approaches.
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Prof. O. Röhrle, PhD

© Christian Bleiler
Institute for Modelling and Simulation of Biomechanical Systems
Chair for Continuum Biomechanics and Mechanobiology
University of Stuttgart
Pfaffenwaldring 5a
70569 Stuttgart, Germany

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, scanning or otherwise, without the permission in writing of the author.

ISBN 978-3-946412-06-9
(D 93 – Dissertation, Universität Stuttgart)





Zusammenfassung

Diese Arbeit beschäftigt sich mit der mehrskaligen Modellierung von Materialien im Rah-

men der Kontinuumsmechanik und der Anwendung solcher Methoden zur mechanischen

Beschreibung von Skelettmuskelgewebe. Zur Motivation seien die folgenden Bemerkung-

en gemacht: Das makroskopisch beobachtete Verhalten von Materialien ist die Folge ei-

nes komplexen Zusammenspiels verschiedenster Phänomene und Strukturen auf mehreren

Längenskalen. Im Grunde ist demnach jedes Material ein Kompositmaterial mit hochgra-

dig heterogener Mikrostruktur und erscheint nur in einer idealisierten makroskopischen

Betrachtung als homogen. Die kontinuumsmechanische Beschreibung von Materialien er-

folgt meist über einen Einskalenansatz unter der Nutzung dieser makroskopischen Homoge-

nität. Es gibt jedoch Szenarien, in welchen die Anwendung eines solchen Einskalenansatzes

problematisch und nicht zielführend ist. Üblicherweise sind hierfür unzureichende experi-

mentelle Daten auf der Makroskala verantwortlich, welche jedoch bei der Kalibrierung von

kontinuumsmechanischen Modellen essentiell notwendig sind. Dieser Mangel an validen

experimentellen Daten tritt vor allem bei der Modellierung von biologischem Gewebe, und

insbesondere bei Weichgewebe, auf. Dies liegt daran, dass das Gewebe in vielen unter-

schiedlichen Zuständen auftreten kann und etwa gesundes und krankhaftes Material große

Unterschiede im mechanischen Verhalten aufweist. Bei Skelettmuskelgewebe kommt hinzu,

dass im Körper sehr viele verschiedene Muskeln zu finden sind. Dies führt darüber hinaus

zu einer großen Variabilität verschiedener Muskeln ein und derselben Person, jedoch eben-

so desselben Muskeltyps unterschiedlicher Personen. Diese Variabilitäten können durch

makroskopische Modellansätze kaum oder nur schwer erfasst werden und erfordern daher

die Anwendung mehrskaliger Modellansätze, welche die Variabilitäten der Mikrostruktur

direkt miteinbeziehen. Die konsistente Formulierung mehrskaliger Modellansätze im All-

gemeinen und die Anwendung dieser auf Skelettmuskelgewebe im Speziellen sind daher

die Ziele der vorliegenden Arbeit.

Die Arbeit beginnt im ersten Teil mit der Einführung der kinematischen Beschreibung

deformierbarer Körper im Rahmen der Kontinuumsmechanik für große Deformationen und

Verzerrungen sowie dem Spannungsprinzip und den materialunabhängigen physikalischen

Bilanzgleichungen. Anschließend werden die grundlegenden Konzepte der Materialtheorie

erläutert, was vor allem die konstitutiven Prinzipien und die Formulierung hyperelastischer

Potentiale miteinbezieht. Diese Betrachtungen sind – im Rahmen der Anwendbarkeit von

Kontinuumstheorien – skalenunabhängig und allgemein anwendbar. Bei der Mehrskalen-

modellierung werden diese Prinzipien auf mehrere Skalen angewandt, dies wird im zwei-

ten Teil der Arbeit erläutert. Weiterhin werden hierbei statistische Betrachtungen der

Mikrostruktur diskutiert und die grundlegenden Prinzipien des Skalenübergangs mechani-

scher Größen eingeführt. Basierend auf diesen Ausführungen erfolgt die Formulierung ana-

lytischer Methoden zur näherungsweisen Berechnung der makroskopischen Verzerrungs-

energie von hyperelastischen Kompositmaterialien auf Basis der
”
tangent second-order“-

Homogenisierungsmethode. Ein Hauptfokus ist hierbei die Bereitstellung von makrosko-



pischen Größen für faserbasierte Zweiphasenmaterialien, bei welchen die Phasen inkom-

pressibles und anisotropes Materialverhalten aufweisen. Solche Mikrostrukturen sind vor

allem bei biologischen Materialien anzutreffen. Es sei zudem angemerkt, dass die in dieser

Arbeit diskutierten analytischen Homogenisierungsmethoden auf statistischen Parame-

tern der Mikrostruktur beruhen und somit, im Gegensatz zu numerischen Ansätzen, keine

vollständige Auflösung der üblicherweise unbekannten Mikrostruktur benötigen. Hierdurch

sind diese Ansätze besonders für die Beschreibung von biologischen Materialien geeignet.

Der zweite Teil dieser Arbeit wird durch einige Erläuterungen zu Homogenisierungsansät-

zen von Fasernetzwerkmaterialien abgeschlossen. Die Methoden sind insbesondere bei der

Beschreibung von Kollagenfasernetzwerken hilfreich, eignen sich in ihrer Methodik jedoch

auch für die allgemeine Beschreibung von gummiartigen Materialien.

Aufbauend auf die allgemeinen methodischen Erläuterungen in den ersten beiden Tei-

len, erfolgt im dritten Teil der vorliegenden Arbeit die Einführung eines kontinuumsme-

chanischen Mehrskalenmodellierungsansatzes zur Beschreibung von Skelettmuskelgewebe.

Der große Vorteil des neuen Modells liegt darin, dass es vollständig auf der Beschrei-

bung mechanischer Eigenschaften sowie der Zusammensetzung des Materials auf kleineren

Längenskalen beruht. Im Speziellen wird ein Zweiphasenmaterial vorgestellt. Die beiden

Phasen repräsentieren darin die Muskelfasern sowie die extrazelluläre Matrix, welche die

Kollagenfasern beinhaltet. Die Unterscheidung zwischen Muskelfaser und der extrazel-

lulären Matrix hat den Vorteil, dass die mechanischen (oder andere) Eigenschaften dieser

beiden Phasen individuell beschrieben werden können. Dies ist der grundlegende Unter-

schied zu makroskopischen Einskalenansätzen und insbesondere von Vorteil, da für die

kleineren Längenskalen oftmals mehr und hochwertigere experimentelle Daten vorliegen.

Die vorgenommene mechanische Beschreibung der beiden Phasen und die verwendeten

analytischen Homogenisierungsansätze resultieren in einem makroskopischen Materialmo-

dell für Skelettmuskelgewebe mit acht Modellparametern. Der Vorteil dieser Parameter ist

hierbei ihre direkte mikromechanische Bedeutung. Darüber hinaus verzichtet der Mehrska-

lenmodellansatz auf jegliche Notwendigkeit der makroskopischen Modellkalibrierung, was

vor allem im Hinblick auf die oft unzureichende Datenlage auf der Makroskala von großem

Wert ist. Dies ist ein entscheidender Unterschied zu einskaligen Modellansätzen, deren

Anwendbarkeit durch die notwendige Kalibrierung an makroskopische Daten oftmals ein-

geschränkt ist. Der in dieser Arbeit vorgestellte Modellansatz eröffnet viele Möglichkeiten,

wobei ein Hauptaugenmerk auf der Modellierung von stark verändertem Gewebe liegt.

Derartige Veränderungen in der mikroskopischen Struktur gehen oft mit einem krankhaf-

ten und pathologischen Zustand des Gewebes einher. Das präsentierte Mehrskalenmodell

erlaubt es, solche morphologischen Veränderungen direkt über die mikrostrukturbasierten

Modellparameter zu beschreiben.



Abstract

This work deals with the multiscale modelling of materials in the context of continuum

mechanics and the application of such methods for the mechanical description of skeletal

muscle tissue. The following comments should be made as a short motivation: The macro-

scopically observed behaviour of materials is the result of a complex interplay of different

phenomena and structures on several length scales. Each material is therefore a composite

material with a highly heterogeneous microstructure and only appears homogeneous in an

idealised macroscopic view. The continuum-mechanical description of materials is usually

done by means of a single-scale approach using the macroscopic homogeneity. However,

there are cases in which the use of such a single-scale approach is no longer appropri-

ate. Insufficient macroscopic experimental data are usually responsible for this. However,

these are essential for the calibration of continuum-mechanical models. This lack of valid

experimental data especially occurs when modelling biological tissues, in particular soft

biological tissues. This is due to the fact that the tissue can appear in many different states

and that, for example, healthy and diseased material exhibits great differences in material

behaviour. When treating skeletal muscle tissue, it additionally has to be considered that

there are many different muscles in the body. This further leads to a large variability

between different muscles of the same person, but also between the same muscle type of

different persons. These variabilities can hardly be captured by macroscopic single-scale

modelling approaches and therefore require the use of multiscale modelling approaches

that directly include the variability of the microstructure. The consistent formulation of

multiscale model approaches in general and the application of these to skeletal muscle

tissue in particular are therefore the goals of the this thesis.

The thesis begins in the first part with the introduction of the kinematical description

of deformable bodies in the context of large-strain continuum mechanics as well as the

stress principle and the material-independent physical balance relations. After that, the

basic concepts of material theory are explained, which especially includes the constitutive

principles and the formulation of hyperelastic potentials. These considerations are inde-

pendent of the scale (as far as continuum theories are considered) and generally applicable.

In multiscale modelling, these principles are applied to several scales, which is explained in

the second part of this thesis. Furthermore, statistical considerations of the microstructure

are discussed and the basic principles of the scale transition of mechanical quantities are

introduced. Based on these explanations, analytical estimates for the macroscopic strain

energy of hyperelastic composite materials are formulated. The estimates are based on the

so-called tangent second-order homogenisation method. A main focus here is to provide

estimates for two-phase fibre composites in which the phases have incompressible and an-

isotropic material behaviour. The investigation of such microstructures is of particular

importance when modelling soft biological tissues. It should also be noted that the ana-

lytical homogenisation methods discussed in this work are based on statistical parameters

of the microstructure and therefore, in contrast to numerical approaches, do not require a



complete resolution of the usually unknown microstructure. This makes these approaches

particularly suitable for the description of biological tissue. The second part of this thesis

is completed by some explanations on homogenisation techniques for materials made of

fibrous or chain-like networks. The methods are very suitable for the description of colla-

gen fibre networks, but their methodology is also applicable for the general description of

rubber-like materials.

Based on the general explanations of the first two parts, the third part of this thesis

is concerned with the detailed introduction and discussion of a multiscale continuum-

mechanical modelling framework for the description of skeletal muscle tissue. The key

feature of this model is that the macroscopic material response is entirely based on the

mechanical description of the material characteristics and composition on smaller scales.

In detail, a two-phase model is proposed and the two phases were identified as the muscle

fibres and the extracellular matrix (the collageneous tissues). Differentiating between

muscle fibre and extracellular matrix has the advantage that the mechanical (or other)

properties of the two phases can be described individually, as opposed to a macroscopic

single-scale modelling approach. This is beneficial as there often exist more comprehensive

and higher quality experimental data for microscopic constituents than on the macroscale.

The descriptions of the phases and the application of analytical homogenisation schemes

entails a constitutive muscle model for the macroscopic behaviour of skeletal muscle tissue

with eight model parameters. The key advantage of this approach is that the parameters

have direct microstructural meanings. Moreover, this novel modelling approach does not

require any calibration on the macroscale, on which data obtained from experiments are

rather uncertain. This clearly differentiates the proposed model from single-scale material

models, in which the material parameters are obtained (and limited) through extensive

macroscopic calibration to experimental data. The new modelling framework offers great

potential for a variety of applications, in particular for scenarios where the microstructure

of the muscle tissue undergoes morphological changes. Such structural changes are often

associated with diseases and pathological conditions and can be directly included in the

model through the adaption of the respective microstructurally-based model parameters.
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chael Sprenger. Meinen langjährigen Bürokollegen, Thomas Heidlauf und Thomas Klotz,
sei Danke gesagt für eine Vielzahl lehrreicher Diskussionen über die Biomechanik, Skelett-
muskelphysiologie und prinzipielle Fragen der Modellierung, welche mich den Antworten
auf neue (und manchmal die immer gleichen) Forschungsfragen jedesmal ein Stück näher
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Stuttgart, im Juni 2021 Christian Bleiler





Contents i

Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Objectives and contextualisation of this thesis . . . . . . . . . . . . . . . . 5

1.2.1 Micromechanics and homogenisation . . . . . . . . . . . . . . . . . 5
1.2.2 Continuum biomechanics and muscle modelling . . . . . . . . . . . 10

1.3 Outline of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

I Continuum Mechanics

2 Fundamentals of Continuum Mechanics 17
2.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Motion of a body . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.2 The deformation gradient . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.3 The Cauchy–Green tensors, stretch, and shear . . . . . . . . . . . . 20
2.1.4 Deformation decomposition . . . . . . . . . . . . . . . . . . . . . . 21
2.1.5 Measures of strain . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 The concept of stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Physical balance relations . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 General balance structure . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.2 Balance of mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.3 Balance of linear momentum . . . . . . . . . . . . . . . . . . . . . . 25
2.3.4 Balance of moment of momentum . . . . . . . . . . . . . . . . . . . 26
2.3.5 Balance of energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.6 Balance of entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Fundamentals of Material Theory 29
3.1 The mechanical boundary-value problem . . . . . . . . . . . . . . . . . . . 29

3.1.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.2 The need for constitutive relations . . . . . . . . . . . . . . . . . . 30

3.2 Constitutive framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.1 Principle of determinism . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.2 Principle of local action . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.3 Principle of material frame-indifference . . . . . . . . . . . . . . . . 33
3.2.4 Principle of material symmetry . . . . . . . . . . . . . . . . . . . . 34
3.2.5 Principle of dissipation . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Internal constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.1 Principle of determinism for constrained materials . . . . . . . . . . 36
3.3.2 The assumption of material incompressibility . . . . . . . . . . . . . 37

3.4 Variational principles in mechanics . . . . . . . . . . . . . . . . . . . . . . 38
3.4.1 Basics on variational calculus . . . . . . . . . . . . . . . . . . . . . 38
3.4.2 The principle of minimum potential energy in elastostatics . . . . . 40
3.4.3 The principle of stationary potential energy under constraints . . . 42



ii Contents

3.5 Theory of invariants and material symmetry groups . . . . . . . . . . . . . 43
3.5.1 Implications of frame-indifference . . . . . . . . . . . . . . . . . . . 43
3.5.2 Invariant formulations for isotropic tensor functions . . . . . . . . . 44
3.5.3 The isotropic symmetry group . . . . . . . . . . . . . . . . . . . . . 46
3.5.4 The transversely isotropic symmetry group . . . . . . . . . . . . . . 47

3.6 Further physical and mathematical requirements . . . . . . . . . . . . . . . 54
3.6.1 Normalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.6.2 Growth conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.6.3 Existence of minimisers . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.7 Further remarks on constitutive modelling . . . . . . . . . . . . . . . . . . 60
3.7.1 Legendre transforms and the idea of complementary energies . . . . 60
3.7.2 Deviatoric-volumetric split of the energy . . . . . . . . . . . . . . . 61
3.7.3 Connection to the infinitesimal theory . . . . . . . . . . . . . . . . 63

3.8 Analytical formulations for strain-energy functions . . . . . . . . . . . . . . 66
3.8.1 A distortional-dilatational energy split . . . . . . . . . . . . . . . . 67
3.8.2 Linearisation conditions for I I

ti -dependent strain energies . . . . . . 68
3.8.3 Examples of strain-energy functions . . . . . . . . . . . . . . . . . . 70

II Micromechanics and Homogenisation

4 Continuum Micromechanics 79
4.1 The multiscale problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.1.1 The macroscale problem . . . . . . . . . . . . . . . . . . . . . . . . 80
4.1.2 The microscale problem . . . . . . . . . . . . . . . . . . . . . . . . 81
4.1.3 Microstructural interface conditions . . . . . . . . . . . . . . . . . . 83

4.2 Microscale statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.2.1 Microstructural statistics . . . . . . . . . . . . . . . . . . . . . . . . 84
4.2.2 Field statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3 Scale transition and effective quantities . . . . . . . . . . . . . . . . . . . . 88
4.3.1 Micro-macro transition: Connecting the scales . . . . . . . . . . . . 88
4.3.2 The Hill macrohomogeneity condition . . . . . . . . . . . . . . . . . 90
4.3.3 Extremum principles for the effective energy . . . . . . . . . . . . . 91
4.3.4 Convergence and uniqueness of energy functionals . . . . . . . . . . 92
4.3.5 Uniform microscopic fields: Voigt- and Reuss-type bounds . . . . . 93

5 Variational Homogenisation of Nonlinear Composites 97
5.1 The Tangent Second-Order Method . . . . . . . . . . . . . . . . . . . . . . 97

5.1.1 Specialisation to two-phase materials . . . . . . . . . . . . . . . . . 100
5.1.2 Two-phase composites with aligned fibrous microstructures . . . . . 101

5.2 Fibre composites with incompressible phases . . . . . . . . . . . . . . . . . 103
5.2.1 Asymptotic analysis for incompressible fibres . . . . . . . . . . . . . 103
5.2.2 A constrained variational principle for incompressible fibres . . . . . 106
5.2.3 Asymptotic analysis for incompressible matrix behaviour . . . . . . 108

5.3 Fibre composites with incompressible, transversely isotropic phases . . . . 112
5.3.1 Transversely isotropic phase behaviour . . . . . . . . . . . . . . . . 112
5.3.2 Overall transversely isotropic behaviour . . . . . . . . . . . . . . . . 113



Contents iii

5.3.3 Linearised behaviour of the TSO estimate . . . . . . . . . . . . . . 114
5.3.4 Augmented isotropic phases with unidirectional reinforcement . . . 116

5.4 Alternative estimates and bounds for two-phase fibre composites . . . . . . 116
5.5 Results and discussion of the new TSO estimate . . . . . . . . . . . . . . . 118

5.5.1 Results for composites with an isotropic Neo-Hookean matrix phase 118
5.5.2 Results for isotropic Gent-type matrix and fibre . . . . . . . . . . . 124
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1 Introduction

Mechanics is an important area of physics and represents a valuable tool for the descrip-
tion of most diverse phenomena in materials across various scales. From an engineering
perspective, by mechanics one means the field of classical mechanics and leaves behind the
physical theory of quantum mechanics. Thereby, it is the aim to describe and mathematic-
ally capture physical phenomena, which are in the field of classical mechanics especially the
motion of and the forces upon a physical object. The historical development and founda-
tion of the field is closely related to the names of Isaac Newton (1643-1727), Leonhard
Euler (1707-1783), and Joseph-Louis Lagrange (1736-1813), of course next to many
others. The extension of the concepts of classical mechanics to the three-dimensional field
theory of continuum mechanics as it is known nowadays relies on the remarkable contribu-
tions of, for example, Augustin-Louis Cauchy (1789-1857) and Augustus Edward
Hough Love (1863-1940) on the mathematical description of elasticity as well as on the
foundation of rational thermodynamics, especially by Clifford Ambrose Truesdell
(1919-2000). The subsequent developments in the 20th century brought a unified non-
linear theory for the description of deformable bodies at large strains and combined the
material phenomena of elasticity, viscosity, and plasticity. Thereby, the key assumption of
continuum mechanics is that an object is continuous and one disregards the real compos-
ition of materials made of discrete atoms. Hence, continuum theories, which are grouped
under the general term continuum physics, are usually applicable at length scales larger
than interatomic distances, which is in the magnitude of ångstroms (1 Å = 10−10 m). Fur-
thermore, since it is rigorously based on field equations, modern continuum mechanics is
not limited to purely mechanical problems, but can be connected to other classical field
theories, like electrodynamics, in order to describe multiphysics problems. If mechanical
principles and methods are employed to investigate biological materials and tissues, one
arrives at the subdiscipline of biomechanics. This field is probably as old as mechanics
itself and, for instance, already Leonardo Da Vinci (1452-1519) shaped the idea of
bionics or biologically inspired engineering, which aims in understanding biological prin-
ciples and subsequently transferring them to engineering systems. In the modern era, the
combination of the achievements of continuum mechanics and the biomechanical ideas es-
tablished the term continuum biomechanics. Undoubtedly one of the pioneers of this field
was Yuang-Chen Fung (1919-2019). In the second part [143, p. vii] of this seminal
book series on biomechanics, he gave a very vivid statement on what this field is and has
as its object:

“Biomechanics aims to explain the mechanics of life and living. From molecules to
organisms, everything must obey the laws of mechanics. Clarification of mechanics
clarifies many things. Biomechanics helps us to appreciate life. It sensitizes us to
observe nature. It is a tool for design and invention of devices to improve the quality
of life. It is a useful tool, a simple tool, a valuable tool, an unavoidable tool. It is a
necessary part of biology and engineering.”

This directly points out that biomechanical problems affect phenomena across the scales—
from molecules to organisms—and that it depicts a classical interdisciplinary field at the
intersection of biology and engineering. The applications of modern continuum biomechan-
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ics are numerous and cover areas such as bionics and its development to tissue engineering
as well as the modelling of prosthetic devices. The core, however, is the modelling and
simulation of biological tissues, which are usually categorised into hard (mineralised) tis-
sues, like bones, and soft tissues, such as skins, arteries, blood vessels, muscles, tendons,
and ligaments. From a practical point of view, the general procedures and steps for the
continuum-mechanical description of a biological material do not differ from the ones for a
non-biological material and one can employ the same concepts and methods. A meaningful
continuum-mechanical description of a physical object, be it biological or non-biological,
always requires the awareness of what kind of phenomena shall be investigated and de-
scribed, and, in turn, the identification of the scale on which the desired results appear.
This scale is referred to as the observation scale. In brief, one has to know what one wants
to achieve with the modelling process. With this at hand, the modelling process consists
of (i) the formulation of the required governing equations of the problem and, as a neces-
sary subsequent step, (ii) the formulation of appropriate constitutive equations and the
collection of reliable experimental data in order to be able to close the mechanical problem
and to (iii) solve the resulting initial-boundary-value problems. Especially the second step
including the formulation of constitutive relations is not always straightforward and leads
to the motivation of this thesis.

1.1 Motivation

Continuum-mechanical principles can be employed for the modelling of phenomena in ma-
terials at various length scales. In engineering applications with man-made materials, like
steel and rubber-like materials, as well as in many biomechanical studies one aims to in-
vestigate phenomena which appear on the scale of millimetres or larger. This is frequently
referred to as the continuum-mechanical macroscale. Phenomena and quantities on this
scale are called macroscopic. As outlined above, the formulation of continuum-mechanical
models is not completed by having the governing equations in terms of physical balance
principles. Rather, the crucial subsequent step is the formulation of constitutive relations
and the calibration of those to experimental data. During the last decades, the increasing
number of continuum-mechanical applications for various material types led to a countless
number of most diverse analytical constitutive relations. If those constitutive equations
are appropriately calibrated to reliable experimental data on the macroscopic scale, which
is in this case the observation scale, one ends up with a single-scale model. Such models
are well-founded and usually result in fast, efficient, and easy-to-implement formulations
in a numerical setup. However, there exist cases in which such approaches are no longer
suitable. There are a number of reasons for this. For instance, they can be categorised
as experimental issues (e i) if no reliable multi-axial experimental data exists to properly
calibrate the (possibly anisotropic) constitutive model, (e ii) if the experimental data only
describes one specimen or subject and is not representative for the whole material type,
or (e iii) if the conditions of the experimental setup do not represent the conditions under
which the model shall be investigated. If any (or even several) of those reasons holds
true, the use of a single-scale modelling approach and the meaningfulness of the thereon
based results become limited and questionable. A possible remedy to this problem is to
apply a multiscale modelling approach. Thus, instead of making use of experimental data
only on the observation scale, a multiscale approach also takes into account data from
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smaller scales. Ideally, this shifts the constitutive modelling and the calibration step from
the data-poor macroscale to data-rich(er) smaller scales. Of course, such an approach
only makes sense if the data on the smaller scales is of better quality. Consequently, a
multiscale approach in this context always has to be accompanied with appropriate upscal-
ing and homogenisation steps, such that the results become available on the macroscopic
observation scale. Multiscale models which are a consequence of the experimental issues
(e i)-(e iii) are rather “implicitly” motivated and the multiscale aspect is in this case an
auxiliary tool to overcome the issues at hand. Besides that, there might be a more “expli-
cit” motivation for applying multiscale models. Reasons for that stem from an application
point of view and exist, for example, (a i) if more understanding of the small-scale effects
is desired, (a ii) if localisation effects require small-scale considerations, (a iii) if one aims
to construct an optimal macroscopic behaviour by specifically manipulating small-scale
components, (a iv) if one wants to predict the macroscopic response due to structural vari-
ations on smaller scales. Under these circumstances, the observation scale is no longer
clearly defined, because phenomena on at least two scales are then of interest and the
interconnections between the scales move into focus.

Hence, multiscale modelling approaches serve as powerful tools, either as pragmatic
auxiliary tools or as sophisticated tool for a deeper investigation of phenomena across
scales. However, we emphasise that multiscale models are not better than single-scale
approaches by definition. They demand for considerable effort in the modelling process,
such as the need for reliable upscaling and homogenisation methods, and usually increase
the complexity of the resulting models. In turn, the higher complexity eventually entails
higher computational costs when solving actual problems. Further, it always has to be
reminded that modelling on more than one scale plus capturing interscale effects directly
results in the need of more modelling assumptions. While a single-scale approach smears
all small-scale effects and we might thus say that it accounts for them in an intrinsic
manner, a multiscale approach actually has to resolve small-scale effects and requires
more information and more knowledge about a system. In conclusion, there has to be a
clear justification, such as the exemplary reasons above, to use multiscale models instead
of a single-scale approach.

In this work, the previously outlined principles and findings are elucidated with the ex-
ample of the continuum-mechanical modelling and investigation of skeletal muscle tissue.
This soft biological tissue is part of the musculoskeletal system and depicts the decisive or-
ganic system for the establishment and control of voluntary movement of the body. Skeletal
muscle tissue is a complex material in which characteristic structures across various scales
give rise to the macroscopic behaviour. Thereby, the most prominent feature of muscles is
their ability to convert chemical energy into elastic energy and mechanical deformations
due to neural stimulations, which is referred to as the active behaviour of muscles. Those
mechanisms take place in the sarcomeres, which are also called the contractile units and
are the smallest functional unit inside the muscle fibres. In turn, the muscle fibres are the
characteristic structural component of muscle tissue. They run through the muscle in an
aligned manner and are surrounded by the second characteristic structure: the extracellu-
lar matrix. Very important components of the extracellular matrix are the collagen fibres,
which typically provide stiffness and stability in biological tissues. The multiscale aspect
of skeletal muscle tissue becomes obvious when noting that sarcomeres appear on length
scales in the magnitude of about 2µm = 2× 10−6 m and collagen fibres in the magnitude
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of about 100 nm = 10−7 m, while the material response on the macroscopic scale is in
the range of millimetres or centimetres. A deep understanding and the reliable predic-
tion of the occurring deformations and inner forces in the muscle material is fundamental
for a variety of applications, such as, for example, the design of prosthetic devices, the
analysis of human movement, the investigation of tissue behaviour under diseased condi-
tions, and many more. However, capturing the mechanical behaviour and the interplay
of the complex small-scale structures in skeletal muscles within a single-scale continuum-
mechanical modelling framework is a challenging and yet mainly unresolved task. This
is due to several reasons, in particular because obtaining comprehensive (ideally in-vivo)
experimental data for the proper calibration of macroscopic constitutive material relations
is extremely difficult or even impossible. For instance, referring to issue (e i), there are
experimental studies which observed that muscle tissue shows its stiffest tensile response
in the muscle fibre direction [344], transverse to the muscle fibre direction [471], or in a
45◦ angle to the muscle fibre direction [338]. Thus, it is impossible to capture the mac-
roscopic material symmetry conditions in a reliable manner, since different experiments
predicted different such properties. Of course, this is related to the issue (e ii) and the
strong inter- and intra-subject variations in skeletal muscle tissues. This means that the
mechanical properties of skeletal muscle tissue can be very different between different
muscles of one person (subject), hence, between different muscles in the different body
regions. Moreover, muscle properties may be very different for one muscle type in differ-
ent persons. Hence, one experimental sample is usually not representative for the whole
material class of skeletal muscles. It would require many different experimental tests to
capture these tissue-inherent variations. However, since this is not available, capturing
the inter- and intra-tissue variability of biological tissue within a single-scale continuum-
mechanical modelling framework is hardly possible. In addition to the issues (e i) and (e ii),
also point (e iii) holds true for skeletal muscle tissue and for soft biological tissues in gen-
eral. Since in-vivo material testing of biological tissues is not (at least not non-destructive)
possible, experiments have to be performed ex-vivo. Yet, as soon as a biological tissue
is extracted from its natural environment it may undergo severe structural changes. For
instance, dehydration is a frequent problem during tissue extraction and sample prepar-
ation. Thus, material tests on such samples eventually show a very distinct mechanical
behaviour compared to the biological tissue in the living body. Summarising, all of the
previously outlined experimental issues are present for skeletal muscle tissue and clearly
justify and even require the application of a multiscale modelling approach and the direct
incorporation of small-scale effects. Apart from overcoming the issues related to the in-
sufficiency of macroscopic experimental data, a multiscale modelling approach for skeletal
muscle tissue at the same time offers a lot of novel and powerful possibilities. While (a iii)
obviously does not apply for biological tissues, all the other application-based points hold
true. For instance, related to (a i), a multiscale approach can offer a direct connection
between macroscopic deformation states and the associated deformation of structures at
smaller scales, such as the stretch in collagen fibres. In skeletal muscles and soft biological
tissues in general, the recruitment of collagen fibres due to macroscopic deformations is a
critical aspect. Such considerations directly lead to point (a ii), because the information
of localised stresses and strains on smaller scales allow to model for example failure of the
respective structural elements. However, maybe the most interesting aspect is related to
(a iv) and the possibility of predicting the macroscopic material response due to variations
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of the small-scale structures. This is a crucial aspect when dealing with the modelling of
living tissues, as they are eventually subject to significant morphological changes across
the scales. Reasons for such changes are manifold and can be, for example, growth of the
biological tissue due to exercise or loading as well as atrophy due to numerous diseases
or post-operative immobilisation. Single-scale macroscopic modelling approaches cannot
be used to describe the macroscopic behaviour subject to such structural variations in a
natural way, which means without the calibration of the model to macroscopic experi-
mental data. Such data, however, cannot be acquired in an in-vivo, subject-specific way
for every specific variation of the muscle tissue. In contrast, there exists an impressive
amount of experimental data reporting on small-scale changes of skeletal muscles, which
in a multiscale approach can be directly included.

1.2 Objectives and contextualisation of this thesis

Encouraged by the preceding explanations, this thesis mainly focuses on two aspects,
namely, the investigation and appropriate extension of analytical nonlinear homogenisation
methods and, based on that, the introduction of a novel multiscale model of skeletal muscle
tissue. These objectives shall be clarified in this section. Since this thesis relies on a broad
fundament of previous scientific works and studies in the fields of, in particular, continuum
mechanics, biomechanics, and experimental biology, the novel aspects of the work are
embedded in the context of historical and recent works. Further relevant references are of
course provided directly in the text throughout this thesis.

1.2.1 Micromechanics and homogenisation

The consideration of multiscale models gives rise to the need of appropriate scale-bridging
methods. For the way from smaller to larger scales, this leads to the concept of upscaling
and homogenisation methods. This work is rigorously based on the principles of continuum
mechanics, such that even the smallest scales are still significantly larger than interatomic
distances. There are methods that bridge the atomistic to continuum scales, such as
the so-called quasi-continuum methods, see Tadmor et al. [469] as well as Tadmor
& Miller [468] and Podio-Guidugli [372], but this is not the purpose in this work.
Scale-bridging in multiscale continuum mechanics is closely linked to the term (continuum)
micromechanics, which is often referred to Hill [211], see also Zaoui [524]. This term can
be given the general meaning of describing methods which predict the large-scale material
response on the basis of a direct modelling and incorporation of small-scale structures.
The focus of this thesis is on the treatment of elasticity problems, which is reflected in
the following literature review. However, most of these methods can be straightforwardly
extended for the treatment of viscosity, plasticity, or general multiphysics problems.

Analytical homogenisation of linear-elastic materials The fundamental contribu-
tions of Voigt [495] and Reuss [398] can be considered as a starting point for the con-
temporary continuum-mechanical treatment of multiscale problems. They assumed equal
deformations and equal stresses, respectively, in the heterogeneous small-scale structures
and thereby provided rigorous upper and lower bounds for the effective macroscopic prop-
erties for certain material classes. In the context of polycrystals, the Voigt–Reuss-bounds
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are also referred to as Taylor–Sachs bounds due to Taylor [475] and Sachs [412]. The for-
mulation of optimal bounds and envelopes for the effective large-scale behaviour for classes
of materials with specific small-scale characteristics is a fundamental auxiliary tool for the
appraisal and validity check of homogenisation methods. Important contributions to this
topic were provided by, for example, Francfort & Murat [132]. The fundamental basis
of almost any sophisticated homogenisation method are the so-called inclusion problems,
which aim to provide solutions for the effective behaviour to the problem of isolated inclu-
sions embedded in an infinite matrix medium. First works by Einstein [114] considered
rigid inclusions, whereas the outstanding work of Eshelby [122] generalised the problem
to elastic ellipsoidal inclusions and represents an important ingredient of a lot of sub-
sequent methods. Hashin & Shtrikman [185] provided a further milestone in the field
by introducing a variational procedure for the estimation of effective properties and the
concept of suitably chosen polarisation fields relative to a homogeneous comparison mater-
ial. The thereon based Hashin–Shtrikman upper and lower bounds formulated by Hashin
& Shtrikman [186, 187] significantly improve the Voigt–Reuss bounds. Further, the key
concept of scale-bridging, be it in terms of the inclusion problem, the variational proced-
ure or following nonlinear methods, is the existence of a suitable representative volume
element and the consistent formulation of boundary conditions and admissible small-scale
fields which satisfy the Hill macro-homogeneity condition due to Hill [214]. A further
important class of analytical estimates is obtained by applying self-consistent schemes,
formulated by, for example, Hershey [202], Kröner [264], Budiansky [62], and Hill
[211]. While classical inclusion problems consider that the inclusions are surrounded by
a matrix with prominent morphological role, the self-consistent schemes assume that the
inclusions are embedded in the a priori unknown effective material itself and negate the
occurrence of a distinct matrix. Closely related to this idea are the estimates by Hashin
& Rosen [184] for composites with composite sphere assemblage microstructure and, in
analogy to that, by Hashin [181] for composites with composite cylinder assemblage mi-
crostructure. Further, Mori & Tanaka [342] and Benveniste [31] provided estimates
which approximate the self-consistent scheme well for specific scenarios but may deliver
unphysical results in other cases.

Homogenisation of nonlinear materials The field of scale-bridging and homogenisa-
tion for materials with nonlinear material behaviour can be separated into the numerical
methods and analytical methods. The former rely on the resolution and discretisation of
the geometries and the solution of proper boundary-value problems on each considered
length scale. This can be achieved by multiscale-finite-element-methods such as the ones
proposed by Ghosh et al. [161], Smit et al. [447], Miehe et al. [330], Geers et al.
[154], or Schröder [422]. Two-scale versions of these models are usually referred to as
the FE2-method. Besides that, Fourier-based methods, making use of fast Fourier trans-
forms, were proposed by Moulinec & Suquet [345] and Michel et al. [327]. The
formulation of appropriate boundary conditions for the small-scale problems satisfying
the Hill macrohomogeneity condition is fundamental for all those numerical approaches.
In the field of analytical homogenisation, a basic step was made by Ogden [360] in provid-
ing nonlinear versions of the Voigt–Reuss upper and lower bounds, which are applicable
to finite elasticity. In the same spirit, the pioneering work of Willis [518] generalised
the variational principles of Hashin & Shtrikman [185] to nonlinear elasticity. Doing
so, a nonlinear heterogeneous material can be related to a homogeneous reference ma-
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terial by utilising appropriate polarisation fields. This idea was further developed in the
works of Talbot & Willis [472] and Willis [519]. Further, based on the introduc-
tion of new variational principles, Ponte Castañeda [374, 375] suggested the concept
of a linear heterogeneous comparison material or linear comparison composite, see also
Suquet [465] and Olson [365]. With this fundamental concept, the effective properties
of a nonlinear heterogeneous material can be obtained from the homogenisation problem
of a suitably chosen linear heterogeneous material. Thus, the above mentioned linear
techniques keep their elementary importance and the ideas from there remain the core
of a large number of nonlinear homogenisation methods. Moreover, Talbot & Willis
[473] proposed a hybrid variational principle combining the polarisation fields of Wil-
lis [518] with the concept of the linear comparison composite of Ponte Castañeda
[374], which in the elasticity case introduces the idea of a linear thermoelastic comparison
composite. In view of some inherent restrictions and shortcomings of these variational
principles, Ponte Castañeda [376] proposed a new variational homogenisation method
which gave rise to a whole class of so-called second-order methods. The original ver-
sion relied on the second-order Taylor expansion of the underlying nonlinear potentials
and naturally resulted in the formulation of a linear thermoelastic comparison composite.
This method was given a rigorous variational interpretation in the subsequent works of
Ponte Castañeda & Willis [384] and Ponte Castañeda & Tiberio [382], which
demonstrated that the principles represent a further generalisation of the hybrid method
of Talbot & Willis [473]. The fact that the comparison composites are based on the
tangent moduli of the nonlinear behaviour suggested their designation as tangent second-
order (TSO) methods. An improved version for incompressible materials was presen-
ted by Avazmohammadi & Ponte Castañeda [19]. However, the tangent choice is
only an approximation and the second-order methods were subsequently developed with
the goal of finding optimal choices for the linear comparison composites. This led to
the generalised second-order (GSO) method by Ponte Castañeda [377] and Lopez-
Pamies & Ponte Castañeda [298, 299] as well as the most recent version, the fully-
optimised second-order (FO-SO) method by Ponte Castañeda [379, 380] and Furer
& Ponte Castañeda [147]. Second-order methods were successfully applied for the
description of many different materials and microstructures. For fibre composites, La-
hellec et al. [272] formulated second-order estimates for periodic microstructures with
cylindrical fibres and incompressible phases, while Brun et al. [61] provided estimates
for the same type of microstructures but considering compressible phases. For composites
with randomly distributed cylindrical fibres and incompressible phases like the ones that
are at the focus of this contribution, Agoras et al. [4] formulated accurate and easy-to-
use second-order estimates for isotropic phases with generalised Neo-Hookean (I1-based)
strain-energy functions. Moreover, for composites with Neo-Hookean phases, deBotton
et al. [92] provided an elegant estimate that is based on the sequentially laminated
(SL) homogenisation procedure. Further, Lopez-Pamies & Idiart [297] generalised the
results of deBotton et al. [92] and included an additional J4-based anisotropic fibre
energy contribution. However, none of these homogenisation methods is applicable if the
phases exhibit generally anisotropic behaviour. In particular, we are not aware of any
estimates for the effective response of hyperelastic composites with anisotropic matrix
phase. Yet, such a scenario would be of great interest for biological materials, in which,
for instance, aligned collageneous structures cause highly direction-dependent behaviour
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in the matrix phase. By further noting that biological materials are usually assumed to
be incompressible, we arrive at the following objectives and aspects:

• Formulation of analytical estimates for two-phase hyperelastic fibre composites with
random microstructures and anisotropic phase behaviour

• Performing asymptotic analyses to obtain the consistent expressions of the estimate in
the limits as fibre and matrix become incompressible

• Formulating a constrained variational principle for the description of incompressible
inclusions by introducing an appropriate Lagrange functional

• Usage of generic deformation gradients for the case of transversely isotropic phases and
a thereon based reduction of the homogenisation to solving for four scalar unknowns

• Demonstrating the consistent linearisation of the estimates by recovering corresponding
linear-elastic estimates

• Providing closed-form analytical expressions for phases where the isotropic part is Neo-
Hookean

Homogenisation of fibrous or chain-like networks Special scale-bridging and ho-
mogenisation methods are employed if the small-scale of a material can be modelled as a
network of chains or fibres with a certain orientation in space. This is especially the case
for two material classes: Rubber-like materials with their underlying structure of polymer
chain networks and (soft) biological tissues which consist of certain collageneous network
structures and different types of collagen fibres. For the case of rubber-like materials, this
problem was discussed in the fundamental works of Treloar [481] and Treloar & Rid-
ing [483] and led to the formulation of the full network model, see also Wu & van der
Giessen [522]. The essence of this multiscale modelling approach is the parametrisation
of single chains in terms of spherical coordinates and the subsequent assignment of an
energy potential for each space orientation. The homogenisation step represents an aver-
aging procedure in terms of an integration over all space orientations. Conceptually the
same method was proposed by Lanir [275, 276] for the modelling of collageneous fibre net-
works, however without referring to the earlier network models for rubber-like materials.
A modelling approach which basically led to the same structure of equations is referred to
as microplane model. It was formulated by Baz̆ant & Oh [25] for concrete and was later
generalised by Carol et al. [73]. Further terms for the network models used in the liter-
ature are the very natural designation microsphere model, formulated in the seminal work
of Miehe et al. [329], as well as the pragmatic term angular integration model. The con-
tinuous distribution of chains (or fibres) over the space orientations is usually accounted for
in a stochastical manner by means of a orientation density function. Rubber-like materials
commonly have a uniform chain distribution, while the consideration of the nonuniform
case is essential in collageneous tissues, which often show preferred alignments of fibres. If
the continuous distributions degenerate to some discrete orientations, the network models
simplify to formulations like the earlier published three-chain model of James & Guth
[247] and Wang & Guth [505]. Moreover, the classical network models contain an af-
finity assumption for the deformation of the space orientations. In contrast, there also
exist non-affine formulations, such as the variational-based non-affine microsphere model
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by Miehe et al. [329], the homogenisation scheme based on a maximal advance path
constraint by Tkachuk & Linder [477] as well as the models based on a variational
energy relaxation by Chen et al. [76] and Govindjee et al. [170]. Moreover, certain
discrete versions of network models have a non-affine character as well, such as the four-
chain models of Flory & Rehner [131] and Treloar [480] and the eight-chain models
of Arruda & Boyce [13] and Kroon [266]. In the field of biomechanics, full network
have been successfully employed for the modelling of, for instance, tendons and ligaments
by Hurschler et al. [234], articular cartilage by Federico & Herzog [127] and Ate-
shian et al. [15] as well as blood vessels by Alastrué et al. [7]. In a similar fashion,
microplane models have been suggested by Caner & Carol [69] for blood vessels and
Caner et al. [70] for the intervertebral disc. In this thesis, the use of a network model
for the collageneous tissue in skeletal muscles encourages the investigation of transversely
isotropic distributions of the collagen fibres. A theoretical investigation of this scenario
consequently leads to the following investigations and extensions to the existing network
models:

• Formulation of analytical expressions for the macroscopically-driven fibre stretches in
affine network models

• Introduction of a fully invariant-based formulation for affine network models with trans-
versely isotropic fibre distributions

• Implementation of high-order Lebedev - and Sloan–Womersley-type numerical quadrat-
ure schemes for the integration over the orientation space of the network model

Stochastical modelling of single chains/fibres and fibre bundles An element-
ary aspect in network models is the modelling of single chains and fibres. In line with
the historical origin of the network models, the first elementary contributions treated the
entropic-elastic nature of polymer chain molecules in rubber-like materials and lead to
the formulations based on Gaussian statistics in the works of Kuhn [268, 269] and based
on non-Gaussian Langevin statistics in the works of Kuhn & Grün [270] and James &
Guth [247]. Those concepts rely on the composition of the single polymer chains out of
highly uncorrelated rigid bonds, which serves well for the description of rubbers. For the
characterisation of collagen fibres, the occurrence of higher correlated bonds in the un-
derlying collagen molecules suggested the use of concepts like the worm-like chain model
by Kratky & Porod [261] and its development by Marko & Siggia [315]. Network
models for soft biological tissue based on a worm-like chain description of collagen fibres
were for example proposed by Garikipati et al. [149], Kuhl et al. [267], Alastrué
et al. [7], and Menzel & Waffenschmidt [321]. However, it was pointed out by
Buehler & Wong [64] and Garikipati et al. [150], amongst others, that the purely
entropic elasticity description of the worm-like chain model is not able to capture the
energy-elastic behaviour of collagen fibres at higher stretches, where the initially highly
crimped collagen fibres become straight and the stretch-based energetic elasticity becomes
dominant in comparison to the bending-based entropic elasticity. Hence, alternative mod-
els for collagen fibres were proposed, such as the elastica-based model of Garikipati
et al. [150], a microstructurally-based approach by Grytz & Meschke [172] as well as
the comprehensive multiscale approach by Maceri et al. [306] which couples the nano-,
micro-, and macroscale. Further, studies linking the atomistic and continuum scales were
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performed by Buehler [63] and Gautieri et al. [152]. Those studies consider the whole
deformation process of collagen fibres including bending stiffness at lower, stretching stiff-
ness at higher stretches and the transition in between. However, a reasonable assumption
is to neglect the bending contributions and to solely account for the stretching stiffness
in terms of a spring-like quadratic energy potential which comes into play when the fibre
deformation exceeds a certain threshold stretch at which the fibres become fully uncurled.
Such formulations were proposed by, for example, Lake & Armeniades [273], Decrae-
mer et al. [93] as well as Lanir [275, 276]. These energetic energy formulations are
usually accompanied with stochastical descriptions for the threshold stretch distribution
in terms of a undulation (or waviness) distribution function. This concept can be inter-
preted either as a description of an actual aggregate of several fibres, a fibre bundle, with
different threshold stretches or as the appropriate ensemble average of a space orientation
in network models in line with the concept of a representative volume element. A variety
of well-known probability functions has been suggested for the definition of undulation
distributions, such as, for instance, the beta distribution by Avazmohammadi et al.
[18], Chen et al. [76], Gindre et al. [163], Lokshin & Lanir [294], Sverdlik &
Lanir [467], Weisbecker et al. [510], the gamma distribution by Sacks [413] and
Bischoff [36], or the Weibull distribution by Hurschler et al. [234]. The incor-
poration of such probability functions naturally leads to an integral formulation, which
eventually leads to some cumbersome expressions in combination with network models,
since this leads to triple integrals. In order to overcome this aspect, this thesis has the
following aims:

• Reformulation of the integral expressions for the stochastical modelling of space orient-
ations with undulation distribution functions into convolution-based expressions

• Derivation of novel stochastical-based fibre energies based on closed-form solutions of
the convolution expressions for beta- and triangularly distributed fibre undulations

1.2.2 Continuum biomechanics and muscle modelling

The field of continuum biomechanics covers a huge variety of subdisciplines and applica-
tions, of which this thesis treats the special field of soft tissue mechanics and particularly
skeletal muscle modelling. Pioneering contributions in this field are the early works of
Fung [142, 146], in which he showed the characteristic J-shaped relationship between
tensile strain and the associated stress in soft biological tissues and gave first overviews
on possible applications and possibilities of biomechanical investigations, respectively.
Thereby, the J-shaped strain-stress relationship with its flat toe region at lower strains
and the stiffening effect at higher strains is typical for a majority of soft tissues and
loading scenarios and shows up across different possible observations scales. Presumably,
Fung’s magnum opus [145] on the mechanics of living tissues and the follow-up textbook
[143] represent the most comprehensive overviews on the various biomechanical applica-
tions. However, as discussed in the very interesting review article of Humphrey [232],
the developments in modern continuum biomechanics go hand in hand with the general
concurrent progress in finite (in)elasticity theory.

Muscle modelling In the field of skeletal muscle modelling, much credit should be
given to the pioneering work of Hill [207] which established the field of the so-called
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Hill-type muscle models. As also outlined in the comprehensive review paper of Zajac
[523], such models have a one-dimensional character. The extension of those models to
three-dimensional formulations is strongly connected to the developments in the theory of
fibre-reinforced materials, as presented in the seminal works of Spencer [455, 457] and
further works by, for instance, Weiss et al. [511] and Qiu & Pence [393]. Subsequently,
three-dimensional, transversely-isotropic models, which assume that the muscle fibres ex-
hibit a reinforcing characteristic, were proposed by, for instance, Martins et al. [319],
Johansson et al. [249], Oomens et al. [367], Blemker et al. [47], Röhrle et al.
[407], Röhrle & Pullan [408], Böl et al. [54], Ehret et al. [112], Heidlauf &
Röhrle [193], and Sharifimajd & St̊alhand [435]. Moreover, the very special feature
of skeletal muscles is their ability to convert chemical into mechanical energy due to neural
stimulations. This is commonly referred to as active behaviour and various ways have been
suggested for the incorporation of this behaviour into continuum-mechanical models. A
pragmatic approach is the introduction of an additional stress contribution which repres-
ents the active behaviour. This is commonly referred to as active stress approach. An
alternative method is based on a multiplicative decomposition of the deformation gradi-
ent into elastic and inelastic parts, which was originally proposed by Lee & Liu [281] in
the field of elastoplasticity. By considering the inelastic part as the active muscle con-
tribution, so-called active strain models were proposed by, for example, Kondaurov &
Nikitin [257], Martins et al. [318], Nardinocchi & Teresi [349], St̊alhand et al.
[462], Hernández-Gascón et al. [201], Göktepe et al. [164], and Pezzuto et al.
[370]. In both approaches, the active contributions can either have a macroscopic con-
stitutive character or can incorporate detailed multiscale activation dynamics. The latter
models are usually based on the pioneering works of Hodgkin & Huxley [216] on the
modelling of the electrical behaviour of the membrane of excitable cells and Huxley [235]
on the cross-bridge theory, which explains the mechanism in the sarcomeres during ac-
tivation. Comprehensive models which incorporate such multiscale activation dynamics
and coupled chemo-electro-mechanical effects were formulated by, for instance, Röhrle
et al. [407] and Heidlauf & Röhrle [193]. Much more references and details on the
microscopic activation dynamics and muscle modelling in general can be found in the
review papers of Smith et al. [453] and Röhrle et al. [409].

Multiscale approaches in biomechanics Multiscale continuum-mechanical ap-
proaches, which link small-scale structures with the macroscopic material response, have
been proposed for numerous biological tissues and applications. For example, Hurschler
et al. [234] proposed a multiscale model for tendons and ligaments, Marino & Wrig-
gers [314] for tendons, Maceri et al. [306], Chen et al. [76], Marino & Vairo
[312] for general collageneous and fibrous tissues, Maceri et al. [307] for arterial walls,
Ricken et al. [400] for the liver, and Ehlers & Wagner [110] for the brain. Further-
more, the microstructural effects of osteoarthritis in cartilage were studied by Mabuma
et al. [305], multiphase bone-cement injection processes by Bleiler et al. [46], and
the incorporation of the mechanical behaviour of the giant protein titin into the overall
behaviour of skeletal muscle tissue was investigated by Heidlauf et al. [192]. The
majority of multiscale investigations on the mechanical behaviour of biological tissues is
based on the description of the underlying protein structures. It is due to protein, in
particular collagen networks and structures, that biological tissues often show a highly
hierarchical structure with clear construction across the scales, as outlined by Fratzl &
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Weinkamer [135]. Such hierarchical structures can be detected in soft as well as in hard
biological tissues, such that multiscale studies have also been frequently suggested, for ex-
ample, for bone tissue, see Hellmich et al. [199] or Reisinger et al. [397]. In the field
of skeletal muscle modelling, multiscale approaches for the description of the mechanical
behaviour have been rarely used. However, such models have a high potential to signific-
antly improve this field of research. For example, it would be beneficial to have multiscale
models which predict the macroscopic material symmetry properties in a bottom-up char-
acteristic solely based on the responsible small-scale structures, since recent material tests
by Takaza et al. [471], Böl et al. [53] as well as Mohammadkhah et al. [338]
provided experimental evidence that the theory of fibre-reinforced materials is an inappro-
priate framework for the macroscopic modelling of skeletal muscles. Basically all of the
few multiscale muscle models at hand follow the basic idea of describing the muscle as a
two-phase material consisting of muscle fibres and collageneous tissue. This is essentially
what Fung [145, ch. 9] proposed in his fundamental book on biomechanics. Based on this,
a continuum-mechanical multiscale muscle model was proposed by Spyrou et al. [459]
and further developed by Spyrou et al. [460]. However, a major drawback of these
studies is the very simple description of the collageneous network which does not account
for general loading conditions. This is also the case for the structural model of Gindre
et al. [163], which is in addition to that not consistently formulated within the framework
of continuum mechanics. Furthermore, purely microscale-based studies without multiscale
characteristic were proposed by Sharafi & Blemker [434] and Virgilio et al. [494].
Hence, in order to improve the field of muscle modelling and to overcome limitations
of existing approaches, first versions for a comprehensive multiscale muscle model based
on analytical homogenisation methods were given in a series of proceedings by Bleiler
et al. [40, 41, 42, 43]. These studies were followed by Bleiler et al. [44], in which
a first complete version of a novel microstructurally-based muscle model was presented.
The detailed derivation of this model based on the previous general explanations about
multiscale modelling is one main goal of this work. This includes:

• Introduction of a novel multiscale continuum-mechanical modelling framework for the
description of skeletal muscle tissue

• Usage of this framework to formulate a novel microstructurally-based two-phase model
of the passive behaviour of skeletal muscle tissue

• Introduction of a detailed fibre network model for the extracellular matrix based on the
parametrisation of the helical fibre arrangement of the collageneous tissues in muscles

• Deriving effective macroscopic energies and stresses based on an affine Voigt-type and
a non-affine TSO-based approach

• Providing a comprehensive literature review on the microstructurally-based model para-
meters

• Showing the capabilities of the model to predict the anisotropic characteristics of skeletal
muscle tissue observed in experiments without applying constitutive assumptions on the
macroscale



1.3 Outline of this thesis 13

1.3 Outline of this thesis

Following this introductory chapter, this thesis is structured as follows.

Part I introduces the basic concepts and fundamentals of continuum mechanics and
material theory.
Chapter 2 provides the basic knowledge on the large-strain kinematical description of a
continuous, deformable body and appropriate deformation and strain measures. This is
followed by the introduction of the concept of stress and the material-independent physical
balance relations.
These explanations are continued in Chapter 3, where we present the basics of material
theory and outline the process of constitutive modelling in continuum mechanics. The
chapter starts with the formulation of the basic boundary-value problem of continuum
mechanics and introduces the constitutive framework as well as the resulting restrictions
upon the constitutive equations obtained from basic thermodynamical principles. This is
followed by further topics, such as the discussion of variational principles in continuum
mechanics, the invariant theory, linearisation conditions and some examples for analytical
strain-energy functions.

Part II is concerned with the field of continuum micromechanics and the concepts of
multiscale modelling and homogenisation.
The basic concepts of multiscale modelling and, in particular, the formulation of different
scales, are introduced in Chapter 4. It directly builds up on Part I and transfers the
kinematical and constitutive concepts to the multiscale framework, which means that sep-
arate boundary-value problems are formulated on the micro- and the macroscale. This is
followed by explanations on the statistical description of the microstructure of a material.
Further, the scales are connected by means of an appropriate scale transition of the de-
formation and stress measures and an extremum principle for the effective energy on the
macroscopic scale is introduced.
In Chapter 5, we present estimates for the effective strain energy of a hyperelastic com-
posite in the pre-bifurcation state by means of the tangent second-order homogenisation
method. After a general formulation of the method, the estimate is specialised to the de-
scription of two-phase fibre composites with random microstructures and incompressible,
anisotropic phase behaviour. In this context, asymptotic analyses are carried out to obtain
the consistent expressions of the estimate in the incompressible limits of the two phases.
Further estimates for some specific composite types are presented in Appendix C.
In Chapter 6, basic concepts and associated homogenisation techniques for fibrous or
chain-like networks are discussed. This is essential for the treatment of collageneous tis-
sues.

Part III introduces a novel multiscale framework for the microstructurally-based model-
ling of skeletal muscle tissue. Subsequently, the muscle fibres and the extracellular matrix
are identified as the two most important structural components of the muscle and a two-
phase model is formulated.
A detailed discussion of the relevant scales and the microstructural characterisation of
skeletal muscle tissue is provided in Chapter 7. This is followed by the constitutive mod-
elling of the two phases. In particular, a detailed fibre network model for the extracellular
matrix based on the parametrisation of the helical fibre arrangement of the collageneous
tissues is introduced. This is followed by the derivation of effective macroscopic energies
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and stresses based on an affine Voigt-type and a non-affine TSO-based approach.
In Chapter 8, we provide a comprehensive literature review on the microstructurally-based
model parameters and show the capabilities of the model to predict the anisotropic char-
acteristics of skeletal muscle tissue observed in experiments without applying constitutive
assumptions on the macroscale.

Chapter 9 concludes this thesis and presents an outlook on possible applications and
future extensions of the discussed methods.

Moreover, basics on the herein applied mathematical notation, basic rules of tensor
calculus and further mathematical topics and details that complement the explanations in
this thesis are provided in Appendix A and Appendix B. Further remarks and results
on the tangent second-order homogenisation estimates presented in Chapter 5 are given
in Appendix C.



Part I

Continuum Mechanics
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2 Fundamentals of Continuum Mechanics

This chapter introduces the basic concepts of continuum mechanics, in particular the
material-independent kinematical relations and balance principles. In this regard, con-
tinuum mechanics represents a three-dimensional field theory for the description of de-
formable bodies. A complete review of the field is not the scope of this chapter, it rather
provides the fundamentals to the extent required for the remainder of this work. More
comprehensive overviews can be found, for example, in the textbooks of Truesdell
[488], Truesdell & Noll [490], Ogden [362], Smith [448], Marsden & Hughes [316],
Holzapfel [221], and the references therein.

2.1 Kinematics

Starting point is the description of the kinematical relations and geometric mappings of a
material body B that is subject to finite deformations and strains. Thereby, the material
body represents a physical object and is mathematically described as a coherent manifold
of an infinite number of particles (or material points) P ∈ B.

2.1.1 Motion of a body

At a certain time t ∈ T = [tA, tΩ] ⊆ R+, the material body B occupies a Euclidian space
Bt ⊂ R3, which is called a configuration of the body. The bijective placement

Xt :

{
B ×T → Bt ⊂ R3

P 7→ x = Xt(P)
(2.1)

maps each particle P ∈ B of the material body to a Euclidian point x ∈ Bt. A sequence
of configurations, parametrised by the time t, describes the motion of the material body. It
proves useful to define an arbitrary reference configuration B0 at time t0 and the according
reference placement

X0 :

{
B → B0 ⊂ R3

P 7→ X = X0(P) ,
(2.2)

which allows to identify each particle P by its reference position vector X. Since X0

inherits from Xt the property of being a bijective map, we are able to identify the material
point P = X −1

0 (X) by its referential position using the inverse map X −1
0 . In addition

to the reference configuration, one designates a current or actual configuration B at time
t and introduces the placement

χ :

{ B0 ×T → B ⊂ R3

(X, t) 7→ x = χ(X, t) ,
(2.3)

as the deformation map from the reference to the current configuration. The placement
χ has the essential feature of mapping material points P from their referential position
X in B0 to their respective current position x in B and is thus referred to as point map.
The inverse deformation χ−1 allows to identify the referential position X = χ−1(x, t) of
a particle by means of its current position x. Moreover, quantities living in the reference
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configuration are often labelled as material or Lagrangean whereas quantities in the cur-
rent configuration are labelled as spatial or Eulerian. We further want to introduce the
difference between current position x and the referential position X as the displacement
vector u = x−X.

2.1.2 The deformation gradient

The placement χ(X, t) provides the map of material points P and, thus, of the material
body B between the reference and the current configuration. In addition to that, know-
ledge about further geometric mapping mechanisms beyond the point map are of interest.
Therefore, the gradient of the placement χ(X, t) with respect to the reference position X
is introduced as the second-order tensor

F (X, t) :=
∂χ(X, t)

∂X
= ∇Xχ(X, t) = Grad[χ(X, t)] . (2.4)

It is referred to as the deformation gradient. In (2.4), the notations ∇X(·) and Grad[(·)]
denote the gradient of a quantity (·) with respect to reference positions X. The deform-
ation gradient is the key quantity for the description of local deformations in finite-strain
kinematics and will further play an essential role in scale-transition approaches of mech-
anical quantities in Part II. Since the deformation map1 χ is bijective, the deformation
gradient F has to be invertible and entails the condition J := det[F ] 6= 0. Therein, the
common notation J for det[F ] refers to its designation as the Jacobian. For the initial
state at time t = t0, the current and reference configurations coincide, which means that

F
∣∣
t=t0

= Grad[X] = I and det[F ]
∣∣
t=t0

= det[I] = 1 . (2.5)

Thus, the non-zero requirement for the (continuous) Jacobian is strengthened to the con-
dition

J = det[F ] > 0 . (2.6)

It is further remarked that the deformation gradient F excludes information on rigid-
body translations, which becomes obvious when formulating a general deformation map
χ(X, t) = f(X, t) + c(t). Then, it can be seen that only the X-dependent part f
contributes to the deformation gradient, while for the constant translation Grad[c] = 0.

Tangent and line map The natural feature of the deformation gradient is to transform
material tangent or line elements to their spatial counterparts. To demonstrate this, a
material curve Ĉ(ϑ) ⊂ B0 and the according spatial curve ĉ(ϑ, t) ⊂ B are defined, both
parametrised by and being differentiable with respect to a parameter ϑ ∈ R. It is then
straightforward to introduce a material tangent vector T̂ = dĈ(ϑ)/dϑ to the material
curve Ĉ(ϑ) as well as the spatial tangent vector t̂ = dĉ(ϑ, t)/dϑ to the spatial curve
ĉ(ϑ, t). If material and spatial curves refer for identical ϑ to the same particle P, they are
linked by ĉ(ϑ, t) = χ(Ĉ(ϑ), t). By consulting the chain rule and recalling that X = Ĉ(ϑ)
at a fixed ϑ, the spatial tangent vector can be formulated as

t̂(X, t) =
dĉ(ϑ, t)

dϑ
=

dχ(Ĉ(ϑ), t)

dϑ
= Grad[χ(X, t)]

dĈ(ϑ)

dϑ
= F (X, t) T̂ (X) . (2.7)

1It shall be remarked that the deformation map χ(X, t) and quantities based on the map, like the de-
formation gradient F (X, t), are generally dependent on the reference position X and the time t. However,
the arguments are omitted for the sake of a compact notation when there is no danger of uncertainty.
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Thus, the deformation gradient acts as a tangent map:

F :

{
TXB0 → TxB
T̂ 7→ t̂ = F T̂ ,

(2.8)

where TXB0 and TxB denote tangent spaces of the material and the spatial domain,
respectively. Considering a slightly different notation, the tangent vectors T̂ and t̂ can
be related to infinitesimal line elements dX and dx in the reference and the current
configuration, respectively. With this, together with the invertibility of F , the tangent map
can be formulated as the classical covariant push-forward and pull-back transformations
of line elements:

dx = F dX and dX = F−1 dx . (2.9)

Normal map The material surface Ŝ(X) = c ⊂ B0 is introduced as a level set with c
being a constant scalar value. An according spatial surface ŝ(x) = c ⊂ B shall refer to
the same level set and is obtained via the deformation map χ, hence, ŝ(x) = ŝ(χ(X, t)).
Through use of standard vector calculus, surface normal vectors are given by the gradient
of a level set and we can define the material normal vector N̂ = Grad[Ŝ(X)] and the
spatial normal vector n̂ = grad[ŝ(x)], where grad[(·)] = ∂(·)/∂x is the derivative of (·)
with respect to the current position x. Using the chain rule, one obtains

n̂(X, t) = grad[ŝ(x)] = grad[ŝ(χ(X, t))] = grad[Ŝ(X)]

= grad T [X] Grad[Ŝ(X)] = F−T (X, t) N̂ (X) ,
(2.10)

where grad[X] = ∇xX = (∂x/∂X)−1 is identified as the inverse deformation gradient
F−1. With this, the normal map is given by

F−T :

{
T ∗XB0 → T ∗xB
N̂ 7→ n̂ = F−T N̂ ,

(2.11)

where T ∗XB0 and T ∗xB denote cotangent (dual) spaces of the material and the spatial
domain, respectively. The map (2.11) represents a contravariant push-forward transform-
ation, whereas the associated contravariant pull-back transport is given by N̂ = F T n̂.

Area map At the intersection of two material curves, Ĉ(1)(ϑ) ⊂ B0 and Ĉ(2)(ϑ) ⊂ B0,

the cross product of their respective tangent vectors T̂(1) and T̂(2) defines a material vector

dA = T̂(1) × T̂(2) of an infinitesimal area element. Subsequently, a spatial area vector is
given by da = t̂(1) × t̂(2) as the cross product of the spatial tangent vectors t̂(1) and t̂(2).
By use of the tangent map (2.8) and the very elegant notation of the double (tensor) cross
product, see Appendix A.4, one obtains

da = t̂(1) × t̂(2) = F T̂(1) × F T̂(2) = 1
2

(F××F ) (T̂(1) × T̂(2)) = cof[F ] dA , (2.12)

and the cofactor cof[F ] = (F××F )/2 of the deformation gradient is identified as the area
map. The push-forward and pull-back transformations of area elements are thus given by

da = cof[F ] dA and dA = cof[F ]−1 da . (2.13)
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Volume map Considering now the intersection of three material curves, Ĉ(i)(ϑ) ⊂ B0

with i = 1, 2, 3, an infinitesimal material volume element dV = (T̂(1) × T̂(2)) · T̂(3) is

defined as the scalar triple product of the three associated material tangent vectors T̂(i).
In analogy, a spatial volume element dv = (t̂(1) × t̂(2)) · t̂(3) is formulated in terms of the
scalar triple product of spatial tangent vectors t̂(i). Using once more the tangent map (2.8)
and the double cross product notation yields the relation

dv = (t̂(1) × t̂(2)) · t̂(3) = (F T̂(1) × F T̂(2)) · F T̂(3)

= 1
6

[(F××F ) · F ] (T̂(1) × T̂(2)) · T̂(3) = det[F ] dV
(2.14)

and the determinant det[F ] = [(F××F ) · F ]/6 of the deformation gradient is identified as
the volume map. Thus, the push-forward and pull-back transformations for infinitesimal
volume elements are given by

dv = det[F ] dV and dV = det[F ]−1 dv , (2.15)

respectively. Material interpenetration and unphysical deformations are excluded through
restriction (2.6).

2.1.3 The Cauchy–Green tensors, stretch, and shear

After having introduced the tangent and line map, it is of interest to formulate measures
which quantify the deformation. To do so, we first consider the scalar product of two
spatial line elements dx and make use of the line map (2.9):

dx · dx = F dX · F dX = dX · F TF dX =: dX ·C dX → C = F TF . (2.16)

Therein, the second-order tensor C ∈ SYM(3) is introduced as the right Cauchy–Green
deformation tensor, where SYM is the class of symmetric tensors. In a similar fashion,
starting with the square dX · dX of material line elements, the left Cauchy–Green tensor
B = FF T ∈ SYM(3) is presented. For physical reasons, the Cauchy–Green tensors are
positive definite. In addition to rigid-body translations, which are already disregarded
by the deformation gradient, the Cauchy–Green tensors exclude contributions from rigid-
body rotations as well. This is easy to show by considering the deformation gradient F to
be a pure rotation tensor R ∈ SO(3), where SO(3) is the special orthogonal group and
implies that R−1 = RT and det[R] = 1. Then, C = F TF = RTR = R−1R = I and,
equivalently, B = RRT = RR−1 = I. This shows that the Cauchy–Green tensors have
for pure rotations at any time t the same value than for the reference state at t0. This
feature makes these deformation measures well-suited as a basis for stress calculations.

Stretch To quantify the local deformation in a certain direction of the material body
B, the length |t̂| = |F T̂ | of a spatial tangent vector t̂ is related to the reference length
|T̂ | of the associated material vector T̂ . If T̂ is assumed to be a unit vector with |T̂ | = 1,
we can introduce the stretch

λ(X, t; T̂ ) = λT̂ (X, t) := |t̂(X, t)| = ‖t̂(X, t)‖2

=
√
t̂(X, t) · t̂(X, t) =

√
T̂ (X) ·C(X, t) T̂ (X)

(2.17)
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in direction T̂ at the reference position X and time t as Euclidian norm of the spatial
vector t̂. Note that no difference will be made between the notations λT̂ and λt̂. It is
visible from (2.17) that the right Cauchy–Green tensor C is involved in the calculation of
the stretch λ. This is not surprising when recalling that C was introduced in (2.16) by
means of the square of line elements, which resembles a squared stretch. Consequently,
the stretch inherits from C the independence on rigid-body deformations (translations and
rotations). It is common to differentiate three different states of stretch and a material is
called extended if λ > 1, unstretched if λ = 1, and compressed if 0 < λ < 1, whereas zero
and negative stretches are not possible due to the positive definiteness of C.

Shear and reorientation To measure the motion of two material directions relative to
each other, the material angle Θ̂(X; T̂(1), T̂(2)) and spatial angle θ̂(X, t; T̂(1), T̂(2)) between

two material tangent (unit) vectors T̂(1) and T̂(2) and their according spatial counterparts
t̂(1) and t̂(2), respectively, are introduced through the relations

cos[Θ̂] = T̂(1) · T̂(2) and cos[θ̂] =
t̂(1) · t̂(2)

|t̂(1)||t̂(2)|
=
T̂(1) ·C T̂(2)

λT̂(1)
λT̂(2)

. (2.18)

The decrease of the difference ∆Θ̂θ̂ = Θ̂ − θ̂ is called the angle of shear in the plane

spanned by the two vectors T̂(1) and T̂(2). Further, we call γ̂ = tan[|∆Θ̂θ̂|] ≥ 0 the amount
of shear. Like the stretch λ, the shear measures depend on the Cauchy–Green tensor C
and thus exclude rigid-body deformations. If one of the two material directions, say T̂(1),
is regarded as some direction of reference, the shear angle ∆Θ̂θ̂ serves as a measure for the

reorientation or realignment of the direction T̂(2) with respect to T̂(1).

2.1.4 Deformation decomposition

For later use, it proves useful to introduce certain multiplicative decompositions of the
deformation gradient F .

Polar decomposition Any proper deformation gradient F can be subjected to a unique
polar decomposition such that

F = RU = V R , (2.19)

where U ,V ∈ SYM(3) are referred to as symmetric right (material) and left (spatial)
stretch tensors and R ∈ SO(3) is a proper orthogonal rotation tensor. Recalling (2.16)
and using UT = U and R−1 = RT , it is easy to show that C = (RU)T (RU) =
UTRTRU = UU = U 2. Equivalently, for the spatial counterparts we find B = V 2.
Thus, the pairs {U ,C} and {V ,B} each share the same sets of eigenvectors, while their
eigenvalues are connected through λ2

U(i) = λ2
V (i) = λC(i) = λB(i) (i = 1, 2, 3), where λ(·)(i)

are the eigenvalues of (·). The eigenvalues λU(i) ∈ R+ of U and V are called the principal
stretches. They are identical to the singular values (not necessarily to the eigenvalues) of
the deformation gradient F . Obviously, the stretch tensors U and V exclude rigid-body
rotations and the stretch of a material direction T̂ , as defined in (2.17), can be expressed
as λT̂ = |UT̂ |.

Triangular decomposition In a variety of mathematical applications, it is helpful to
perform a unique so-called QR decomposition of a matrix into an orthogonal matrix and
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an upper triangular part. In the field of continuum mechanics, such a decomposition was
proposed for the deformation gradient by Srinivasa [461] and further discussed by Freed
& Srinivasa [138]. It reads

F = QR , (2.20)

such that Q ∈ SO(3) is a proper orthogonal rotation tensor and R depicts a tensor with
an upper triangular coefficient matrix, hence, at least three zero-coefficients R21 = R31 =
R32 = 0. The here so-called triangular decomposition has the benefit that the coefficients
of R have direct physical meaning and can be correlated to specific stretches and shears.
Further, since Q is a pure rotation, the stretch in material direction T̂ , defined in (2.17),
can be formulated as λT̂ = |RT̂ |, in which the expression RT̂ profits from the three zero
entries of R and usually leads to more compact notations than stretch calculations via
λT̂ = |F T̂ | or λT̂ = |UT̂ |. Such simplified expressions will be very useful in Part II of this
work. It is remarked that Q 6= R, which means that polar and triangular decomposition
obey different rotation tensors.

Volumetric-deviatoric decomposition In addition to the previous decompositions,
which focus on the exclusion of rigid-body rotations, the decomposition

F = Fv F̆ with Fv := J1/3I (2.21)

divides the deformation gradient into a volumetric deformation Fv and a purely deviat-
oric, volume-preserving part F̆ ∈ SL(3), where SL is group of the special linear tensors,
hence, det[F̆ ] = 1. This decomposition was originally proposed by Flory [129]. The
corresponding decomposition of the stretch tensor U = Uv Ŭ (with Uv = Fv) goes back
to Richter [399]. Based on (2.21), the right Cauchy–Green tensor can be decomposed
to C = Cv C̆, where Cv := J2/3I and C̆ = F̆ T F̆ ∈ SL(3) so that det[C̆] = 1.

2.1.5 Measures of strain

Strain measures are defined such that they exclude rigid-body deformations and, addition-
ally, vanish for the unstretched state. A general class of strain tensors was for example
proposed by Seth [429] and Hill [213]. The material formulations of the Seth-Hill family
are based on the right stretch tensor U and read

Em =

{ 1
m

(Um − I) m 6= 0 ,

ln[U ] m = 0 ,
(2.22)

where m ∈ R and Em ∈ SYM(3). Obviously, it holds that Em = 0 whenever U = I
for arbitrary choices of m, while in this case F can still be an arbitrary rotation tensor
R ∈ SO(3). The general formulation (2.22) includes common strain measures for special
choices of m, for example, the Green–Lagrange strain E2 = (C−I)/2 for m = 2, the Biot
strain E1 = U − I for m = 1, and the logarithmic Hencky strain tensor E0 = ln[U ] for
m = 0. The strain tensors Em share the set of eigenvectors with the right stretch tensor
U , while the associated eigenvalues are distinct for each choice of m. For instance, the
eigenvalues of the Hencky strain tensor E0 are given by the logarithm of the principal
stretches, viz: λE0(i) = ln[λU(i)] (i = 1, 2, 3). The Hencky strain is a very convenient
measure for finite strains, especially because it resembles some features from small-strain
considerations. A comprehensive discussion on the geometric properties of logarithmic
strains can be found in Neff et al. [350].
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2.2 The concept of stress

The previous section introduced the basic kinematical relations for a material body B
subject to finite deformations and strains. If in a body occur strains and motions of
material particles P relative to each other, it is consequent to postulate that this gives
rise to internal forces in the body. This is described by the concept of stress, which
characterises a force related to a certain area. As a standard procedure, Euler’s cut
principle is considered and a material subdomain BS ⊂ B0 is imaginary cut out of the
material body B0. The associated particle positions x = χ(X ∈ BS) ∈ BSt ⊂ B in the
spatial subdomain BSt are obtained by the deformation map χ. The forces arising at the
cut surface ∂BSt are quantified by the Cauchy (spatial) traction vector t(x, t;n), which
depends on the outward-oriented unit surface normal vector n(x, t) ∈ T ∗xBSt . The traction
vector t = df/da relates a current force element df to a spatial area element da and thus
measures the current force per current area. Of course, it is known from Newton’s third
law of motion2 that the stress vector t is in balance with a counterpart on the surface of
the body B \ BSt with opposed oriented normal vector −n, such that

t(x, t;n) = −t(x, t;−n) . (2.23)

This is referred to as Cauchy’s lemma. As it is of interest to have a stress measure which
is independent of the surface normal vector n, the Cauchy theorem states a linear relation
between the stress vector t and the according surface normal vector n via

t(x, t;n) =: σ(x, t)n(x, t) (2.24)

and introduces σ as the Cauchy (true) stress tensor. Further, with the oriented area
elements da = n da and dA = N dA, and recalling the area map (2.13), the current force
element df = t da can be reformulated as

df = t da = σ da = σ cof[F ] dA =: P dA = PN dA . (2.25)

This allows to identify
T (X, t;N ) := P (X, t)N (X) (2.26)

as the nominal traction vector that measures the current force per referential area element
dA. Further, P = σ cof[F ] is referred to as the first Piola–Kirchhoff (nominal) stress
tensor and is of substantial importance for continuum-mechanical formulations that ac-
count for current forces but the geometry of the referential body B0.

2.3 Physical balance relations

The preceding considerations have to be complemented by the introduction of physical bal-
ance relations in order to obtain governing equations for continuum-mechanical problems.
Hence, in this section a general balance structure is formulated and subsequently used to

2Published 1686 in Newton’s famous work Philosophiæ Naturalis Principia Mathematica and known
as actio est reactio. In its original Latin version it reads: “Lex III: Actioni contrariam semper et æqualem
esse reactionem: sive corporum duorum actiones in se mutuo semper esse æquales et in partes contrarias
dirigi.”
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axiomatically introduce individual balances for the physical quantities mass, momentum,
moment of momentum, energy, and entropy. Further balance relations for quantities re-
lated to electromagnetic phenomena are not presented here, but can be found, for example,
in the book of Eringen & Maugin [120].

2.3.1 General balance structure

A general balance structure for a continuous, volume-specific quantity Ψ ∈ R in a subset
BS ⊆ B0 of the material domain B0 is obtained by investigating the temporal change of
the associated integrated quantity

∫
BS Ψ dV . It is postulated that the rate of the volume

integral is then given by

d

dt

∫

BS
Ψ dV =

∫

∂BS
(φ ·N ) dA+

∫

BS
ζ dV +

∫

BS
Ψ̂ dV (2.27)

and constitutes a general balance for the scalar-valued quantity Ψ ∈ R. By the same argu-
ments, a general balance for vector-valued, volume-specific quantity Ψ ∈ R3 is introduced
as

d

dt

∫

BS
Ψ dV =

∫

∂BS
(ΦN) dA+

∫

BS
ζ dV +

∫

BS
Ψ̂ dV . (2.28)

The balances (2.27) and (2.28) state that the rates of the volume integrals on the left
hand sides are in equilibrium with the fluxes φ ∈ R3, Φ ∈ R3⊗3 over the surface ∂BS,
the supply terms ζ ∈ R, ζ ∈ R3 in BS, and the production terms Ψ̂ ∈ R, Ψ̂ ∈ R3

in BS, respectively. Subsequently, integration and differentiation on the left hand sides
of (2.27) and (2.28) can be interchanged since the boundaries of the integration refer to
the time-invariant material subdomain BS. By further applying the respective scalar- and
vector-valued Gaussian integral (divergence) theorems, see Eqs (A.25) and (A.26), on the
surface flux terms, one obtains the global balance forms

∫

BS
Ψ̇ dV =

∫

BS
[Div[φ] + ζ + Ψ̂ ] dV and

∫

BS
Ψ̇ dV =

∫

BS
[Div[Φ] + ζ + Ψ̂ ] dV , (2.29)

where a dot over (·) denotes the (total) time derivative d(·)/dt and Div[(·)] is a material
divergence operator. Finally, since the balances (2.29) shall be fulfilled for any subdomain
BS ⊆ B0, we can apply the localisation theorem

∫

BS
(·) dV = 0 ∀BS ⊆ B0 → (·) = 0 ∀X ∈ B0 (2.30)

on the global forms in order to obtain the local balance forms

Ψ̇ = Div[φ] + ζ + Ψ̂ and Ψ̇ = Div[Φ] + ζ + Ψ̂ , (2.31)

which have to be fulfilled at each material particle position X.

2.3.2 Balance of mass

The scalar-valued mass of the subdomain BS ⊆ B0 is given byM =
∫
BS ρ0(X) dV in terms

of the referential mass density ρ0(X). In this work, we only consider closed systems where
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the mass is a conserved quantity and it can therefore be easily concluded that the rate of
the referential mass is zero, hence

Ṁ =
d

dt

∫

BS
ρ0 dV = 0 . (2.32)

Comparing (2.32) to the general balance (2.27), the mass density ΨM, the mass flux φM,
the mass supply ζM as well as the mass production Ψ̂M can be identified as

ΨM = ρ0 , φM = 0 , ζM = 0 , Ψ̂M = 0 . (2.33)

Using these findings in the local form (2.31)1 results in the intuitive expression

ρ̇0 = 0 (2.34)

for the local mass balance stating that the initial mass density ρ0 of the material is constant
over time.

2.3.3 Balance of linear momentum

The vector-valued linear momentum of the subdomain BS ⊆ B0 is given by I =
∫
BS ρ0 ẋ dV

in terms of the velocity ẋ = dx/dt. It is stated that the temporal change of the momentum
in BS is equal to the sum of contact forces f acting on the surface ∂BS and volume forces
b in BS, which means that İ = f + b. The contact forces f =

∫
∂BS PN dA are obtained

by an integration of (2.25), while the volume forces are introduced as b =
∫
BS ρ0 b dV in

terms of the mass-specific external body force b. Thus, we can write

d

dt

∫

BS
ρ0 ẋ dV =

∫

∂BS
PN dA+

∫

BS
ρ0 b dV . (2.35)

By comparing with (2.28), we can identify the momentum density ΨI , the momentum
flux ΦI , the momentum supply ζI , and the momentum production Ψ̂I as

ΨI = ρ0 ẋ , ΦI = P , ζI = ρ0 b , Ψ̂I = 0 . (2.36)

Then, substituting these terms into the general form (2.31)2, applying the product rule
for the time derivation of ΨI , and making use of (2.34), we can identify

ρ0 ẍ = Div[P ] + ρ0 b (2.37)

as the local momentum balance. Note that (2.37) can be regarded as a continuum version
of Newton’s second law of motion.

A commonly applied simplification of the momentum balance is to neglect the body
forces, b = 0, which means that effects like gravitation are disregarded. If we further
assume quasi-static conditions, the inertia-related left hand side term in (2.37) drops out,
since ẍ ≈ 0, and the momentum balance can under these assumptions be reduced to

Div[P ] = 0 . (2.38)
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2.3.4 Balance of moment of momentum

The vector-valued moment of momentum of the subdomain BS ⊆ B0 with respect to the
origin O of the inertial basis system is given by L =

∫
BS x × ρ0 ẋ dV . In analogy to the

linear momentum balance, it is postulated that the temporal change of L is equal to the
sum of the torques fL =

∫
∂BS x×PN dA due to the surface force f and bL =

∫
BS x×ρ0 b dV

due to the volume force b, hence L̇ = fL + bL. Then, we can directly formulate

d

dt

∫

BS
x× ρ0 ẋ dV =

∫

∂BS
x× PN dA+

∫

BS
x× ρ0 b dV (2.39)

and, by comparing with (2.28), we can identify the density ΨL, the flux ΦL, the supply
ζL, and the production Ψ̂L of the moment of momentum as

ΨL = x× ρ0 ẋ , ΦL = x× P , ζL = x× ρ0 b , Ψ̂L = 0 . (2.40)

Inserting these relation in the local form (2.31)2, applying the product rule (A.57) on Ψ̇L,
reformulating the divergence term to Div[x×P ] = x×Div[P ]+F ×P , and subsequently
simplifying by means of the preceding balances (2.34) and (2.37) leads to

F × P = E(FP T ) = 0 ↔ FP T = PF T . (2.41)

Therein, expression (2.41)1 reformulates the tensor cross product by means of the third-
order fundamental tensor E , see (A.6), and (2.41)2 is obtained since (2.41)1 states that the
skew-symmetric part skw[FP T ] has to be zero. Note that reformulating (2.41)2 by means
of P = σ cof[F ] = σ det[F ]F−T yields the well-known symmetry condition σT = σ for
the Cauchy stress tensor.

2.3.5 Balance of energy

The scalar-valued internal energy of the subdomain BS ⊆ B0 is given by Eε =
∫
BS ρ0 ε dV

in terms of the mass-specific internal energy ε. In turn, the total energy E = Eε + EK
of the subdomain BS ⊆ B0 is given by the sum of the internal energy and the kinetic
energy EK =

∫
BS(ρ0 ẋ · ẋ)/2 dV . The first law of thermodynamics now postulates that

the temporal change of E equals the sum P = PM + PQ of external mechanical power
PM =

∫
∂BS ẋ·PN dA+

∫
BS ẋ·ρ0 b dV and thermal (non-mechanical) power PQ = −

∫
∂BS q·

N dA+
∫
BS ρ0 r dV . Therein, q denotes the inwards-oriented heat flux (convection) vector

and r is the external heat supply (radiation). Then, the resulting balance equation Ė = P
is given by

d

dt

∫

BS
ρ0 (ε+ 1

2
ẋ · ẋ) dV =

∫

∂BS
ẋ · PN − q ·N dA+

∫

BS
ρ0 (ẋ · b+ r) dV . (2.42)

By a comparison with (2.27), the energy density ΨE , the energy flux φE , the energy supply
ζE , and the energy production Ψ̂E are identified as

ΨE = ρ0 (ε+ 1
2
ẋ · ẋ) , φE = P T ẋ− q , ζE = ρ0 (ẋ · b+ r) , Ψ̂E = 0 . (2.43)

Inserting these relations in the local form (2.31)1, making repeated use of the product rule,
inter alia (A.56), for Ψ̇E , reformulating the divergence term to Div[P T ẋ] = Div[P ] · ẋ +
P ·Grad[ẋ], introducing the velocity gradient Ḟ = Grad[ẋ], and subsequently simplifying
by means of the preceding balances (2.34) and (2.37) leads to the local energy balance

ρ0 ε̇ = P · Ḟ −Div[q] + ρ0 r . (2.44)
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2.3.6 Balance of entropy

The scalar-valued entropy of the subdomain BS ⊆ B0 is given by H =
∫
BS ρ0 η dV in

terms of the mass-specific entropy η. Before introducing a balance relation for the entropy
H, it shall be remarked that understanding this thermodynamical property is not as
intuitive as for the previously considered quantities, like momentum or energy, and a more
illustrative access to the topic may be provided, for example, in the textbook of Müller
& Weiss [347]. The usual continuum-mechanical approach to the concept of entropy is
an axiomatical introduction of the balance equation for the temporal change of H, reading

Ḣ =
d

dt

∫

BS
ρ0 η dV =

∫

∂BS
(φH ·N ) dA+

∫

BS
ζH dV +

∫

BS
ρ0 η̂ dV , (2.45)

and subsequently introducing constitutive expressions for the entropy flux φH and for the
entropy supply ζH, see, for example, Eckart [104] and Müller [346]. This leads to

ΨH = ρ0 η , φH := −q
θ
, ζH :=

ρ0 r

θ
, Ψ̂H = ρ0 η̂ , (2.46)

where θ is the thermodynamic (absolute) temperature and where we identified the entropy
density ΨH and the entropy production Ψ̂H by comparing (2.45) with the general bal-
ance (2.27). Inserting relations (2.46) into (2.31)1 and simplifying by means of (2.34)
yields the local entropy balance

ρ0 η̇ = −Div
[q
θ

]
+
ρ0 r

θ
+ ρ0 η̂ . (2.47)

Dissipation inequality In contrast to the other four balances, the equation for the
entropy contains a production term, which implies that the entropy is not a conserved
quantity. The second law of thermodynamics or dissipation postulate states that the pro-
duction of entropy must never be negative, which means that

Ψ̂H = ρ0 η̂ ≥ 0 (2.48)

and, applied to (2.47), ρ0 η̇ + Div[q/θ] − ρ0 r/θ ≥ 0. Reformulation of this expression by
means of Div[q/θ] = −q ·Grad[θ]/θ2+Div[q]/θ, the energy balance (2.44), a multiplication
with θ > 0, and the introduction of the mass-specific Helmholtz free energy

ψ := ε− θη (2.49)

leads to the Clausius-Duhem inequality

D := P · Ḟ − ρ0 ψ̇ − ρ0 θ̇η −
1

θ
q ·Grad[θ] ≥ 0 . (2.50)

Therein, D = ρ0 θη̂ is introduced as the local dissipation and the term P · Ḟ , originated
in the energy balance, is the stress power. A positive dissipation D > 0 characterises
irreversible processes, whereas a vanishing dissipation D = 0 means that a process is
reversible. Finally, when restricting to isothermal processes, it follows that θ̇ = 0 as well
as Grad[θ] = 0 and (2.50) reduces to the Clausius-Planck inequality

D = P · Ḟ − ρ0 ψ̇ ≥ 0 . (2.51)
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3 Fundamentals of Material Theory

This chapter presents some fundamental knowledge of material theory, which is the con-
sequent continuation of the considerations from the previous chapter in order to treat
continuum-mechanical problems. In this sense, this chapter starts with the formulation of
the basic boundary-value problem of continuum mechanics and introduces the constitutive
framework as well as the resulting restrictions upon the constitutive equations obtained
from basic thermodynamical principles. This is followed by further topics, such as the
discussion of variational principles in continuum mechanics, invariant theory and some
examples for analytical strain-energy functions. The choice of the discussed topics is mo-
tivated by the applications in the following chapters and the explanations and principles
may serve as a toolbox for the following chapters. The presented approach to the topic of
material theory is by no means complete and it is referred to the classical textbooks of,
for example, Truesdell [488], Truesdell & Noll [490], Ogden [362], and Šilhavý
[438] for comprehensive overviews on material theory and constitutive modelling.

3.1 The mechanical boundary-value problem

The basic kinematical principles and the evaluation of the physical balance relations in
the preceding chapter laid the foundation for the formulation of the mechanical boundary-
value problem, which is the basic starting point for the treatment of continuum-mechanical
problems. Up to now, the presented framework is capable of describing general thermody-
namical processes, which generally results in the primary variables {χ, θ} and a response
function set R = {ψ,P , η, q}. However, in this work continuum-mechanical problems will
be treated under the following assumptions:

i. neglection of body forces: b = 0,

ii. quasi-static conditions and the neglection of inertia effects: ẍ ≈ 0 as well as

iii. isothermal conditions: θ̇ = 0 and Grad[θ] = 0.

The first two assumptions entail that we can proceed with the balance of momentum in
the reduced form (2.38), whereas the third assumption entails a constant temperature θ
in B and makes the evaluation of the energy balance superfluous. This will reduce the set
of response functions to R = {ψ,P } by withdrawing the entropy η and the heat flux q.

3.1.1 Problem formulation

Let the body B undergo some deformation from its referential configuration B0 to a current
configuration B. The deformation is described by the map of the associated particles P ∈
B from their reference position X ∈ B0 to a current position x ∈ B. This is formulated
in terms of the deformation map χ as introduced in Eq. (2.3). From a physical point of
view, it is only consequent to postulate that the body B interacts with its surrounding
in space and to formulate these interactions in the form of conditions which act on the
referential boundary points X ∈ ∂B0. When the nature of the interaction is such that
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it constraints the motion χ of the body on the whole or a part of its boundary ∂B0 to a
prescribed value χ, the body is subject to Dirichlet boundary conditions

χ = χ on ∂Bχ ⊆ ∂B0 . (3.1)

Consequently, ∂Bχ is referred to as the Dirichlet surface. A second type of conditions is
given when the tractions T = PN on the Neumann surface ∂BT ⊆ ∂B0 are prescribed by
a traction vector T , thus giving the Neumann boundary conditions

PN = T on ∂BT ⊆ ∂B0 . (3.2)

Further, one specific material position X ∈ ∂B0 on the boundary must be subject to
exactly one type of boundary condition, hence relating Dirichlet and Neumann surface
through

∂Bχ ∪ ∂BT = ∂B0 and ∂Bχ ∩ ∂BT = ∅ . (3.3)

Summarising, the mechanical boundary-value problem is defined by finding the kinemat-
ically admissible deformation map1

χ = {χ | χ = χ on ∂Bχ} , (3.4)

satisfying the Dirichlet boundary conditions, subject to the Neumann boundary condi-
tions (3.2). From the previous chapter, we know that the balance of momentum has to be
fulfilled, hence

Div[P ] = 0 in B0 , (3.5)

and that the first Piola–Kirchhoff stress P has to satisfy the balance of moment of mo-
mentum as given in Eq. (2.41).

3.1.2 The need for constitutive relations

The preceding considerations treated the formulation of the mechanical boundary-value
problem. However, it was not investigated whether the problem is solvable with the
equations at hand. Therefore, we now want to confront the unknowns and the equations
of the problem presented in Section 3.1.1. On the side of the unknowns, we directly
identify the deformation map χ and the first Piola–Kirchhoff stress tensor P , hence, the
deformation and the occurring stresses in the body B have to determined. Furthermore,
it is strongly suggested to aim for a thermodynamically consistent formulation, which
additionally demands for the evaluation of the entropy inequality. This entails that the
Helmholtz free energy ψ has to be specified. In summary, we have

deformation map χ 3 unknowns

stress tensor P 9 unknowns

free Helmholtz energy ψ 1 unknown





→ 13 unknowns . (3.6)

1Note that it might be useful to pose some further mathematical requirements on the function space of the
deformation map χ. In this sense, Eq. (3.4) might be strengthened to χ = {χ ∈ W 1,p | χ = χ̄ on ∂Bχ},
where W 1,p is the Sobolev space of weakly differentiable functions, see, for example, Ciarlet [80] or
Šilhavý [438]. Such clarifications are important in numerical treatments of the mechanical problem
when dealing with the formulation of appropriate ansatz spaces for trial and test functions, such as in the
finite-element-method.
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On the equation side, we find

balance of momentum Div[P ] = 0 3 equations

balance of moment of momentum FP T = PF T 3 equations

}
→ 6 equations .

(3.7)
It is easy to recognize that there is a gap between the number of unknowns and the
number of equations and that there are 13 − 6 = 7 equations missing for the solution of
the boundary-value problem. However, this observation is very welcome when recalling the
nature of the equations formulated so far and realising that they are fully independent of
any specific material behaviour. Consequently, the kinematical considerations and physical
balance equations investigated so far are referred to as material-independent relations.
In order to solve the mechanical boundary-value problem, further constitutive, material-
dependent relations have to be formulated. These allow for the incorporation of individual
characteristics of materials and to account for specific mechanical properties like stiffness
or direction-dependence. For the purely mechanical problem at hand, it can be concluded
that the deformation map χ is a primary variable and determined by using the balance
of momentum, whereas one additional constitutive relation for the free energy ψ and six
constitutive relations for the first Piola–Kirchhoff stress have to be added. The number of
constitutive relations for the first Piola–Kirchhoff stress is hereby reduced from 9 to 6 by
making use of the balance of moment of momentum.

In order to formulate physically meaningful theories, the constitutive relations should be
investigated on the basis of some basic thermodynamical principles, which will be presented
in the next section.

3.2 Constitutive framework

As outlined in the preceding section, the solution of the mechanical problem demands for
the formulation of constitutive relations in addition to the physical balance equations. In
the here considered mechanical problem, the Helmholtz free energy ψ and the first Piola–
Kirchhoff stress tensor P . Those two quantities are therefore identified as the response
functions R = {ψ,P } of the mechanical process. This section presents the basic ther-
modynamical principles of material modelling, which provide the basis for the meaningful
formulation specific material laws.

3.2.1 Principle of determinism

A fundamental idea of constitutive modelling is the principle of determinism, which states
that the present response of a system is completely determined by its past and present
state. In this sense, the present response must not be dependent on any future events
and determinism therefore implies causality. Applied to the mechanical problem at hand,
the principle states that ψ(X, t) and P (X, t) at point X ∈ B0 and time t ∈ R+ are
entirely determined by the full history χTt(Y ∈ B0) of the deformation map χ at all
points Y ∈ B0 and at all times Tt = {tA, t}. Following the seminal work of Noll [356]
by introducing the energy functional Gψ and the stress functional GP , the above ideas
result in the notation

ψ(X, t) = Gψ(χTt(Y )) and P (X, t) = GP (χTt(Y )) . (3.8)
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By choosing the same argument χTt(Y ) for both (all) functionals Gψ and GP , this for-
mulation also meets the principle of equipresence as proposed by Truesdell [487].

For a variety of history- and path-dependent material behaviours, such as viscosity or
plasticity, it is convenient to replace the dependence on the full motion history χTt(Y )
by a dependence on the present motion χ(Y , t) at time t and an adaptable number of
internal variables, see Coleman & Gurtin [81]. Any required knowledge on the motion
history is then imprinted in the internal variables. Here, we will proceed with the investig-
ation of purely elastic problems and the neglection of any history-dependent effects. The
statements in (3.8) then simplify to

ψ(X, t) = Gψ(χ(Y , t)) and P (X, t) = GP (χ(Y , t)) (3.9)

and express that the present responses ψ(X) and P (X) at point X ∈ B0 and time t are
determined by the present deformation χ(Y ) at all points Y ∈ B0 at time t. For the sake
of a compact notation, the argument t is dropped in the following, but the time-dependence
should be kept in mind.

3.2.2 Principle of local action

The dependence of the present response of ψ(X) and P (X) at a specific point X in B0

on the deformation of the entire points Y in B0 is a very general statement and might not
prove useful for the construction of constitutive theories. For instance, coupling of forces
at a point position X with forces at distant points is already included in the continuum-
mechanical theory by the concept of stress and the accompanied formulation of traction
vectors T (X) at each position X. In this sense, the principle of local action, proposed by
Noll [356], states that the material response at point X is only influenced by the motion
χ(Y ) of points Y ∈ NX in a small and smooth neighbourhood NX of X. Consequently,
the motion χ(Y ) can be approximated by the first-order Taylor expansion

χ(Y ) ≈ χ(X) + Grad[χ(X)](Y −X) , (3.10)

where it is easy to identify the deformation gradient F (X) = Grad[χ(X)]. With this, the
constitutive relations are reformulated to

ψ(X) = Gψ(χ(X),F (X)) and P (X) = GP (χ(X),F (X)) , (3.11)

and the constitutive functionals Gψ and GP get the meaning of constitutive functions.
Consequently, the principle of local action infers that the arguments of these two functions
are the motion χ(X) and the deformation gradient F (X) at point X. If the constitutive
relation of a material satisfies (3.11), hence, if the set of arguments only includes first and
no higher gradients of the motion, it is called material of order one. Higher order material
theories are obtained by considering further terms in the Taylor expansion (3.10) and lead
to gradient-extended material formulations. Further note that if the smoothness of the
neighbourhood NX is not satisfied and one has to deal with discontinuities and long-range
forces, like for cracked materials, one might have to take into account nonlocal effects,
such as it is done by the peridynamic theory, introduced by Silling [439]. Comprehensive
explanations on nonlocal theories can also be found in the book of Eringen [119].
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3.2.3 Principle of material frame-indifference

Let the body B undergo some arbitrary deformation map χ into some spatial configuration
B. A particle P ∈ B of the body obeys specific properties and material responses,
such as, for example, the free energy ψ and the stress tensor P in the configuration B.
To have a physically meaningful theory, it is absolutely indispensable that the material
response of a particle P in the configuration B is invariant with respect to the frame of
reference in which the material response is observed. Thus, any constitutive theory must
satisfy the principle of material frame-indifference2, formulated by Noll [355, 356]. To
investigate this principle, it proves useful to notice that the change of a frame of reference
can be equivalently regarded as a certain rigid-body transformation superimposed on the
spatial configuration3 B, see Holzapfel [221]. Then, it is consequent to formulate the
transformation x∗(X) = χ∗(X) = Qχ(X)+c = Qx(X)+c, which applies a rigid-body
rotation Q ∈ SO(3) and a rigid-body translation c ∈ R3 on the spatial configuration
x. We require that χ∗|t=t0 = X∗ = X such that ∂(·)/∂X∗ = ∂(·)/∂X. Hence, the
transformed deformation gradient is obtained by F ∗ = Grad[χ∗] = QF , where it is
recalled that the deformation gradient disregards rigid-body translations, see Section 2.1.2.
The scalar free energy transforms simply as ψ∗ = ψ, whereas the transformed stress
P ∗ = QP is obtained by using the relation P ∗N ∗ = T ∗ = QT = QPN , the invariance
of the referential normal vector N ∗ = N , and the transformation of the traction vector
T ∗ = QT . The important transformations can thus be summarised as

χ⇒ χ∗ = Qχ+ c , F ⇒ F ∗ = QF , ψ ⇒ ψ∗ = ψ , P ⇒ P ∗ = QP . (3.12)

The principle of material frame indifference then demands that

ψ∗(X) = Gψ(χ∗(X),F ∗(X)) = ψ(X) = Gψ(χ(X),F (X)) ,

P ∗(X) = GP (χ∗(X),F ∗(X)) = QP (X) = QGP (χ(X),F (X)) .
(3.13)

However, since (3.13) has to be valid for arbitrary values of Q ∈ SO(3) and c ∈ R3 (as
long as X∗ = X), it must equally hold for the specific choices Q = I and c = −u.
Then, since we obtain χ∗ = X and F ∗ = F , relations (3.13) become ψ = G∗ψ(X,F ) =
Gψ(χ,F ) and P = G∗P (X,F ) = GP (χ,F ), and it is concluded that the deformation
map χ is no appropriate argument for the construction of constitutive relations. This is a
further implication of the principle of local action accompanied with the principle of frame
indifference and essentially states that the constitutive relations at point X must only
depend on the localisation of the motion in the small neighbourhood NX . Summarising,
the conditions for the constitutive relations read

Gψ(QF ) = Gψ(F ) and GP (QF ) = QGP (F ) ∀Q ∈ SO(3) . (3.14)

2Alternative terms are principle of observer-invariance or principle of material objectivity. However,
Noll [357] suggests to avoid the terms observer and objectivity in this context.

3In principle, invariance with respect to an arbitrary change of observer is referred to as the Zaremba–
Jaumann form, whereas invariance with respect to a rigid-body motion of the spatial configuration is
referred to as the Hooke–Poisson–Cauchy form, see Truesdell & Noll [490]. The equivalence of those
two approaches is by no means general and has been subject to lively discussions, see, for example, the
article of Frewer [139], which provides an exhaustive overview on the historical development of the
concept of frame-indifference, as well as the article of Liu & Sampaio [292]. For the concerns here, the
two forms can be used equivalently in the sense of satisfying Euclidian frame-indifference, see Svendsen
& Bertram [466].
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If the constitutive relations of a material satisfy (3.14), it is called simple material. Further
note that the principle of frame indifference is not only demanded for the response functions
ψ and P , but it is also an intuitive requirement for any kind of material properties.

3.2.4 Principle of material symmetry

Next, let the body B undergo some deformation into a spatial configuration B, now gov-
erned by the deformation gradient F . A material of the most general type is expected
to show distinct responses of the free energy ψ and the stress P to the same deforma-
tion, dependent on how the body is oriented in space before the deformation is applied.
This means that the material response relies on the information of the initial orientation
of the body B in its reference configuration B0. The material is then called direction-
dependent or anisotropic. However, a large number of materials shows certain invariance
characteristics of the response functions upon specific rotations Q ∈MG of the reference
configuration B0, whereMG is referred to as the symmetry group of the material. From a
physical point of view, it would be logical that the symmetry group MG ⊆ SO(3) has to
be a subset of the proper orthogonal rotation group, thus providing shape- and volume-
preserving transformations. However, from a more general mathematical and geometrical
point of view, the symmetry group MG must be allowed to be a subset of the full ortho-
gonal group O(3), which additionally includes reflections (so-called rotoinversions) with
det[Q] = −1. For instance, Q = −I ∈ O(3) represents a so-called central inversion. Such
transformations are of course unachievable for real physical objects and rather have an
imaginary character. They are necessary to be consistent with the classical works on crys-
tallography and the characterisation of the complete (also point) symmetries in materials.
For completeness, note that according to Gurtin & Williams [178] the symmetry group
MG ⊆ O(3) ⊂ SL(3) has to be at least a subset of the special linear group SL(3) of
general volume-preserving transformations, which allows for a generalisation of the theory
to fluids.

The principle of material symmetry now demands for the invariance of the material
response functions with respect to proper orthogonal rotations Q ∈ MG of the reference
configuration. A mathematical investigation of a rotated reference configuration gives the
notation X+ = QX for the rotated reference position and the associated deformation
gradient F+ = ∂χ/∂X+ = ∂χ/∂X ∂X/∂X+ = FQT , by using ∂X/∂X+ = Q−1 and
recalling Q−1 = QT . Again, the scalar free energy transforms as ψ+ = ψ, whereas the
rotated first Piola–Kirchhoff stress tensor P+ = PQT is obtained by using the relation
P+N+ = P+QN = T+ = T = PN with the invariance T+ = T of the nominal traction
vector and the contravariant transport N+ = Q−TN = QN of the referential normal
vector. We can thus summarise the referential transformations as

X ⇒X+ = QX , F ⇒ F+ = FQT , ψ ⇒ ψ+ = ψ , P ⇒ P+ = PQT . (3.15)

The invariance condition associated with the principle of material symmetry then demands
that

ψ+(X+) = Gψ(F+) = ψ(X) = Gψ(F ) ,

P+(X+) = GP (F+) = P (X)QT = GP (F )QT ∀Q ∈MG .
(3.16)

This results in the relations

Gψ(FQT ) = Gψ(F ) and GP (FQT ) = GP (F )QT ∀Q ∈MG (3.17)
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for the constitutive functions. Note that a specific symmetry group can be formulated as

MG = {Q ∈ O(3) | Gψ(F ) = Gψ(FQT )} . (3.18)

Due to the obvious similarity to the principle of material frame-indifference, which for-
mulates an invariance condition on the actual configuration, the principle of material
symmetry is referred to as invariance of referential rotations. The structure of both prin-
ciples suggest the formulation of material response functions in terms of scalar invariants
of the Cauchy–Green strain tensors and an adaptable number of structural tensors, which
account for the symmetry group MG of the material. Explanations on the theory of in-
variants and further investigations for the special cases of isotropy and transverse isotropy
follow in Section 3.5.

3.2.5 Principle of dissipation

In order to guarantee the thermodynamical consistency of constitutive material relations,
the dissipation inequality as introduced in Section 2.3.6 has to be fulfilled for all admissible
deformations. Since we restrict attention to isothermal processes, it suffices to investigate
the dissipation inequality in the reduced form (2.51). Further, only reversible, fully elastic
processes are subject of this work such that the inequality can be transformed into an
equality, giving

D = P · Ḟ − ρ0 ψ̇ = 0 (3.19)

for the local dissipation of the material. To proceed, we consider the chain rule and
reformulate the temporal rate of the free energy to ψ̇ = ∂Fψ · Ḟ , which transforms the
dissipation to D = (P − ρ0 ∂Fψ) · Ḟ = 0. Note that ∂Fψ depicts the tensor-valued
derivative of the free energy ψ with respect to the deformation gradient F . The Coleman–
Noll procedure, see Coleman & Noll [83], now states that the dissipation equation has
to be fulfilled for all admissible deformation rates Ḟ . It is easy to show that this results
in the well-known relation P (X) = ρ0 ∂Fψ(X), defining the first Piola–Kirchhoff stress
tensor P as tensor-valued derivative of the free energy ψ with respect to the deformation
gradient F , weighted by the initial density ρ0. For the following consideration, it proves
useful to proceed with the volume-specific Helmholtz energy W := ρ0 ψ, which is referred
to as strain- or stored-energy. This allows to summarise the principle of dissipation by

D = 0 → P (X) = ∂FW (X) . (3.20)

In conclusion, the stress tensor P at X and hence the stresses in the whole body B are
fully specified by the definition of a scalar-valued hyperelastic potential in terms of the
strain-energy function W and the deformation quantified by F . Further, it is easy to
observe that (3.20) is consistent with the material frame indifference condition (3.14)2 for
the Piola–Kirchhoff stress P , since P (QF ) = ∂FW (QF ) = Q∂FW (F ) = QP (F ). Note
that from here on, the difference between the function Gψ and the value ψ (or the volume-
specific form W ) is not explicitly stated and ψ and W can have both meanings, which shall
become clear from the context. The evaluation of the dissipation inequality is the essential
tool for the construction of constitutive theories, not only for the here investigated case of
elasticity, but especially when dealing with irreversible and rate-dependent effects. These
aspects are frequently treated by the connection of the internal variable approach and the
dissipation principle in order to obtain thermodynamically consistent evolution equations
for the description of internal processes, see, for example, Coleman & Gurtin [81].
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3.3 Internal constraints

The preceding considerations were based on the maxim that the motion of the body
B is not subject to any kinematical restrictions on the inside of the body and that the
deformation map χ(X) and the according deformation gradient F (X) are only limited by
arguments of physical meaningfulness, such as the exclusion of material interpenetration,
and the boundary conditions on the surface. However, there are scenarios for which we may
constitutively assume that a material is subject to internal constraints that additionally
restrict the possible motion of a material particle P at each time t. This is treated by
introducing a scalar-valued constraint function R such that

R(F ) = R(QF ) = 0 ∀Q ∈ SO(3) . (3.21)

If more than one, say N , constraints are imposed on the motion, a constraint function Ri

(i = 1, 2, ..., N) for each of them has to be formulated. Further, since imposing an internal
constraint is a constitutive assumption, R has to satisfy the principle of frame-indifference.
This is guaranteed through (3.21) by means of the frame-indifference condition for scalar
functions, reminiscent to (3.14)1. It shall be remarked that the assumption of a constrained
motion may not only depend on the considered material alone, but also on the conditions
under which the material shall be investigated. For instance, certain assumptions may be
useful for specific loading regimes, but not for the material in general. It is also clear that
assuming such constraints is always an idealisation of the real behaviour.

Note that Antman & Marlow [11] refer to constraints of form (3.21) as local con-
straints and additionally introduce the concept of so-called global constraints as a gener-
alisation of the local form. Moreover, consice explanations on internal constraints are also
given in Carlson & Tortorelli [72], whereas a thermodynamical perspective on the
topic is provided by Gurtin & Podio-Guidugli [176].

3.3.1 Principle of determinism for constrained materials

The principle of determinism as formulated in Section 3.2.1 is not compatible with the
concept of internal constraints. While the free energy ψ (and, thus, the strain energy W ) is
still fully determined by the deformation history χTt , as stated in (3.8)1, the stress tensor
P is now determined by the deformation history χTt only up to a reaction stress tensor
C ∈ R3⊗3, which does no work in any motion satisfying the constraint R. This leads to
the principle of determinism for constrained materials, see, for example, Truesdell &
Noll [490] or Smith [448]. For elastic materials, the stress tensor is then given by

P = GP (F ) + C (3.22)

and the stress contribution from the functional GP (F ), determined by the present de-
formation gradient F , becomes the extra (or determinate) stress. In order to specify the
reaction stress C, it is useful to recognise that if the constraint function R is zero, also
its temporal rate Ṙ has to be zero. Connecting this to the requirement that C must not
contribute to the work, and hence to the stress power P · Ḟ , during any motion satisfying
the constraint R leads to

R = 0 → Ṙ = ∂FR · Ḟ = 0

C · Ḟ = 0

}
→ C = αR ∂FR with αR ∈ R . (3.23)
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Thus, the stress contribution C associated with the constraint R is given by the tensor-
valued derivative ∂FR of the constraint with respect to the deformation gradient and a
scalar multiplier αR ∈ R. The scalar αR thereby has the role of a Lagrange multiplier,
which becomes clear in Section 3.4.3 where we look at the problem of internal constraints
from a variational perspective. In actual problems, the scalar αR has to be determined
from the motion χ and the boundary conditions on the surface of the body B. Connecting
the finding of this section with the outcome of the principle of dissipation in Section 3.2.5,
we can write the first Piola–Kirchhoff stress tensor for constrained materials in the form

P = ∂FW + αR ∂FR . (3.24)

3.3.2 The assumption of material incompressibility

Many materials are characterised through a resistance to volumetric deformations which
is several orders of magnitude higher than their resistance to deviatoric (non-volumetric)
deformations. From an idealised point of view, such materials can then be considered
to belong to the class of incompressible materials and, thus, obey an infinite volumetric
stiffness. As pointed out before, such idealising assumptions have to be justified by, for
example, experimental observations and have to stay valid for the range of motions that
shall be investigated. In order to express the incompressibility assumption in terms of a
constraint function of the form (3.21), we recall the volume map (2.15) and demand for
the equality of current volume elements dv and referential volume element dV . This leads
to the incompressibility constraint function

R(F ) = det[F ]− 1 = 0 . (3.25)

By considering the invariant characteristic of the determinant, det[QF ] = det[Q] det[F ] =
det[F ], we observe that (3.25) directly satisfies the frame-indifference condition R(QF ) =
R(F ). The derivative of the constraint function R with respect to the deformation gradi-
ent is identified as

∂FR = det[F ]F−T , (3.26)

see (A.55). Consequently, inserting (3.26) into (3.24) gives the first Piola–Kirchhoff stress
tensor for incompressible materials as

P = ∂FW + ℘ det[F ]F−T , (3.27)

where ℘ denotes the scalar multiplier αR for this specific type of constraint. At this point,
it makes sense to note that the hydrostatic pressure in a material is given by

p = −1
3

tr[σ] = −1
3
σ · I (3.28)

in terms of the trace of the Cauchy true stress tensor σ. In order to obtain the pressure in
terms of the here used first Piola–Kirchhoff stress P , we recall the relation P = σ cof[F ]
from Section 2.2, reformulate it to σ = J−1PF T , and make use of the rule PF T ·I = P ·F ,
yielding

p = −1
3
J−1P · F . (3.29)

With this formulation at hand, the hydrostatic pressure in an incompressible material is
derived from the stress tensor (3.27) as

p = −1
3
J−1 ∂FW · F − ℘ , (3.30)
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where we used the relation F−T ·F = 3. Eq. (3.30) clearly shows that the scalar multiplier
℘ associated with the incompressibility constraint represents an additional hydrostatic
pressure contribution. However, ℘ is not the overall pressure in the material, since there
is still a hydrostatic contribution from the extra stress ∂FW .

The assumption of material incompressibility will be frequently employed throughout
this work. However, we will not explicitly enforce the frequently used notation PE for
the extra stresses ∂FW , as used by, for example, Truesdell & Noll [490]. Instead,
we emphasise that the derivative ∂FW of the strain-energy function necessarily has to
be supplemented by the contribution of the Lagrange multiplier in order to obtain the
complete stress formulation when the material is subject to internal constraints. Hence,
incompressibility always leads to stress formulations as given in Eq. (3.27).

3.4 Variational principles in mechanics

In the previous sections, the basic thermodynamical principles of constitutive material
modelling were presented. Especially the result of the evaluation of the dissipation prin-
ciple in Section 3.2.5 pointed out the importance of the strain-energy W (the volume-
specific version of the Helmholtz free energy ψ) when considering mechanical problems.
In the purely elastic case, as considered here, the strain-energy function W acts as an
elastic potential and fully describes the material behaviour. The occurrence of a potential
suggests to approach the mechanical problem from a variational perspective and appropri-
ate extremum principles for the energy. These considerations proof useful in a variety of
continuum-mechanical investigations and will be used later in this work. Here, we present
a compact summary of some fundamental variational principles to introduce the basic
ideas and notation. For far more comprehensive approaches to the topic, we especially
refer to the highly recommendable textbook of Lanczos [274] as well as to the works of
Oden & Reddy [358] and Sewell [430]. Further valuable explanations on the variational
approach in finite elasticity are provided in Ogden [362].

3.4.1 Basics on variational calculus

Consider a scalar-valued function F : Rn → R of n scalar variables qn. The elementary
problem of variational calculus is to find a specific configuration of variables qn under
which the function value F becomes stationary :

F (q) → stat (3.31)

Therein, the generalised vector q = [q1, q2, . . . , qn] contains the n scalar variables. The
solution of this problem is achieved by finding the set of variables q under which the
variation δF of the function F vanishes. Doing so, the variation δF is obtained by
performing the Gateaux derivative of F with respect to q, giving

δF (q, δq) =
d

dε
F (q + εδq)

∣∣
ε=0

=
n∑

i=1

∂F

∂qi
δqi

!
= 0 , (3.32)

where the third expression is obtained by a consequent elimination of the parameter ε.
In Eq. (3.32), the variations δq = [δq1, δq2, . . . , δqn] have the character of infinitesimal
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virtual changes or test functions of the variables q. Considering the virtual nature of the
variations δq, it is consequent to demand that the variation δF has to vanish for arbitrary
values δq. This subsequently leads to the well-known statement

δF = 0 → ∂F

∂qi
= 0 for i = 1, . . . , n . (3.33)

Hence, stationarity of F requires that the n first derivatives of function F with respect to
the variables qi are zero. With this, we can write that the variational problem

F (q) = stat
q∗∈Rn

F (q∗) (3.34)

is solved by finding the specific set

q = {q1, q2, . . . , qn} = arg
{

stat
q∗

F (q∗)
}

(3.35)

of variables such that the variation δF vanishes. In (3.34), the generalised vector q∗ =
[q∗1, q

∗
2, . . . , q

∗
n] contains the so-called trial functions. Moreover, it is well-known from basic

analysis that a stationary value can have the character of an extremal value, hence, it might
depict a minimum or maximal value of the function F . This is explored by considering the
second variation δ2F of the function F , which consequently involves the second derivatives
of F with respect to the variables qi. An extremum exists if δ2F 6= 0 and its type is then
determined by the positiveness or negativeness of the second variation. Hence, finding
the stationary value of a function is the basic step also when searching for an extremal
value. It shall be further remarked that finding the stationary value can be sufficient for
the estimation of an extremal value, if adequate properties of the underlying problem are
a priori known. For example, strict convexity of the function F will always entail that a
stationary value minimises the function and makes a further investigation of the second
variation superfluous.

In continuum mechanics, variational problems usually arise in an integral form, meaning
that one aims to find a stationary solution of some scalar-valued functional I : Rn → R,
such that

I(q) =

∫ b

a

F (q(p),q′(p), p) dx → stat , (3.36)

containing the scalar-valued function F : Rn → R, a generalised vector q(x) ∈ Rn with
n scalar functions qi(x), and a vector q′ = ∂pq(x) containing the derivatives of q(x) with
respect to the coordinate x. Further, the definite integral is defined over the closed interval
x ∈ (a, b) and some values q(a) = qa and q(b) = qb are prescribed at the boundaries.
With that, the problem stated in (3.36) can be summarised by

I(q) = stat
q∗∈K(q)

I(q∗) , (3.37)

where we formulated the set

K(q) = {q ∈ Rn | q(a) = qa and q(b) = qb} (3.38)

of admissible solutions compatible with the boundary conditions. Now, by demanding
that the variation of the functional I vanishes, we arrive at

δI(q, δq) = δ

∫ b

a

F (q,q′, x) dx =

∫ b

a

δF (q, δq,q′, x) dx = 0 , (3.39)
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where use was made of the elementary feature that the operations of variation and in-
tegration are interchangeable. Hence, the variation of a definite integral is equal to the
definite integral of the variation, see Lanczos [274, ch. 9]. Further, it is an essential re-
quirement that the test functions δq = [δq1, δq2, . . . , δqn] vanish on the boundary, meaning
that δqi(a) = δqi(b) = 0 for i = 1, . . . , n. The solution of (3.39), which equally solves the
original problem (3.36), is found by solving the associated system

d

dx

∂F

∂q′i
− ∂F

∂qi
= 0 for i = 1, . . . , n (3.40)

of n differential equations under the consideration of the admissible solution set K(q).
Eqs (3.40) are a one-dimensional version of the Euler–Lagrange equations, since the in-
tegral is performed on the line domain x ∈ (a, b). The generalisation of these principles to
three-dimensional domains will be done in the next section.

3.4.2 The principle of minimum potential energy in elastostatics

Starting point for a variational treatment of the mechanical problem is the formulation of
the elastostatic potential

Π(χ) = Πint(χ) + Πext(χ) (3.41)

of the body B, where Π(χ) is the sum of the stored elastic (internal) energy Πint(χ) in
the body B and the work Πext(χ) from external loads. The first term is described by a
referential volume integral, reading

Πint(χ) =

∫

B0
W (F ) dV (3.42)

in terms of the hyperelastic energy potential W . Thus, it denotes the hyperelastic energy
storage in the body B. Under the neglection of body forces, the work from external loads
is given by

Πext(χ) = −
∫

∂BT
T · χ dA (3.43)

as a Neumann surface integral in terms of the surface tractions T . The principle of
minimum potential energy in elastostatics now describes that an equilibrium state is given
when the elastostatic potential Π reaches a minimum value for a motion χ, hence,

Π(χ) → min . (3.44)

We directly observe that Π denotes an energy functional, since it is defined in terms of
integrals of functions of χ, and we see the similarity to the problem described in (3.36).
Thus, use can be made of the notations presented in the previous section and the present
minimisation problem can be summarised by

Π(χ) = min
χ∗∈K

Π(χ∗) such that χ = arg
{

min
χ∗∈K

Π(χ∗)
}
. (3.45)

In accordance to the observations before, see Eq. (3.38), the trial functions χ∗ have to
meet certain constraints. This is considered by the introduction of the set4

K = {χ∗ | χ∗ = χ on ∂Bχ} (3.46)

4See the footnote on page 30.
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of kinematically admissible deformation fields, which essentially accounts for the Dirichlet
boundary conditions prescribed on the Dirichlet surface ∂Bχ ⊂ ∂B0 of the body. Now, we
recall from Section 3.4.1 that the first step for finding an extremal value of a functional is
always to search for a stationary solution and that the type of the value can be determ-
ined by considering either the second variation or appropriate a priori knowledge on the
underlying problem. Hence, the problem given in (3.45) can be reformulated to

Π(χ) = stat
χ∗∈K

Π(χ∗) such that χ = arg
{

stat
χ∗∈K

Π(χ∗)
}

(3.47)

and the postulation that the problem is such that the stationary value depicts a minimum
value. Discussions on appropriate requirements for the existence of minimisers will follow
in Section 3.6.3. We further note that a variational principle as formulated in (3.47) is
called principle of stationary potential energy. Finally, a stationary solution of the energy
functional Π requires that the variation δΠ vanishes:

δΠ(χ, δχ) = δΠint(χ, δχ) + δΠext(δχ)
!

= 0 . (3.48)

By recalling that the operations of variation and integration can be interchanged, we can
write the variation of the elastic energy storage as

δΠint(χ, δχ) = δ

∫

B0
W (F ) dV =

∫

B0
∂FW (F ) ·δF dV =

∫

B0
P (F ) ·Grad[δχ] dV . (3.49)

Therein, use was made of δF = δGrad[χ] = Grad[δχ], since the gradient operator and
the variation are interchangeable as well. Moreover, applying the divergence theorem
P ·Grad[δχ] = Div[P T δχ]−Div[P ] · δχ, the Gaussian integral theorem on the resulting
first divergence term, and using P T δχ ·NdA = PN · δχdA, the variation δΠint can be
reformulated to

δΠint(χ, δχ) =

∫

B0
−Div[P (F )] · δχ dV +

∫

∂BT
P (F )N · δχ dA . (3.50)

In a similar fashion, the variation of the work of external loads is derived as

δΠext(δχ) = −δ
∫

∂BT
T · χ dA = −

∫

∂BT
T · δχ dA . (3.51)

Having the formulations (3.50) and (3.51), Eq. (3.48) is rewritten to

δΠ(χ, δχ) =

∫

B0
−Div[P (F )] · δχ dV +

∫

∂BT
(P (F )N − T ) · δχ dA = 0 . (3.52)

Recalling that the variation δΠ has to vanish for arbitrary values of the virtual test func-
tions δχ = {δχ | δχ = 0 on ∂Bχ}, we find stationarity when the following set of equations
is fulfilled:

Euler–Lagrange equations Div[P ] = 0 in B0

kinematically admissible field χ = χ on ∂Bχ
equilibrium on Neumann boundary PN = T on ∂BT .





(3.53)
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Therein, the Euler–Lagrange equations (3.53)1 can be considered as a generalisation
of (3.40) to the three-dimensional space and depict a system of nine scalar differential
equations. Of course, we directly identify them as the momentum balance, (3.53)2 as the
Dirichlet boundary conditions, and (3.53)3 as the Neumann boundary conditions from
Section 3.1.1 and observe that Eqs (3.53) exactly describe the mechanical boundary-value
problem. However, Eqs (3.53) are obtained by a rigorous variational treatment of the
problem and the stationarity of elastic potentials.

3.4.3 The principle of stationary potential energy under constraints

It was shown in Section 3.3 that the motion of a body B might be subject to internal
constraints, each of those being represented by a scalar constraint function R = 0. The
variational formulation of the mechanical problem offers a very elegant way of taking into
account such additional constraints. This shall be briefly discussed in this section. From
Section 3.4.2, we inherit the problem of finding a motion χ under which the elastostatic po-
tential Π becomes stationary. Explanations on the connection of stationary and extremal
values were provided before. Now, we say that the motion of the body B is restricted by
one internal constraint and the problem is to find the motion χ under which the elasto-
static functional Π becomes stationary and the constraint function R = 0 is fulfilled.
This constitutes a variational problem under constraints and is treated by the Lagrange
multiplier method. The key idea of this approach is to replace the original functional, here
Π, by a Lagrange functional L . The latter is composed of the original functional and an
additional term, which contains the constraint function R multiplied by a scalar Lagrange
multiplier αR . For the elastostatic problem, we can subsequently formulate

L (χ, αR) := Π(χ) + ΠR(χ, αR) where ΠR(χ, αR) =

∫

B0
αR R(F ) dV . (3.54)

It is then searched for the stationary solution of the Lagrange functional L such that

L (χ, αR) → stat . (3.55)

Doing so, stationarity has to be fulfilled with respect to the motion χ and with respect to
the Lagrange multiplier αR . This results in the formulations

Π(χ) = stat
χ∗∈K

stat
α∗R

L (χ∗, α∗R) such that χ = arg
{

stat
χ∗∈K

stat
α∗R

L (χ∗, α∗R)
}

(3.56)

with the additional trial function α∗R for the Lagrange multiplier. In order to obtain
stationarity, the variation of the Lagrange functional has to vanish:

δL (χ, αR , δχ, δαR) = δΠ(χ, δχ) + δΠR(χ, αR , δχ, δαR)
!

= 0 (3.57)

with the additional virtual test function δαR . Since the original functional Π is independ-
ent of αR , its variation δΠ is identical to the formulation in (3.52). In contrast, the term
ΠR is dependent on χ and αR , such that its variation becomes

δΠR(χ, αR , δχ, δαR) =

∫

B0
αR ∂FR ·Grad[δχ] dV +

∫

B0
∂αR

αR R · δαR dV . (3.58)
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Reformulating the first integral on the right hand side in the same fashion than δΠint in
the previous section, we arrive at

δΠR(χ, αR , δχ, δαR) =

∫

B0
−Div[αR ∂FR] · δχ dV +

∫

∂BT
[αR ∂FR]N · δχ dA

+

∫

B0
R · δαR dV .

(3.59)

From the last integral, we directly observe that stationarity of L with respect to the
Lagrange multiplier αR gives nothing else than the constraint function R itself. The
remaining two integrals in δΠR can be directly combined with the integrals in δΠ, such
that a stationary solution of L is obtained by fulfilling the following set of equations:

Euler–Lagrange equations Div[∂FW + αR ∂FR] = 0 in B0

internal constraint R = 0 in B0

kinematically admissible field χ = χ on ∂Bχ
equilibrium on Neumann boundary [∂FW + αR ∂FR]N = T on ∂BT .





(3.60)

By comparing those results with Section 3.3, it is easy to conclude that the expression
∂FW + αR ∂FR constitutes the first Piola–Kirchhoff stress P for the case of constrained
problems. Moreover, the statement in Section 3.3.1 of αR being a Lagrange multiplier is
clearly justified by the variational approach. We note that although the Lagrange mul-
tiplier method starts with a trivial operation of adding a zero-valued integral function,
here ΠR , the outcome is the introduction of the additional non-zero stress contribution
αR ∂FR. This additional term can be interpreted as the stress which is required to sat-
isfy the constraint R. It is thus indispensable for a consistent treatment of constrained
problems.

3.5 Theory of invariants and material symmetry groups

So far, the considerations from Sections 3.2.3 and 3.2.4 left us with invariance conditions
for the energy W and the stress tensor P with respect to proper transformations of the
actual configuration, given by Eqs (3.14), and with respect to proper orthogonal rotations
of the reference configuration, where the rotations belong to the material symmetry group
MG, given by Eqs (3.17). Of course, it is desirable to have formulations which a priori
satisfy these two requirements and we thus recapitulate the invariance conditions and
consequently discuss the theory of invariants, which will subsequently provide the desired
formulations.

3.5.1 Implications of frame-indifference

First, the frame-indifference condition for the free energy response function Gψ from (3.14)1

is formulated in terms of the strain-energy function W , reading

W (F ) = W (QF ) ∀Q ∈ SO(3) , (3.61)

where the argument QF = F ∗ represents the deformation gradient associated with a
transformed actual configuration. Frame-indifference is easily achieved by making use of
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deformation measures that are invariant to such rotations. This motivates the use of the
right Cauchy–Green strain tensor C, which is a Lagrangean quantity and is therefore
unaffected by changes of the actual frame. The invariance is directly visible from C∗ =
(F T )∗F ∗ = (QF )T (QF ) = F TQ−1QF = F TF = C. By further recalling the connection
C = U 2 and the fact that {U ,C} share the same set of eigenvectors, see Section 2.1.4,
we observe that the right stretch tensor U is a Lagrangean quantity and provides frame-
indifferent formulations as well. Hence, an energy

W (F ) := W (F TF ) = W (C) = W (U) (3.62)

will always satisfy (3.61). As explained in Section 3.2.5, the consistent frame-indifference
of the Piola–Kirchhoff stress tensor,

P (QF ) = QP (F ) ∀Q ∈ SO(3) , (3.63)

directly follows from the frame-indifference of the strain-energy, hence, from (3.62).

3.5.2 Invariant formulations for isotropic tensor functions

In the previous section, we observed that a priori frame-indifferent formulations are
provided by utilising Lagrangean (material) deformation measures as arguments for the
strain energy W . From the considerations in Section 3.2.4, we know that the constitutive
functions additionally have to satisfy certain invariance conditions with respect to refer-
ential rotations Q ∈MG, which belong to the symmetry groupMG of the material. It is
clear that the frame-indifferent Lagrangean quantities C and U are affected by such refer-
ential transformations, which is easy to observe when investigating the transformed right
Cauchy–Green tensor C+ = (F T )+F+ = (FQT )T (FQT ) = QF TFQT = QCQT . Fur-
ther, since we have formulations based on the Lagrangean strain tensor C, it is consequent
to consider the associated second Piola–Kirchhoff stress tensor S = F−1P for the following
investigations. While P is a two-field tensor and has one Eulerian and one Langrangean
basis, the second Piola–Kirchhoff stress is fully Langrangean. This explains its computa-
tion, which is essentially the covariant pull-back operation of the first (Eulerian) basis of
P . The second Piola–Kirchhoff stress is symmetric. This becomes clear from its definition
S = F−1P and inserting from the balance of moment of momentum, given by Eq. (2.41)2,
the relation P = FP TF−T , which results in S = F−1FP TF−T = (F−1P )T = ST .
A rotated reference configuration with F+ = FQT affects the Lagrangean stress as
S+ = (F−1P )+ = (FQT )−1PQT = QSQT . Relations (3.15) can then be rewritten
in terms of C,S and W to

X ⇒X+ = QX , C ⇒ C+ = QCQT , W ⇒ W + = W , S ⇒ S+ = QSQT . (3.64)

With this, we subsequently reformulate the invariance conditions (3.18) to

W (C) = W (QCQT )

QS(C)QT = S(QCQT )

}
∀Q ∈MG . (3.65)

Now, the aim is to find an irreducible set of scalar arguments, which replaces the argument
tensor C in the scalar-valued tensor function for W and the tensor-valued tensor function
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for S. Those scalar arguments shall be invariant upon referential rotationsQ ∈MG. This
requirement leads to the theory of invariants and the field of representation theorems for
isotropic tensor functions. Comprehensive explanations on this topic are provided in the
classical mathematical works by, for example, Weyl [514] and Schur [427]. However, we
have to observe that relations (3.65) represent anisotropic tensor functions in the argument
C, since Q ∈ MG has to be a member of the symmetry group. In contrast, isotropic
tensor functions are characterised through formulations where Q ∈ O(3) can be a member
of the whole group of orthogonal transformations. Hence, we have to appropriately modify
the formulations in order to make use of the representation theorems for isotropic tensor
functions. This is done by enriching the set of argument tensors, which is in (3.65) only
C, by means of a set Ξ of so-called structural tensors. This approach is referred to as the
concept of structural tensors and was introduced by Boehler [50]. In general, the set Ξ
can contain an adaptable number of first-, second-, and higher-order tensors. A set with
i first-order, j second-order, and k fourth-order structural tensors might then be given by

Ξ = {Ξm,ΞM ,ΞM} where





Ξm = {m1, . . . ,mi}
ΞM = {M1, . . . ,Mj}
ΞM = {M1, . . . ,Mk}

(3.66)

and i, j, k ∈ N . It is consequent to introduce the associated transformations

Q ?Ξ = {Q ?Ξm,Q ?ΞM ,Q ?ΞM} (3.67)

of the structural tensors, where the “?” depicts a generalised transformation which is
distinct for the different subsets Ξm, ΞM , and ΞM:

Q ?Ξm = {Qm1, . . . ,Qmi}
Q ?ΞM = {QM1Q

T , . . . ,QMjQ
T}

Q ?ΞM = {(Q⊗Q)T23 M1 (QT ⊗QT )T23 , . . . , (Q⊗Q)T23 Mk (QT ⊗QT )T23} .
(3.68)

The key property of the set of structural tensors is that it reflects the material symmetry
in the sense of being invariant under rotations of the symmetry group MG, hence,

Ξ = Q ?Ξ ∀Q ∈MG . (3.69)

Now, the decisive step is to reformulate Eqs (3.65) by means of an extended list (C,Ξ) of
arguments instead of C alone. This leads to the representation

W (C,Ξ) = W (QCQT ,Q ?Ξ)

QS(C,Ξ)QT = S(QCQT ,Q ?Ξ)

}
∀Q ∈ O(3) . (3.70)

The valuable outcome of this formulation is thatQ is no longer restricted to be a member of
the material symmetry groupMG. Thus, Eqs (3.70) represent isotropic tensor functions in
the extended list (C,Ξ) of arguments. In this sense, Zheng [526] refers to this procedure
as isotropicisation of anisotropic tensor functions. The form given in (3.70) allows to
apply the classical representation theorems for isotropic tensor functions, which aim for
a replacement of the tensorial arguments (C,Ξ) by an integrity basis I consisting of
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arguments invariants

v v · v
A tr[A], tr[A2], tr[A3]

A,v v ·Av,v ·A2v

A1,A2 tr[A1A2], tr[A1A
2
2], tr[A2

1A2], tr[A2
1A

2
2]

A1,A2,A3 tr[A1A2A3]

Table 3.1: Integrity bases for isotropic tensor functions for v ∈ R3 and A,A1,A2,A3 ∈ SYM(3).

scalar invariants. The existence of a finite number of invariants for a given set of tensorial
arguments is commonly referred to as Hilbert’s theorem [205]. There exists an extensive
amount of literature on integrity bases for specific sets of argument tensors, ranging from
the early works of Wang [502, 503, 504] and Smith [449, 450] (who had some controversy),
to the works of Boehler [50], Spencer [455, 458], and Zheng [526]. Extensions to
irreducible bases for fourth-order argument tensors were provided by Betten [33, 34] and
Betten & Helisch [35]. A compact overview of integrity bases for first- and second-order
arguments and some combinations thereof is given in Table 3.1. Finally, the definition of
the structural tensors allows to define the material symmetry group

MG = {Q ∈ O(3) | Ξ = Q ?Ξ} (3.71)

as the invariance group of the set Ξ of structural tensors. In turn, of course, the set of
structural tensors has to be defined such that it satisfies (3.69) and subsequently specifies
the symmetry group MG. A comprehensive list of structural tensors for different classes
of symmetries is provided by, for example, Zheng & Spencer [527]. Remark that much
deeper insights into the topic of invariant theory, representation theorems, and material
symmetry classes are given in the monographs by Schröder [420] and Apel [12].

3.5.3 The isotropic symmetry group

The simplest symmetry class is given when a material does not show a preferred behaviour
in any specific direction. The behaviour of the material is then direction-independent
and commonly referred to as isotropic or spherically symmetric. In this context, it is
interesting to note that there exist two types of isotropy, one with a centre of symmetry
and one without a centre of symmetry, see, for example, Voigt [496]. The former is
obtained when the material symmetry group is identical to the full orthogonal group,
hence, MG = O(3), whereas the latter is given when the symmetry group is restricted to
the proper orthogonal group, hence, MG = SO(3), also known as hemitropy. Proceeding
with MG = O(3), we notice that Eqs (3.65) become isotropic tensor functions and that
the definition of structural tensors becomes superfluous. The resulting irreducible integrity
basis I J

iso = {J1, J2, J3} for the single tensor argumentC is directly received from Table 3.1
as

J1 = tr[C] , J2 = tr[C2] , J3 = tr[C3] (3.72)
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with the three basic invariants J1, J2, and J3. Thus, we see that the response functions
of an isotropic material are specified by three scalar arguments. However, the choice of
the invariants is by no means unique. For example, in continuum-mechanical applications
use is frequently made of the set I I

iso = {I1, I2, I3} of principal invariants I1, I2, and I3,
defined by

I1 = tr[C] , I2 = tr
[
cof[C]

]
, I3 = det[C] . (3.73)

They can be found, for example, in the early work of Rivlin & Ericksen [403]. The
principal invariant set I I

iso is connected to the basic invariant set I J
iso through

J1 = I1 , J2 = I2
1 − 2I2 , J3 = I3

1 − 3I1I2 + 3I3 . (3.74)

An interesting alternative notation of the set I I
iso is derived from (3.73) by making use of

the rules (A.12), (A.17), (A.13), and (A.15), thus yielding

I1 = F · F , I2 = cof[F ] · cof[F ] , I3 = det[F ]2 = J2 . (3.75)

Comparing these relations to Eqs (2.9), (2.13), and (2.15), one finds that the three principal
invariants are defined by the squared operators of the transport of line, area, and volume
elements, respectively. Furthermore, relation (3.75)3 makes clear that any occurrence of I3

can be replaced in terms of the Jacobian J . The probably most intuitive set of invariants
for one tensor argument is given in terms of its three eigenvalues, since they hold a natural
invariance as well. The proof for that is straightforward and provided in Appendix A.5. We
observed in Section 2.1.4 that the eigenvalues λC(i) = λ2

U(i) of C are directly connected to
the principal stretches λU(i), entailing that the use of either of these values is appropriate.
If the set I λ

iso = {λU(1), λU(2), λU(3)} of principal stretches is used, we can observe the
connection to the principal invariants as

I1 = λ2
U(1) + λ2

U(2) + λ2
U(3), I2 = λ2

U(1)λ
2
U(2) + λ2

U(2)λ
2
U(3) + λ2

U(1)λ
2
U(3) ,

I3 = λ2
U(1)λ

2
U(2)λ

2
U(3).

(3.76)

Concluding, a variety of integrity bases is suitable for the description of isotropic material
behaviour and we can summarise that

MG = O(3) → W (F ) := W (I J
iso) = W (I I

iso) = W (I λ
iso) . (3.77)

Hence, formulating the strain-energy in terms of either of the three presented invariant sets
guarantees a proper invariant formulation for materials of the isotropic symmetry group.

3.5.4 The transversely isotropic symmetry group

A material belongs to the symmetry group of transverse isotropy or cylindrical symmetry
if it exhibits one preferred (or privileged) direction with a distinct behaviour. This dir-
ection is described by a referential unit vector a0, such that |a0| = 1. The vectors a⊥0
perpendicular to a0, characterised by a0 · a⊥0 = 0, form the transverse plane with iso-
tropic material behaviour. It is thus referred to as the isotropy plane. The most intuitive
symmetry property of the transversely isotropic group is the invariance of the material
behaviour with respect to rotations around the preferred direction a0. To describe this, it
proofs useful to introduce the Euler–Rodrigues formula

Q$
n = n⊗ n+ cos[$](I − n⊗ n)− sin[$]En , (3.78)
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which defines the rotation tensor for arbitrary rotations with angle $ around a unit vector
n. The rotational symmetry around a0 can then be described by rotation tensors

Q$
a0

= a0 ⊗ a0 + cos[$](I − a0 ⊗ a0)− sin[$]Ea0 for 0 ≤ $ < 2π . (3.79)

It is obvious that the vector a0 is unaffected by such rotations, sinceQ$
a0
a0 = a0. Now, we

have to note that there exist five types of transverse isotropy and the rotational symmetry
forms one of them. A further type is defined in terms of a so-called two-fold axis transverse
to a0. Using the above defined perpendicular vector a⊥0 , this symmetry is described by a
rotation tensor

Qπ
a⊥0

= 2a⊥0 ⊗ a⊥0 − I . (3.80)

This rotation transforms the preferred direction to Qπ
a⊥0
a0 = −a0 and indicates that

choosing a0 or its opposite −a0 to describe the preferred direction must not influence the
material response. The rotationsQ$

a0
andQπ

a⊥0
, completed by the central inversion −I, are

the group generators for the complete cylindrical symmetry group. Materials belonging
to this symmetry group have to be invariant with respect to these three transformations
and combinations of them. With this, the group can be described by

MGti = {Q$
a0
,Qπ

a⊥0
,−I | 0 ≤ $ < 2π} ⊂ O(3) . (3.81)

Now, an appropriate structural tensor for this material group can be defined by

M = a0 ⊗ a0 with MT = M , MM = M , tr[M ] = 1 , (3.82)

see, for example, Spencer [456, 457], or Zheng & Spencer [527]. We see that M ∈
SYM(3) is symmetric and idempotent. It can easily be shown that M = QMQT for all
Q ∈ MGti. From Section 3.5.2, we know that the subsequent step is to find an integrity
basis for the two argument tensors {C,M}. With Table (3.1), we see that an integrity
basis for two tensor arguments generally consists of ten scalar invariants. Three invariants
are associated with the argument C alone and given in terms of either of the sets I J

iso,
I I

iso, or I λ
iso from the previous section. Three additional invariants are associated with

the argument M alone, given by

tr[M ] , tr[M 2] , tr[M 3] , (3.83)

whereas the four mixed invariants are given by

tr[CM ] , tr[CM 2] , tr[C2M ] , tr[C2M 2] . (3.84)

However, the properties of M , given in Eq. (3.82), directly reveal that the three invariants
in (3.83) are constant and equal to one. Thus, they are of no further use. Moreover, it is
deduced that the first two and the last two invariants given in (3.84) are equal. The two
only relevant invariants associated with the structural tensor M are therefore

J4 = tr[CM ] , J5 = tr[C2M ] . (3.85)

Reformulating the first of these invariants by means of

J4 = a0 ·Ca0 = Fa0 · Fa0 = a · a = λ2
a (3.86)
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and recalling relation (2.17) shows that J4 has a direct physical interpretation and repres-
ents the squared stretch λ2

a of the material in the direction initially aligned with a0. In
contrast, a comparable physical meaning for J5 can only be found in combinations with
other invariants, which will be shown later. An integrity basis for transversely isotropic
material behaviour can now be formulated by augmenting an integrity basis for the strain
tensor C, say the principal invariants I I

iso, with the two additional mixed invariants J4

and J5, resulting in the set I I
ti = {I1, I2, I3, J4, J5}. This set was already introduced by

Ericksen & Rivlin [118]. However, as discussed for the isotropic integrity bases, the set
of invariants for the material groupMGti is not unique and there exist a variety of sets of
five invariants for transverse isotropy. For instance, Schröder & Neff [425] suggest to
formulate an invariant

K1 = tr[cof[C]M ] = cof[F ]a0 · cof[F ]a0 = J5 − I1J4 + I2 , (3.87)

which can be used to replace J5 in the set I I
ti , leading to a set I I′

ti = {I1, I2, I3, J4, K1}.
Such an integrity basis was also proposed by Steigmann [463]. Unlike J5, K1 has a direct
physical meaning and describes the deformation of an area element in the plane normal to
the preferred direction a0. This becomes clear when we recall the area map in Eq. (2.13).
Yet, not only the choice of a specific integrity basis is not unique, as there are multiple
options for the structural tensor as well. For instance, one can formulate a tensor

D = I −M with DT = D , DD = D , tr[D] = 2 , (3.88)

which also satisfies the invariance condition QDQT = D for Q ∈MGti. The two relevant
mixed invariants for the tensor arguments {C,D} can then be formulated by

K2 = tr[CD] = I1 − J4 , K3 = tr[cof[C]D] = I1J4 − J5 = I2 −K1 , (3.89)

see Schröder & Neff [425]. This will lead to an integrity basis I I′′
ti = {I1, I2, I3, K2, K3}

While the J4-invariant controls the deformation of line elements aligned with the preferred
direction a0, K2 serves as a measure for the stretch in the transverse plane. Such a
formulation is beneficial if the transverse isotropy in a material is not caused by the
occurrence of aligned fibres in the preferred direction, but has its origin in a laminated
microstructure. Ultimately, the different invariant sets can of course be converted into
each other and none of them is better by definition. Yet, the choice of a set can be
very beneficial in specific situations and can possibly simplify subsequent formulations. In
this sense, especially physically motivated invariant sets can be useful, such as the ones
proposed by, for example, Bischoff-Beiermann & Bruhns [39], Criscione et al.
[84], Lu & Zhang [302], deBotton et al. [92], and Furer & Ponte Castañeda
[148]. Thereby, deBotton et al. [92] made use of an invariant set introduced in the
seminal work of Ericksen & Rivlin [118]. Further, the formulation of invariants is
not restricted to the usage of the right Cauchy–Green tensor C. Hence, Steigmann [463]
discussed an integrity basis based on the stretch tensorU , whereas Schröder et al. [424]
formulated a set on the basis of the logarithmic Hencky strain tensor E0. By making use
of the triangular decomposition of the deformation gradient, as discussed in Section 2.1.4,
Srinivasa [461] found an invariant set based on the coefficients of the upper triangular
tensor R. In this work, we will make particular use of the formulations of Criscione
et al. [84] and deBotton et al. [92], which have the convenient property that they
allow to introduce generic, invariant-based deformation gradients. This is discussed in the
following.
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Invariant-based representations of deformation gradients An interesting set of
invariants for the transversely isotropic symmetry group was introduced by Ericksen &
Rivlin [118] and is denoted by I er

ti = {Γ33, er1, er2, er4, cos[er3 − 2er5]}. In terms of the
set I I

ti , the first four invariants of the set I er
ti are given by

Γ33 = J4 , er1 = 1
2

(I1−J4) , er2 = 1
2

√
(I1 + J4)2 − 4I2 − 4J5 , er4 =

√
J5 − J2

4 , (3.90)

whereas the fifth invariant is defined by

cos[er3 − 2er5] =
I1J5 + 2I3 + J4(I1J4 + J2

4 − 2I2 − 3J5)

(J5 − J2
4 )
√

(I1 + J4)2 − 4I2 − 4J5

. (3.91)

We directly observe that the denominator of the fifth invariant contains the invariants er2

and er4 and cos[er3 − 2er5] is thus undefined if either one or both of these two invariants
is zero. Of course, one could as well formulate relations between the set I er

ti and, for
example, I I′′

ti . In this case, one would directly identify that, for instance, er1 = K2/2 and
that K3 occurs in er2 and cos[er3 − 2er5]. Further, relations (3.90) and (3.91) can easily
be inverted in order to give equations for set I I

ti in terms of I er
ti , reading

I1 = Γ33 + 2er1 , I2 = 2Γ33er1 + er2
1 − er2

2 − er2
4 ,

I3 = Γ33 (er2
1 − er2

2) + er2
4 (er2 cos[er3 − 2er5]− er1) , J4 = Γ33 , J5 = Γ2

33 + er2
4 .

(3.92)

The benefit of using the set I er
ti may not manifest through the original representations

given in Eqs (3.90) and (3.91), but through an invariant set I ı
ti = {λ`, λt, γ`, γt, ψγ}

introduced by deBotton et al. [92]. On the basis of the work of Ericksen & Rivlin
[118], deBotton et al. [92] reformulated and renamed the original invariants. Further,
they made the choice er3 = π/2. Finally, their invariants are defined in terms of set I I

ti

by

λ` =
√
J4 , λt = 4

√
I3

J4

, γ` =

√
J5

J4

− J4 , γt =

√
I1 −

J5

J4

− 2

√
I3

J4

,

tan[2ψγ] =
2λt H ∓ γt

√
γ4
` γ

2
t (4λ2

t + γ2
t )−H2

γt H ± 2λt

√
γ4
` γ

2
t (4λ2

t + γ2
t )−H2

,

(3.93)

where H in the fifth invariant is given by

H = (2λ2
l + γ2

l )(2λ2
t + γ2

t ) + 2λ4
t − 2I2 . (3.94)

The advantage of this set is the direct link between the invariants and their physical
meaning with respect to a transversely isotropic material, namely, λ` > 0 is a measure for
the stretch along the preferred direction, λt > 0 is a stretch transverse to the preferred
axis, γ` ≥ 0 is the longitudinal shear along the axis, and γt ≥ 0 is the transverse shear.
By referring to the transverse plane, longitudinal and transverse shear are also called out-
of-plane and in-plane shear, respectively. If the transverse isotropy is caused by aligned
fibres in the microstructure, these two shear modes may also be denoted as along-fibre
and cross-fibre shear, respectively. The fifth invariant ψγ ∈ [0, π) is π-periodic and can
be interpreted as a coupling measure between the different shear deformations. This
coupling measure can be chosen arbitrarily whenever γ` γt = 0, hence, when longitudinal
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and transverse shear do not occur simultaneously. This characteristic reminds of the
invariant cos[er3 − 2er5] in the original set I er

ti . As a result, we make the choice ψγ = 0
when γ` γt = 0. We further remark that relations (3.93)1−4 for λ`, λt, γ` and γt do not
contain the I2-invariant, which implies that a transversely isotropic material may only
have a dependency on I2 for coupled shear deformations. Besides the direct physical
interpretation of its invariants, the remarkable benefit of using set I ı

ti is that it allows to
introduce a generic, invariant-based representation of any deformation gradient. In detail,
deBotton et al. [92] showed that an arbitrary deformation gradient F can be written
as a product of a proper orthogonal rotation, say Rı ∈ SO(3), and a generic deformation
gradient given by

F ı =




λt 0 0
γt λt 0

γ` cos[ψγ] γ` sin[ψγ] λ`


 eıi ⊗ eıj (3.95)

with i = 1, 2, 3. Therein, the eıi-basis is defined such that eı3 is collinear with the pre-
ferred direction a0. Recalling the principle of frame-indifference, outlined in Sections 3.2.3
and 3.5.1, we observe that the connection F = RıF ı describes a change of the frame of
reference, indicated by the rotation Rı. Besides that, however, F and F ı are equivalent
deformations with the difference that the eıi-system is always aligned with the preferred
direction a0. Moreover, the tensor F ı has a lower triangular coefficient matrix and always
contains at least three coefficients which are zero. These features are especially helpful for
multiscale analysis and will prove useful in the investigations in Parts II and III. In brief,
the benefit of using a deformation gradient of form (3.95) when dealing with transverse
isotropy is that setting up F ı only requires the knowledge on the deformation through a
set of transversely isotropic invariants (which can be any of the so far introduced), but
no explicit knowledge on the original deformation gradient F . In multiscale analysis, for
instance, it suffices to have the information about a deformation on a larger scale in terms
of invariants and to pass the deformation to a smaller scale in the form of a tensor F ı.
Doing this, a further advantage is that the (at least) three zero coefficients of F ı eventually
lead to a significant simplification of subsequent expressions. We remark that although F ı

with its lower triangular form seems to be similar to the upper triangular tensor R from
the triangular decomposition introduced in Eq. (2.20), it is very different in nature. While
R has to be computed from the decomposition F = QR and requires to have an explicit
expression for F (or at least C), the tensor F ı is invariant-based and does not require the
knowledge of the actual deformation. From a mathematical point of view, however, F ı

could of course as well be computed from F by employing a QL decomposition. Proceed-
ing, relations for the set I I

ti in terms of set I ı
ti are obtained by either inverting Eqs (3.93)

or by directly computing {I1, I2, I3, J4, J5} from Cı = F ıTF ı by making use of Eqs (3.73),
(3.85), and M = eı3 ⊗ eı3. We obtain

I1 = λ2
` + 2λ2

t + γ2
` + γ2

t ,

I2 = 1
2

(
(2λ2

` + γ2
` )(2λ

2
t + γ2

t ) + 2λ4
t − γ2

` γt(γt cos[2ψγ] + 2λt sin[2ψγ])
)
,

I3 = λ2
`λ

4
t , J4 = λ2

` , J5 = λ2
`(λ

2
` + γ2

` ) .

(3.96)

At this point, it is beneficial for later use to introduce the axisymmetric shear γ2
a =

λ2
` + 2λ2

t − 3. This additional shear value allows to compare deformations with uniaxial
stretch along and/or transverse to the preferred direction with longitudinal and transverse
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shear deformations. The three (squared) shear values add up as γ2
a + γ2

` + γ2
t = I1 − 3.

Furthermore, we note again that the invariant ψγ only occurs in connection with the
I2-invariant, but not in the expressions of the other ones.

Besides the invariant set I ı
ti and its associated invariant-based deformation gradient F ı,

an alternative set with similar benefits was introduced by Criscione et al. [84] and is
denoted by I ′

ti = {J, λM , ξ, γ`, cos[2φγ]}. It is connected to the set I I
ti by

λM = J−1/3
√
J4 , ξ =

√√√√I1J4 − J5

2J
√
J4

+

√(
I1J4 − J5

2J
√
J4

)2

− 1 , γ` =

√
J5

J2
4

− 1 ,

cos[2φγ] =
I1J4J5 + I1J

3
4 + 2J2J4 − J2

5 − 2I2J
2
4 − J2

4J5

(J5 − J2
4 )
√
I2

1J
2
4 + J2

5 − 2I1J4J5 − 4J2J4

,

(3.97)

and J is the well-known Jacobian J = I
1/2
3 . This set of invariants is reminiscent to

the original set I er
ti of Ericksen & Rivlin [118] with the choice er3 = 0, as can be

seen through the fifth invariant cos[2φγ]. Like the invariant ψγ ∈ I ı
ti, the fifth invariant

cos[2φγ] may become indeterminate, here if ξ = 1 or γ` = 0. The inverse relationships to
Eqs (3.97) read

I1 = J2/3
(
λ2
M(1 + γ`

2) + λ−1
M (ξ2 + ξ−2)

)
,

I2 = J4/3
(
λ−2
M + λM(ξ2 + ξ−2) + λMγ


`
2(ξ2 sin[φγ]

2 + ξ−2 cos[φγ]
2)
)
,

I3 = J2 , J4 = J2/3λ2
M , J5 = J4/3λ4

M(1 + γ`
2) .

(3.98)

In order to compute I2, one has to employ Eq. (3.97)5 and solve it for the angle φγ. The
usefulness of set I ′

ti shows up in a slightly different notation, which results in the set
I 

ti = {λ`, λ1, λ2, γ`, φγ}. In terms of set I ′
ti , the set I 

ti reads

λ` = J1/3λM , λ1 = J1/3λ
−1/2
M ξ , λ2 = J1/3λ

−1/2
M ξ−1 , γ` = J1/3λMγ


` , (3.99)

whereas φγ has to be computed from Eq. (3.97)5. Similar to what deBotton et al. [92]
noted for the deformation gradient F ı, Criscione et al. [84] earlier showed that there
is a deformation gradient F  which is connected to any general deformation gradient F
by F = RF  where R ∈ SO(3). Thus, the set I 

ti also allows to introduce a generic,
invariant-based deformation gradient

F  =




λ1 0 0
0 λ2 0

γ` cos[φγ] γ` sin[φγ] λ`


 ei ⊗ ej , (3.100)

where the e3-axis is collinear with the preferred direction a0. Consequently, e3 is collinear
with eı3 as well. The invariant-based deformation gradient F  has all the above mentioned
benefits of the tensor F , however, it even exhibits at least four zero coefficients. Further,
the invariants of set I I

ti in terms of set I 
ti read

I1 = λ2
` + λ2

1 + λ2
2 + γ2

` ,

I2 = λ−2
1 (1 + λ−2

` γ2
` cos[φγ]

2) + λ−2
2 (1 + λ−2

` γ2
` sin[φγ]

2) ,

I3 = λ2
`λ

2
1λ

2
2 , J4 = λ2

` , J5 = λ2
`(λ

2
` + γ2

` )

(3.101)
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These relations are obtained by making use of C = F TF , M = e3 ⊗ e3 and Eqs (3.73)
and (3.85). By comparing Eqs (3.96) and (3.101), we note that the invariants λ` and γ`
are the same for the sets I ı

ti and I 
ti. Furthermore, it is possible to relate the invariants

λ1, λ2 and φγ of set I 
ti to set I ı

ti in terms of

λ1 =

√
γ2

t + 4λ2
t + γt

2
, λ2 =

√
γ2

t + 4λ2
t − γt

2
, cos[2φγ] =

H

γ2
` γt

√
γ2

t + 4λ2
t

, (3.102)

where H is given in Eq. (3.94). This points out that the sets I ı
ti and I 

ti are closely
related to each other. Further, it allows to use a generic deformation gradient F , as
given in Eq. (3.100), but prescribing λ1 and λ2 in terms of λt and γt. This combines the
advantage of the simplicity of F  with its at least four zero coefficients with the more
intuitive physical meanings of λt and γt. For completeness, note that λ1, λ2 and λ` depict
the principal stretches of a generalised plane-strain deformation (in the transverse plane),
represented by F ı|γ`=0. This means that F |γ`=0 = diag[λ1, λ2, λ`] is the diagonalisation
of F ı|γ`=0. The representations of F ı and F  in Eqs (3.95) and (3.100), respectively, can
formally be regarded as plane-strain deformations superimposed with out-of-plane shear,
see, for example, Horgan & Saccomandi [230].

Finally, the outcomes of this section shall be combined with some considerations concern-
ing incompressible materials. As discussed in Section 3.3.2, the motion of incompressible
materials is subject to a constraint function det[F ] = 1, as defined in (3.25). Relating
this constraint to the invariant set I I , we obtain that I3 = J = 1 holds in the case of
incompressibility, see Eq. (3.75)3. This means that the third invariant I3 is of no further
use and isotropic, incompressible material behaviour is subsequently only dependent on
two remaining invariants. For transverse isotropy, the I3-invariant appears explicitly in
the sets I I

ti , I I′
ti as well as in I I′′

ti , which means that incompressibility causes a reduction
to four invariants. For instance, I I

ti reduces to {I1, I2, J4, J5}. For the set I ı
ti, the incom-

pressibility condition is considered by exploiting Eq. (3.96)3, which yields λ2
`λ

4
t = λ`λ

2
t = 1

and results in λt = λ
−1/2
` . Subsequently, the invariant λt can be dropped from invariant set

I ı
ti, which reduces to {λ`, γ`, γt, φγ}. This has an implication for the generic deformation

gradient representation F ı, as this then reads

F ı =




λ
−1/2
` 0 0
γt λ

−1/2
` 0

γ` cos[ψγ] γ` sin[ψγ] λ`


 eıi ⊗ eıj . (3.103)

In analogy, exploiting Eq. (3.101)3 yields λ2
`λ

2
1λ

2
2 = λ`λ1λ2 = 1 as incompressibility con-

straint for the invariant set I 
ti. Hence, the invariant λ2 can be dropped from I 

ti as it can
be expressed as λ2 = (λ`λ1)−1. This reduces I 

ti to {λ`, λ1, γ`, φγ}. The generic tensor F 

can then be rewritten to

F  =




λ1 0 0
0 (λ1λ`)

−1 0
γ` cos[φγ] γ` sin[φγ] λ`


 ei ⊗ ej . (3.104)

The implications of incompressibility on the invariant sets I I
ti , I I

ti , and I I
ti are summar-

ised in Table 3.2. Finally, note that the axisymmetric shear in the incompressible case
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integrity basis incompressibility reduction

I I
ti = {I1, I2, I3, J4, J5} I3 = 1 → {I1, I2, J4, J5}

I ı
ti = {λ`, λt, γ`, γt, ψγ} λ`λ

2
t = 1 → λt = λ

−1/2
` → {λ`, γ`, γt, ψγ}

I 
ti = {λ`, λ1, λ2, γ`, φγ} λ`λ1λ2 = 1 → λ2 = (λ`λ1)−1 → {λ`, λ1, γ`, φγ}

Table 3.2: The three integrity bases I I
ti , I ı

ti, and I 
ti as well as the associated reductions to four invari-

ants in the case of incompressibility.

reads

γa =





+
√
λ2
` + 2λ−1

` − 3 if λ` ≥ 1

−
√
λ2
` + 2λ−1

` − 3 if λ` < 1 .
(3.105)

Hence, the plus and the minus sign correspond to tension and to compression along the
preferred direction, respectively, whereas γa = 0 if the preferred axis is unstretched (λ` =
1).

3.6 Further physical and mathematical requirements

This section presents some further physical and mathematical considerations when dealing
with potential-based elastostatic problems. The preceding investigations in this chapter
showed that the elastic energy is the decisive quantity in the case of hyperelastictity. Thus,
this section especially contains investigations and remarks on further requirements upon
the formulation of hyperelastic strain-energy potentials.

3.6.1 Normalisation

The reference configuration B0 of the body B was introduced in Section 2.1.1 in a rather
arbitrary manner as the configuration which is defined by the reference placement X0

at time t0. However, the previous investigations showed that the deformation gradient
F , which relates the actual configuration B to the reference configuration B0, is the key
kinematical quantity and serves as argument for the response functions of the mechanical
process. This means that the stored energy W and the stress P crucially depend on the
definition of the reference configuration B0. In continuum mechanics, it is common practice
that one proceeds from an energy-free and stress-free reference configuration, which means
that

W (F )
∣∣
F=I

= 0 and P (F )
∣∣
F=I

= 0 . (3.106)

Note that although the evaluation of the dissipation principle revealed that the stress
tensor is connected to the energy in the sense of being the derivative, see Eq. (3.20), an
energy-free reference configuration does not imply that it is stress-free as well. Rather,
the two conditions in (3.106) have to be satisfied separately. Moreover, if we consider a
material which is subject to internal constraints, as outlined in Section 3.3, we have to
recall that the stress tensor is then defined by Eq. (3.24). In the process of constitutive
modelling, it only makes sense to demand that the extra stress, given by ∂FW , vanishes
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in the reference configuration. Hence, in order to account for both, unconstrained and
constrained materials, Eqs (3.106) have to be formulated as

W (F )
∣∣
F=I

= 0 and ∂FW (F )
∣∣
F=I

= 0 . (3.107)

Finding a configuration which fulfils Eqs (3.107) is not always straightforward and is
especially difficult or even impossible when biological tissues are considered. If the iden-
tification of an energy- and stress-free reference configuration in the absence of external
forces on the body is not achievable and one has to proceed with a reference placement
which does not satisfy Eqs (3.107), one arrives at the theory of prestressed or residually
stressed materials. Doing so, a symmetric residual stress tensor τ ∈ SYM(3) is identified,
such that

Div[τ ] = 0 in B0 and τN = 0 on ∂B0 . (3.108)

The first relation states that the residual stress τ has to fulfil the equilibrium equation,
whereas the second equation accounts for the fact that the unloaded reference config-
uration must not have any surface tractions. In summary, the treatment of mechanical
problems either demands for the identification (or at least definition) of an unloaded refer-
ence configuration that is energy- and stress-free in the sense of Eqs (3.107) or an unloaded
reference configuration with a residual stress τ that satisfies Eqs (3.108). In any case, the
state of stress in the reference configuration has to be specified in order to have meaningful
statements for the stress in any actual configuration at time t > t0. For more detailed
explanations on residually stressed materials, we refer to Hoger [219, 220], Ogden [363],
Shams et al. [433], or Ahamed et al. [6]. The identification of the reference configur-
ation and the connection to residual stresses are very decisive aspects for the modelling of
biological tissues and were discussed, for example, by Chuong & Fung [79], Fung [144],
Holzapfel et al. [222], Balzani [24], or Gee et al. [153]. Particular phenomena
like residual stresses related to tissue growth are discussed by Rodriguez et al. [406],
whereas residual stresses due to osmotic effects are treated by Lanir [277].

3.6.2 Growth conditions

From a physical point of view, it is very reasonable that extreme values of deformations
must accompany extreme values of the associated stored elastic energy and associated
stresses in a material. As a consequence, physically meaningful strain-energy functions
have to meet appropriate growth conditions, which can be formulated as follows:

W → +∞ as

{
det[F ]→ 0+

(‖F ‖+ ‖ cof[F ]‖+ det[F ])→ +∞ .
(3.109)

Therein, ‖A‖ =
√
A ·A denotes the norm of a tensor A. It is an easy matter to see

that the three terms F , cof[F ], and det[F ], which occur in (3.109), are connected to the
transport of line, area, and volume elements, respectively. In this sense, the terms are
also directly connected to the invariant set I I = {I1, I2, I3}, see Eqs (3.75). Thus, the
conditions in (3.109) are very intuitive and self explanatory, as they simply state that the
strain-energy W has to tend to infinity when the sum of line, area, and volume element
stretches goes to infinity or when the volume is compressed towards det[F ]→ 0+. Note for
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completeness that the second condition in (3.109) can be formulated in a sharper version
in terms of the coerciveness inequality

W ≥ α
[
‖F ‖p + ‖ cof[F ]‖q + det[F ]r

]
+ β ∃ {α, p, q, r > 0, β} ∈ R (3.110)

see Ciarlet [80]. Strain-energies W satisfying Eq. (3.110) are then referred to as coercive.

3.6.3 Existence of minimisers

In Section 3.4, the basic mechanical boundary-value problem has been approached from
a rigorous variational perspective and the governing equations in (3.53) were derived by
exploiting the principle of minimum potential energy. In this context, it was highlighted
that the fundamental step for obtaining equilibrium solutions of the mechanical problem
is to find a motion function χ such that the elastostatic potential Π(χ) becomes station-
ary. The details on the associated boundary conditions and the incorporation of further
kinematical constraints were discussed in Sections 3.4.2 and 3.4.3 and are not repeated at
this point. In order to guarantee that a stationary solution of the variational problem rep-
resents a minimum value, the functional Π has to satisfy further requirements. This means
that one seeks to ensure the existence of minimisers, which are deformation states χ that
minimise the functional Π. Sufficient conditions for this requirement are reviewed here in a
rather compact manner. For complete overviews and further insights to the topic, we refer
to the comprehensive works of Krawietz [262], Šilhavý [438], Schröder [421], and
Dacorogna [87]. According to these works, the existence of minimisers is guaranteed if
the functional

Π(χ) =

∫

B0
W (F ) dV + Πext(χ) , (3.111)

is coercive and satisfies the sequentially weakly lower semicontinuity condition.

Convexity An intuitive first approach for the sequentially weakly lower semicontinuity
condition is to demand for the convexity of the functional Π. However, instead of investig-
ating a global convexity statement for the functional Π on the whole domain B0, it proves
useful to formulate a local convexity statement for the strain-energy function W (F ) at
X ∈ B0. Such a local statement is very convenient as associated mathematical conditions
can then directly be posed as further requirements during the process of the constitutive
formulation of strain-energy functions. Convexity conditions for the scalar-valued tensor
function W are given by the three equivalent statements

W (F + λ∆F ) ≤ λW (F + ∆F ) + (1− λ)W (F ) ∀ 0 ≤ λ ≤ 1

⇔ W (F ) + ∂FW (F ) ·∆F ≤ W (F + ∆F )

⇔ ∆F · ∂2
FFW (F ) ∆F ≥ 0 .





(3.112)

Therein, ∆F depicts a perturbation of the deformation state F . The first condition
in (3.112) is the basic mathematical convexity statement and essentially states that each
line between the points (F ,W (F )) and (F+∆F ,W (F+∆F )) must not be below the curve
W itself. The second condition is obtained from the first one by a limit case investigation as
λ→ 0 and the appropriate directional Gateaux derivative. It involves the first derivative
∂FW which is easily identified as the first Piola–Kirchhoff stress P , see Eq. (3.20). This
second convexity form states that the tangent line to the curve W at (F ,W (F )) must not
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be above the curve W at F +∆F . Finally, the third statement is obtained from the second
one by another application of a directional Gateaux derivative and yields an infinitesimal
statement. It is probably the most useful convexity notation in continuum mechanics and
demands that the second derivative ∂2

FFW of W with respect to F is positive semidefinite.
This second derivative is a fundamental quantity in continuum mechanics and is introduced
as the fourth-order (nominal) elasticity tensor

L(F ) := ∂2
FFW (F ) . (3.113)

It is also called tangent modulus or incremental stiffness. Simo & Marsden [440] and
Marsden & Hughes [316] refer to L as the first elasticity tensor, motivated by the direct
connection to the first Piola–Kirchhoff stress P through L = ∂FP . The elasticity tensor
L is major but in general not minor symmetric, such that LT = L. However, we remark
that the nominal elasticity tensor has material as well as spatial counterparts, which are
major and minor symmetric. For instance, the material elasticity tensor is defined as
C = 4 ∂2

CCW . It is associated with the already introduced second Piola–Kirchhoff stress
S = 2 ∂CW , which is symmetric and thus causes the minor symmetry of C. The two
material quantities are connected to the here used nominal ones by P = FS (a push-
forward operation of the first basis of S, as explained in Section 3.5.2) and

L = (F ⊗ I)T23 C (F T ⊗ I)T23 + (I ⊗ S)T23 (3.114)

see Simo & Marsden [440], Marsden & Hughes [316] or Curnier [85]. Some implica-
tions and further explanations on symmetry properties of fourth-order tensors are provided
in Appendix A.7.2. Proceeding with the convexity considerations, we note that in order
to formulate the convexity statement in the infinitesimal form (3.112)3, the strain-energy
function W has to be twice differentiable, which is generally the case. Note that the con-
vexity statements (3.112) can be strengthened to strict convexity if they are changed to
strict inequalities, hence, by replacing ≤ by < and ≥ by >. Reformulating Eq. (3.112)3 in
terms of strict convexity then demands that the elasticity tensor L is positive definite. A
convex strain-energy in the sense of Eqs (3.112) or in the strictly convex form ensures the
sequentially weakly lower semicontinuity of the elastostatic functional Π. However, it is a
too restrictive demand, as, for instance, strict convexity entails that any solution is unique
and stable. Therefore, it excludes structural instabilities, such as buckling phenomena,
which have to be included in a reasonable large-strain theory, see Hill [209]. Moreover,
convexity (both, strict and non-strict) is incompatible with the principle of material frame-
indifference, see Coleman & Noll [82], and it violates the growth condition (3.109)1 in
the limit det[F ] → 0+. In summary, convexity of the strain-energy W is not reasonable
and alternative concepts have to be consulted. This motivates the introduction of so-called
weak convexity statements.

Quasiconvexity A fundamental weak convexity statement is the concept of quasicon-
vexity, introduced by Morrey [343]. The quasiconvexity condition reads

W (F ) ≤ 1

vol[BS]

∫

BS
W (F + Grad[χ̃]) dV . (3.115)

Therein, the integral is defined over the subdomain BS ⊂ B0 and χ̃ are fluctuations of
the placement function χ in BS. The fluctuations have to vanish on the boundary of
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the subdomain, thus, χ̃ = 0 on ∂BS. Eq. (3.115) states that the energy level caused
by a homogeneous deformation F in BS is always lower (or equal) than the energy level
caused by any perturbed state F + Grad[χ̃]. The homogeneous deformation thus depicts
a minimiser to the functional W . Morrey [343] showed that quasiconvexity in the sense
of Eq. (3.115), together with appropriate growth conditions, is a necessary and sufficient
condition for weakly lower semicontinuity. However, the quasiconvexity condition involves
an integral statement and is not as practical to check as a local statement. Further-
more, quasiconvexity only makes sense if a material is homogeneous in the subdomain
BS. Microscopically heterogeneous materials in BS generally depict a minimum energy for
heterogeneous deformations, which conflicts with the statement in Eq. (3.115). This will
become clear in Part II of this work. Condition (3.115) also excludes the possibility of
stability problems in the subdomain BS, which is not acceptable when considering mater-
ials which are heterogeneous in BS. Moreover, quasiconvexity conflicts with the growth
condition (3.109)1 in the limit det[F ]→ 0+.

Polyconvexity A very useful weak convexity statement was formulated in the seminal
work of Ball [23] and is referred to as polyconvexity. It is less restrictive than convexity,
but a stronger statement than quasiconvexity. Thus, polyconvexity implies quasiconvex-
ity and is therefore a sufficient condition for weakly lower semicontinuity. Yet, it is a
local statement and it thus easier to handle than the integral condition of quasiconvex-
ity. Moreover, polyconvexity does not share any of the above mentioned drawbacks of
quasiconvexity, which makes it the most valuable tool to check the existence of minimiser.
The key idea behind the concept of polyconvexity is to introduce an extended list of ar-
guments, reading F = {F , cof[F ], det[F ]}. Subsequently, the strain-energy function W
is (strictly) polyconvex if it can be written as a function W (F) : R3⊗3 ×R3⊗3 ×R → R
that is (strictly) convex with respect to the 19-dimensional argument F . In terms of the
second (Gateaux) derivative of W (F) with respect to F , polyconvexity can be expressed
in form of the statement

δF · ∂2
FFW (F) δF ≥ 0 (3.116)

and demands for the positive semidefiniteness of the R19×19-matrix ∂2
FFW . If the strain

energy is given as an additive function W (F) = W1(F ) + W2(cof[F ]) + W3(det[F ]), poly-
convexity is ensured if each function Wi (i = 1, 2, 3) is convex in its associated argument.
In turn, this can be proven by the positive semidefiniteness of the fourth-order tensors
∂2
FFW (the elasticity tensor L) and ∂2

cof[F ] cof[F ]W as well as the non-negativity of the

scalar derivative ∂2
J2W . This makes it easy to give polyconvexity an intuitive physical

interpretation by noting that the extended list F = {F , cof[F ], det[F ]} contains the op-
erators of the line, area and volume transport, which we already identified in the growth
conditions (3.109). Thus, polyconvexity can be understood as convexity with respect to
changes of line, area, and volume elements. Further, Eqs (3.75) recalls a direct connec-
tion between invariant set I I = {I1, I2, I3} and the argument list F . Hence, it can be
concluded that a strain-energy function W (I I) = W1(I1) + W2(I2) + W3(I3) is polyconvex
if it can be formulated as the sum of functions Wi (i = 1, 2, 3) that are each convex in
their argument Ii. Furthermore, an extension of such investigations to the polyconvexity
of transversely isotropic invariants can be found in Schröder & Neff [425].

Rank-one convexity A further weak convexity statement is the rank-one convexity. It
is the weakest among the ones discussed so far and describes the convexity of a function
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along a straight line, where the difference between the start and end point of the line
is expressed by a rank-one, second-order tensor. Applied to the present problem, rank-
one convexity of the strain-energy function W is described by the same form than in
Eqs (3.112) with the difference that the perturbation ∆F = η ⊗ ζ is now given by the
rank-one tensor η⊗ζ with η, ζ ∈ R3\{0}. The infinitesimal rank-one convexity condition
then reads

(η ⊗ ζ) · ∂2
FFW (F )(η ⊗ ζ) ≥ 0 (3.117)

with the elasticity tensor L(F ) = ∂2
FFW (F ). Eq. (3.117) is also known as the Legendre-

Hadamard strong ellipticity condition. This analogy entails that a rank-one convex strain-
energy function W leads to strongly elliptic problems. The interesting physical implication
of this is that strong ellipticity ensures wave propagations with real wave speeds through
the material. With this physical connection, the vector ζ is given the meaning of the
direction of wave propagation and η represents a polarisation vector. Subsequently, it is
useful to reformulate Eq. (3.117) to

η ·A (ζ)η ≥ 0 (3.118)

and to introduce the symmetric second-order acoustic tensor

A = (LT23ζ)ζ = Likjl ζk ζl ei ⊗ ej . (3.119)

The symmetry of the acoustic tensor A ∈ SYM(3) is directly visible through its index
notation Aij = Likjl ζk ζl (i, j, k, l = 1, 2, 3) and the major symmetry of the elasticity
tensor L. Further, the rank-one convexity conditions in Eqs (3.117) and (3.118) can be
strengthened to strict rank-one convexity by replacing ≥ with >. With this, we can
formulate the equivalence of the following statements: (i) strict rank-one convexity of W ,
(ii) strong ellipticity of the problem, (iii) wave propagations with real positive wave speeds,
and (iv) positive definiteness of the acoustic tensorA . The last statement requires that the
acoustic tensor only has real and positive eigenvalues, as they are directly connected to the
wave speeds. However, instead of solving an eigenvalue problem, the positive definiteness
of the symmetric acoustic tensor can be exploited by investigating the positiveness of its
leading principal minors, leading to the three simple conditions

A11 > 0 , A11A22 −A12A21 > 0 , det[A ] > 0 . (3.120)

This is referred to as Sylvester’s criterion. In practical application, the conditions
in (3.120) have to be checked for every space orientation vector ζ. Failure of Sylvester’s
criterion, and hence, the loss of strong ellipticity, does not necessarily lead to instability
problems in the sense of buckling or bifurcation phenomena. Rather, it indicates equilib-
rium states with continuous displacement fields but discontinuous deformation gradient
along a singular surface with normal direction ζ. Further investigations on material be-
haviour under the loss of strong ellipticity can be found in Knowles & Sternberg
[253, 254]. Finally, we remark that although it seems reasonable to demand for the posit-
iveness of wave speeds through a material and, hence, strict rank-one convexity, there are
scenarios where rank-one convexity and the allowance of a possible zero eigenvalue of the
acoustic tensor is appropriate. For instance, it was shown in the works of Ericksen [117],
Truesdell & Noll [490, Sec. 78] and Scott & Hayes [428] that the incompressibility
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condition, given in Eq. (3.25), implies that the acoustic tensor has a zero eigenvalue and
waves do not propagate in the direction of the associated eigenvector. Hence, the consid-
eration of internally constrained materials may require appropriate modifications of the
ellipticity conditions, see, for instance, Zee & Sternberg [525].

Concluding remarks The convexity statements presented in this section are connected
in a hierarchical manner, which means that stronger convexity conditions imply the weaker
conditions, while the opposite does not hold in general. For continuous functions, such as
the strain-energy function W , the hierarchy is given by

convexity ⇒ polyconvexity ⇒ quasiconvexity ⇒ rank-one convexity .

Thus, polyconvexity of the strain-energy function induces the weaker statements of
quasiconvexity and rank-one convexity. It is therefore not only a sufficient condition
for weakly lower semicontinuity, which comes with the quasiconvexity, but also ensures
the physical meaningful demand for wave propagations with real wave speed through the
material. Moreover, polyconvexity is a local condition and by that serves as a valuable
and easy check if the strain-energy function W is specified in terms of closed-form ana-
lytical expressions. It is also a meaningful tool to ensure the physical meaningfulness
of constitutive theories during the construction of strain-energy functions. On the other
hand, rank-one convexity is the weakest of the above statements, but it has the convenient
feature that it is equivalent to the Legendre-Hadamard strong ellipticity condition and has
the physical implication of real wave speeds. Therefore, the check for rank-one convexity
is very useful in situations where the polyconvexity condition is not suitable, such as for
multiscale analysis, where the strain-energy at higher scales is not given in a closed-form
expression, but is determined by a homogenisation of energies from smaller scales. This
becomes clearer in Part II.

3.7 Further remarks on constitutive modelling

To conclude the explanations on material theory, this section presents some further aspects
with respect to the formulation of strain-energy functions. The section briefly introduces
the concept of Legendre transforms and complementary energies as well as a constitutive
deviatoric-volumetric split of the energy W . After that, we introduce some constitutive
strain-energy functions and conclude with explanations on the connection between the
finite theory and the infinitesimal small-strain theory. The results and outcomes of the
here discussed topics are picked up again later in this work.

3.7.1 Legendre transforms and the idea of complementary energies

For a variety of applications in continuum mechanics, the concept of Legendre transforma-
tions serves as very useful mathematical tool. It is a so-called contact transformation and
can be used to change dependencies of functions. An overview on the basic principles, in
particular the difference between the classical Legendre, the Legendre-Fenchel, and a here
used generalised Legendre transform, is provided in Appendix B.1. The reader is referred
to, for example, Rockafellar [405] or Sewell [430] for deeper insights in the topic.
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The transforms of thermodynamical potentials: Complementary energies Le-
gendre transformations are an essential mathematical tool in continuum mechanics and
general thermodynamics. They allow to change the dependencies of thermodynamic po-
tentials and the classical idea behind the transformations is that the energy of a ther-
modynamic system shall be expressible in terms of arguments which are observable and
measurable. We already applied this idea in Section 2.3.6 without explicitly stating it.
There, we introduced the Helmholtz free energy ψ = ε − θη in terms of the internal en-
ergy ε, which is essentially a Legendre transform with respect to the conjugate pair {θ, η}.
Using the Helmholtz energy ψ (or the volume-specific version W = ρ0ψ) instead of ε is jus-
tified because the internal energy is a function of the deformation (expressed, for example,
in terms of F ) and the entropy η. Clearly, the entropy is a cumbersome quantity and not
measurable. However, the partial derivative ∂η ε = θ of the internal energy ε(F , η) with
respect to the entropy yields the (absolute) temperature, which is a well manageable quant-
ity. Hence, it makes sense to perform a partial Legendre transform of the internal energy
with respect to the conjugate pair {θ, η}. In terms of the generalised Legendre transform,
as defined in Eq. (B.6), we obtain ε∗(F , θ) = statη{θη − ε(F , η)} with θ = ∂η ε. If one
now assumes that η represents a value where θη − ε becomes stationary, it becomes clear
that the Helmholtz free energy is nothing else than the negative Legendre transform of the
internal energy, hence, ψ = −ε∗. We thus call the Helmholtz energy ψ(F , θ) the negative
caloric complementary energy compared to ε(F , η). This means that the volume-specific
Helmholtz energy W can be written as W (F , θ) = −ρ0 statη{θη−ε(F , η)} with the partial
derivatives ∂FW = P , see Eq. (3.20), and ∂θW = −ρ0η. We see that the formulation of
a strain-energy W relies on the stationarity of the entropy, which is a key requirement for
the application of minimum energy principles as introduced in Section 3.4.2. Furthermore,
with our knowledge about the derivative ∂FW = P , we identify {F ,P } as a conjugate
pair and may perform the associated Legendre transformation

U (P , θ) := stat
F
{F · P −W (F , θ)} , (3.121)

where U is introduced as the volume-specific Gibbs energy or free enthalpy (which is
multi-valued for non-convex W , see in this context also the remarks in Section 4.3.5).
The derivative of U with respect to P reads ∂PU = F . Thus, the Gibbs energy is the
mechanical complementary energy compared to the strain energy W . The description of
mechanical problems in terms of the Gibbs energy U instead of W can be beneficial in
a variety of applications. For instance, Rajagopal & Srinivasa [394, 395] explained
that a Gibbs-formulation is very suitable for problems that are subject to internal con-
straints, which we discussed in Section 3.3, since kinematical constraints for F then turn
into simple constitutive assumptions. We will not follow such procedures in this work,
however, formulations reminiscent to Eq. (3.121) will arise as a mathematical consequence
in Section 5.1. For completeness, the last of the four important thermodynamical po-
tentials is the enthalpy H (P , η) := − statθ{θη −U (P , θ)}, which is the negative caloric
complementary energy compared to the Gibbs energy U and, likewise, the volume-specific
mechanical complementary energy compared to the internal energy ε(F , η).

3.7.2 Deviatoric-volumetric split of the energy

In Section 2.1.4 and Eq. (2.21), we showed that the deformation gradient F = Fv F̆ might
be decomposed into a purely volumetric deformation Fv and a purely deviatoric deform-
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ation F̆ . Based on this kinematical decomposition, one may constitutively introduce an
additive split of the strain-energy, reading

W (F ) = Wdev(F̆ ) + Wvol(J) (3.122)

where Wdev is the energy contribution due to the isochoric deformation and Wvol is energy
associated with the volumetric deformation, see, for example, Ogden [359], Simo et al.
[442] and Miehe [328]. On the basis of the energy decoupling in Eq. (3.122), also the first
Piola–Kirchhoff stress gets a decoupled representation, reading

P = ∂FW = ∂FWdev + ∂FWvol =: Pdev + Pvol . (3.123)

Therein, the deviatoric stress Pdev and the volumetric stress Pvol are given by

Pdev = J−1/3DP̆ , with P̆ = ∂F̆Wdev , and Pvol = J∂JWvolF
−T , (3.124)

respectively, by a consequent use of the chain rule and the derivation rules provided in
Appendix A.6. The deviatoric stress Pdev in Eq. (3.124)1 contains the fourth-order pro-
jection tensor D, which is associated with the derivative of the deviatoric deformation
F̆ = J−1/3F with respect to F and is defined as

D = I− 1
3
F−T ⊗ F such that ∂F F̆ = J−1/3DT . (3.125)

Therein, I is the fourth-order identical map. It is easy to show that the projection tensor
D is symmetric, D = DT , and idempotent, DD = D. We note that from a mathematical
point of view a deviatoric tensor should be traceless and the non-deviatoric remainder
should be a spherical tensor. However, these characteristics are not exhibited through
the first Piola–Kirchhoff stress contributions Pdev and Pvol, but through the associated
Cauchy stress representation

σ = J−1PF T = J−1PdevF
T + J−1PvolF

T =: σdev + σvol (3.126)

in the actual configuration. After some algebra and using already introduced tensor cal-
culation rules, we obtain the two stress contributions

σdev = J−1/3(σ̆ − 1
3

tr[σ̆]I) , with σ̆ = J−1P̆ F T , and σvol = ∂JWvolI . (3.127)

It is an easy matter to show that σdev is traceless, tr[σdev] = 0, and we clearly see that
σvol is a spherical tensor. Moreover, in Eq. (3.28) we showed that the trace of the Cauchy
stress is connected to the hydrostatic pressure and formulated the associated equation for
the first Piola–Kirchhoff stress in (3.29). Thus, Pdev, although not traceless, shows its
deviatoric nature through a vanishing hydrostatic pressure, hence

− 1
3
J−1Pdev · F = J−4/3(P̆ − 1

3
(P̆ · F )F−T ) · F = 0 . (3.128)

In this sense, the fourth-order tensor D can be referred to as a nominal version of the
classical deviatoric projection tensor I− (I ⊗ I)/3.

For completeness, the nominal elasticity tensor associated with the deviatoric-volumetric
energy decoupling reads

L = ∂2
FFW = ∂2

FFWdev + ∂2
FFWvol = Ldev + Lvol , (3.129)
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where the deviatoric part Ldev and the volumetric part Lvol are given by

Ldev = 1
3
J−1/3

[
(P̆ · F )(F−T ⊗ F−T )T24 − DP̆ ⊗ F−T + F−T ⊗ P̆

]
+ J−2/3DL̆ ,

Lvol = (J∂JWvol + J2∂2
J2Wvol)F

−T ⊗ F−T − J∂JWvol(F
−T ⊗ F−T )T24 ,

(3.130)

respectively, where L̆ = ∂2
F̆ F̆

Wdev = ∂F̆Pdev.
At this point, we emphasise that the decoupled energy representation in Eq. (3.122)

is not a mathematical consequence from the deformation decomposition, but rather is a
constitutive assumption. It can be useful when dealing with moderate volumetric deform-
ations or incompressible materials, however, Penn [369] and Ehlers & Eipper [108]
remarked that the additive energy decoupling is inappropriate and may deliver unphys-
ical results when large volumetric deformations occur. A further weakness of the energy
decoupling can be shown by taking a deformation gradient F = λI, which depicts a pure
volume dilatation. The non-volumetric deformation gradient then reads F̆ = J−1/3λI = I,
since J = λ3. Consequently, the associated deviatoric energy and stress parts vanish if
they properly fulfil the normalisation conditions from Section 3.6.1, hence, Wdev = 0 and
Pdev = 0. The remaining volumetric stress Pvol (or σvol), however, represents a hy-
drostatic stress state and is thus isotropic, regardless of the symmetry conditions of the
material. This means that pure volume dilatations induce an isotropic state of stress
even in anisotropic materials, which appears to be a very restrictive consequence of the
deviatoric-volumetric energy decoupling. In this connection, it is interesting to look at the
implications of the energy decoupling (3.122) for transversely isotropic materials based
on the invariant set I I

ti . The dependence of the deviatoric energy Wdev on the deviatoric
deformation F̆ then suggests to formulate isochoric versions of the invariants I1, I2, J4,
and J5, which are based on the isochoric right Cauchy–Green tensor C̆ = J−2/3C:

Ĭ1 = J−2/3I1 , Ĭ2 = J−4/3I2 , J̆4 = J−2/3J4 , J̆5 = J−4/3J5 . (3.131)

For the above mentioned purely volumetric deformation F = λI all of these isochoric
invariants remain constant, see, for example, J̆4 = J−2/3J4 = J−2/3 tr[λ2IM ] = 1. Since
the anisotropic invariants J̆4 and J̆5 do not get activated by the volumetric deformation,
the resulting material behaviour becomes isotropic. Based on these observations and some
other arguments, Sansour [417] and Helfenstein et al. [197] suggested that the energy
function of transversely isotropic materials subject to some deviatoric-volumetric energy
should not be dependent on the isochoric versions J̆4 and J̆5, but on J4 and J5 based on
the complete deformation F .

3.7.3 Connection to the infinitesimal theory

So far, the considerations in this work dealt with the general continuum-mechanical theory
and hyperelastic framework for large deformations and large strains. Now, in addition to
the already outlined constitutive principles and physical requirements in this chapter, a
meaningful large-strain material description has to fulfil some linearisation conditions,
which means that it has to recover results from the well-founded small-strain theory of
linear elasticity. Thus, this sections aims to bring the large-strain theory into context with
the infinitesimal theory of small-strain continuum mechanics. A comprehensive review on
geometrical linearisation is not the scope of this section and we refer to the textbooks of
Ogden [362] and Haupt [189], amongst others, for further explanations.
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Small-strain continuum mechanics The starting point for the investigation of small-
strain continuum mechanics is the assumption that the deformation gradient describing
an actual configuration at time t > t0 does not differ much from the initial deformation
gradient in the reference configuration at t0, which means that F ≈ F |t=t0 = I. In order to
obtain a linearised strain-energy Wlin, it is straightforward to perform a Taylor expansion
of the strain-energy W (F ) around F = I. Since we aim to obtain a quadratic elastic
potential, a second-order Taylor expansion is applied and we define the linearised energy
as Wlin := T2{W (F ), I}, where Tn{f(x), x0} denotes the n-th-order Taylor expansion of
f(x) around x0. We obtain the expression

Wlin(F ) = W (F )
∣∣
F=I

+∂FW (F )
∣∣
F=I
·(F−I)+ 1

2
(F−I)·∂2

FFW (F )
∣∣
F=I

(F−I) . (3.132)

Of course, we identify the first Piola–Kirchhoff stress tensor P = ∂FW and the nominal
elasticity tensor L = ∂2

FFW for unconstrained materials, whereas these tensors become
the respective extra quantities for constrained materials. In either case, the first two terms
in Eq. (3.132) vanish in the reference configuration for properly normalised materials, such
that (3.132) directly simplifies by means of W (F )|F=I = 0 and ∂FW (F )|F=I = 0. Fur-
ther, we identify L(F )|F=I =: Llin as the linearised elasticity tensor. Obviously, Llin is
independent of the deformation and thus depicts a constant fourth-order tensor. Moreover,
the linearised elasticity tensor is major- and minor symmetric, like the material elasticity
tensor C. This means that Llin has at most 21 independent coefficients, see also Ap-
pendix A.7.2. In order to specify the term F−I, we recall the definition of the displacement
vector u = x −X and compute its gradient with respect to the reference configuration,
giving Grad[u] = Grad[x] − Grad[X] = F − I. Hence, we see that Eq. (3.132) contains
the displacement gradient H := Grad[u] = F − I. This second-order tensor is the key
quantity in the process of geometrical linearisation, since the assumption F ≈ I can sub-
sequently be formulated as ‖H‖ = δ � 1. Doing so, other quantities may be expressed
in terms of H and δ which allows for an asymptotic analysis by omitting all terms of
order δ2 and higher. In this spirit, a further prominent characteristic of the displacement
gradient appears when we split it into a symmetric part sym[H ] = (H + HT )/2 and a
skew-symmetric part skw[H ] = (H −HT )/2, such that H = sym[H ] + skw[H ]. When
‖H‖ � 1, those two parts can be identified as the linearised strain tensor ε := sym[H ]
and the linearised rotation tensor ω := skw[H ], see, for example, Haupt [189], and we
obtain,

H = ε+ ω with ε = εT and ω = −ωT . (3.133)

Substituting these findings into the linearised energy in Eq. (3.132) and investigating the
resulting expression (ε+ ω) · Llin(ε+ ω), we observe that the rotation tensor ω does not
contribute to the energy because of the symmetry properties of Llin and the skew-symmetry
of ω. Finally, we obtain the well-known expressions

Wlin(ε,Ξ) = 1
2
ε · Llin(Ξ)ε and σlin(ε,Ξ) = ∂εWlin = Llin(Ξ)ε (3.134)

for the linearised energy Wlin and the linearised stress σlin by using the derivation
rules (A.64) and (A.68). Moreover, as we consider anisotropic materials, the linear energy
is a function of the strain tensor ε and possibly a set of structural tensors, denoted by Ξ
from Eq. (3.66), which is a consequence of the general anisotropy of the elasticity tensor
Llin(Ξ). Before proceeding, we want to recapitulate the implications of the previous res-
ults. The linearised strain-energy in Eq. (3.134) was derived by considering the general
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nonlinear energy W at small strains around F ≈ I and Wlin was found to be identical to
the formulations of classical linear elasticity. Therefore, one can take a general nonlinear
strain-energy function, compute its elasticity tensor L = ∂2

FFW , evaluate it for the un-
deformed state and compare the resulting linearised elasticity tensor Llin with elasticity
tensors from the theory of small-strain continuum mechanics. Doing so, one obtains a dir-
ect connection between the nonlinear large-strain formulation and the small-strain theory.
Subsequently, one can formulate conditions for the nonlinear strain-energy, such that it
linearises properly in the small-strain regime. In this sense, this procedure guarantees the
compatibility between large-strain and small-strain formulations.

Representation of linear elasticity tensors Here, we want to provide representations
of the linear elasticity tensor Llin for the two special cases of isotropy and transverse
isotropy. For the isotropic case, it is well known that two material parameters are sufficient
to fully characterise a linear-elastic materials. We choose the first Lamé constant Λ and the
second Lamé constant (the shear modulus) µ, which results in the following representation
of the elasticity tensor Liso

lin and the associated strain-energy:

Liso
lin = 2µ Isym + Λ I ⊗ I and Wlin(ε) = µ tr[ε2] + 1

2
Λ tr[ε]2 . (3.135)

Therein, the energy is obtained by inserting the tensor Liso
lin into Eq. (3.134)1. The relations

in Eqs (3.135) describe an isotropic linear-elastic Hooke material, which hints that it is the
three-dimensional extension of a linear-elastic Hookean spring. The two scalars tr[ε] and
tr[ε2] in Wlin denote isotropic small-strain invariants and follow directly from the two tensor
bases I ⊗ I and Isym of Liso

lin by the operations ε · (I ⊗ I)ε = ε · Itrε = ε · tr[ε]I = tr[ε]2

and ε · Isymε = ε · ε = tr[ε2]. Note that it makes no difference for the small-strain
invariant tr[ε2] and the energy Wlin when the symmetrising map Isym is replaced by the
identical map I, because of the symmetry of ε. However, it is necessary to keep the more
general notation with Isym = (I + IT )/2 in order to be able to compare it to the linearised
results from large-strain formulations. Further, as expected, the isotropic small-strain
elasticity tensor Liso

lin is not dependent on any structural tensor and can be written as a
linear combination of the fundamental fourth-order tensors Isym and Itr. In contrast, the
formulation of anisotropic linear-elastic elasticity tensors demands for an enriched tensor
basis, as the elasticity tensor Llin(Ξ) then becomes a function of a certain set Ξ of structural
tensors, see Eq. (3.134). For the special case of transverse isotropy, Walpole [499, 500]
outlined that the elasticity tensor can be represented as a linear combination of a set of
six elementary fourth-order tensors E[α], α = 1, 2, 3, 4, 5, 6. The six elementary tensors
contain different combinations of the transversely isotropic structural tensors M and D,
which were introduced in Eqs (3.82) and (3.88), respectively. The definitions and some
alternative representations of the six elementary tensors are provided in Appendix A.7.3.
Subsequently, the transversely isotropic small-strain elasticity tensor Lti

lin(M ) becomes a
function of the structural tensorM , sinceD = I−M is itself dependent onM . Following
Walpole [500], we obtain the formulation

Lti
lin(M) = 2κt E[1] + nE[2] + 2µt E[3] + 2µ` E[4] + l (E[5] + E[6]) . (3.136)

Hence, a linear-elastic transversely isotropic material is in general described by five mater-
ial parameters. In Eq. (3.136), those parameters are the transverse (or plane-strain) bulk
modulus κt, the transverse (in-plane) shear modulus µt, and the longitudinal (out-of-plane)
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shear modulus µ`. Moreover, l is related to the longitudinal Poisson’s ratio ν` = l/(2κt)
whereas n is connected to the longitudinal Young’s modulus E` = n − l2/κt. A compact
notation for expression (3.136) can be given by Lti

lin = (2κt, n, 2µt, 2µ`, l, l), which simply
lists the scalar pre-factors of the six elementary tensors, see Walpole [500]. This repres-
entation can be referred to as Walpole’s notation. However, note that a slightly different
notation Lti

lin = (2κt, l, l, n, 2µt, 2µ`) was used in an earlier work, see Walpole [499], and
one may find both forms in the literature. Furthermore, we remark that the choice of
the five material parameters is by no means unique and one may choose a different set,
accompanied with a different notation for the elasticity tensor. For instance, Spencer
[457] proposed a parameter set {Λ, µ`, µt, α, β}, which results in the elasticity tensor

Lti
lin(M) = 2µt E[1] + n′ E[2] + 2µt E[3] + 2µ` E[4] + α (E[5] + E[6]) + Λ I ⊗ I , (3.137)

where n′ = 4µ`−2µt +2α+β, see also Schröder [420]. The nice feature of this represent-
ation is that the parameters α and β are directly linked to the anisotropic behaviour and
become zero for isotropy. Then, it is straightforward to observe that Lti

lin from Eq. (3.137)
simplifies to the isotropic form given in Eq. (3.135)1 by employing Eq. (A.89). If we fur-
ther confine the attention to incompressible, transversely isotropic materials, a spectral
decomposition of the elasticity tensor leads to the representation

Lti
lin(M ) = 2µa E[a] + 2µt E[3] + 2µ` E[4] + 3κ∞J , (3.138)

as shown by Ponte Castañeda [378] and Federico et al. [126]. Therein, E[a] is an
axisymmetric shear projection tensor and J is a projection tensor, which are both defined as
combinations of E[1], E[2], E[5], and E[6], see Eqs (A.91) and (A.92)1, respectively. Further,
µa is an axisymmetric shear modulus and the bulk modulus κ∞ tends to infinity because
of the incompressibility. Thus, the elasticity tensor Lti

lin in the case of incompressibility
becomes a function of three material parameters. For later use, it proves useful to rearrange
Eq. (3.138) and to replace the bulk modulus by the first Lamé constant Λ∞ = κ∞−2µa/3,
giving

Lti
lin(M ) = 2µa (E[1] + E[2]) + 2µt E[3] + 2µ` E[4] + Λ∞ I ⊗ I , (3.139)

where now the Lamé constant Λ∞ tends to infinity. Finally, note that the linearised
energy Wlin(ε,M ) for transversely isotropic materials is derived by inserting one of the
above formulations for Lti

lin(M ) into Eq. (3.134)1. This will not be spelled out here in
detail, but we remark that exploiting the respective scalar products ε · E[α]ε results in a
formulation of the energy in terms of the four transversely isotropic small-strain invariants
tr[ε], tr[ε2], tr[εM ], and tr[ε2M ], see Schröder [420].

3.8 Analytical formulations for strain-energy functions

In this section, we bring together the investigations on material theory made so far and
present explicit formulations for strain-energy functions in line with the formulated con-
stitutive requirements. Doing so, we recall that frame-indifference requirements and the
principles of material symmetry are satisfied if the strain energy W is formulated in terms
of appropriate scalar invariants, as explained in Section 3.5. Further important require-
ments were outlined in Section 3.6, such as a proper normalisation in the reference state,
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physically meaningful growth conditions, and the fulfilment of certain weak convexity con-
ditions. Moreover, the large-strain formulations should be consistent with the well-founded
small-strain theory. Here, we will focus on a few analytical strain-energy functions, since
the countless number of available constitutive models in the literature makes it impossible
to give a complete overview. For more examples and a broader overview, the interested
reader is referred to, for example, the book of Holzapfel et al. [222] as well as to the
articles of Ogden [361], Beatty [27] and Boyce & Arruda [58], which are concerned
with rubber-like materials, and the impressive review of Chagnon et al. [74] that deals
with constitutive models for soft biological tissues. Here, it proves useful to start with the
introduction of an additive energy split in the following.

3.8.1 A distortional-dilatational energy split

The strain energy W (F ) of a hyperelastic material may be additively split as

W (F ) = Wµ(F ) + WΛ(J) . (3.140)

We refer to this as distortional-dilatational energy split. The key idea of such a formulation
is the division of the total energy W into a contribution Wµ which is mostly dependent on
the stiffness of the material against distortional deformations and a contribution WΛ which
is solely dependent on the stiffness of the material against dilatational (volumetric) deform-
ations. Doing so, it makes sense that the dilatational part WΛ is a function of the Jacobian
J . The designation of the subscripts µ and Λ is inspired of the two Lamé parameters from
linear elasticity, where Λ quantifies the stiffness against dilatational deformations. This
becomes clearer in a few moments. We highlight that the split in Eq. (3.140) is very differ-
ent to the one proposed in Section 3.7.2. While for the latter formulation, the deviatoric
energy part Wdev is only dependent on the isochoric deformation F̆ , the distortional part
Wµ(F ) still depends on the full deformation F . Of course, the nomenclature of these two
additive splits is in some sense arbitrary, since the usage of the terms deviatoric-volumetric
and distortional-dilatational could be motivated for both splits. In this work, we stick to
the introduced naming in order to distinguish between the two decompositions. We further
specify the two energy contributions Wµ and WΛ by demanding that both of them satisfy
the normalisation and linearisation conditions separately. For the distortional part, the
normalisation conditions become

Wµ[I] = 0 and ∂FWµ[I] = 0 . (3.141)

Therein and henceforth, the subscript [I] is an abbreviation for (·)|F=I and indicates the
evaluation of the quantity (·) in the reference state (F = I). For the dilatational part, we
can specify the derivative

∂FWΛ(J) = J∂JWΛF
−T , (3.142)

which is similar to Eq. (3.124)2. Evaluating formulation (3.142) for the reference state,
with F−T[I] = I and J[I] = det[I] = 1, leads us to the normalisation conditions

WΛ[I] = 0 and ∂JWΛ[I] = 0 . (3.143)

In order to exploit the linearisation of the dilatational energy part, we compute the second
derivative with respect to F , reading

∂2
FFWΛ = (J∂JWΛ + J2∂2

J2WΛ)F−T ⊗ F−T − J∂JWΛ(F−T ⊗ F−T )T24 . (3.144)
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Subsequently, this fourth-order tensor is evaluated in the reference state and use is made
of the normalisation condition (3.143)2, which leads to

∂2
FFWΛ[I] = ∂2

J2WΛ[I]I ⊗ I → ∂2
J2WΛ[I] = Λ . (3.145)

Therein, the formulation of the normalisation condition (3.145)2 is motivated by a com-
parison of ∂2

FFWΛ[I] with the small-strain elasticity tensors from Eqs (3.135) and (3.137),
where the first Lamé constant Λ is the pre-factor associated with the tensor base I ⊗ I.
Note that choosing Λ > 0 would directly guarantee the strict convexity of the dilata-
tional energy part WΛ in the sense of condition (3.116)3. However, demanding for the
(poly)convexity with respect to the Jacobian J for each of the two energy terms, Wµ and
WΛ, is a stronger condition than Eq. (3.116)3 and there is no need to do that here.

3.8.2 Linearisation conditions for I I
ti -dependent strain energies

Based on the preceding explanations on the small-strain theory in Section 3.7.3 and the
energy split in Section 3.8.1, we will now formulate the linearisation conditions for the
distortional part of transversely-isotropic strain energies that are defined in terms of the
invariant set I I

ti . The resulting formulations will be especially relevant in the process of
showing the consistent linearisation of the nonlinear homogenisation methods in Chapter 5.
Further explanations and explicit examples for I I

ti -dependent energies follow in the next
section, whereas the considerations here are made in a generic sense in order to provide
the necessary basics. The values of invariant set I I

ti for the referential state, described
by F = C = I, are obtained from the definitions in Eqs (3.73), (3.85) and tr[I] = 3,
det[I] = 1, and tr[M ] = 1, giving

F = I → I1 = I2 = 3 , J = J4 = J5 = 1 . (3.146)

For a transversely isotropic material with a distortional energy of the form
Wµ(I1, I2, J, J4, J5), the associated distortional part of the first Piola–Kirchhoff (extra)
stress tensor Pµ = ∂FWµ and the distortional part of the (extra) elasticity tensor
Lµ = ∂2

FFWµ are obtained by straightforward derivations and a consequent use of the
chain rule. In particular, carrying out the derivations for invariant-based strain energies
leads to a typical structure consisting of scalar derivatives of the energy with respect to
the invariants and the associated tensor generators, which are derivatives of the invariants
with respect to F . The tensor generators are provided in Eq. (A.75). Subsequently, the
first derivative of Wµ(I1, I2, J, J4, J5) with respect to F is given by

Pµ = ∂FWµ = 2 ∂I1Wµ F + 2 ∂I2Wµ F (I1I −C) + J∂JWµ F
−T

+ 2 ∂J4Wµ FM + 2 ∂J5Wµ (FCM + FMC) .
(3.147)

For the sake of brevity, the details on this derivation as well as the computation of the
elasticity tensor are moved to Appendix A.7.1. Since the linearised results in Eq. (3.134)
rely on a properly normalised material behaviour, the first step is to provide appropriate
normalisation conditions which guarantee an energy- and stress-free reference state. The
normalisation condition for the energy reads

Wµ[I] = 0 . (3.148)
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Further, exploiting ∂FWµ[I] yields an expression with two tensor bases I and M . Their
respective scalar pre-factors have to be zero in order to guarantee ∂FWµ[I] = 0. This leads
to the additional normalisation conditions

2 ∂I1Wµ[I] + 4 ∂I2Wµ[I] + ∂JWµ[I] = 0 and ∂J4Wµ[I] + 2 ∂J5Wµ[I] = 0 . (3.149)

In order to obtain the linearisation conditions, the second derivative ∂2
FFWµ has to be

evaluated in the reference configuration and subsequently compared with the small-strain
counterpart Lti

lin. It proves useful to employ for the comparison the formulation for Lti
lin

given in Eq. (3.137), because it directly separates the Λ-term from the other terms, which
is in line with the distortional-dilatational energy split. Exploiting the general elasticity
tensor in Eq. (A.78) for F = I leads to a formulation that contains ten tensor bases.
These are I ⊗ I, I ⊗M , M ⊗ I and their respective transpositions T23 and T24 as well as
the totally symmetric tensor M ⊗M . A comparison of the scalar pre-factors (consisting
of first and second derivatives of Wµ with respect to the invariants) associated with the
ten tensor bases with the respective pre-factors in Eq. (3.137) leads to the linearisation
conditions

−µt = 2 ∂I2Wµ[I] + ∂JWµ[I] ,

µ` = 2 ∂I1Wµ[I] + 2 ∂I2Wµ[I] + 2 ∂J5Wµ[I] ,

2µt = 4 ∂2
I21

Wµ[I] + 16 ∂2
I1I2

Wµ[I] + 16 ∂2
I22

Wµ[I] + 4 ∂2
I1J

Wµ[I]

+ 8 ∂2
I2J

Wµ[I] + ∂2
J2Wµ[I] − ∂JWµ[I] ,

α = 4 ∂2
I1J4

Wµ[I] + 8 ∂2
I2J4

Wµ[I] + 8 ∂2
I1J5

Wµ[I] + 16 ∂2
I2J5

Wµ[I]

+ 2 ∂2
JJ4

Wµ[I] + 4 ∂2
JJ5

Wµ[I] ,

β + 4µ` − 4µt = 4 ∂2
J2
4
Wµ[I] + 16 ∂2

J4J5
Wµ[I] + 16 ∂2

J2
5
Wµ[I] + 8 ∂J5Wµ[I] .

(3.150)

A slightly different notation for these conditions was given by Merodio & Ogden [322].
If we confine the attention to incompressible materials, the corresponding linearisation
conditions are obtained by a comparison of ∂2

FFWµ[I] with the incompressible small-strain
elasticity tensor that is given in Eq. (3.139). This leads to

−µt = 2 ∂I2Wµ[I] + ∂JWµ[I] ,

µ` = 2 ∂I1Wµ[I] + 2 ∂I2Wµ[I] + 2 ∂J5Wµ[I] ,

µa + µt = 4 ∂2
I21

Wµ[I] + 16 ∂2
I1I2

Wµ[I] + 16 ∂2
I22

Wµ[I] + 4 ∂2
I1J

Wµ[I]

+ 8 ∂2
I2J

Wµ[I] + ∂2
J2Wµ[I] − ∂JWµ[I] ,

µt − µa = 4 ∂2
I1J4

Wµ[I] + 8 ∂2
I2J4

Wµ[I] + 8 ∂2
I1J5

Wµ[I] + 16 ∂2
I2J5

Wµ[I]

+ 2 ∂2
JJ4

Wµ[I] + 4 ∂2
JJ5

Wµ[I] ,

3µa − 3µt = 4 ∂2
J2
4
Wµ[I] + 16 ∂2

J4J5
Wµ[I] + 16 ∂2

J2
5
Wµ[I] + 8 ∂J5Wµ[I] .

(3.151)

At this point, we note that the distortional energy part is usually formulated such that
the J-dependent contributions are decoupled from the rest. Hence, such energy functions
follow a further additive split and can be written as

Wµ(I1, I2, J, J4, J5) = W I
µ (I1, I2, J4, J5) + W J

µ (J) . (3.152)

Based on that, the normalisation conditions from Eq. (3.149) transform to

2 ∂I1W
I
µ[I] + 4 ∂I2W

I
µ[I] + ∂JW

J
µ[I] = 0 and ∂J4W

I
µ[I] + 2 ∂J5W

I
µ[I] = 0 . (3.153)
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Further, the decoupled form in Eq. (3.152) implies that the mixed second derivatives which
involve J vanish, hence

∂2
I1J

Wµ = ∂2
I2J

Wµ = ∂2
JJ4

Wµ = ∂2
JJ5

Wµ = 0 . (3.154)

These relations can be subsequently used to simplify the linearisation conditions in
Eqs (3.150) and (3.151). Hence, the linearisation conditions (3.151) for incompressible
materials transform to

2 ∂I2W
I
µ[I] + ∂JW

J
µ[I] = −µt ,

2 ∂I1W
I
µ[I] + 2 ∂I2W

I
µ[I] + 2 ∂J5W

I
µ[I] = µ` ,

4 ∂2
I21

W I
µ[I] + 16 ∂2

I1I2
W I
µ[I] + 16 ∂2

I22
W I
µ[I] + ∂2

J2W J
µ[I] − ∂JW J

µ[I] = µa + µt ,

4 ∂2
I1J4

W I
µ[I] + 8 ∂2

I2J4
W I
µ[I] + 8 ∂2

I1J5
W I
µ[I] + 16 ∂2

I2J5
W I
µ[I] = µt − µa ,

4 ∂2
J2
4
W I
µ[I] + 16 ∂2

J4J5
W I
µ[I] + 16 ∂2

J2
5
W I
µ[I] + 8 ∂J5W

I
µ[I] = 3µa − 3µt .

(3.155)

3.8.3 Examples of strain-energy functions

Now, some examples for analytical strain-energy functions are presented. These functions
are introduced here in a fully generic way and have to be able to describe the elastic energy
at the material point in a phenomenological sense. Thus, the mathematical structure of the
strain-energy function has to be such that it allows a proper calibration to experimental
data. In contrast, the energy at a material point can also be described by considering
effects and structures from smaller scales, which anticipates the ideas of Part II. Here, as
a continuation of the preceding considerations, we focus on I I

ti -based energies. However,
it shall be remarked that there is a variety of alternative formulations, for instance, based
on the invariant sets I 

ti, see Criscione et al. [84], or the set of principal stretches I λ
iso.

The latter formulations for isotropic behaviour, given by W (F ) = W (λU(1), λU(2), λU(3)),
involve the important class of Ogden-type materials, see, for example, Ogden [361, 362], as
well as formulations based on the Valanis–Landel hypothesis W (F ) = w(λU(1))+w(λU(2))+
w(λU(3)) proposed by Valanis & Landel [491].

Expressions for the dilatational energy WΛ The dilatational energy part WΛ has to
satisfy the normalisation conditions (3.143) and the linearisation condition (3.145)2. A
simple and useful formulation in line with those conditions is given by

WΛ(J) = 1
2
Λ(J − 1)2 with ∂JWΛ = Λ(J − 1) and ∂2

J2WΛ = Λ . (3.156)

This formulation assumes a deformation-independent constant volumetric stiffness, which
results in a classical quadratic potential. Exploiting the limit values limJ→0+ WΛ = Λ/2 and
limJ→∞WΛ =∞, we observe that this energy generally fulfils the growth conditions (3.109)
for J →∞. However, for J → 0+, an infinite limit value of WΛ is only obtained for Λ→∞,
which essentially describes the case of incompressibility. Consequently, using a dilatational
energy as given in (3.156) implies that the growth condition in the limit as J → 0+ for
compressible materials has to be treated by the J-dependence of the distortional part.
An alternative formulation which directly satisfies the growth conditions was for example
proposed by Miehe [328] and is given by

WΛ(J) = Λ(J − ln[J ]− 1) with ∂JWΛ = Λ(1− 1

J
) and ∂2

J2WΛ =
Λ

J2
. (3.157)
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Therein, the logarithmic term is a typical ingredient of energies with infinite growth as the
compression tends to zero. More formulations for volumetric/dilatational energy contri-
butions and their characteristics can be found in the very comprehensive work of Hart-
mann & Neff [180]. Herein, we will proceed with the dilatational energy as defined in
Eq. (3.156).

Expressions for the distortional energy Wµ For I I
ti -dependent distortional energies,

the associated normalisation and linearisation conditions are formulated in Section 3.8.2.
If Wµ can be represented according to the decoupled form given in Eq. (3.152), the usual
procedure is to employ an energy W I

µ and to formulate the J-dependent part W J
µ according

to W I
µ such that the normalisation and linearisation conditions are satisfied. Here, we want

to show this procedure for the special case of isotropic I1-J-dependent energy functions,
Wµ(I1, J) = W I

µ (I1) + W J
µ (J), and only briefly comment on some J4-dependent energy

forms. Further strain-energy functions will be introduced where they are required. For
isotropic I1-J-dependent energies, proper normalisation is fulfilled by satisfying Eqs (3.148)
and (3.149), where the latter simplifies to 2 ∂I1Wµ[I] + ∂JWµ[I] = 0. The elasticity tensor
for the considered energy type reduces to the form given in Eq. (A.81) and the associated
linearisation conditions degenerate from the general notation in Section 3.8.2 to the very
compact expressions

2 ∂I1W
I

[I] = µ , ∂JW
J

[I] = −µ , 4 ∂2
I21

W I
[I] + ∂2

J2W J
[I] = µ . (3.158)

These relations can also be obtained directly by exploiting Eq. (A.81) for the reference
state and comparing the result to the distortional part 2µ Isym of the isotropic linear-
elastic elasticity tensor Liso

lin, which is given in Eq. (3.135). We note that satisfying the
conditions (3.158)1 and (3.158)2 immediately entails the fulfilment of the normalisation
condition for the stress. A very simple, yet powerful and widely used strain-energy function
is known as the Neo-Hooke model and reads

W I
µ (I1) = 1

2
µ (I1 − 3) with ∂I1W

I
µ = 1

2
µ and ∂2

I21
W I
µ = 0 . (3.159)

This model relies on one material parameter, which can be identified as the small-strain
shear modulus (or second Lamé constant) µ. The idea behind the designation of the Neo-
Hooke model is that it is an extension of the linear-elastic Hooke model to large-strain
hyperelasticity, see Rivlin [402]. This is also indicated when we recall Eq. (3.75)1 and
formulate the Neo-Hooke model as W I

µ (F ) = µ (F ·F −3)/2, which shows its character as
a classical quadratic potential. However, despite the simplicity of the Neo-Hooke model,
it is interesting that approaching it from a different perspective shows some remarkable
characteristics. With Eq. (3.76)1, we can reformulate the model to W I

µ (I λ
iso) = µ (λ2

U(1) +

λ2
U(2) + λ2

U(3) − 3)/2 in terms of the principal stretches I λ
iso. This allows to identify

the Neo-Hooke model as a special case of the Ogden-type model, see Ogden [361, 362].
Moreover, the considerations in Section 6.2.2 will show that the Neo-Hooke model can be
given a micromechanical meaning. Proceeding, an appropriate extension term W J

µ for the
Neo-Hookean model which guarantees proper normalisation and linearisation can be given
by

W J
µ (J) = −µ ln[J ] with ∂JW

J
µ = −µ

J
and ∂2

J2W J
µ =

µ

J2
. (3.160)

We note that this logarithmic term satisfies the growth condition as J → 0+ and it is thus
a suitable partner for the quadratic volumetric energy given in Eq. (3.156), which lacks
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this property for finite values of Λ. An overall energy formulation of the form

W (I1, J) = 1
2
µ (I1 − 3)− µ ln[J ] + WΛ(J) (3.161)

can be referred to as Simo-Pister model, see Simo & Pister [441]. This formulation
has an own name because it depicts a generalisation of the originally incompressible Neo-
Hookean model to the compressible regime. At this point, we note that the Neo-Hooke
model is only capable of describing mildly nonlinear material behaviour. This becomes
obvious through the vanishing second derivative in Eq. (3.159)2. Material models for
W I
µ (I1) which extend this formulation to more general nonlinear behaviour are often called

generalised Neo-Hooke models, making the Neo-Hooke model an eponym for a whole class
of material models. One such generalisation was proposed by Delfino et al. [94] and
reads

W I
µ (I1) =

µ

b

{
exp

[ b
2

(I1 − 3)
]
− 1
}
. (3.162)

It is called Delfino model or simply I1-based exponential model5. In addition to the
material parameter µ, it contains a second parameter, b, which governs the nonlinearity.
Taking the limit of Eq. (3.162) for b → 0 shows that the Demiray model contains the
Neo-Hooke model as special case. Further, the derivatives of Eq. (3.162) are

∂I1W
I
µ =

µ

2
exp

[ b
2

(I1 − 3)
]

and ∂2
I21

W I
µ =

µb

4
exp

[ b
2

(I1 − 3)
]
, (3.163)

giving the referential values ∂I1W
I
µ[I] = µ/2 and ∂2

I21
W I
µ[I] = µb/4. The latter value suggests

that the Demiray model requires a modified formulation of the energy part W J
µ in order

to satisfy the linearisation condition (3.158)3. The logarithmic term from Eq. (3.160) thus
has to be enriched appropriately, giving the formulation

W J
µ (J) = −µ ln[J ]− µ b

8
(J − 1)2 (3.164)

with the associated first and second derivative

∂JW
J
µ = −µ

J
− µb

4
(J − 1) and ∂2

J2W J
µ =

µ

J2
− µb

4
. (3.165)

It is easy to observe that the energy W J
µ and its derivatives degenerate to the Neo-Hookean

formulations given in Eqs (3.160) for b = 0. A further widely used generalised Neo-Hookean
material model is the Gent model, proposed by Gent [158]. It reads

W I
µ (I1) = −Jm µ

2
ln
[
1− I1 − 3

Jm

]
(3.166)

5A slightly different formulation has been proposed earlier by Demiray [95] and reads

W I
µ (I1) =

µ

2b

{
exp[b (I1 − 3)]− 1

}
.

Similar exponential functions were also formulated by Gou [169] and Fung [141]. In general, such
exponential-based strain-energy functions are sometimes referred to as Fung-type models, because they
represent generalisations of Fung’s studies on the exponential form of stress-strain-relations in biological
tissues, see, for example, Fung [146].
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a) 1
0 λ

W /µ

b) 1
0 λ

W /µ

c)
√
2−1 1 2

0 λ

W /µ

Figure 3.1: Comparison of the strain energy W due to an incompressible uniaxial deformation with
F = diag[λ, 1/

√
λ, 1/

√
λ] in terms of the stretch λ. The associated first principal invariant of C is

I1 = λ2 + 2/λ. The results are normalised with respect to the shear parameter µ and given as W /µ. a)
The Neo-Hooke energy. b) The Demiray energy for b → 0 (identical to the Neo-Hooke model) as well as
b = 0.5, 1, 2, 5. Increasing values of b increase the energy. c) The Gent energy for Jm → ∞ (identical to
the Neo-Hooke model) as well as Jm = 10, 5, 2. Decreasing values of Jm increase the energy. The Gent
model has an asymptotic behaviour when λ2 + 2/λ − 3 = Jm. For Jm = 2, this lock-up occurs for a
compressive stretch λ =

√
2− 1 and a tensile stretch λ = 2.

and contains the shear parameter µ and a so-called lock-up parameter Jm. The key
feature of this model is its asymptotic behaviour when I1− 3 reaches the value Jm, which
emulates a lock-up and infinite elastic energy beyond a certain deformation. The Gent
model simplifies to the Neo-Hooke model when the lock-up parameter tends to infinity.
Further, the derivatives of Eq. (3.166) are

∂I1W
I
µ =

µJm

2 (Jm − I1 + 3)
and ∂2

I21
W I
µ =

µJm

2 (Jm − I1 + 3)2
, (3.167)

An appropriate J-dependent energy term for a proper linearisation is given by

W J
µ (J) = −µ ln[J ]− µ

Jm

(J − 1)2 (3.168)

with the derivatives

∂JW
J
µ = −µ

J
− 2µ

Jm

(J − 1) and ∂2
J2W J

µ =
µ

J2
− 2µ

Jm

. (3.169)

A brief comparison between the three introduced energy functions is provided in Figure 3.1.
Note that further generalised Neo-Hookean models can be found in the literature, such as,
for example, the formulation proposed by Lopez-Pamies [296].

At this point, we want to remark that the logarithmic supplementary energy term,
which is given in Eq. (3.160) and occurs in Eqs (3.164) and (3.168), can be replaced by an
alternative formulation. The energy term was introduced such that the first and second
derivatives satisfy certain conditions. Hence, we might consider the second-order Taylor
expansion of the logarithmic term around J = 1, reading

T2{− ln[J ], 1} = 1
2

(J − 1)(J − 3) , (3.170)

and construct an alternative energy term

W J
µ (J) = 1

2
µ (J − 1)(J − 3) with ∂JW

J
µ = µ (J − 2) and ∂2

J2W J
µ = µ . (3.171)
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a)

1

− ln[J ]

T2{− ln[J ], 1}

J

W J
µ /µ

b) 1

Λ
µ

= 1

Λ
µ

= 10

Λ
µ

= 100

J

(W J
µ + WΛ)/µ

c) 1
J

(W J
µ + WΛ)/µ

Figure 3.2: a) Visualisation of the logarithmic energy term W J
µ , normalised with respect to µ, and the

associated second-order Taylor expansion T2. b) The sum of the J-dependent energy terms W J
µ + WΛ

with the logarithm-based W J
µ from Eq. (3.160) for different ratios Λ/µ, normalised with respect to µ. c)

The same scenario as in b), but with the non-logarithmic formulation of W J
µ from Eq. (3.171). The solid,

dashed and dotted lines in c) refer to the same ratios of Λ/µ than in b).

Consequently, this form for W J
µ and its first and second derivative deliver the same val-

ues in the reference state and can be used as an alternative to the logarithmic terms
in Eqs (3.160), (3.164), and (3.168). A visualisation is given in Figure 3.2a. Obvi-
ously, the non-logarithmic energy term has no asymptotic behaviour for J → 0, since
W J
µ |J=0 = 3µ/2. This means that it does not satisfy the growth conditions for finite

values of Λ when accompanied with the dilatational term given in Eq. (3.156). However,
while the sum W J

µ + WΛ with logarithmic term guarantees the consistent growth condi-
tion independent of the value Λ, see Figure 3.2b, the non-logarithmic term appropriately
emulates this behaviour for large ratios of Λ/µ, see Figure 3.2c.

Finally, we want to give a very brief overview on the different possibilities of the incor-
poration of anisotropic (transversely isotropic) material behaviour during the process of
constitutive formulation of energy functions. A very simple method is to supplement a
purely isotropic energy with a purely anisotropic contribution, which results in

W I
µ (I1, I2, J4, J5) = Wiso(I1, I2) + Waniso(J4, J5) (3.172)

Such formulations are widely used, however, we emphasise that such simplifying decoup-
lings always have to be justified by experimental observations. Further, energy formula-
tions in line with the split in Eq. (3.172) are often employed with purely J4-dependent
anisotropic contributions. Recalling Eq. (3.86) and the consequent meaning of the J4-
invariant as the stretch of the material in preferred direction a0, it becomes clear that
J4-dependent contributions only influence the material behaviour in the axis of the pre-
ferred direction. A very common class of materials which can be characterised by such
energy formulations are so-called fibre-reinforced materials, which show a stiffer behaviour
for stretches in the direction a0 than in the other ones. Consequently, decoupled energies
of the form in Eq. (3.172) with Waniso(J4) describe so-called augmented isotropic materials
with unidirectional reinforcement. The most simple purely J4-based energy is the quadratic
function

Waniso(J4) = 1
2
µ (J4 − 1)2 , (3.173)

which is called standard reinforcing model, see, for example, Triantafyllidis &
Abeyaratne [484] or Qiu & Pence [392, 393]. A similar energy can be formulated



3.8 Analytical formulations for strain-energy functions 75

in terms of
√
J4 = λa, reading

Waniso(λa) = 1
2
µ (λa − 1)2 with ∂λaWaniso = µ (λa − 1) and ∂2

λ2a
Waniso = µ , (3.174)

see, for instance, Humphrey et al. [233] or Alastrué et al. [8]. The constant second
derivative of this energy reminds of a classical linear-elastic spring. We further note
that the strain measure J4 − 1 in Eq. (3.173) represents a one-dimensional version of the
Green–Lagrange strain E2, whereas the strain measure λa − 1 in Eq. (3.174) depicts a
one-dimensional version of the Biot strain E1, compare Section 2.1.5. Further, as for
the previously discussed I1-based energy functions, there are alternative formulations to
the simple quadratic potentials in Eqs (3.173) and (3.174) that are capable of describing
more general nonlinear material behaviour. One such model was proposed by Holzapfel
et al. [222] and reads

Waniso(J4) =
µ

2b
(exp[b (J4 − 1)2]− 1) . (3.175)

It is easy to deduce that this formulation simplifies to expression (3.173) if b→ 0. Hence,
µ > 0 is a stiffness parameter and b > 0 serves as a dimensionless material parameter which
governs the nonlinearity. Note that all of the here discussed J4-based energy contributions
are usually restricted to positive values of J4, which means that the reinforcements only act
if the material direction a0 is extended. Of course, this highlights that these formulations
are only meaningful for the description of very special materials. For the characterisa-
tion of general transversely isotropic material behaviour, the decoupling that is proposed
in Eq. (3.172) is not appropriate and more general strain-energy functions have to be
considered. Therefore, we might generalise it to

W I
µ (I1, I2, J4, J5) = Wiso(I1, I2) + Waniso(J4, J5) + Wcoupl(I1, I2, J4, J5) , (3.176)

where the coupling term Wcoupl addresses possible interconnections between the isotropic
and the anisotropic invariants. Models which are in line with such a general structure
were proposed by, for example, Itskov & Aksel [244] and Schröder et al. [426]. The
latter model is split into a purely isotropic energy contribution, Wµ,i, and an anisotropic
contribution, Wµ,a, such that Wµ = Wµ,i + Wµ,a. The anisotropic contribution relies on the
full set of invariants and reads

Wµ,a(I1, I2, J, J4, J5) = α1 (J5 − I1J4 + I2) + α2 J
α3
4 J−2/3 + α4 (I1J4 − J5) + α5 J

α6
4

= α1K1 + α2 J
α3
4 J−2/3 + α4K3 + α5 J

α6
4 .

(3.177)
Therein, αi for i = 1, 2, 3, 4, 5, 6 are material parameters which underlie some restrictions,
see Schröder et al. [426]. However, the interesting aspect is the occurrence of coupled
invariant terms and how two of the invariant bases can be connected to the physically
meaningful invariant set I ′′

ti , which was discussed in Section 3.5.4.
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4 Continuum Micromechanics

This chapter discusses the basic concepts and relations in the field of continuum mi-
cromechanics and multiscale modelling. Doing so, the multiscale considerations build up
on the previous part, which dealt with the kinematical description of a physical body in
terms of configurations and set a framework for the thermodynamically consistent and
physically meaningful description of elastic material behaviour in terms of hyperelastic
strain-energy potentials. If continuum-mechanical investigations are not done on a single-
scale, but on a multiscale basis, the previously outlined kinematical and constitutive con-
cepts apply across each of the considered scales. Hence, this gives rise to the formulation
of separate boundary-value problems on each scales. This has to be accompanied with
appropriate scale bridging methods, in particular upscaling and homogenisation methods
in order to provide effective quantities on the largest scale, which is usually the obser-
vation scale. The basic fundamentals of these concepts are provided in this chapter, but
the intention is far from giving a complete overview. We instead refer to the comprehens-
ive overviews on the broad field of micromechanics and homogenisation that were given
by Suquet [464], Ponte Castañeda & Suquet [381], Nemat-Nasser & Hori [352],
Milton [335], Buryachenko [65], Zohdi & Wriggers [528], and the references therein.
It is further remarked that this study is only concerned with the treatment of solid mater-
ials or at least such which can suitably be described by the framework of solid mechanics.
The modelling of materials which include phases with different states of matter, such as
fluid-saturated porous materials, leads to alternative methods like the theory of mixtures
or the theory of porous media. The reader is referred to Atkin & Craine [16], Bowen
[57], de Boer [52], and Ehlers [106] for elaborate overviews on such approaches.

4.1 The multiscale problem

The starting point of continuum-mechanical multiscale investigations is the kinematical
description and general setting of the mechanical problem on each of the considered length
scales. In this context, the typical scheme for a modelling approach across several length
scales is depicted in Figure 4.1. It establishes the identification of three important length
scales: The overall mechanical problem lives on the macroscale and is specified by the
characteristic macroscopic length lmacro. This length scale characterises the size of the
overall specimen, which appears on this scale as a homogeneous material. However, every
material is heterogeneous at closer examinations if looking at smaller scales. In this con-
nection, a lot of materials show typical inhomogeneities, such as inclusions, fibres or pores.
The size of these inhomogeneities constitutes the microstructure of a material and defines
the microscale and microscopic length lmicro. In between the micro- and the macroscale, it
is essential to define an intermediate length scale which is referred to as the mesoscale. A
proper definition of the mesoscale designates it as a representative volume element (RVE ).
According to Hill [210], the RVE has to contain a sufficient number of inhomogeneities
such that it captures the microstructure properly in a statistical sense. This property is
strongly related to the principle of statistical uniformity, which demands that the statist-
ical properties of the RVE are invariant under translations. In addition to that, Drugan
& Willis [99] suggested another definition of the RVE , requiring that it is the smallest
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microscale mesoscale macroscale
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homogenisation
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lmicro lmeso lmacro

Figure 4.1: The modelling approach across several scales.

possible volume sample of the microstructure which represents the macroscopic material
behaviour with sufficient accuracy. Thus, we recognise that the proper formulation of the
RVE bounds the mesoscopic length scale from below and from above. This is expressed
by the hypothesis of separation of length scales, which reads

lmicro < lmeso � lmacro (4.1)

This is also referred to as Hashin’s MMM principle [183]. Satisfaction of the inequality
relations (4.1) has the key consequence that macroscopic quantities appear uniform on
the microscopic length scale, in particular on the boundary of the microstructure. In
addition, it is assumed that the macroscopic length scale not only characterises the size
of the overall structure, but also the scale of variation of the body force and macroscopic
external boundary conditions. This means that those quantities fluctuate on scales much
larger than lmicro and can therefore be neglected on the microscale. It is further remarked
that the separation of length scales does not pose any requirement on the absolute size
of the scales. Although the characteristic length scale of inhomogeneities in a lot of
applications is in the order of micrometres (µm), the prefixes micro, meso, and macro
do not imply a direct connection to absolute sizes, but rather stand for small, middle
and large by referring to their Greek roots mikrós, mésos, and makrós, respectively. This
means that the size of a RVE that is actually required cannot be determined generally.
Investigations for certain microstructures in numerical applications were carried out by
Drugan & Willis [99], Moulinec & Suquet [345], and Kanit et al. [250].

Next, after having defined the critical length scales for continuum-mechanical multiscale
approaches, we proceed with describing the kinematical relations and the general mech-
anical problem separately on the macro- and the microscale.

4.1.1 The macroscale problem

In analogy to the scale-independent considerations in Section 2.1, we start with the de-
scription of the motion of a macroscopic body B̄, which is composed of an infinite number
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of macroscopic particles (or material points) P̄ ∈ P̄. Subsequently, the macro-motion is
defined in terms of the macroscopic reference placement X̄0 and the deformation map χ̄,
which are given by

X̄0 :

{
B̄ → B̄0 ⊂ R3

P̄ 7→ X̄ = X̄0(P̄)
and χ̄ :

{ B̄0 ×T → B̄ ⊂ R3

(X̄, t) 7→ x̄ = χ̄(X̄, t) .
(4.2)

These maps provide the referential position vector X̄ ∈ B̄0 of the macroscopic particle P̄
in the reference configuration B̄0 as well as the actual position vector x̄ ∈ B̄ in the actual
configuration B̄, respectively. Henceforth, macroscopic quantities will be labelled by an
overbar. Having defined the deformation map χ̄, it is straightforward to formulate the
associated macrocopic deformation gradient

F̄ (X̄) = Grad[χ̄(X̄)] . (4.3)

In line with the general explanations in Section 2.1.2, F̄ and the thereon based cofactor
cof[F̄ ] and the macroscopic Jacobian J̄ := det[F̄ ] > 0 serve as maps for macroscopic
line, area, and volume elements, respectively. Accordingly, the macroscopic right Cauchy–
Green strain tensor is given by

C̄ = F̄ T F̄ . (4.4)

Furthermore, in a hyperelastic framework the strain-energy at the macroscopic mater-
ial point P̄, parametrised by X̄, is described by the macroscopic potential W̄ (F̄ ). In
accordance to Section 3.2.5, the Coleman–Noll procedure and a vanishing macroscopic
dissipation, D̄ = 0, entail the connection to the macroscopic first Piola–Kirchhoff stress
tensor

P̄ (F̄ ) = ∂F̄ W̄ (F̄ ) . (4.5)

With this, the general macroscopic boundary-value problem is defined in direct analogy
to the explanations in Sections 3.1.1, 3.4.2, and 3.4.3, and reads

Div[P̄ ] = 0 in B̄0 , χ̄ = χ on ∂B̄χ ⊆ ∂B̄0 , P̄ N̄ = T on ∂B̄T ⊆ ∂B̄0 , (4.6)

where χ are prescribed displacements on the macroscopic Dirichlet boundary B̄χ and T are
prescribed tractions on the macroscopic Neumann boundary ∂B̄T . At this point, we note
that a direct description of the strain-energy W̄ in terms of analytical functions, such as the
ones proposed in Section 3.8, leads to classical single-scale formulations. In contrast, the
key idea of a multiscale approach is that the macroscopic energy W̄ and, accordingly, the
macroscopic stress P̄ are derived by the explicit incorporation of microstructural effects.

4.1.2 The microscale problem

On the microscale, an infinite number of microscopic material points P ∈ B consti-
tutes the microstructure B. The micro-motion is described by the microscopic reference
placement X0 and the deformation map χ, which are given by

X0 :

{
B → B0 ⊂ R3

P 7→ X = X0(P)
and χ :

{ B0 ×T → B ⊂ R3

(X, t) 7→ x = χ(X, t) .
(4.7)
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They define the referential position X ∈ B0 of the microscopic material point P in the
microscopic reference configuration B0 and the actual position x ∈ B in the microscopic
actual configuration B, respectively. The microscopic deformation gradient is given by

F (X) = Grad[χ(X)] . (4.8)

Now, a key assumption is that the microstructure B might consist of N distinct phases
Bα0 , where α indicates the phases. Therein, a phase is a spatial region with uniform
physical properties and does not have the sometimes used meaning of a state of matter.
Furthermore, in this work the terms phase, constituent, and component can be used inter-
changeably. In the context of purely mechanical considerations, the proper definition of a
phase of course only demands for uniformity with respect to mechanical properties, like
stiffness. For hyperelastic phases, the mechanical constitutive behaviour is described by in-
dividual strain-energy functions W α(F ) for each phase. We proceed with the introduction
of the characteristic functions

X α(X) =

{
1 if X ∈ Bα0 ,
0 else .

(4.9)

They are also referred to as phase distribution functions or phase indicator functions and
describe the distribution of the phases in the reference configuration B0. Thus, they require
(or contain, depending on the point of view) complete knowledge about the microstructure
of a material. However, the characteristic functions are also the basis for the statistical
description of microstructures, which follows in Section 4.2.1, and serve as fundamental
basis for analytical homogenisation methods. We further presume the saturation condition

∑

α

X α(X) = 1 such that B0 =
⋃

α

Bα0 . (4.10)

It is remarked that this does not exclude the occurrence of voids or pore spaces in the
microstructure, since such regions represent distinct phases. Consequently, the local strain-
energy function of the heterogeneous microstructure at each material point X is given by

W (X,F ) =
∑

α

X α(X) W α(F ) . (4.11)

Based on that, we can specify the local first Piola–Kirchhoff stress tensor

P (X,F ) = ∂FW (X,F ) =
∑

α

X α(X)P α(F ) where P α(F ) = ∂FW α(F ) (4.12)

by making use of the Coleman–Noll procedure and the assumption of non-dissipative beha-
viour, D = 0, on the microscale. We refer to P α as the partial stress tensors. Furthermore,
the local momentum balance in the microstructure reads

Div[P ] = 0 in B0 . (4.13)

The complete specification of the microscopic boundary-value problem would further de-
mand the formulation of boundary conditions on the surface ∂B0. However, this is left
open at this point and follows in the process of micro-macro transition in Section 4.3.
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4.1.3 Microstructural interface conditions

A heterogeneous microstructure B consists of distinct phases Bα0 with a certain spatial
arrangement, which is described by the characteristic functions X α. The union of the
boundaries of two different phases, say Bα(i)

0 and Bα(j)

0 , depicts a phase interface or in-
terphase1 ΓBα(ij) = ∂Bα(i)

0 ∪ ∂Bα(j)

0 . Consequently, the material properties across these
mathematically idealised sharp interfaces become discontinuous and appropriate jump con-
ditions have to be formulated for the microscopic deformations and stress fields. To do so,
we introduce the interface jump of an arbitrary scalar field f(X) across a general interface
ΓB ⊂ B0 as

Jf(X)K = lim
ε→0

[
f(X + εNΓ)− f(X − εNΓ)

]
= f+(X)− f−(X) ∀X ∈ ΓB . (4.14)

Therein, NΓ ∈ T ∗XB0 denotes a unit vector normal to the interface ΓB. For a scalar field
f(X) which is continuous in B0 and continuously differentiable in B0 \ ΓB, the Hadamard
lemma states that a continuous scalar field c(X) relates the gradient Grad[f(X)] across
the interface ΓB via

JGrad[f(X)]K = c(X)NΓ(X) ∀X ∈ ΓB , (4.15)

see, for example, Truesdell [488] or Šilhavý [438]. In Eq. (4.15), the scalar field c(X)
represents the jump amplitude across the interface. Consequently, an interface represents
a singular surface with respect to a scalar field f(X) whenever the jump in Eq. (4.14),
the amplitude c in Eq. (4.15), or both are not equal to zero. For vector- and tensor-
valued field quantities, the scalar relations in Eqs (4.14) and (4.15) hold for each of the
respective scalar coefficients. In this work, we only consider material interfaces, which
are characterised by discontinuous material properties. Hence, they are fixed to certain
material points X and do not move in the reference configuration B0. By doing so,
we exclude phenomena such as phase transformations, which are described by so-called
non-material, moving referential interfaces and associated interface driving forces, see, for
example, Abeyaratne & Knowles [2]. Moreover, we will not assign interfacial energies
W ΓB on ΓB, but refer to Gurtin & Murdoch [175] and Gurtin et al. [177] for details
on the theory of so-called elastic material surfaces and surface stresses.

Geometrical compatibility Under the assumption that the different phases Bα0 in the
microstructure B are perfectly bonded to each other at their respective interfaces, it
follows that the deformation map χ(X ∈ B0) has to be continuous in B0 and continuously
differentiable in B0 \ ΓB, which is accompanied with the jump condition

Jχ(X)K = 0 ∀X ∈ ΓB . (4.16)

This expression prevents the description of processes such as fracture in the microstructure,
which are not the focus of this work. Yet, it shall be remarked that when dealing with
such, it proves useful to formulate the opening or stretch gap JχK⊥ = (NΓ ⊗NΓ) JχK ≥ 0

and the sliding or slip gap JχK‖ = (I −NΓ⊗NΓ) JχK, such that JχK⊥+ JχK‖ = JχK. This

1For the objectives of this work, it is sufficient to proceed with the notation of two-dimensional interfaces
between two phases. The formulation of a one-dimensional union ΓBα(ijk) = ∂Bα(i)

0 ∪ ∂Bα(j)

0 ∪ ∂Bα(k)

0 of
the boundaries of three phases Bα(i)

0 , Bα(j)

0 , and Bα(k)

0 , which Gray & Hassanizadeh [171] referred to as
common lines, is not necessary.
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allows to distinguish between geometrical discontinuities normal and tangential to the
interface ΓB. Here, however, the condition (4.16) allows the application of the Hadamard
lemma (4.15) to formulate a jump condition for the deformation gradient F across the
interface ΓB, hence,

JGrad[χ]K = JF K = c⊗NΓ such that JF KNΓ = c and JF KN⊥Γ = 0 . (4.17)

Therein, c ∈ R3 is the vector-valued jump amplitude andN⊥Γ is a unit vector tangential to
the interface ΓB so that NΓ ·N⊥Γ = 0. The jump condition in Eq. (4.17) is usually referred
to as the kinematical compatibility condition. It states that the deformation gradients on
both sides of the interface are rank-one connected, since c ⊗NΓ is a simple tensor with
rank[c⊗NΓ] = 1. Further, the deformation gradient jump has no tangential components,
as stated in Eq. (4.17)3, which is in line with physical intuition because the deformation
continuity in Eq. (4.16) does not allow any gradually jumps along the interface.

Statical compatibility In general, the occurrence of singular surfaces and non-
differentiable regions ΓB in the referential domain B0 demands for the formulation of
appropriate jump conditions for the physical balance relations from Section 2.3. While
the local balances are valid at material points X ∈ B0 \ ΓB inside the continuously dif-
ferentiable phase domains, this is not the case for points X ∈ ΓB at the singular surfaces
due to possible jumps of the associated physical quantities. Hence, a general treatment
requires to formulate additional balance relations at the interface, as explained in detail
by, for instance, Truesdell [488, 489] and Šilhavý [438]. In this work, however, this is
not necessary as we restrict to isothermal, purely hyperelastic problems without interfa-
cial energies as well as to the consideration of material interfaces which are fixed in the
reference configuration. We remain with a simple version of the balance of momentum at
the interface ΓB ⊂ B0 that reads

JT (X)K = JP (X)KNΓ(X) = 0 ∀X ∈ ΓB , (4.18)

for which we recalled Eq. (2.26). Eq. (4.18) demands for the traction continuity across
the interface and is referred to as statical compatibility condition. It is a very intuitive
requirement for material interfaces which are in equilibrium and describes the absence of
any driving forces that would move the interface in the reference configuration B0.

4.2 Microscale statistics

4.2.1 Microstructural statistics

It has been pointed out in the beginning of Section 4.1 that the mesoscale has to constitute
an RVE and that it has to satisfy the principle of statistical uniformity. In this context,
it is important to distinguish between two types of materials, that is, such with periodic
microstructures and such with random microstructures. In materials of the first kind, the
microstructure consists of a periodic arrangement of unit cells, which contain the typical
heterogeneities and phase geometries. This means that for these materials a unit cell
completely specifies the microstructure and serves as a proper definition of the RVE . Such
periodic microstructures can usually be found in man-made materials. On the other side, in
particular biological tissues can be classified as materials with random microstructures, for
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periodic microstructure

B < ∈ S

random microstructure

. . .

Figure 4.2: Periodic versus random microstructures. A representative microstructure B serves as a unit
cell and fully specifies the material in the periodic case, whereas a sample space S consisting of an ensemble
of different realisations < ∈ S describes the material in the case of random microstructures.

which the definition of an RVE requires some further considerations. For such materials,
it is not possible to identify one specific microstructure as a representative unit cell a
priori. In contrast, there are various realisations < ∈ S of the microstructure which
together constitute a sample space S. This is visualised in Figure 4.2. This means that for
materials with random microstructures, the considerations on the microscale problem in
Section 4.1.2 have to be formulated for a whole ensemble of different realisations. Doing
so, the characteristic functions X α then become a function of the material point X and
the realisation <, which transforms Eq. (4.9) into

X α(X,<) =

{
1 if X ∈ Bα0 (<) ,
0 else .

(4.19)

Thus, the characteristic functions carry the full information about the microstructural
composition of all realisations across the sample space. However, it is very unlikely that one
has such a complete knowledge about an entire sample space of microstructures and, hence,
a complete definition of X α(X,<). Rather, it proves useful to capture the characteristics
of the microscopic geometry and the sample space in a statistical sense. This gives rise
to a broad field of research which is often referred to as statistical continuum mechanics.
Fundamental contributions to this field were provided by Beran [32] and Kröner [265]
as well as in the classical works on probability theory, such as the one by Kolmogorov
[256]. Proceeding, in the context of random microstructures, it is consequent to describe
the different realisations in terms of ensemble averages over the sample space S. This
consequently leads to the formulation of statistical moments of the characteristic function
X (X,<), such as the one-point probability function

pα(X) =
1

dim[S]

∫

S
X α(X,<) d< . (4.20)

The value pα(X) describes the probability of finding phase α at point X across all real-
isations <. Likewise, the two-point probability function

pα(ij)(X(1),X(2)) =
1

dim[S]

∫

S
X α(i)(X(1),<) X α(j)(X(2),<) d< (4.21)

describes the probability of finding simultaneously phase α(i) at point X(1) and phase α(j)

at point X(2). In Eqs (4.20) and (4.21), dim[S] denotes the dimension of the sample space
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and provides, together with the saturation condition (4.10), that the probability functions
satisfy the conditions
∑

α

pα(X) = 1 ,
∑

α(i)

pα(ij)(X(1),X(2)) = pα(j)(X(2)) ,
∑

α(j)

pα(ij)(X(1),X(2)) = pα(i)(X(1))

(4.22)
Further, the principle of Eqs (4.20) and (4.21) can be generalised to the notation of n-
point probability functions, which correlate the probabilities at n different points and
theoretically allow for an exact description of the microstructure in the limit case as n
tends to infinity. However, such higher-order formulations are not employed in this work.
We note that the one- and two-point probabilities, pα(X) and pα(ij)(X(1),X(2)), depend
on the absolute positions X, X(1) and X(2). This conflicts with the principle of statistical
uniformity, which demands that well-defined statistical descriptors should be invariant
to translations of the microstructure. A natural way to achieve this is to make use of
the assumption of ergodicity. In an ergodic system, the ensemble average over the sample
space S at one point is identical to the volume average over all points in a single realisation
< ∈ S. It follows that the ensemble averages in Eqs (4.20) and (4.21) can be replaced
by a volume average over one microstructure, say B with its reference configuration B0.
Then, the one-point probability from Eq. (4.20) can be formulated as

pα =
1

vol[B0]

∫

B0
X α(X) dV =

vol[Bα0 ]

vol[B0]
=: nα with

∑

α

nα = 1 . (4.23)

Hence, the volume integral of the characteristic functions X α over B0 denotes the volume
vol[Bα0 ] of phase Bα0 , whereas its volume average, or first moment, represents the volume
fraction of phase α. pα can also be referred to as the expectation value of X α in B0. The
saturation condition (4.23)2 for nα directly follows from the equivalent condition for X α,
see Eq. (4.10). In the following, it proves useful to define an operator 〈(·)〉 for the volume
average of a quantity (·) over B0 as well as an operator 〈(·)〉α for the volume average of a
quantity (·) over phase Bα0 , reading

〈
(·)
〉

:=
1

vol[B0]

∫

B0
(·) dV and

〈
(·)
〉α

:=
1

vol[Bα0 ]

∫

Bα0
(·) dV α (4.24)

The volume fraction is then simply written as nα = 〈X α〉, whereas we obtain 〈X α〉α = 1
for the phase average. In this connection, the two averaging operators can be linked by
recalling the saturation condition (4.10), which allows to write the volume integral over
B0 as the sum of volume integrals over the phases (subdomains) Bα0 , such that

∫
B0(·) dV =∑

α

∫
Bα0

(·) dV α. Then, with Eqs (4.24) and (4.23), we obtain

〈
(·)
〉

=
1

vol[B0]

∑

α

vol[Bα0 ]
〈
(·)
〉α

=
∑

α

nα
〈
(·)
〉α
. (4.25)

Moreover, the two-point probability function is obtained as

pα(ij)(X(1) −X(2)) =
〈
X α(i)(X(1) −X(3)) X α(j)(X(2) −X(3))

〉
(4.26)

While the definition in terms of the ensemble average in Eq. (4.21) depends on the absolute
positions of X(1) and X(2), the volume average only depends on the relative difference



4.2 Microscale statistics 87

X(1)−X(2). This means, though, that the volume average still depends on the orientation
of the configuration B0, which reflects the general anisotropy of the microstructure. In turn,
the microstructure is statistically isotropic if the two-point probability is only sensitive
to the distance |X(1) − X(2)|. This can be regarded as a spherical symmetry of the
microstructural arrangement. However, it is emphasised that this does not imply isotropy
with respect to the mechanical response of the microstructure, since the isotropically
arranged phases can still have anisotropic material behaviour. A generalisation of the
spherical symmetry (of the microstructural arrangement, not the mechanical behaviour)
to an ellipsoidal symmetry was formulated by Willis [516] and leads to the formulation

pα(ij)(X(1) −X(2)) = pα(ij)(|(Zα(ij)

d )−T (X(1) −X(2))|) . (4.27)

Therein, the second-order shape tensor Z
α(ij)

d serves as a descriptor for the preferred distri-
bution of the microstructure. The notation of ellipsoidal symmetry in Eq. (4.27) recovers
statistical isotropy for Z

α(ij)

d = I.
In addition to (or instead of) the so far introduced n-point probability functions, many

other methods can be employed to describe the statistical features of microstructures. For
instance, a useful statistical measure is the lineal-path function by Lu & Torquato [301].
It quantifies the probability that a complete line segment between two points X(1) and
X(2) is located in the same phase. Moreover, measures exist which incorporate the area
and/or the curvature of phase boundaries, see, for example, Hassanizadeh & Gray [188].
Further measures and elaborate overviews about the statistical description of microscopic
morphologies can be found in Torquato [478] and Buryachenko [65]. Finally, we
remark that for the prescription of scalar statistical quantities, in particular one-point
probabilities, one frequently employs probability density functions. They are used, for
example, to describe the distribution of the alignment of fibres in network models or
single crystals in polycrystals. Some basic remarks on probability theory and examples for
univariate probability density functions, such as the Beta and the trianglar distribution,
are presented in Appendix B.2. Such formulations are of fundamental importance for the
homogenisation methods for fibrous networks in Chapter 6.

Summarising, the morphology of random microstructures can be well described by means
of statistical descriptors. Though, instead of calculating the statistical measures from ac-
tual microstructures, it is also possible to define material classes which are characterised
by certain statistical characteristics. Hence, if a multiscale method relies on statistical
descriptors instead of the characteristic functions X , it directly accounts for the complete
sample space of all statistically possible realisations. Likewise, it is possible to construct
a geometry (hence, the characteristic function X ) according to statistical descriptors.
Together with the ergodicity assumption, this leads to the formulation of so-called statist-
ically similar RVE , see Schröder et al. [423], or statistically representative unit cells,
see Geers et al. [155], which aim to be statistically equivalent to a whole sample space.

4.2.2 Field statistics

Besides the statistical description of the microscopic morphology, it proves useful to for-
mulate similar statistical measures for the deformation and stress fields, here F and P , in
the phases. This is done in terms of statistical moments of the fields in the phases, such
that the first moment is defined in terms of the averaging operator 〈(·)〉α as defined in
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Eq. (4.24)2. With this, we introduce the field averages (first moments) of the deformation
gradient and first Piola–Kirchhoff stress as

F̄α :=
〈
F
〉α

and P̄ α :=
〈
P
〉α
. (4.28)

In the same spirit, higher moments of the fields can be formulated, such as the second
moment 〈F ⊗F 〉α of the deformation gradient field. This can be used to introduce in the
expression of a fourth-order phase fluctuation covariance tensor

Cα
F =

〈
(F − F̄α)⊗ (F − F̄α)

〉α
=
〈
F ⊗ F

〉α − F̄α ⊗ F̄α . (4.29)

Further details on field statistics were outlined by, for example, Bobeth & Diener [48],
Kreher [263] or Idiart & Ponte Castañeda [239].

4.3 Scale transition and effective quantities

So far, separate mechanical problems have been defined on the micro- and the macroscale.
The only connection between the micro- and the macroscopic problem was made in terms
of the hypothesis of separation of length scales. However, the process of scale transition is
the fundamental step of multiscale modelling. Thus, this section is concerned with the in-
troduction of the important relations and principles for a proper scale transition between
micro- and macroscopic quantities, which in particular affects the relevant deformation
and stress measures. Subsequently, an extremum principle is introduced which gives the
effective strain-energy on the macroscale in terms of the local strain-energies in the micro-
structure. Further note that in the process of scale transition, the upscaling of microscopic
quantities to their macroscopic counterparts is called homogenisation, whereas going from
larger to smaller scales is referred to as localisation, as depicted in Figure 4.1.

4.3.1 Micro-macro transition: Connecting the scales

The important step of scale transition is to connect the microscopic deformation and
stress measures with their macroscopic counterparts. This means that the deformation
and stress states at a macroscopic position X̄ ∈ B̄0 have to be linked to the associated
deformation and stress fields in the underlying microstructure B0. In this context, it
seems as an intuitive attempt to define a macroscopic quantity as the volume average of
its microscopic counterpart over the RVE . However, it has been pointed out in the seminal
contribution of Hill [214] that this connection is not necessarily true and a macroscopic
quantity rather has to be defined in terms of surface values on the boundary ∂B0 of
the RVE . It can be shown that the conjugate pair {F ,P } satisfies this requirement
and, thus, that the deformation gradient and the first Piola–Kirchhoff stress represent the
suitable deformation and stress measures in the context of scale transition. To see this
more explicitly, we consider the volume average of the microscopic deformation gradient
field F = Grad[χ] and obtain

〈
F
〉

=
1

vol[B0]

∫

B0
Grad[χ] dV =

1

vol[B0]

∫

∂B0
χ⊗N dA . (4.30)

In the derivation of this result, we employed the integral theorem (A.24) to convert the
volume into a surface integral, for which it is essential to require the continuity of χ in
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B0, as formulated in Eq. (4.16). We observe that the volume average of F over B0 is
expressible in terms of the microscopic deformation field χ on the boundary ∂B0. This
allows to connect the macroscopic deformation gradient F̄ to the microscopic fields via2

F̄ :=
〈
F
〉
. (4.31)

We emphasise that this is a special property of the deformation gradient and cannot be
generalised to other deformation measures. For instance, we may recall the definition
of the macroscopic right Cauchy strain from Eq. (4.4) and connect it with (4.31), which
results in C̄ = (〈F 〉)T 〈F 〉 6= 〈F TF 〉 = 〈C〉. Moreover, with Eqs (4.25), (4.28)1 and (4.31),
the macroscopic deformation gradient can be linked to the phase averages F̄α via

F̄ =
∑

α

nαF̄α , (4.32)

which is referred to as the overall average deformation condition.
Subsequently, we formulate the micro-macro transition of the first Piola–Kirchhoff stress

in the same spirit as for the deformation gradient. To do so, it makes sense to formulate
the identity

P = P GradT [X] = Div[(P ⊗X)T23 ]−Div[P ]⊗X , (4.33)

for which we used I = IT = GradT [X] and the divergence theorem given in Eq. (A.23).
By recalling the microscopic momentum balance (4.13), we observe that the last term
in (4.33) vanishes in B0 and we obtain P = Div[(P ⊗X)T23 ] in B0. Based on this, we
formulate the volume average of P over B0 and subsequently transform the volume into a
surface integral by employing the integral theorem given in Eq. (A.27), hence

〈
P
〉

=
1

vol[B0]

∫

B0
Div[(P ⊗X)T23 ] dV =

1

vol[B0]

∫

∂B0
(P ⊗X)T23N dA

=
1

vol[B0]

∫

∂B0
PN ⊗X dA =

1

vol[B0]

∫

∂B0
T ⊗X dA .

(4.34)

In the derivation of this result, we further utilised the traction continuity condition (4.18).
From (4.34), we observe that the volume average of P is expressible in terms of the
averaged microscopic tractions T over the boundary ∂B0, which allows to define

P̄ :=
〈
P
〉

(4.35)

as the consistent scale transition of the first Piola–Kirchhoff stress. For completeness, it
is remarked that in the absence of traction continuity at interfaces ΓB in B0 (that is, if
Eq. (4.18) is not valid), the macroscopic stress P̄ is defined in terms of the surface integrals
in (4.34), which for such a case will not be identical to the volume average.

2Note that the fundamental relationship (4.31) is only valid in the case of a continuous microscopic
deformation field, as described by Eq. (4.16). In the presence of discontinuities in B0, the macroscopic
deformation gradient F̄ is defined in terms of the surface integral from expression (4.30), which gives

F̄ :=
1

vol[B0]

∫

∂B0

χ⊗N dA =
1

vol[B0]

∫

B0

Grad[χ] dV +
1

vol[B0]

∫

ΓB

JχK⊗NΓ dA

=
〈
F
〉

+
1

vol[B0]

∫

ΓB

JχK⊗NΓ dA ,

see Schröder [421]. Hence, one has to proceed from an extended integral theorem and the volume
average alone is then no longer suited as definition of the macroscopic deformation gradient.
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4.3.2 The Hill macrohomogeneity condition

An essential requirement for the micro-macro scale transition is the fulfilment of the so-
called Hill macrohomogeneity condition, which was formulated by Hill [214]. It states
that the averaged microscopic incremental work in the RVE has to be equal to the local
work increment at the macroscale. By utilising the work conjugate pair {F ,P }, the Hill
condition reads 〈

P · δF
〉

= P̄ · δF̄ , (4.36)

where δF and δF̄ refer to deformation increments (or variations) on the micro- and the
macroscale, respectively. Note, the Hill condition can alternatively be formulated in terms

of micro- and macroscopic deformation rates, Ḟ and ˙̄F , which entails a condition for
the equivalence of micro- and macroscopic stress powers. Regardless of whether the Hill
condition is formulated in terms of deformation increments or deformation rates, it can be
utilised to derive boundary conditions on ∂B0 which close the microscopic boundary-value
problem. To do so, the Hill condition, here given in the form (4.36), has to be formulated
in terms of surface integrals over ∂B0. This is achieved by employing the integral theorems
and thereon based reformulations from Section 4.3.1. Doing so, an identity for the term
on the left hand side of Eq. (4.36) is found as

〈
P · δF

〉
=

1

vol[B0]

∫

∂B0
T · δχ dA . (4.37)

Further, three different identities are found for the right-hand side term:

P̄ · δF̄ =





P̄ · 1
vol[B0]

∫
∂B0 δχ⊗N dA = 1

vol[B0]

∫
∂B0 P̄N · δχ dA

1
vol[B0]

∫
∂B0 T ⊗X dA · δF̄ = 1

vol[B0]

∫
∂B0 T · δF̄X dA

P̄ 〈GradT [X]〉 · δF̄ = 1
vol[B0]

∫
∂B0 P̄N · δF̄X dA .

(4.38)

The first identity makes use of Eqs (4.30) and (4.31), whereas the second identity employs
Eqs (4.34) and (4.35). The third identity relies on I = 〈GradT [X]〉 and Div[P̄ ] = 0 in
B0. Reformulating Eq. (4.36) by means of 〈P · δF 〉 − P̄ · δF̄ − P̄ · δF̄ + P̄ · δF̄ = 0 and
inserting Eqs (4.37) and (4.38) yields, after some algebra,

∫

∂B0
(T − P̄N) · (δχ− δF̄X) dA = 0 (4.39)

see also Hill [215], Nemat-Nasser [351] or Schröder [421]. By setting either the first
or the second bracket in (4.39) to zero, one directly derives Dirichlet- and Neumann-type
boundary conditions:

affine boundary displacements: χ = F̄X

uniform boundary tractions: T = P̄N

}
∀X ∈ ∂B0 . (4.40)

The application of either of these two conditions on the boundary of the RVE satisfies
the Hill condition (4.36) and completes the microscopic boundary-value problem. Further,
note that from Eq. (4.39) a third type of so-called periodic boundary conditions can be
derived. These are based on the decomposition of the boundary ∂B0 = ∂B+

0 ∪ ∂B−0 into
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opposite faces, ∂B+
0 and ∂B−0 , and the application of periodic displacement fluctuations,

χ̃+ = χ̃−, as well as anti-periodic tractions, T+ = −T−. In this context, the fluctuations χ̃
arise from an additive decomposition of microscopic quantities into a term that is uniform
in the RVE and a fluctuation term, reading (·) = 〈(·)〉+ (̃·). Consequently,

χ =
〈
χ
〉

+ χ̃ such that F = Grad[χ] = F̄ + F̃ with F̃ = Grad[χ̃] . (4.41)

It is clear that the volume average of the fluctuation terms has to vanish, hence, 〈F̃ 〉 = 0.

4.3.3 Extremum principles for the effective energy

In the previous section, the evaluation of the Hill condition and the thereon based for-
mulation of energetically consistent boundary conditions on ∂B0 complemented the equi-
librium condition (4.13) in B0 and thus closed the microscopic boundary-value problem.
With this, together with the explanations in Section 3.4, suitable extremum principles
can be employed to obtain the microscopic deformation field in the RVE driven by the
macroscopic deformation gradient F̄ and, in turn, the effective energy W̄ at a macroscopic
point X̄ ∈ B̄0 as the volume average of the local energy field over the RVE . To do so, we
identify the elastic potential in the RVE as the volume average

Π(F ) =
〈
W (X,F )

〉
→ min , (4.42)

where, according to the principle of minimum potential energy introduced in Section 3.4.2,
the local deformation gradient field in the RVE has to be such that Π in minimised. As
a consequence, we define the effective energy W̄ by means of the variational functional

W̄ (F̄ ) := min
F∈K(F̄ )

Π(F ) = min
F∈K(F̄ )

{〈
W (X,F )

〉}
= min
F∈K(F̄ )

{∑

α

nα
〈
W α(F )

〉α}
. (4.43)

Hence, the microscopic deformation gradient F becomes a trial field for the variational
problem. It is subject to differential constraints by means of the set K(F̄ ) of kinematically
admissible deformation gradients, which is given by

K(F̄ ) = {F | ∃χ(X) with F = Grad[χ(X)] in B0 such that χ = F̄X on ∂B0} (4.44)

and accounts for the affine displacement boundary conditions. Further, the last expression
in Eq. (4.43) is obtained by employing Eq. (4.25) and noting from Eqs (4.11) and (4.9)
that 〈W 〉α = 〈∑α X αW α〉α = 〈W α〉α. By looking at Eq. (4.43), we recognise that
the computation of the effective energy W̄ (F̄ ) contains two important steps: Firstly,
the localisation of the deformation to obtain the microscopic deformation gradient field
F (X) in B0, driven by the macroscopic deformation F̄ at P̄ ∈ B̄0, and secondly, the
homogenisation of the microscopic local energy field W (X,F ) towards its counterpart
W̄ on the macroscale. This highlights the two-way coupling of scale effects in multiscale
problems. Moreover, it is remarked that alternatively to the deformation-driven scenario as
it is described by the principle of minimum potential energy in Eq. (4.43), one can likewise
formulate a principle of minimum complementary energy for the effective macroscopic
Gibbs energy, which reads Ū (P̄ ) = minP∈S(P̄ ){〈U (X,P )〉}. This constitutes a stress-

driven scenario, as the set S(P̄ ) of statically admissible stress fields essentially accounts
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for the uniform traction boundary conditions, T = P̄N on ∂B0. We note that the
computation of an effective Gibbs energy Ū (P̄ ) makes most sense if the phases’ behaviour
is defined in terms of the respective microscopic Gibbs energy U (X,P ). In contrast,
it is generally rather difficult to formulate a suitable homogenisation problem for Ū if
the microscale is described by means of W (X,F ). This is because, as elaborated in
Section 3.6.3, the strain energy W is for finite deformations non-convex—and, for instance,
polyconvex instead—and so there is no one-to-one relation between W and U in the
sense of Eq. (3.121). Yet, in presence of convex W and under the separation of length
scales hypothesis, described by Eq. (4.1), both the microscopic as well as the macroscopic
Gibbs energy, U (X,P ) and Ū (P̄ ), are the complementary energies to W (X,F ) and
W̄ (F̄ ), respectively, and the connection is given through the Legendre transformation
that provided in Eq. (3.121).

This section is concluded by two remarks. Firstly, the here presented variational prin-
ciples for W̄ and Ū equally hold for materials with random as well as periodic microstruc-
tures. However, in the latter case the sets K(F̄ ) and S(P̄ ) have to be formulated such
that they account for the previously discussed periodic boundary conditions. This work
focuses on materials with random microstructures and we refer to, for example, Ben-
soussan et al. [30], Moulinec & Suquet [345] and Miehe et al. [330] for further
details about the periodic case. Secondly, it is noted that Eq. (4.43) applies to materi-
als which are on the macroscale in line with the principle of local action, as discussed in
Section 3.2.2. This means that it is sufficient to consider the deformation gradient F̄ in a
deformation-driven scenario. The treatment of higher-order, gradient-extended materials
requires further attention, as explained by, for example, Kouznetsova et al. [258].

4.3.4 Convergence and uniqueness of energy functionals

From a physical point of view, it is reasonable to postulate the existence of solutions for
the variational problem given in Eq. (4.43) and, thus, that the heterogeneous material
behaviour in the microstructure can be described by a homogenised energy functional
W̄ on the macroscale. However, the associated mathematical problem of homogenisation
is not trivial and requires careful treatment to show that the averages of the possibly
highly fluctuating microscopic fields converge to the homogeneous macroscopic fields. The
mathematics of this problem are far beyond the scope of this work and we a priori assume
the existence of solutions for the variational problem in this work. Yet, we want to mention
that a particularly useful concept for a rigorous mathematical treatment is the notation
of Γ-convergence as proposed by De Giorgi [89], see also Dal Maso [88]. For further
explanations, it is referred to the comprehensive overviews by Müller [348], Allaire
[10], Braides & Defranceschi [59], and Schröder [421].

Next, we recall from Sections 3.4.1 and 3.4.2 that a first attempt in finding minimum
solutions of a variational problem, such as the one for W̄ in (4.43), is to find a value for
which the variational statement becomes stationary. Hence, it makes sense to define the
effective energy

W̃ (F̄ ) := stat
F∈K(F̄ )

Π(F ) = stat
F∈K(F̄ )

{〈
W (X,F )

〉}
= stat
F∈K(F̄ )

{∑

α

nα
〈
W α(F )

〉α}
(4.45)

by means of a stationary variational principle. Yet, it was pointed out in Section 3.6.3 that
problems in nonlinear elasticity are non-convex in nature which means that the solution
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of the stationary problem for W̃ is generally non-unique for finite deformations. More
specifically, for small deformations F̄ ≈ I around the reference configuration, the energy

W̃ is unique and depicts a minimiser, such that W̃ = W̄ . However, as the deformation
increases, the material may reach points at which the solution bifurcates into different
branches associated with different energy levels. Beyond such bifurcation points, an equi-
librium solution of the stationary problem (4.45) is not necessarily a minimiser. This

means that the energy W̄ based on Eq. (4.45) is generally lower or equal to the energy W̃ ,

such that W̄ ≤ W̃ . The bifurcation points can be understood as the onset of instabilit-
ies, which may be associated with phenomena such as buckling or failure of the material.
Those instabilities can develop at various wavelengths of the material, as explained in the
seminal works of Triantafyllidis & Maker [485] and Geymonat et al. [160]. In
particular, one distinguishes between short-wavelength and long-wavelength instabilities,
which may appear on the microscopic and macroscopic length scale, respectively. In the
context of periodic microstructures, the onset of both of these instability types and how
they possibly interact was studied by, for example, Miehe et al. [331], Michel et al.
[325, 326] and Slesarenko & Rudykh [445]. For materials with random microstruc-
tures, which are the focus of this work, the detection of short-wavelength (microscopic)
instabilities is a much harder task than for periodic microstructures. Yet, it is not even
clear whether random microstructures can accommodate microscopic instabilities at all,
because the missing periodicity in the microstructure may prevent the formation of such, as
explained by Lopez-Pamies & Ponte Castañeda [299] and Michel et al. [325, 326].
Furthermore, Geymonat et al. [160] pointed out that the first bifurcation point is usu-
ally associated with a long-wavelength instability. This is very convenient as the detection
of the onset of such macroscopic instabilities is an easier task because they can be determ-

ined by appropriate investigations of the effective potential W̃ , following the explanations
made in Section 3.6.3. In particular, the onset of the first bifurcation point is indicated by
the loss of strong ellipticity of the macroscopic material response and can thus be traced
by checking the positive semidefiniteness of the macroscopic acoustic tensor

Ã = (L̃T23ζ)ζ , where L̃ = ∂2
F̄ F̄ W̃ (4.46)

is the fourth-order elasticity tensor associated with the effective macroscopic potential W̃ .
Expression (4.46)1 directly follows from the definition of the acoustic tensor in Eq. (3.119).
In conclusion, it suffices for pre-bifurcation investigations to consider the effective energy

W̃ obtained from the stationary principle (4.45), since W̃ depicts a minimiser in the sense

of the minimum principle (4.43), such that W̃ = W̄ , until the onset of the first bifurcation
point. In turn, this can still be detected by the loss of rank-one convexity (strong ellipticity)

of W̃ . This was studied, for example, by Agoras et al. [5] for materials with fibrous
microstructure. The pre-bifurcation behaviour of fibre composites will be the focus in
Chapter 5. For completeness, we refer to Miehe et al. [331], Avazmohammadi &
Ponte Castañeda [21] and Furer & Ponte Castañeda [148] for detailed studies on
the respective post-bifurcation behaviour of such materials.

4.3.5 Uniform microscopic fields: Voigt- and Reuss-type bounds

The deformation and stress fields in the microstructure (the RVE ) are generally non-
uniform and highly dependent on the microscopic locationX, which is a direct consequence
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of the heterogeneous distribution of the phases (as defined by the characteristic functions
X α) and the associated non-uniform distribution of material properties. More specifically,
as the microscopic deformation gradient field F (X) was identified in Section 4.3.3 as
the deformation which minimises the averaged energy Π(F ) in the RVE , as stated by
Eq. (4.43), we have

F (X) = arg min
F∈K(F̄ )

{〈
W (X,F )

〉}
. (4.47)

Of course, with the explanations from the previous section, F (X) can in the pre-
bifurcation regime be equivalently obtained from the stationary principle (4.45). Now,
we note that while it is undoubtedly meaningful from a physical point of view to expect
an energy relaxation by means of the variational principles (4.43) or (4.45) and associated
heterogeneous deformations in the microstructure, the Hill macrohomogeneity condition
given in Eq. (4.36) can also be satisfied by making certain affinity assumptions for the
microscopic fields. This is easy to see by utilising the Hill condition in its surface integral
form (4.39) and the boundary conditions (4.40) derived from it. Then, the assumption of
uniform deformations in the RVE results in

F (X) = F̄ → W̄V(F̄ ) =
∑

α

nα W α(F̄ ) , (4.48)

where the Voigt estimate W̄V is identified as a simple weighted averaging of the phase ener-
gies W α evaluated at the macroscopic deformation F̄ . Hence, the Voigt estimate accounts
for the microstructural morphology only through the volume fractions nα, which depict
the first moments of the characteristic functions X α, see Eq. (4.23). The assumption of
a uniform deformation field, which is also called affine deformation assumption or Voigt
assumption, is usually referred to the seminal work of Voigt [495]. It is interesting to note
that the Voigt assumption, as stated in Eq. (4.48)1, is not only consistent with the affine
boundary displacements formulated in (4.40), and thus with the Hill condition (4.36), but
also with the geometrical compatibility conditions (4.16) and (4.17) (with jump amplitude
c = 0). However, the Voigt assumption is generally not consistent with the statical com-
patibility condition (4.18) and is thus unable to satisfy traction continuity across interface
boundaries. The missing ability to guarantee equilibrium in B0 has the consequence that
W̄V generally overestimates the real occurring elastic energy in the RVE . In fact, Og-
den [360] showed that the Voigt estimate depicts a rigorous upper bound for the effective
macroscopic behaviour of materials whose characteristic functions X α have first moments
(volume fractions) nα. This means that despite its simplicity, the Voigt bound serves as a
valuable tool, be it as first guess or validity check for more sophisticated homogenisation
approaches. Moreover, the Voigt bound may predict the energy in the RVE exactly if
the uniformity of the deformation field holds true. This is the case for some specific load-
ing conditions and materials classes, as shown by Dvorak [103] and He et al. [191].
Further, it may be useful to proceed with the Voigt estimate if reasonable physical argu-
ments suggest that the deformation in a microstructure behaves nearly uniform. Such an
assumption is applied in Chapter 6 for the modelling of fibrous networks and in Chapter 7
for the presented multiscale muscle model.

Instead of assuming an affine microscopic deformation field, it is also possible to apply a
respective affinity assumption for the microscopic stress fields so that P (X) = P̄ . This is
commonly referred to as Reuss assumption, in reference to the work of Reuss [398]. The
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assumption of uniform stresses in the RVE is consistent with the uniform stress boundary
conditions in (4.40) and thus with the Hill condition (4.36). Further, opposed to the Voigt
assumption, stress affinity is consistent with the statical compatibility condition (4.18),
but generally not with the geometrical compatibility conditions (4.16) and (4.17). If the
phase’s behaviour is described in terms of Gibbs energies U α(P ), stress affinity directly
leads to an expression for the effective Gibbs energy ŪR that reads

P (X) = P̄ → ŪR(P̄ ) =
∑

α

nα U α(P̄ ) . (4.49)

Ogden [360] showed that a rigorous lower bound W̄R for the effective strain energy is
obtained by means of a Legendre transform of ŪR if the microscale is described in terms
of a convex strain energy W —such that U α in Eq. (4.49) can be uniquely determined
from W α by means of Eq. (3.121). However, we have noted before that convexity of the
strain energy W in the context of hyperelastic large-strains problems is unphysical, see
Section 3.6.3. Thus, there is not necessarily a one-to-one connection between F and P and,
consequently, no unique relation between W and U in the sense of the Legendre trans-
formation formulated in Eq. (3.121). Yet, it is possible to enforce uniqueness by employing
instead a Legendre-Fenchel transformation, as defined in Eq. (B.2), which consequently
replaces the stationary operator in Eq. (3.121) by the supremum. See also Section B.1 for
further details on the different transformations. A Reuss-type lower bound is then derived
in terms of the convex envelope

W̄R(F̄ ) = sup
P̄

{F̄ · P̄ − ŪR(P̄ )} with ŪR =
∑

α

[
nα sup

F
{F · P −W α(F )}

]
. (4.50)

Unfortunately, for non-convex (such as polyconvex) energy functions W , this bound is
not always useful and can lead to trivial results, since, for example, cof[F ] and def[F ]
are non-convex in F and corresponding energy terms lead to trivial Legendre-Fenchel
transforms with respect to F . As a remedy, Ponte Castañeda [373] proposed to employ
a polyconvex envelope, which results in a sensible lower Reuss-type bound that is generally
tighter than the bound based on the convex envelope in (4.50). More detailed explanations
are omitted here, as Reuss-type bounds are not used in this work. Yet, for more details
on polyconvex (as well as convex, quasiconvex, and rank-one convex) envelopes, we refer
to the works of, for example, Dacorogna [86, 87] and Kohn & Strang [255].

By summarising the findings in this and the previous section, we can formulate the
inequality

W̄R ≤ W̄ ≤ W̃ ≤ W̄V , (4.51)

where W̄R refers to a lower Reuss-type bound that is suitably selected depending on the
problem at hand. We recall that in the present work, the focus on the pre-bifurcation

regime leads to the equality of W̄ and W̃ . Further, we remark that the Voigt and Reuss
bounds are also well-known as Taylor and Sachs bounds, by referring to the works of
Taylor [475] and Sachs [412].
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5 Variational Homogenisation of Nonlinear
Composites

In this chapter, we present estimates for the effective strain energy W̃ of a hyperelastic
composite in the pre-bifurcation state. The proposed homogenisation is based on the
tangent second-order method, which utilises variational principles and a suitably chosen
“linear comparison material”. This enables to employ well-known homogenisation methods
for linear materials, like Hashin–Shrikhman-methods, to provide estimates for effective
strain energies of nonlinear materials. The homogenisation principles in this chapter are
generally applicable to n-phase materials, but we put a particularly emphasis on two-phase
composites in which a matrix phase contains aligned circular fibres, which are randomly
distributed within the transverse plane. Further, as the estimate shall be applicable for
biological tissues, appropriate derivations are made to obtain consistent estimates in the
limit as the two phases become incompressible.

Note that parts of this chapter have been published in Bleiler et al. [45].

5.1 The Tangent Second-Order Method

This section introduces the tangent second-order (TSO) homogenisation method, which
was proposed by Ponte Castañeda & Tiberio [382] and enables to generate estimates
for the variational homogenisation problem as defined in Eq. (4.45). The main idea of
the TSO method is to appropriately linearise the actual nonlinear composite in order to
obtain expressions for which the well-established homogenisation methods for linear ma-
terial behaviour can be used. To do so, the TSO method is based on the construction
of a fictitious linear comparison composite (LCC) with the same microstructure (hence,
the same characteristic functions X α) as the actual nonlinear composite (in the unde-
formed configuration). The linear behaviour of the phases of the LCC is determined
from suitable variational principles such that it represents the appropriate linearisation
of the actual nonlinear phases. Further details on the TSO method can also be found in
Ponte Castañeda [376], Ponte Castañeda & Willis [384], Ponte Castañeda &
Tiberio [382], and Avazmohammadi & Ponte Castañeda [19].

The LCC is characterised by its local strain-energy function

Wlin(X,F ) =
∑

α

X α(X) W α
lin(F ) , with W α

lin(F ) = 1
2
F · LαlinF (5.1)

and the phasewise constant fourth-order modulus tensors Lαlin, as opposed to the nonlinear
local energy W (X,F ) defined in Eq. (4.11). The aim is now to find an LCC that op-
timally represents the actual nonlinear composite. For this purpose, it is useful to define
the difference energy function (W − Wlin)(X,F ) and its respective generalised Legendre
transform

(W −Wlin)∗(X,P) = stat
F

{
P · F −W (X,F ) + Wlin(X,F )

}
, (5.2)

where P ∈ R3⊗3 is a generally non-symmetric polarisation tensor and the energy function
W is assumed to be sufficiently smooth in F . More details on the Legendre transform and
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especially the employed generalised form can be found in Appendix B.1. From there, we
further know that the generalised Legendre transform (·)∗∗ of the complementary function
(·)∗ is always the original function (·), which allows us to write the local energy of the
actual nonlinear composite as

W (X,F ) = Wlin(X,F ) + stat
P

{
P · F − (W −Wlin)∗(X,P)

}
. (5.3)

The stationarity conditions of the Legendre transformations in Eqs (5.2) and (5.3) are
given by

P = ∂F (W −Wlin)(X,F ) and F = ∂P(W −Wlin)∗(X,P) , (5.4)

respectively. The local energy function (5.3) in connection with Eq. (4.45) can now be

used to generate an expression for the overall energy W̃ , which—after interchanging the
stationarity operations—reads

W̃ (F̄ ) = stat
P

{
stat

F∈K(F̄ )

{〈
Wlin(X,F ) + P · F

〉}
−
〈
(W −Wlin)∗(X,P)

〉}
. (5.5)

This formulation is an exact variational statement for the effective strain energy W̃ of a
nonlinear composite. However, different to the nonlinear expression given in Eq. (4.45), the
stationary problem for F in Eq. (5.5) is linear. Further, the polarisation tensor P has the
character of a trial field for the variational problem. This is advantageous since P is not
subject to any differential constraints, as opposed to F in the original formulation (4.45).

To generate estimates for the variational problem given by (5.5), an appropriate non-
trivial choice is to assume that the polarisation tensor is phasewise constant:

P(X) =
∑

α

X α(X)Pα . (5.6)

Inserting Eq. (5.6) into Eq. (5.5) yields the variational estimate

W̃ (F̄ ) ≈ stat
Pα

{
W̃T(F̄ ,P)−

∑

α

nα (W −Wlin)∗(Pα)
}
, (5.7)

which is an approximation of the variational expression given in (5.5). Although the

following relations for W̃ are formulated as standard equalities, we need to keep in mind

the approximate character. In Eq. (5.7), the term W̃T is defined as

W̃T(F̄ ,P) = stat
F∈K(F̄ )

{〈
Wlin(X,F ) + P · F

〉}
, (5.8)

which depicts the effective energy associated with a fictitious linear thermoelastic (or
prestressed) material. Now, it proves useful to introduce the (phasewise) constant second-
order tensors Fα dual to Pα, and to reformulate the polarisation tensors Pα by using the
stationarity condition (5.4)1 in terms of phase Bα0 , giving

Pα = P α − LαlinFα with P α = ∂FW α(Fα) . (5.9)

Further, by making use of Eq. (5.2) in terms of phase Bα0 and assuming the stationary
solution

Fα = arg stat
F

{
Pα · F −W α(F ) + W α

lin(F )
}
, (5.10)
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one obtains
(W α −W α

lin)∗ (Pα) = P α · Fα −W α(Fα)− 1
2
Fα · LαlinFα . (5.11)

Inserting relations (5.9)1, and (5.11) into the variational expression (5.7) leads to the
expression

W̃ (F̄ ) = stat
Fα

{∑

α

nα
[
W α(Fα)+P α ·

〈
F −Fα

〉α
+ 1

2

〈
(F −Fα) ·Lαlin(F −Fα)

〉α]}
. (5.12)

Following Ponte Castañeda & Willis [384] and Ponte Castañeda & Tiberio [382],
the evaluation of the stationarity condition in this expression finally leads to the relation

Fα =
〈
F
〉α

= F̄α . (5.13)

Hence, the variables Fα have to be set equal to the phase averages F̄α of the deformation
gradient field associated with the linear problem in Eq. (5.8). Furthermore, evaluating
a second-order stationarity condition for Eq. (5.12) by considering the second derivative
with respect to Fα, we can deduce the relation

Lαlin = Lαt with Lαt := Lα = ∂2
FFW α(F̄α) , (5.14)

stating that the constant tensors Lαlin are chosen equal to the tangent elasticity tensors Lαt
of the hyperelastic phases. Using prescription (5.13) in (5.12) and after some algebra, it
can be shown that the estimate for the effective nonlinear energy can be reformulated to

W̃ (F̄ ) =
∑

α

nα
[
W α(F̄α) + 1

2
(F̄ − F̄α) · P α(F̄α)

]
, (5.15)

see Ponte Castañeda & Tiberio [382] for details. Thus, the estimate for the effective
behaviour of the nonlinear composite is fully specified in terms of the tensors F̄α, which
represent the phase averages in the LCC associated with the linear thermoelastic problem
given in Eq. (5.8). In turn, the phase averages can be obtained from appropriate linear
homogenisation methods. To do so, given the linearity of the problem, the superposition
principle can be utilised in order to express the phase averages in the form

F̄α = AαF̄ +Aα , (5.16)

in accordance to the expressions given by Laws [278]. Therein, the fourth-order tensors
Aα are the strain concentration tensors of the phases, introduced by Hill [210, 212], and
the second-order tensors Aα account for the thermoelastic nature of problem (5.8). The
tensors have to satisfy the summation rules

∑

α

nαAα = I and
∑

α

nαAα = 0 . (5.17)

Subsequently, the tensors Aα and Aα are determined by applying suitable linear homo-
genisation approaches. Appropriate formulations and more details can be found, for ex-
ample, in the works of Laws [278] and Willis [517]. In particular, generalised Hashin–
Shtrikman estimates lead to prescriptions for Aα and Aα as given by Eqs (29)-(33) in
Ponte Castañeda & Tiberio [382], whereas self-consistent estimates are obtained from
Eqs (3.13)-(3.15) given in Bornert & Ponte Castañeda [56]. In this work, the focus
on two-phase materials allows to employ simplified equations for the estimation of the
phase averages, which is shown in the following. Moreover, we remark for completeness

that the effective first Piola–Kirchhoff stress P̃ = ∂F̄ W̃ associated with the macroscopic
energy (5.15) is given in Eq. (C.1) in Appendix C.1, along with some further comments.
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5.1.1 Specialisation to two-phase materials

We now restrict our attention to two-phase materials containing a matrix phase, BM
0 ,

and a fibre (inclusion) phase, BF
0 , such that α = {F,M}. It follows that we require an

appropriate set of equations for the estimation of the 18 unknown scalar coefficients of
the two phase averages F̄F and F̄M to compute the effective energy in Eq. (5.15). In this
regard, we first note that the overall average condition for the deformation gradient, given
in Eq. (4.32), simplifies for the given two-phase material to

F̄ = nF F̄F + nM F̄M . (5.18)

Hence, as the overall deformation gradient F̄ is prescribed, one of the phase average tensors
can be written in terms of the other one and the two-phase homogenisation problem reduces
to finding the remaining nine scalar coefficients of either F̄F or F̄M. Further, the focus on
two-phase materials allows to utilise an appropriate extension of the work of Levin [283]
and to formulate the phase averages from Eq. (5.16) as

F̄α = AαF̄ + (Aα − I)(LM − LF)−1(PM −PF) (5.19)

for α = {F,M}. Therein, the polarisation tensors PF and PM are defined by Eq. (5.9),
along with prescriptions (5.13) and (5.14). Further, the two strain concentration tensors
AF and AM are connected through the relations

nF AF + nM AM = I and L̄lin = nF LFAF + nM LMAM , (5.20)

where the first equation is the respective two-phase version of Eq. (5.17)1. The benefit of
relations (5.19) and (5.20) is that they reduce the thermoelastic homogenisation problem
for the LCC, given in Eq. (5.8), to finding the effective elasticity tensor L̄lin of a two-phase
linear-elastic composite with phase stiffness tensors LF and LM. This becomes more clear
by formulating Eq. (5.19) for the phase average of the fibre phase, F̄F, and replacing therein
the strain concentration AF by making use of Eqs (5.20). This leads to the formulation

F̄ − F̄F =
[
nF(L̄lin − LM)−1 + (LM − LF)−1

][
LM(F̄M − F̄F)−∆P

]
, (5.21)

where ∆P = PM(F̄M) − P F(F̄F). Hence, the two tensorial equations (5.18) and (5.21)
provide the required 18 scalar equations for the estimation of the two phase averages F̄F

and F̄M. Now, linear estimates of any type can be chosen for L̄lin. For instance, Voigt and
Reuss estimates are obtained with the prescriptions

L̄V =
〈
L
〉

= nF LF + nM LM and L̄R =
〈
L−1

〉−1
=
(
nF (LF)−1 + nM (LM)−1

)−1
. (5.22)

It is easy to see that substituting L̄V for L̄lin in (5.21) leads to uniform deformation fields
F̄α = F̄ , in agreement with the explanations made in Section 4.3.5. Consequently, the
Voigt estimate is associated with strain concentration tensors Aα = I. However, while
the Voigt and Reuss estimates account for the microstructure only through the volume
fractions nα, a more sophisticated estimate of Hashin–Shtrikman type for composites with
particulate microstructures was formulated by Willis [516] and reads

L̄HS = LM + nF
[
nM P− (LM − LF)−1

]−1
, (5.23)
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Therein, P is a fourth-order microstructural tensor which accounts for the two-point stat-
istics of the composite. It is defined as

P =
1

4π det[Z]

∫

|ξ|=1

H(ξ)[Z−1ξ ·Z−1ξ]−3/2 dA , (5.24)

wherein the fourth-order tensor H is given by

H = (B ⊗ ξ ⊗ ξ)T23 with B =A −1 and A =
(
(LM)T23 ξ

)
ξ . (5.25)

Hence, the second-order tensor B ∈ SYM(3) is the inverse of the acoustic tensor A ,
which was introduced in Eq. (3.119) and is henceforth defined in terms of the elasticity
tensor of the matrix phase, LM. Further, P contains the second-order tensor Z = Zi = Zd,
where Zi serves as an descriptor for the shape and the orientation of the fibre (inclusion)
phase and Zd for its spatial distribution in the microstructure. By recalling Eq. (4.27), we
see that Z therefore accounts for the two-point probability of the characteristic functions
X α (describing the microstructure) by making use of the notation of ellipsoidal symmetry.
Remark that it is also possible to prescribe Zi and Zd separately, which leads to the for-
mulation of two different P-tensors and according changes of the subsequent formulations,
see Ponte Castañeda & Willis [383] for details. Furthermore, we note that the micro-
structural P-tensor is closely linked to another fourth-order microstructural tensor, which
is commonly referred to as Eshelby tensor 1 and denoted by S. The two tensors are con-
nected through S = PLM. Now, as we make use in the following of the Hashin–Shtrikman
estimate (5.23), we can substitute L̄HS into Eq. (5.21), which yields, after some algebra,

F̄ − F̄F = P [LM(F̄ − F̄F)− nM ∆P ] . (5.26)

Together with the overall average condition, given in Eq. (5.18), this tensorial equation
represents the required set of equations for the estimation of the two phase averages F̄F and
F̄M. Finally, instead of using the tangent elasticity tensor LM evaluated at the phase aver-
age F̄M, as described in Eq. (5.14), we follow Avazmohammadi & Ponte Castañeda
[19] and make use in Eq. (5.26) of the simpler prescription

LM := ∂2
FFW α(F̄ ) . (5.27)

5.1.2 Two-phase composites with aligned fibrous microstructures

The preceding section accounted for two-phase materials in which the shape, the orienta-
tion and the distribution (of the centre) of the inclusions (the fibre phase) are of ellipsoidal
symmetry, characterised by the shape tensor Z. A special class of materials is derived
from this notation if the inclusions are taken to be of spheroidal shape, whose axis of sym-
metry shall be denoted by the referential unit vector ā0. A general shape tensor for such
spheroidal inclusions is given by Z = (I − ā0⊗ ā0) + ω ā0⊗ ā0, where ω is the aspect ra-
tio. This allows to describe very different kinds of inclusion shapes, such as spherical ones

1The microstructural Eshelby tensor S must not be confused with the energy-momentum tensor or
so-called Eshelby stress tensor, formulated by Eshelby [121, 123]. The latter is usually defined as
Σ = W I − F TP and is of particular importance in the field of configurational forces, see, for instance,
Gurtin [174]. Despite their same origin in the seminal works of Eshelby, these two equally named
tensors have only been related to each other in the recent work of Alhasadi & Federico [9].
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(ω = 1) as well as prolate (ω > 1) or oblate (ω < 1) inclusions including the limit cases
as the inclusions become long-fibres (ω → ∞) or pancake-shaped layers (ω → 0). In the
following, we focus on the long-fibre case and assume that the composite is composed of a
matrix phase which contains inclusions of circular cylindrical shape that are aligned along
the preferred axis ā0 and distributed randomly and isotropically in the plane transverse
to it. Materials of this kind are referred to as fibre composites or composites with fibrous
microstructure. Subsequently, Lopez-Pamies [295] showed that in the limit as the aspect
ratio of the shape tensor Z goes to infinity, ω → ∞, Eq. (5.24) for the microstructural
P-tensor simplifies to

P =
1

2π

∫ 2π

0

H(ξ) dς with ξ = cos[ς] e1 + sin[ς] e2 + 0 e3 . (5.28)

Therein, ς is an angle ranging from 0 to 2π and the Cartesian ei-coordinate system (i =
1, 2, 3) represents a laboratory frame of reference. The e3-direction thereby coincides with
the alignment of the cylindrical inclusions, hence, e3 = ā0. Now, considering Eq. (5.28),
together with relation (5.25)1, in index notation form, reading

Pijkl =
1

2π

∫ 2π

0

Bik ξj ξl dς , (5.29)

makes it easy to deduce that P is major symmetric and that

Pi3kl = Pijk3 = 0 (5.30)

(i, j, k, l = 1, 2, 3) due to ξ3 = 0. These zero-coefficients imply that P is not of full rank
and it can be shown that nullity[P] = 3, where nullity[P] is the dimension of the null space
(or kernel) ker[P] = {N ∈ R3⊗3 | PN = 0}. Further details and explanations on null
spaces of tensors are provided in Appendix A.5. Employing the findings from Eq. (5.30)
in Eqs (5.26) and (5.18) directly points out that

(F̄F)i3 = (F̄M)i3 = F̄i3 (5.31)

for i = 1, 2, 3. Thus, the homogenisation problem for two-phase composites with fibrous
microstructure reduces to finding the six remaining unknowns of either F̄F or F̄M by
extracting the required set of equations from Eqs (5.26) and (5.18). In this work, we
regard the six unknown coefficients of F̄F as primary unknowns. The set of unknowns will
later be further reduced by utilising incompressibility assumptions and an appropriate
generic form of the overall deformation gradient F̄ , see Section 5.3.2.

In the following, it proves useful to proceed with a modified version of Eq. (5.26), which
requires some remarks beforehand. From relation (5.30) and nullity[P] 6= 0, it becomes
obvious that there exists no inverse tensor P−1 satisfying the relation P−1P = I. Thus,
it is generally not possible to bring P from the right to the left hand side of Eq. (5.26).
However, it is possible to find a tensor {P−1}[ such that {P−1P = I}[, where {·}[ denotes
a subspace of the full tensor space. Fourth- and second-order tensors of this subspace
are defined as {A = Aijkl ei ⊗ ej ⊗ ek ⊗ el}[ and {B = Bij ei ⊗ ej}[, respectively, with
i, k = 1, 2, 3 and j, l = 1, 2. The associated matrix representations of the coefficients are
provided in Eq. (A.85) in Appendix A.7.2. Hence, by making use of this subspace notation,
we are able to provide a modified version of Eq. (5.26), which reads

{
[P−1 − LM](F̄ − F̄F) + nM ∆P = 0

}[
. (5.32)
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This tensorial equation provides the six required scalar equations for the six unknown
coefficients (F̄F)ij with i = 1, 2, 3 and j = 1, 2.

5.2 Fibre composites with incompressible phases

In Section 5.1.2, we formulated general estimates for two-phase hyperelastic composites
consisting of aligned circular cylindrical inclusions that are embedded in a matrix phase.
Therein, the two phases, BF

0 and BM
0 , were considered as compressible and anisotropic,

since their strain-energy functions were not specified or restricted otherwise. To apply
the estimate to the special case in which the materials exhibit incompressible phases,
appropriate investigations in the limit as the volumetric stiffnesses of the phases tend
to infinity have to be carried out. This is done in this section by means of asymptotic
expansions of the relevant terms and equations, first in the incompressibility limit of the
fibre and subsequently for the matrix phase. To do so, it proves useful to express the
strain-energy functions of the two phases in terms of the distortional-dilatational energy
split which was introduced in Section 3.8.1. Hence, the additive split given in Eq. (3.140)
leads to

W α(F ) = W α
µ (F ) + W α

Λ (F ) where W α
Λ (F ) = 1

2
Λα (J − 1)2 (5.33)

such that the dilatational part is taken to be of the form introduced in (3.156) and Λα are
the first Lamé constants of the two phases. The special case of incompressible behaviour
of phase Bα0 is recovered when Λα tends to infinity and

lim
Λα→∞

W α
Λ (F ) =

{
0 for J = 1 ,
∞ else .

(5.34)

Further, we note that (5.33) entails a corresponding split of the first Piola–Kirchhoff stress
tensor of the phases:

P α(F ) = P α
µ (F ) + P α

Λ (F ) where P α
Λ (F ) = ∂FW α

Λ (F ) = ΛαJ(J − 1)F−T (5.35)

is the dilatational stress and the distortional stress is given by P α
µ (F ) = ∂FW α

µ (F ).

5.2.1 Asymptotic analysis for incompressible fibres

If the fibre phase is characterised by an energy of form (5.33), the Lamé constant ΛF tends
to infinity in the case of incompressibility. As a consequence, an appropriate asymptotic
analysis has to be carried out to obtain the consistent versions of Eqs (5.15) and (5.32)
in the incompressible limit of the fibres. This is done by introducing a small parameter
ι = 1/ΛF and the following expansion for the phase average of the fibre deformation field:

F̄F = F̄F0 + ι F̄F1 +O(ι2) . (5.36)

Based on this, it proves useful to formulate the associated expansions for the Jacobian

J̄F = det[F̄F] = det[F̄F0 + ι F̄F1 +O(ι2)] = J̄F0 + ι J̄F1 +O(ι2) (5.37)

as well as for the inverse

F̄−1
F = (F̄−1

F )0 + ι(F̄−1
F )1 +O(ι2) . (5.38)
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Therein, the expansion terms read

J̄F0 = det[F̄F0] and J̄F1 = cof[F̄F0] · F̄F1 (5.39)

as well as
(F̄−1

F )0 = F̄−1
F0 and (F̄−1

F )1 = −F̄−1
F0 F̄F1F̄

−1
F0 . (5.40)

Making use of expansions (5.36)-(5.40), together with Eq. (5.35), we continue with the
resulting expansion for the nominal fibre stress, that is,

P F = ι−1P F
−1 + P F

0 +O(ι) , (5.41)

where, after some algebra, we find

P F
−1 = J̄F0 (J̄F0 − 1) F̄−TF0 and

P F
0 = P F

µ + J̄F1 (2J̄F0 − 1) F̄−TF0 + J̄F0 (J̄F0 − 1) (F̄−1
F )T1 .

(5.42)

Now, the expansions for F̄F and P F, given in Eqs (5.36) and (5.42), are substituted into
Eq. (5.32), which gives

{
[P−1 − LM](F̄ − F̄F0 − ιF̄F1 −O(ι2)) + nM (PM − ι−1P F

−1 − P F
0 −O(ι)) = 0

}[
. (5.43)

In the incompressible limit of the fibre, parameter ι tends to zero and terms associated
with O(ι) drop out. Subsequently, we are left with the collection of terms associated with
ι−1 and ι0, which gives

ι−1 :
{
nMP F

−1 = 0
}[
,

ι0 :
{

[P−1 − LM](F̄ − F̄F0) + nM (PM − P F
0 ) = 0

}[
.

(5.44)

With Eq. (5.42)1, it is easy to see that the only meaningful (and non-trivial) solution for
the first equation in (5.44) is provided by J̄F0 = 1, which entails, with Eq. (5.39)1, that
F̄F0 ∈ SL(3) has to be a unimodular tensor so that det[F̄F0] = 1. In turn, this means that
the phase average F̄F in the incompressible limit has to be unimodular as well, such that

det[F̄F] = 1 if ΛF →∞ . (5.45)

This is a very meaningful condition for the phase average F̄F, because the phase aver-
ages F̄α actually describe the deformation in the LCC. In turn, the homogenisation of
the LCC is based on the estimate of Hashin–Shtrikman type given in Eq. (5.23), which
considers uniform strain and stress fields inside the inclusion (fibre phase). Further, from
Section 3.3.2 we know that material incompressibility is associated with a local constraint
equation as given in Eq. (3.25), which leads for incompressible fibres to the local condition
det[F (X ∈ BF

0 )] = 1. Hence, the uniformity of the fields in the fibre phase entails that
condition (5.45) for F̄F is identical to the phase average of the local (exact) incompressibil-
ity condition, 〈det[F (X ∈ BF

0 )] = 1〉F, because det[〈F 〉F] = 〈det[F ]〉F. However, a similar
relation cannot be formulated for the matrix phase, because of the generally non-uniform
fields inside the matrix. Further, we note that condition (5.45) allows to express one of the
six unknown coefficients of F̄F in terms of the other ones, which means that one remains
with the determination of five unknown coefficients of F̄F. This will be useful below. Now,



5.2 Fibre composites with incompressible phases 105

we continue with the evaluation of expression (5.44)2. Therein, the stress tensor P F
0 , which

is defined in (5.42)2, is simplified by making use of J̄F0 = 1 and we obtain

P F
0 = P F

µ + J̄F1 F̄
−T
F0 . (5.46)

From this, we see that (F̄−1
F )T1 drops out of expression (5.44)2. However, this is not the case

for the scalar term J̄F1, which is reasonable since it replaces an indeterminate form ”∞×0”
arising in P F

Λ as ΛF → ∞ and (J̄F − 1) → 0, cf. Eq. (5.35)2. In fact, by again recalling
Section 3.3.2, we see that the stress expression in Eq. (5.46) is reminiscent of Eq. (3.27).
This means that the term J̄F1 F̄

−T
F0 can be interpreted as an additional hydrostatic stress

contribution, which is required to enforce the incompressibility constraint (5.45) in the
fibre phase. Further, the rigorous variational interpretation in Section 3.4.3 showed that
the scalar multiplier in the additional stress contribution from Section 3.3.2 is indeed a
Lagrange multiplier. Hence, as J̄F1 represents such a scalar factor in Eq. (5.46), we can
clearly identify J̄F1 as a Lagrange multiplier. To show this more explicitly, we will formulate
the associated constrained variational principle for incompressible fibres in Section 5.2.2.
This will point out that the Lagrange multiplier arises from the fact that the variational
expression (4.45) has to be solved subject to the local incompressibility constraint in the
fibre phase. Based on these considerations, we rename J̄F1 =: ℘F and proceed with the
symbol ℘F to emphasise its characteristic as an additional constraint pressure. By further
renaming P F

0 =: P F
µ℘ and noting from Eq. (5.36) that F̄F = F̄F0 if ι→ 0, we obtain in the

incompressible fibre limit
P F
µ℘ = P F

µ + ℘F F̄−TF . (5.47)

and {
[P−1 − LM](F̄ − F̄F) + nM ∆P℘ = 0

}[
, (5.48)

where ∆P℘ = PM(F̄M)−P F
µ℘(F̄F, ℘

F). At this point, we note that Eq. (5.48) provides the
six required equations required for the determination of the five remaining unknowns of
F̄F plus the additional constraint pressure ℘F. Furthermore, we have to investigate the
fibre energy W F in order to provide the consistent formulation for the effective energy

W̃ , given by expression (5.15), in the incompressible fibre limit. Yet, it is easy to see,
with Eqs (5.37) and (5.33) as well as with J̄F0 = 1, that in this case W F

Λ = 0 such that
W F = W F

µ . Hence, the effective energy is given by

W̃ (F̄ ) = nF
[
W F
µ (F̄F) + 1

2
(F̄ − F̄F) ·P F

µ℘(F̄ F, ℘
F)
]

+nM
[
W M(F̄M) + 1

2
(F̄ − F̄M) ·PM(F̄M)

]
,

(5.49)
where F̄F, F̄M and ℘F are obtained from Eqs (5.48) and (5.18) subject to condition (5.45).

To show that the new constrained formulation is consistent with the original formulation
in the limit case as the fibre phase becomes incompressible, we compare the effective
strain energies based on Eqs (5.15) and (5.32) with the newly introduced formulation,
which is based on Eqs (5.49) and (5.48). To do so, we consider isotropic Neo-Hookean
energies for both of the phases. Hence, the distortional parts are given by W α

µ (I1, J) =
µα (I1−3+(J−1)(J−3))/2 and the dilatational parts W α

Λ = Λα (J−1)2/2 (see above). To
provide some evidence for the consistency of the new formulation, we choose for the above
described composite a fibre volume fraction of nF = 0.3, apply a macroscopic transverse
shear γ̄t = 2 and investigate for different stiffness ratios Λα/µα the effective strain energy.
Figure 5.1 shows for four selected and genuine different stiffness combinations the results
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Figure 5.1: Effective strain energy W̃ computed from Eq. (5.15) normalised to the effective strain energy
computed from Eq. (5.49) for composites with a matrix and fibre phase that exhibit Neo-Hookean beha-
viour under a macroscopic transverse shear γ̄t = 2.0. The volume fraction is nF = 0.3. Estimate (5.15)
tends to (5.49) as the volumetric stiffness of the fibre phase increases and tends to infinity.

of the original energy formulation (5.15) normalised to the new formulation (5.49). The
results clearly demonstrate that the formulations coincide when the Lamé constant of the
fibre phase, ΛF, tends to infinity.

5.2.2 Interlude: A constrained variational principle for incompressible fibres

This section gives a rigorous variational interpretation to the results obtained in the pre-
vious section by means of the asymptotic analysis for incompressible fibres. Further, we
show why a direct application of constrained variational principles causes problems in the
context of the herein used TSO homogenisation method.

We recall from Section 3.3 that internal material constraints are described by a local
constraint function R(F ) = 0, see Eq. (3.21). Correspondingly, an internal material con-
straint in a specific phase Bα0 of a multi-phase material is associated with a local constraint
function Rα(F (X)) = 0 for X ∈ Bα0 . Further, it was shown in Section 3.4.3 that the con-
sideration of internal constraints in variational formulations leads to the formulation of a
Lagrange functional, see Eq. (3.54). Applied to the multiscale variational problem (4.45),
the incorporation of an internal constraint function Rα would lead to a Lagrange function
L (F , αRα) = Π(F ) + ΠRα

(F , αRα) where

ΠRα

(F , αRα) =
1

vol[B0]

∫

B0
X α(X)αRα(X) Rα(F ) dV = nα

〈
αRα(X) Rα(F )

〉α
. (5.50)

Then, stationarity of L with respect to the Lagrange multiplier αRα requires that the
local constraint function Rα(F (X)) = 0 has to be satisfied at any local point X ∈ Bα0
on the microscale. However, this cannot be achieved by the present TSO estimate, as

given by Eq. (5.15), because the local deformation field enters the estimate for W̃ only
by means of the first moments (phase averages) Fα and the exact microscopic resolution
of the deformation remains unknown. In general, the incorporation of local Lagrange
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multipliers within the TSO method would require in addition to the approximation of the
microscopic deformation field also an appropriate approximation of the local Lagrange
multiplier fields. Such an approach was presented by Lahellec et al. [272] to enforce
material incompressibility of both phases, however, this may lead to some unclear physical
interpretations of the approximated constraint functions. An alternative approach to
satisfy the material constraint Rα(F ) locally at X ∈ Bα0 would be to approximate the
constraint function by means of Rα(F̄α), hence, to evaluate the constraint functions at
the phase averages F̄α. Yet, this does not lead to physically meaningful results, because
Rα is generally nonlinear in its argument F such that the phase average of the constraint
function, 〈Rα(F )〉α, is generally not equal to the constraint function evaluated at the
phase average, Rα(〈F 〉α) = Rα(F̄α). Concluding, it is not useful in general to employ
a constrained variational principle based on the formulation of a Lagrange functional L
in the context of the present TSO formulation. However, we remarked in the previous
section that the herein employed estimate of Hashin–Shtrikman type for the LCC, given
by expression (5.23), assumes uniform fields in the fibre phase BF

0 . This means that for a
fibre phase which is subject to an internal constraint function RF, the phase average of RF

is equal to the constraint function evaluated at the phase average F̄F, hence 〈RF(F )〉F =
RF(F̄F). Thus, it can be shown that stationarity of the respective Lagrange functional
can be achieved by satisfying the constraint evaluated at the phase average F̄F, which is
an available quantity in the TSO formulation. We show this in the following for the case
of an incompressible fibre phase, which is associated with the constraint function

RF = det[F (X)]− 1 = 0 if X ∈ BF
0 , (5.51)

compare Eq. (3.25). Hence, the local deformation gradient in the fibre phase has to be un-
imodular, such that F (X) ∈ SL3 ifX ∈ BF

0 . Subsequently, this constraint is included into
the original variational problem (4.45) by formulating the associated Lagrange functional

L (F , ℘F) := Π(F ) + ΠRF

(F , ℘F) with Π(F ) = nF
〈
W F
µ (F )

〉F
+ nM

〈
W M(F )

〉M
.

(5.52)
Therein, only the distortional energy part, W F

µ , of the fibre phase is considered, since
the dilatational part has to be zero in case of incompressibility. Further the constraint
functional ΠRF

is given by

ΠRF

(F , ℘F) =
1

vol[B0]

∫

B0
X F℘F (det[F ]− 1) dV = nF

〈
℘F (det[F ]− 1)

〉F
, (5.53)

where ℘F denotes the Lagrange multiplier associated with the incompressibility con-
straint (5.51). Subsequently, we follow the explanations made in Section 3.4.3 and demand
for stationarity of the Lagrange functional L with respect to the deformation field and
the Lagrange multiplier. This leads to the effective overall energy

W̃ (F̄ ) = stat
F∈K(F̄ )

stat
℘F

L (F , ℘F) = stat
F∈K(F̄ )

stat
℘F

{
nF
〈
W F
µ℘(F , ℘F)

〉F
+ nM

〈
W M(F )

〉M
}
,

(5.54)
where summing up Π and ΠRF

leads to the fibre energy

W F
µ℘(F , ℘F) := W F

µ (F ) + ℘F (det[F ]− 1) . (5.55)
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Then, stationarity of expression (5.54) with respect to the Lagrange multiplier ℘F is ob-
tained by satisfying

∂℘FL (F , ℘F) = nF
〈
det[F ]− 1

〉F
= 0 →

〈
det[F ]

〉F − 1 = 0 . (5.56)

The uniformity of the fields, in particular the deformation field, in the fibre phase can now
be used to reformulate the last expression to 〈det[F ]〉F−1 = det[〈F 〉F]−1 = det[F̄F]−1 =
0. Hence, it is shown that the formulation of a unimodular phase average F̄F ∈ SL(3),
meaning that

det[F̄F]− 1 = 0 , (5.57)

satisfies the stationarity condition of the Lagrange functional with respect to the Lagrange
multiplier and thus serves as an equivalent condition for the local (exact) incompressibility
condition (5.51). Furthermore, the remaining problem of fulfilling stationarity of L with
respect to F ∈ K(F̄ ) can be treated in direct analogy to the derivations performed in
Section 5.1 for the original variational problem (4.45). It is easy to see that this leads to
an estimate for the overall energy as provided in (5.15) by replacing the fibre energy W F

with W F
µ℘ from Eq. (5.55). Further, the associated equation for the estimation of the phase

average F̄F is obtained by replacing in Eqs (5.26) and (5.32) the fibre stress P F by

P F
µ℘(F̄F, ℘

F) = ∂FW F
µ℘(F̄F, ℘

F) = P F
µ (F̄F) + ℘F det[F̄F] F̄−TF , (5.58)

where P F
µ = ∂FW F

µ denotes the distortional fibre stress contribution. At this point, it is a
simple matter to observe, with (5.57), that the outcome of the herein presented constrained
variational principle exactly corresponds to the results obtained in the previous section by
means of the asymptotic analysis. Hence, the constrained variational principle leads to
the energy estimate (5.49) and the tensorial equation (5.48). In turn, this clearly justifies
the meaning of J̄F1, arising in the stress expression (5.46), as the Lagrange multiplier ℘F,
which is associated with the local incompressibility constraint (5.51) in the fibre phase.

5.2.3 Asymptotic analysis for incompressible matrix behaviour

Sections 5.2.1 and 5.2.2 focused on the derivation of the TSO estimate for incompress-
ible fibres and a generally compressible matrix phase. In this section, we investigate the
limit case as the matrix becomes incompressible as well. We say that the energy of the
matrix phase, W M, is formulated in terms of the additive split given in (5.33). Then,
incompressibility of the matrix is described by a Lamé constant ΛM that tends to infin-

ity. Now, for the estimate given in (5.49), it becomes clear that finite values for W̃ can
only be obtained if J̄M = det[F̄M] = 1. However, while condition (5.45) for the phase
average of the fibre phase is justified by the uniformity of the fields in the fibre phase
of the LCC, this is not the case for the condition det[F̄M] = 1, because the fields in the
matrix are generally non-uniform. Furthermore, it can be shown that the simultaneous
prescription of condition (5.45) and det[F̄M] = 1 in estimate (5.49) is inconsistent with
the overall incompressibility constraint, J̄ = det[F̄ ] = 1, which was already discussed
by Ponte Castañeda & Tiberio [382] and Avazmohammadi & Ponte Castañeda
[19]. Yet, if both phases are incompressible, the overall incompressibility constraint has
to be satisfied and its violation is unacceptable. To resolve this issue, we introduce an
approximation inspired by the work of Avazmohammadi & Ponte Castañeda [19] and
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consisting in a split of the distortional and dilatational parts of the matrix strain-energy
function W M, as given by (5.33), in expression (5.49) for the homogenised strain-energy
function of the fibre composite. This leads to the approximation

W̃ (F̄ ) ≈ W̃µ(F̄ ) + W̃Λ(F̄ ) , (5.59)

where

W̃Λ(F̄ ) =
1

2
stat

F∈K(F̄ )

{
ΛM
〈
X M(X) (J − 1)2

〉}
(5.60)

is the effective energy of an elastic fluid with incompressible fibrous inclusions, satisfying
the condition det[F ] = 1 in the fibre phase, compare Ponte Castañeda [373]. It is

easy to see that, in the limit as ΛM → ∞, the expression (5.60) for W̃Λ is infinite unless
det[F ] = 1 in the matrix phase, thus implying the overall incompressibility constraint

det[F̄ ] = 1 . (5.61)

On the other hand, the term W̃µ in expression (5.59) corresponds to the homogenised
strain-energy function of the fibre composite, as given by expression (5.49), but with the
matrix strain-energy function W M replaced by its distortional component W M

µ , such that

W̃µ(F̄ ) = nF
[
W F
µ (F̄F) + 1

2
(F̄ − F̄F) ·P F

µ℘(F̄F, ℘
F)
]

+nM
[
W M
µ (F̄M) + 1

2
(F̄ − F̄M) ·PM

µ (F̄M)
]
,

(5.62)
where the stress tensor PM has correspondingly been replaced by its distortional part PM

µ .

In turn, the five unknown coefficients of F̄F and the constraint pressure ℘F are obtained
from Eq. (5.48) by also replacing PM with PM

µ , such that

{
[P−1 − LM](F̄ − F̄F) + nM ∆Pµ℘ = 0

}[
, (5.63)

with ∆Pµ℘ = PM
µ (F̄M) − P F

µ℘(F̄F, ℘
F). It follows that the effective strain-energy function

of the fibre composite is given by W̃ (F̄ ) ≈ W̃µ(F̄ ), which leads to the expression

W̃ (F̄ ) ≈ nF
[
W F
µ (F̄F)+ 1

2
(F̄ − F̄F) ·P F

µ℘(F̄F, ℘
F)
]

+nM
[
W M
µ (F̄M)+ 1

2
(F̄ − F̄M) ·PM

µ (F̄M)
]
,

(5.64)
subject to the overall incompressibility constraint (5.61). However, because of the energy
split (5.59), it is also necessary to take the limit as ΛM → ∞ in expression (5.63) for
F̄F and ℘F. For this purpose, it is recalled that the elasticity tensor LM in Eq. (5.63) is
described by

LM(F̄ ) = LM
µ (F̄ ) + ΛM LM

Λ(F̄ ) with LM
Λ = 1

2
∂2
FF [(J − 1)2] . (5.65)

Therein, according to Avazmohammadi & Ponte Castañeda [19], the term ΛM LM
Λ is

required to enforce the incompressibility constraint. The first term is obtained by evaluat-
ing LM

µ = ∂2
FFW M

µ at F̄ . Now, we note from expression (5.65) that in the incompressible
limit of the matrix (ΛM →∞) some terms of the elasticity tensor LM become unbounded.
However, the unbounded terms of LM enter Eq. (5.63) not only explicitly but also impli-
citly through the inverse of the microstructural tensor P. In this way, it is possible to
perform an asymptotic analysis for the expressions depending on ΛM and to obtain in the
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incompressible limit of the matrix regular expressions for the coefficients of {P−1 − LM}[
by ruling out the unbounded terms. To do so, we utilise Eq. (5.65) and write the elasticity
tensor as

LM = LM
µ + ε−1 LM

Λ , (5.66)

where ε = 1/ΛM is introduced as a small parameter tending to zero in the limit case as
the matrix becomes incompressible. Then, recalling Eq. (5.25) and making use of the
distributive law, the acoustic tensor is accordingly written as

A =Aµ + ε−1AΛ with Aµ =
(
(LM

µ )T23ξ
)
ξ and AΛ =

(
(LM

Λ)T23ξ
)
ξ . (5.67)

Further, we recall from Eq. (5.25) that the tensor B = A −1 is the inverse of the acous-
tic tensor. Making use of the notation of the outer tensor (double cross) product, see
Appendix A.4, and the symmetry of A , we can write B as

B = det[A ]−1 cof[A ] =
3A××A

(A××A ) ·A , (5.68)

By inserting the relations (5.67) into (5.68) and simplifying by means of det[AΛ] = 0 and
cof[AΛ] = 0, we arrive at

B =
ε cof[Aµ] +Aµ××AΛ

ε det[Aµ] + cof[Aµ] ·AΛ

. (5.69)

Consequently, B is expanded to second order in ε as follows:

B =B0 + εB1 + ε2B2 +O(ε3) , (5.70)

where the tensors B0, B1, and B2 are identified as

B0 =
Aµ××AΛ

cof[Aµ] ·AΛ

, B1 =
cof[Aµ]

cof[Aµ] ·AΛ

− det[Aµ]Aµ××AΛ

(cof[Aµ] ·AΛ)2
, and

B2 =
(det[Aµ])2Aµ××AΛ

(cof[Aµ] ·AΛ)3
− det[Aµ] cof[Aµ]

(cof[Aµ] ·AΛ)2

(5.71)

Thus, B0 can be easily identified as the limiting value limΛM→∞B . Then, based on
Eqs (5.28) and (5.25), it is straightforward to introduce the associated expansion

P = P0 + εP1 + ε2 P2 +O(ε3) where Pi =
1

2π

∫ 2π

0

(Bi ⊗ ξ ⊗ ξ)T23 dς (5.72)

and i = 0, 1, 2. Obviously, the property presented in (5.30) for P is equally observed for
P0, P1, and P2, hence,

(P0)i3kl = (P0)ijk3 = (P1)i3kl = (P1)ijk3 = (P2)i3kl = (P2)ijk3 = 0 . (5.73)

Having obtained the expansion for P for an incompressible matrix phase, given in (5.72)1,
we can formulate the consistent expression for the inverse {P−1}[. Before doing this, we
first notice that the leading-order term {P0}[ does not have full rank, which implies that
{P}[ becomes in the limit of a fully incompressible matrix singular. In detail, we can find
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that limε→0 nullity[{P}[] = nullity[{P0}[] = 1. Thus, the required inverse tensor {P−1}[
cannot be computed from a simple inversion of the leading-order term {P0}[. However,
since the singularity of {P}[ is originated in the asymptotic expansion (5.72)1, it is possible
to formulate an appropriate asymptotic series expansion for the inverse in the limit case
as ε→ 0, reading {

P−1 = ε−1 X−1 + X0 +O(ε)
}[
, (5.74)

see, for example, Avrachenkov et al. [22] or Franchi & Paruolo [133]. To compute
the tensors {X−1}[ and {X0}[ in (5.74), we employ the so-called basic generalised inverse
method as presented by Avrachenkov et al. [22] and therefore first introduce the
following two matrices

P(0) =
[{

P0

}[] ∈ R6×6 and P(1) = P =

[{
P0

}[
06×6

{
P1

}[ {
P0

}[

]
∈ R12×12 . (5.75)

Therein, P(0) depicts the 2D matrix representation of {P0}[, whereas P(1) is an augmented
block matrix and contains the 2D matrix representations of {P0}[ and {P1}[. At this
point, it shall be remarked that the sufficiency of the expansion in (5.74) can be shown
by utilising the rank test of Sain & Massey [414], which is performed by finding the
minimum value n ∈ N+ for which rank[P(n)] = rank[P(n−1)] + dim[P(0)]. Here, we can
show that rank[P(1)] = rank[P(0)] + dim[P(0)], since rank[P(1)] = 11, rank[P(0)] = 5, and
dim[P(0)] = 6, and thus identify n as 1. Thereby n serves as a measure for the order of
the singularity as ε tends to zero and indicates that (5.74) is sufficient. Further, it makes
clear that P(n)|n=1 = P is the augmented matrix with which we have to proceed. The key
step is now the computation of

G = P† =

[
G00 G01

G10 G11

]
∈ R12×12 , (5.76)

where P† denotes the Moore–Penrose generalised inverse of P. It is highlighted that as
P is a simple, two-dimensional matrix, the computation of the generalised inverse can be
directly and easily performed with numerical standard tools. Further details about the
valuable notation of generalised inverses, which are also referred to as pseudoinverses, are
provided by Shinozaki et al. [437] and Ben-Israel & Greville [29]. Subsequently,
we extract the two submatrices G00 ∈ R6×6 and G01 ∈ R6×6 from the block matrix, G,
and identify them as the 2D matrix representations of the fourth-order tensors {G00}[ and
{G01}[, respectively. With those two tensors at hand, we specify the two unknown tensors
in expansion (5.74) as

{
X−1 = G01

}[
and

{
X0 = G00 (I− P1 X−1)− X−1 P2 X−1

}[
, (5.77)

see Avrachenkov et al. [22]. Now, we can use the expansions given in (5.66) and (5.74)
and formulate {P−1 − LM = ε−1 (X−1 − LM

Λ) + X0 − LM
µ + O(ε)}[. In the incompressible

matrix limit, we have ε→ 0 so that first- and higher-order terms in ε drop out. Further, in
the case that the overall deformation is isochoric, as stated in Eq. (5.61), it can be shown
that {X−1 = LM

Λ }[. This cancels out the terms associated with ε−1 and leads to the result

lim
ΛM→∞

{
P−1 − LM

}[
=
{
X0 − LM

µ

}[
. (5.78)
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Subsequently, utilising (5.78) in expression (5.63) leads to

{
[X0 − LM

µ ](F̄ − F̄F) + nM ∆Pµ℘ = 0
}[
. (5.79)

In conclusion, the asymptotic expansion provides for the incompressible matrix limit a
closed-form expression of Eq. (5.63). From the tensorial equation (5.79), together with
condition (5.45), one obtains the six scalar equations necessary to solve for the six un-
knowns, that is, the five unknown coefficients (F̄F)ij (i = 1, 2, 3 and j = 1, 2) and the
constraint pressure ℘F. Further, the overall energy is given by Eq. (5.64), while the asso-
ciated macroscopic stress is given in Eq. (C.7).

5.3 Fibre composites with incompressible, transversely isotropic
phases

In the previous section, the TSO estimate was specialised to incompressible behaviour
of both phases Bα0 . Since no restrictions were made on the direction-dependence of the
distortional phase energy parts W α

µ , the phases and, consequently, the overall composite
behaviour were considered until now as generally anisotropic. In this section, we focus on
transversely isotropic phases, where the preferred direction coincides with the alignment
of the fibrous inclusions. This will consequently lead to an overall transversely isotropic
behaviour. These considerations lead to simplifications of the underlying equations, in
particular, by making use of appropriate generic representations of the deformation gradi-
ents.

5.3.1 Transversely isotropic phase behaviour

If the mechanical behaviour of the two phases Bα0 belongs to the symmetry group of
transverse isotropy, the distortional part of the local strain energies, W α

µ (C,Mα), becomes
a function of the Cauchy–Green tensor C and a structural tensor Mα. Therein, the
structural tensor accounts for the preferred direction of phase Bα0 by means of a referential
unit vector aα0 , such that Mα = aα0 ⊗ aα0 . This was explained in detail in Section 3.5.4.
From there, we further know that a sufficient integrity basis for the two argument tensors
{C,Mα} is given in terms of five scalar invariants. A variety of applicable invariant sets
was introduced, such as I I

ti , I I′
ti , I I′′

ti , I er
ti , I ı

ti, and I 
ti. Any of those sets can be used

for the definition of the phase strain-energy functions W α
µ in the present context. Yet, for

the following considerations in this chapter we employ the invariant set I I
ti , which has

already been subject to some further investigations in Sections 3.8.2 and 3.8.3. Further,
we assume that the phase energies follow the additive split introduced in Eq. (3.152), such
that

W α
µ (I1, I2, J, J4, J5) = W αI

µ (I1, I2, J4, J5) + W αJ
µ (J) . (5.80)

Hence, the J-dependent (or I3-dependent) energy contribution is separated from the
other terms. A general representation of the energy contribution W αI

µ was provided in
Eq. (3.176) and reads

W αI
µ = W α

iso(I1, I2) + W α
aniso(J4, J5) + W α

coupl(I1, I2, J4, J5) . (5.81)
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Since the phase energies have to normalise properly, the normalisation conditions (3.148)
and (3.149) have to be fulfilled. It is further required that W αI

µ and W αJ
µ fulfil the linearisa-

tion conditions, here for incompressible material behaviour, given in Eq. (3.155). We recall
that to fulfil those conditions, the J-dependent term W αJ

µ has to be chosen dependent on
the other energy contribution W αI

µ . In this process, it was shown in Section 3.8.3 that the
energy term W αJ

µ usually contains a logarithmic term in J , as in Eq. (3.160). However,
in agreement with the observations in Avazmohammadi & Ponte Castañeda [20], we
found that replacing the logarithmic term with the polynomial-type term from the Taylor
expansion (3.170) leads to better-behaved TSO estimates. In the context of compressible
phases, it was further explained that the polynomial term, in connection with the here
chosen dilatational energy (5.33)2, suffers from correctly addressing the growth conditions
as J → 0. However, as the phases are considered as incompressible and Λα → ∞, this
deficiency does not apply here.

5.3.2 Overall transversely isotropic behaviour

In the following, we assume that the preferred directions aα0 of the two phases are collinear
with the alignment of the cylindrical inclusions, such that aα0 = ā0. Hence, by recalling
Eq. (5.28)2, we set within the given laboratory frame of reference aα0 = e3. If we further
recall that the shape tensor Z was chosen in Section 5.1.2 such that the inclusions are
distributed isotropically in the plane transverse to their alignment, together with the ex-
planations from Section 3.5.4, it can be seen that the overall material behaviour becomes
invariant to all transformations which belong to the symmetry group of transverse iso-
tropy, MGti. As a consequence, the overall behaviour on the macroscopic scale becomes
transversely isotropic and the vector ā0 thus describes the axis of the preferred mater-

ial behaviour. Further, the effective energy W̃ becomes a function of the macroscopic
Cauchy–Green tensor C̄, defined in (4.4), and a structural tensor M̄ = ā0 ⊗ ā0. In turn,
all of the transversely isotropic invariant sets from Section 3.5.4 can be employed as a
proper integrity basis of the two argument tensors {C̄,M̄}. We note that as the overall
behaviour is incompressible, required by the constraint (5.57), the macroscopic energy
becomes a function of four invariants and we can make use of the reductions provided in
Table 3.2. Hence, the overall energy can be written, for instance, in terms of the invariant
sets I I

ti and I ı
ti as

W̃ (C̄,M̄ ) = W̃ (Ī1, Ī2, J̄4, J̄5) = W̃ (λ̄`, γ̄`, γ̄t, ψ̄γ) . (5.82)

At this point, we recall from Section 3.5.4 that the two invariant sets I ı
ti and I 

ti can be
used to formulate equivalent invariant-based deformation gradients, such as F ı and F  in
Eqs (3.95) and (3.100), respectively. This is a very convenient property in the context of
multiscale analysis, as it can be employed to connect the real occurring macroscopic de-
formation, quantified by frame-indifferent strain invariants, with a given laboratory frame
of reference on the microscale. Hence, we can formulate a generic macroscopic deformation
gradient, which is based on macroscopic strain invariants and is always properly aligned
with respect to the orientation of the microstructure. Here, we employ a deformation
gradient of the form F , since it contains one more zero-coefficient compared to F ı, but
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formulate it in dependence of the set I ı
ti. This leads to

F̄ =




λ̄1 0 0
0 λ̄2 0

γ̄` cos [φ̄γ] γ̄` sin [φ̄γ] λ̄`


 ei ⊗ ej , (5.83)

where the two stretches

λ̄1 =

√
γ̄2

t + 4 λ̄−1
` + γ̄t

2
and λ̄2 =

√
γ̄2

t + 4 λ̄−1
` − γ̄t

2
(5.84)

are obtained from Eqs (3.102)1,2, together with λ̄t = 1/λ̄−1/2 because of the overall incom-
pressibility. The coupling invariant φ̄γ is defined by Eq. (3.102)3 Further, we formulate for
the two phases the associated deformation gradients

F̄α =




λ̄α1 0 0
0 λ̄α2 0

γ̄α` cos [φ̄αγ] γ̄α` sin [φ̄αγ] λ̄`


 ei ⊗ ej , (5.85)

where the matrix stretches are given by

λ̄M1 =

√
γ̄2

Mt + 4 λ̄2
Mt + γ̄Mt

2
and λ̄M2 =

√
γ̄2

Mt + 4 λ̄2
Mt − γ̄Mt

2
, (5.86)

whereas the incompressibility constraint (5.45) for the phase average of the fibre phase
leads to

λ̄F1 =

√
γ̄2

Ft + 4 λ̄−1
` + γ̄Ft

2
and λ̄F2 =

√
γ̄2

Ft + 4 λ̄−1
` − γ̄Ft

2
, (5.87)

because of λ̄Ft = 1/
√
λ̄`. From this, it is now easy to observe that the above-made

considerations reduce the scalar unknowns within the average fibre deformation tensor
F̄F to three, namely, the longitudinal fibre shear γ̄`, the transverse fibre shear γ̄t (or,
equivalently, the stretch λ̄F1), and the coupling invariant φ̄Fγ. Thus, the homogenisation
is equivalent to solve instead of six only for four unknowns, that is, for {γ̄F`, γ̄Ft, φ̄Fγ, ℘

F}
or, equivalently, {γ̄F`, λ̄F1, φ̄Fγ, ℘

F}. The necessary four equations can be extracted from
Eq. (5.79). In general, those equations have to be solved numerically. However, there are
scenarios for which closed-form solutions of the required equations can be formulated. This
is exemplary shown in Appendix C.3 for composites with isotropic Neo-Hookean phases
augmented by transversely isotropic energy contributions.

5.3.3 Linearised behaviour of the TSO estimate

An indispensable requirement of the presented estimate for nonlinear composites is that
it linearises properly in the limit of small strains (F̄ ≈ I) by recovering the corres-
ponding linear-elastic estimates, here, for incompressible composites with aligned cyl-
indrical inclusions. Hence, as explained in detail in Section 3.7.3, the linearised energy

W̃lin := T2{W̃ (F̄ ), I} is obtained from the second-order Taylor expansion, which reads

W̃lin(F̄ ) = W̃ (F̄ )
∣∣
F̄=I

+ P̃ (F̄ )
∣∣
F̄=I
· (F̄ − I) + 1

2
(F̄ − I) · L̃(F̄ )

∣∣
F̄=I

(F̄ − I) , (5.88)
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compare Eq. (3.132). As the phase energies are required to normalise and linearise prop-
erly, formulated in Section (5.3.1), it makes sense that the macroscopic behaviour has an
energy- and stress-free reference state as well. Hence, the first two terms in Eq. (5.88)

do not contribute to the linearised energy, since W̃[I] = 0 and P̃[I] = 0. This can be
observed from the respective expressions (5.62) and (C.7) by noting that F̄α[I] = F̄[I] = I

and ℘F
[I] = 0. Consequently, L̃[I] is identified as the resulting linearised elasticity tensor

L̃lin. From the overall energy split, given in Eq. (5.59), it follows that L̃lin is composed of

a distortional term L̃µ lin = ∂2
F̄ F̄

W̃µ[I] and a dilatational term L̃Λ lin = ∂2
F̄ F̄

W̃Λ[I], such that

L̃lin = L̃µ lin + L̃Λ lin . (5.89)

Subsequently, the two elasticity tensors are given by

L̃µ lin = ∂2
F̄ F̄ W̃µ[I] = nF sym

[
LF
µ[I]FF + (∂F̄℘

F
[I] ⊗ I)(I− FF)

]
+ nM sym

[
LM
µ[I]FM

]

L̃Λ lin = ∂2
F̄ F̄ W̃Λ[I] = Λ̃∞I ⊗ I ,

(5.90)

where Fα = ∂F̄ F̄α, see also Eq. (C.2). After some algebra and using the linearisation
conditions (3.155), the distortional part can be written as

L̃µ lin = 2µ̃a (E[1] + E[2]) + 2µ̃t E[3] + 2µ̃` E[4] . (5.91)

The fourth-order projection tensors E[γ] (γ = 1, 2, 3, 4) used therein were introduced in
Section 3.7.3. Their definitions are provided in Appendix A.7.3. Further, µ̃a, µ̃t, and µ̃`
are the resulting effective axisymmetric, transverse and longitudinal shear moduli, which
are given by

µ̃a = nF µF
a + nM µM

a and µ̃β = µM
β

(1 + nF)µF
β + nMµM

β

nMµF
β + (1 + nF)µM

β

with β = {t, `} . (5.92)

In Eq. (5.90)2, the effective first Lamé constant Λ̃∞ tends to infinity due to the incom-
pressibility of both phases. Further, it becomes clear from Eq. (5.91) that there are
distinct effective transverse and longitudinal shear moduli that depend on the respective
shear moduli of the two phases. Further, the two effective shear moduli exactly cor-
respond to the Hashin–Shtrikman lower bounds for linear-elastic materials with overall
transversely isotropic behaviour and transversely isotropic phases as presented in Hashin
[182]. Moreover, the effective axisymmetric shear modulus µ̃a is identified as the Voigt
upper bound. Note, for I2- and J5-independent phase energies (∂I2W

α
µ = ∂J5W

α
µ = 0),

the two effective moduli µ̃t and µ̃` become identical, because µαt = µα` , see Eqs (3.155).
Furthermore, by neglecting the coupling terms W α

coupl, entailing that µαa = µαt = µα` ,
the linearised results given in Eqs (5.89)-(5.92) reduce to the estimates for linear-elastic
materials with overall transversely isotropic behaviour and isotropic phases as given by
Hashin [182, 183]. For completeness, we note that expression (5.88) for the linearised

effective energy finally reads W̃lin(ε̄,M̄ ) = ε̄ · L̃lin(M̄ ) ε̄/2, where the linear strain tensor
ε̄ = sym[H̄ ] is defined as the symmetric part of the macroscopic displacement gradient
H̄ = F̄ − I. This follows in direct analogy to the considerations from Section 3.7.3, in
particular Eqs (3.133) and (3.134).
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5.3.4 A special result for augmented isotropic phases with unidirectional
reinforcement

In many applications, the strain-energy in the phases can be described by a purely isotropic
part and a J4-based anisotropic contribution. Such energies can be derived from the general
expression (5.81) by setting ∂J5W

α = W α
coupl = 0 and read

W α
µ (I1, I2, J, J4) = W α

iso(I1, I2) + W α
aniso(J4) + W αJ

µ (J) . (5.93)

They describe so-called augmented isotropic materials with unidirectional reinforcement,
see, for example, Merodio & Ogden [322] and are very common, for instance, in mod-
elling of biological tissues. Restricting oneself to composites with such phase energies
leads in the context of this paper to some interesting results. Namely, one can show that
the solution of Eq. (5.79), and hence the average microscopic deformations F̄α, becomes
independent of the anisotropic phase energy terms W α

aniso. For the sake of brevity, the
detailed explanations on that are moved to C.2. Subsequently, making use of this finding
in expression (5.64) for the effective energy, together with (5.31), it is easy to show that

W̃ can then be additively split as follows:

∂J5W
α
µ = W α

coupl = 0 → W̃ (Ī1, Ī2, J̄4, J̄5) = W̃g(Ī1, Ī2, J̄4, J̄5) +
∑

α

nα W α
aniso(J̄4) . (5.94)

Therein, W̃g is the effective energy associated with the isotropic phase energy terms
W α

iso(I1, I2) + W αJ
µ (J), whereas the anisotropic parts W α

aniso(J4) are homogenised by means
of a simple arithmetic (Voigt-type) averaging. It is noted that despite the fact that only

isotropic phase energies are considered in the derivation of W̃g, the incorporation of the

fibrous microstructure still entails that W̃g is generally anisotropic. Therefore, W̃g depends
on all four macroscopic invariants {Ī1, Ī2, J̄4, J̄5} (or {λ̄`, γ̄`, γ̄t, ψ̄γ}).

5.4 Alternative estimates and bounds for incompressible
two-phase fibre composites

To put the presented estimate into context with previous works, we want to give a short
review on alternative estimates and bounds for the here considered class of hyperelastic
materials with incompressible cylindrical inclusions in an incompressible matrix.

Voigt upper bound A simple estimate is obtained in terms of the Voigt estimate, which
assumes uniform deformations in the material and depicts a rigorous upper bound. For
the given class of hyperelastic materials with incompressible cylindrical inclusions in an
incompressible matrix, the Voigt bound reads

W̃V(λ̄`, γ̄`, γ̄t) = nF W F
µ (λ̄`, γ̄`, γ̄t) + nM W M

µ (λ̄`, γ̄`, γ̄t) . (5.95)

As discussed in Section 4.3.5, the Voigt bound accounts for the microstructure only through
the volume fractions and generally overestimates the actual energy in the composite. Yet,
we already mentioned that the Voigt bound provides exact results for some specific scen-
arios. For the given fibre composites, this is true for axisymmetric loading cases, where
the assumption of a uniform deformation field holds true. This was shown, for example,
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by He et al. [191] or Agoras et al. [4]. However, we note that the simplicity of
the Voigt bound further entails that the effective behaviour becomes isotropic for iso-
tropic phases (W α

aniso = 0) since it fully ignores the microstructural arrangement of the
cylindrical inclusions. This is in contrast to more sophisticated estimates.

Alternative second-order estimates for isotropic phases For isotropic, I1-based
generalised Neo-Hooke phase energies of the form W α

µ (C) = W α
iso(I1) + W αJ

µ (J), Agoras
et al. [4] proposed a second-order estimate which consists of a TSO estimate for axisym-
metric and longitudinal (out-of-plane) shear deformations and a generalised second-order
(GSO) estimate for the transverse (in-plane) shear deformations. It reads

W̃ALP(λ̄`, γ̄`, γ̄t) = nF W F
iso(IF

1 ) + nM W M
iso (ÎM

1 ) +
∑

α

nα ∂I1W
α

iso(Iα1 ) γ̄α` (γ̄` − γ̄α`) , (5.96)

where α = {F,M} and IF
1 , ÎM

1 , IM
1 , and γ̄α` are determined by Eqs (39)-(42) in Agoras

et al. [4]. The GSO method considers second moments of the field fluctuations inside
the phases, meaning that it incorporates the covariance data from Eq. (4.29), as opposed
to the TSO which makes use of the first moments only. As a consequence, the GSO
method is regarded as more accurate than the TSO method for transverse (in-plane) shear
deformations, but requires more computational effort, see Ponte Castañeda [377] and
Lopez-Pamies & Ponte Castañeda [299]. Thus, Agoras et al. [4] proposed to only
compute the GSO estimate for transverse shear and to set up for the other loadings a
hybrid model based on the TSO method. This made it possible to formulate the estimate
in the compact form (5.96).

Estimates for a Neo-Hookean matrix phase When restricting the considerations to
a Neo-Hookean matrix phase with W M

µ (C) = W M
iso (I1)+W MJ

µ (J) and W M
iso = µM(I1−3)/2,

several closed-form estimates for the class of materials of interest can be found in the
literature. For composites with isotropic fibres of Neo-Hookean type (W F

aniso = W F
coupl = 0),

Building up on earlier works (deBotton [91]), deBotton et al. [92] introduced an
elegant estimate that is based on the sequential laminate procedure and reads

W̃BHS(λ̄`, γ̄`, γ̄t) = 1
2
µ̄ (λ̄2

` + 2 λ̄−1
` − 3) + 1

2
µ̃ (γ̄2

` + γ̄2
t ) (5.97)

where

µ̄ = nFµF + nMµM and µ̃ = µM (1 + nF)µF + nMµM

nMµF + (1 + nF)µM
. (5.98)

The so-called BHS estimate is exact for combined longitudinal and axisymmetric shear
deformations for the class of fibre-reinforced Neo-Hookean materials with the composite
cylinder assemblage microstructure of Hashin & Rosen [184].

Lopez-Pamies & Idiart [297] generalised the BHS estimate towards anisotropic fibres,
characterised by an isotropic Neo-Hookean part W F

iso = µF(I1−3)/2 and a general J4-based
anisotropic part W F

aniso(J4) = W F
aniso(λ`) (W F

coupl = 0), and derived the estimate

W̃LI(λ̄`, γ̄`, γ̄t) = 1
2
µ̄ (λ̄2

` + 2 λ̄−1
` − 3) + 1

2
µ̃ (γ̄2

` + γ̄2
t ) + nF W F

aniso(λ̄`) . (5.99)

According to Lopez-Pamies & Idiart [297], (5.99) expresses for this specific class of
materials an exact stored-energy function. Also note that the additive character of the
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anisotropic fibre term given in (5.99) agrees with the findings for the new estimate made
in Section 5.3.4.

A further estimate for isotropic phases, based on the Halpin-Tsai equations, is obtained
by specialising the results of Guo et al. [173] to Neo-Hookean fibres, giving

W̃GPM(λ̄`, γ̄`, γ̄t) = 1
2
µ̄ (λ̄2

` + 2 λ̄−1
` − 3) + 1

2
µ̃ γ̄2

` + 1
2
µ̌t γ̄

2
t (5.100)

with

µ̌t = µM (1 + 0.4nF)µF + 0.4nMµM

nMµF + (0.4 + nF)µM
. (5.101)

Obviously, the GPM estimate corresponds for axisymmetric and longitudinal shear de-
formations to the BHS estimate, but differs whenever transverse shear loading is involved
(that is, for γ̄t 6= 0). Thus, it fails to linearise properly in this mode of deformation.

Further, note that the effective shear moduli given in Eqs (5.98) are equal to the linear

effective moduli given in (5.92) and that the energy W̃BHS (and, hence, W̃LI) might thus
be interpreted as a generalisation of the linear results to the hyperelastic regime.

5.5 Results and discussion of the new TSO estimate

This section focuses on investigating the performance of the new TSO estimate. For this
purpose, we vary the phase energies and the loading scenarios and compare the new TSO
estimate with other estimates given in Section 5.4 subject to their applicability for the
respective class of materials. Moreover, we compare the new estimate with literature
data obtained from full-field numerical simulations. For all results, we assume unit-less
material stiffness which results in unit-less energies and stresses. Further, in order to
compare uniaxial deformation in fibre direction with the two shear modes along and across
the fibres, we recall from Eq. (3.105) the definition of the axisymmetric shear variable
γ2

a = λ2
` + 2λ−1

` − 3.

5.5.1 Performance of the new estimate for composites with an isotropic
Neo-Hookean matrix phase

First, we consider composites in which the matrix phase exhibits an isotropic Neo-Hookean
behaviour, described by the energy

W M
µ (I1, J) = 1

2
µM (I1 − 3) + 1

2
µM (J − 1)(J − 3) . (5.102)

As already mentioned in Section 5.3.1, such polynomial-type terms for the J-dependent
energy contribution lead to an improved performance of the presented TSO estimate in
comparison to the classical logarithmic terms.

Isotropic Neo-Hookean fibre Figure 5.2 depicts the results if the fibre phase is as-
sumed to behave like an isotropic Neo-Hookean material. This means that the fibre en-
ergy W M

µ is described by a strain-energy function as formulated in Eq. (5.102) for the
matrix phase. Further note that some explicit results for this scenario are provided in Ap-
pendix C.3.4 by setting W F

aniso = 0 in Eq. (C.22). The volume fraction of the fibre phase is
set to nF = 0.3 and the stiffnesses are µF = 100 and µM = 1.. From Figure 5.2a, one can
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Figure 5.2: Effective energies for composites with Neo-Hookean matrix and Neo-Hookean fibre under
the three different shear modes. The material parameters are µF = 100, µM = 1, and nF = 0.3. a) Results

for the second-order estimates W̃ and W̃ALP. W̃ and W̃ALP coincide for axisymmetric and longitudinal
shear. b) Comparison of different estimates for transverse shear deformation.

see that the effective energy W̃ (γ̄a, 0, 0) for the axisymmetric shear case is much higher

than for the resulting energies due to longitudinal shear, W̃ (0, γ̄`, 0), and transverse shear,

W̃ (0, 0, γ̄t). Further, for this class of composites, the new estimate, the ALP estimate as
well as the BHS estimate (and thus the LI estimate) are identical for axisymmetric and

for longitudinal shear deformations, that is, W̃ (γ̄a, 0, 0) = W̃ALP(γ̄a, 0, 0) = W̃BHS(γ̄a, 0, 0)

and W̃ (0, γ̄`, 0) = W̃ALP(0, γ̄`, 0) = W̃BHS(0, γ̄`, 0). The Voigt bound predicts for all three
shear modes the same energy, which coincides with the axisymmetric mode of the other

estimates, that is, W̃V = W̃ (γ̄a, 0, 0). For transverse shear, the Voigt bound and the BHS
estimate predict the same effective energy as for longitudinal shear, whereas the second-
order estimates show distinct behaviours for these two shear modes. Figure 5.2b depicts a
detailed comparison of the different estimates for the case of transverse shear. From this

figure, one can see that the new estimate, W̃ , is in good agreement with the ALP estimate,
which is for this kind of loading equivalent to the GSO estimate and thus regarded as the
most accurate one. The GPM estimate predicts a significantly lower effective strain energy
than the other estimates.

Next, we compare the new estimates with full-field simulations based on the finite-
element method (FEM). Figure 5.3a shows the effective strain energies during longitud-

inal shear deformation for the new estimate, W̃ , the Voigt bound, and FEM results by
Guo et al. [173]. The new estimate excellently agrees with the FEM solution, while the
Voigt bound significantly overestimates the effective strain energy. Note, for this scen-

ario, all other analytical estimates presented in Section 5.4 become identical to W̃ and
are therefore omitted. Further, for axisymmetric shear loading, all estimates (including
the Voigt bound) agree with the FEM solutions performed by Guo et al. [173] (for
the mechanically equivalent case of uniaxial tension and compression). Hence, the res-
ults are not explicitly shown here. For transverse shear loading, shown in Figure 5.3b,
the new estimate, the ALP estimate and the BHS model give virtually identical result
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Figure 5.3: Comparison of analytical results and finite-element simulations of Guo et al. [173] for
composites with Neo-Hookean matrix and Neo-Hookean fibre. a) Results for longitudinal shear deform-
ation with the material parameters µF = 20, µM = 2, and nF = 0.283. b) Results for transverse shear
deformation with the material parameters µF = 200, µM = 2, nF = 0.126.

and show very good agreement with the FEM results, while the GPM estimate slightly
underestimates the FEM results. As expected for this type of loading, the Voigt bound
substantially deviates from the other results. However, as far as the FEM results are
concerned, one potentially needs to be careful. Guo et al. [173] considered for the mi-
crostructure only a very simple geometry, which means that the microstructure consists
of a unit cell with one single cylindrical fibre which is surrounded by matrix material. A
more comprehensive numerical study was performed by Moraleda et al. [341], who
considered for the microstructure of the representative volume element a random dis-
persion of several fibres. This arrangement better represents the assumption of random
microstructures as assumed within the derivation of the analytical estimates in this work.
However, Moraleda et al. [341] considered monodisperse fibre sizes, while the analyt-
ical estimates are based on the idea of polydisperse fibre sizes. Hence, care must be taken
when comparing and interpreting the analytical and the FEM results against each other.
Moreover, Moraleda et al. [341] performed pure shear deformation simulations in the
transverse plane, that is, F̄ = λ̄ e1 ⊗ e1 + 1/λ̄ e2 ⊗ e2 + 1 e3 ⊗ e3. This is equivalent

to a transverse shear deformation with γ̄t =
√
λ̄2 + λ̄−2 − 2 and γ̄a = γ̄` = 0. Further,

they assumed rigid fibres. They did so by assuming in their simulations a shear modulus
of the fibres that is 2000 times higher than the one of the matrix, leading to µF = 2000
and µM = 1. Figure 5.4a shows for pure shear deformations in the transverse plane the

respective macroscopic stress, P̄ = ∂λ̄W̃ , for three different fibre volume fractions. For
nF = 0.2 and nF = 0.3, the new estimate agrees well with the FEM results up to λ̄ ≈ 2.
It even maintains smooth behaviour for deformations beyond λ̄ ≈ 2. Further, the ALP

estimate, P̄ALP = ∂λ̄W̃ALP, exhibits a remarkable accuracy for nF = 0.2 and nF = 0.3
and almost exactly matches the FEM results. Figure 5.4a also highlights the remarkable
accuracy of the ALP estimate for transverse shear deformations. This is not too surpris-
ing since the ALP estimate is for transverse shear based on the GSO method proposed
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Figure 5.4: Comparison of analytical results and finite-element simulations of Moraleda et al. [341]
for composites with Neo-Hookean matrix and Neo-Hookean fibre for pure shear deformations in the trans-
verse plane. The material parameters are µF = 2000 and µM = 1. a) Effective stresses in loading
direction of analytical second-order estimates and FEM results for three different fibre volume fractions.
b) Associated values of the Lagrange multiplier ℘F.

by Lopez-Pamies & Ponte Castañeda [299]. In turn, the studies of Moraleda
et al. [341] and Avazmohammadi & Ponte Castañeda [19] already revealed that the
GSO estimate is very accurate for this scenario. The new estimate presented in this work
tends to predict higher stresses than the FEM simulations, which was also observed with
the earlier TSO methods by Ponte Castañeda & Tiberio [382] and Avazmoham-
madi & Ponte Castañeda [19] as well as the earlier GSO method by Lopez-Pamies
& Ponte Castañeda [298] (all formulated for rigid fibres), see Avazmohammadi &
Ponte Castañeda [19]. It is noteworthy to state that the new estimate maintains a
behaviour comparable to the ALP estimate even at higher deformations. This in contrast
to earlier TSO methods and the earlier GSO estimate that showed a stiffening behaviour
for higher load cases. For a volume fraction nF = 0.4, the new estimate as well as the ALP
estimate predict stresses that are lower than the ones predicted by the FEM simulations.
However, as already pointed out by Moraleda et al. [341], this discrepancy might be
associated with the Hashin–Shtrikman estimates for the LCC and not with the second-
order method. Moreover, the BHS estimate agrees very well with the two second-order
estimates for deformations up to λ̄ ≈ 1.5 and is below the two second-order estimates at
higher deformations. Figure 5.4b shows the associated values of the constraint pressure
(Lagrange multiplier) ℘F. For the considered loading and a very stiff fibre, it can be seen
that the value of ℘F becomes negative and thus applies a hydrostatic compressive pres-
sure on the fibre phase in order to maintain its incompressibility. The absolute value |℘F|
increases with increasing fibre volume fraction nF.

Isotropic exponential-type fibre Next, we investigate the case in which the fibre
phase exhibits highly nonlinear behaviour. As discussed in Section 3.8.3, there exists a
variety of I1-based energy functions which generalise the Neo-Hookean energy and are able
to describe highly nonlinear material behaviour. One such strain-energy function is the
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Figure 5.5: Effective energies for composites with Neo-Hookean matrix and exponential-type fibre under
longitudinal and transverse shear deformation for different nonlinearities of the fibre. The material para-
meters are µF = 1, µM = 10, and nF = 0.3. The legends are for both diagrams. a) Results for longitudinal

shear deformation. b) Results for transverse shear deformation. The results for W̃V are the same for both
loadings.

Delfino model, introduced in Eq. (3.162). Hence, we assume a strain-energy function of
the fibre in the following form:

W F
µ (I1, J) =

µF

bF

{
exp

[
bF

2
(I1 − 3)

]
− 1

}
+
µF

2
(J − 1) (J − 3)− µF bF

8
(J − 1)2 . (5.103)

Therein, we replaced the logarithmic term in the J-dependent part (3.164) by means
of (3.170). We recall that parameter bF governs the nonlinearity of the energy and that
the exponential-type energy includes the Neo-Hookean energy as a special case in the limit
as bF tends to zero. To investigate the new estimate for different fibre nonlinearities, we
perform longitudinal and transverse shear simulations for different values of parameter bF.
Figure 5.5a presents for µF = 1, µM = 10, nF = 0.3, and longitudinal shear deformations,
the effective strain energies for the new estimate and the Voigt bound for bF = 1, 2, 4, 16
and bF → 0 (that is, a Neo-Hookean fibre). In this loading case, the new estimate and
the ALP essentially show identical behaviour. With increasing stiffness of the fibre, the
effective energy of the second-order estimates predicts a moderate increase while the Voigt
bound essentially locks up as soon as the nonlinearity of the fibre kicks in. Figure 5.5b
depicts the results of the same composites subject to transverse shear loading. Note that
the results for the Voigt bound, which are equal to the longitudinal case, are dropped for
the sake of visibility. Like in the longitudinal shear case, the results of the new and the
ALP estimate are essentially identical (e. g., the relative difference for bF = 16 and γ̄t = 3
is below 1%).

Anisotropic and highly nonlinear fibre phase behaviour After investigating the
behaviour of the new estimate for materials that exhibit a fibre phase with isotropic
behaviour, we consider now composites with an anisotropic fibre phase. Assuming purely
J4-dependent energy terms for the fibre phase results in a relatively trivial Voigt-type
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Figure 5.6: Effective energies and microscopic response for composites with Neo-Hookean matrix and
anisotropic fibres under longitudinal shear deformation for different nonlinearities of the fibres. The
material parameters are µF = 1, µM = 10, µF

γ`
= 50, and nF = 0.3. a) Effective energies for longitudinal

shear deformation. b) Longitudinal shear strain of the fibre phase with respect to the overall longitudinal
shear strain. The dashed line indicates the uniform field solution, which is assumed by the Voigt bound.

averaging of the J4-dependent energies, as explained in Section 5.3.4. Hence, we consider
fibre phases that contain a more general dependency on J4 and J5. For this type of
composites, none of the estimates described in Section 5.4, except for the Voigt bound,
are applicable. To investigate the estimate, we assume that the fibre energy is given by
Eq. (C.22) and its anisotropic part is defined by

W F
aniso(J4, J5) =

µF
γ`

2

(
J5

J4

− J4

)αF
γ`

, (5.104)

which is a modified standard reinforcing model, compare Eq. (3.173). Therein, µF
γ`
≥ 0

is a longitudinal shear modulus and the exponent, αF
γ`
≥ 1, governs the nonlinearity of

the strain-energy function. Taking into account (3.93)3, it becomes apparent that the
term in brackets in Eq. (5.104) equals γ2

` , which points out that the energy term (5.104)
acts as a reinforcement solely against longitudinal shear. Figure 5.6a shows the effective
strain energies for longitudinal shear deformations with material parameters µF = 1,
µM = 10, µF

γ`
= 50, nF = 0.3, and αγ` = {1, 2, 4, 16}. For comparison, we also included

the Neo-Hookean fibre case (µF
γ`

= 0 such that W F
aniso = 0), for which the new estimate

and the Voigt bound are relatively close to each other. However, for the anisotropic fibre
case, the difference between the new estimate and the Voigt bound increases dramatically
with increasing nonlinearity (hence, increasing αF

γ`
) of the fibre. Actually, increasing the

exponent αF
γ`

from 2 upwards only causes moderate changes in the effective energy W̃ based
on the new estimate, whereas this is not the case for the Voigt bound, which tends to blow
up at high values of αF

γ`
. Furthermore, it is interesting to look at the associated evolutions

of the fibre shear strain γ̄F`, which are depicted in Figure 5.6b. The Voigt bound assumes
uniform deformations, i. e. γ̄F` = γ̄`, regardless of the stiffness of the phases. This entails

the extreme high values for the energy W̃Voigt for high values of αF
γ`

. For the Neo-Hookean
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Figure 5.7: Effective responses for composites with Gent-type fibres and matrix under the three different
shear modes. The material parameters are µF = 100, JF

m = 5, µM = 1, JM
m = 30, and nF = 0.3. a) Effective

energies for the second-order estimates W̃ and W̃ALP. b) The corresponding effective stresses.

case (µF
γ`

= 0), the fibre shear γ̄F` associated with the new estimate is given by means
of the explicit expression (C.24) and shown as blue solid line. For the anisotropic fibre
case, the fibre shear can be calculated from Eq. (C.23) by making use of the derivative
∂J5W

F
aniso of the considered J5-dependent energy in (5.104). From the associated curves in

Figure 5.6b, it can be observed that higher exponent values αγ` result in lower values for
γ̄F` at high overall longitudinal shear strains γ̄`.

5.5.2 Results for isotropic Gent-type matrix and fibre

In this section, we investigate composites that contain nonlinear phases exhibiting Gent-
type behaviour. Hence, by recalling the definition in Eq. (3.166), we assume a strain-energy
function

W α
µ (I1, J) = −J

α
m µ

α

2
ln

[
1− I1 − 3

Jαm

]
+
µα

2
(J − 1)(J − 3)− µα

Jαm
(J − 1)2 , (5.105)

As for the Delfino model, the logarithmic term in the J-dependent part Eq. (3.168) is
replaced by means of the Taylor expansion (3.170). We recall that the special characteristic
of the Gent model is that it locks up when I1 − 3 equals the lock-up parameter Jαm. Like
for the exponential energy given in (5.103), the Gent energy includes the Neo-Hookean
strain-energy function for the special case when Jαm → ∞. Figure 5.7 shows the effective
responses for composites consisting of Gent-type fibres and a Gent-type matrix under
axisymmetric, longitudinal, and transverse shear deformation. The material parameters
are µF = 100, JF

m = 5, µM = 1, JM
m = 30, and nF = 0.3. This case is very similar to

the one shown in Figure 5.2, except for the fact that the material now exhibits, due to
the Gent-type behaviour, highly nonlinear phases. The effective strain energies for the

second-order estimates W̃ and W̃ALP are presented in Figure 5.7a. The axisymmetric case
of the ALP estimate is identical to new estimate and not plotted explicitly. Further, the
Voigt bound is identical for all three shear modes and corresponds to the axisymmetric
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Figure 5.8: Comparison of analytical results and finite-element simulations of Moraleda et al. [341]
for composites with Gent-type matrix and Neo-Hookean fibres for pure shear deformations in the transverse
plane. The material parameters are µF = 2000 and µM = 1. Four different fibre volume fractions
nF = 0.1, 0.2, 0.3, 0.4 are considered. The legends are valid for both diagrams. a) Effective stresses in
loading direction of analytical second-order estimates and FEM results for a matrix lock-up parameter
JM

m = 50. b) Effective stresses in loading direction of analytical second-order estimates and FEM results
for a matrix lock-up parameter JM

m = 5.

mode, hence W̃V = W̃ (γ̄a, 0, 0). As observed in the previous cases, W̃ and W̃ALP differ
for transversal shear, since the ALP estimate is based on the GSO method of Lopez-
Pamies & Ponte Castañeda [299]. Moreover, it is interesting to observe that the
results for the longitudinal shear loading do no longer coincide. This can be traced to
the fact that the ALP estimate is for this deformation based on the earlier TSO method
proposed by Ponte Castañeda & Tiberio in 2000, whereas the new estimate is based
on the more recent TSO method proposed by Avazmohammadi & Ponte Castañeda
in 2013. Figure 5.7b presents the stress measures P̄ and P̄ALP associated to the effective
strain energies.

Next, we compare the analytical estimates for a Gent-type matrix with the FEM simu-
lations of Moraleda et al. [341]. We consider pure shear deformations in the transverse
plane and different fibre volume fractions. This scenario has already been investigated for
a matrix phase exhibiting a Neo-Hookean material behaviour, see Figure 5.3. Like before,
the FEM simulations of Moraleda et al. [341] assume monodispersed fibre sizes, such
that an exact one-to-one comparison with the analytical estimates is not possible. Fur-
ther, the fibres are still considered to be nearly rigid by assuming a Neo-Hookean energy
that exhibits, in comparison to the matrix, a 2000 times higher shear modulus, compare
Moraleda et al. [341]. These assumptions lead to the following material parameters:
µF = 2000 and µM = 1 and the fibre volume fraction, nF, is assumed to vary between
0.1 and 0.4. The comparison between the analytical and FEM approach are depicted
in Figure 5.8. Figure 5.8a shows the effective stresses for a matrix phase with lock-up
parameter JM

m = 50. Over the investigated range of deformation, the effective stresses of
the new estimate are almost identical to those obtained by using the ALP estimate. For
smaller fibre volume fractions, the two analytical estimates correspond well to the FEM
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Figure 5.9: Dependence of the new estimate W̃ on the invariant φ̄γ during coupled longitudinal and
transverse shear deformation with γ̄` = γ̄t = 1 for Gent-type phases and for different fibre volume
fractions and fibre shear moduli. The remaining material parameters are JF

m = 3, µM = 1, and JM
m = 3.

The effective energy is normalised to W̃ |φ̄γ=0.

results. The gap between those two estimates increases though with increasing volume
fractions. As previously mentioned, this difference may be due to the underlying Hashin–
Shtrikman-type estimates for the LCC. Figure 5.8b shows the effective stresses for a stiffer
matrix phase and a lock-up parameter JM

m = 5. The herein proposed new TSO estim-
ate agrees very well with the ALP estimate for small volume fractions, for instance, for
nF = 0.1, and significantly deviates for higher fibre volume fractions. Like in previous
studies, the effective stresses obtained from the analytical estimates and those from the
FEM simulations are very different for this scenario. However, the nearly rigid fibres, the
highly nonlinear matrix behaviour, and the incompressibility assumption for both phases,
pose big challenges not only for the analytical estimates but also for the numerical FEM
simulations. Nevertheless, one can observe that the new TSO estimate exhibits smooth
behaviour that is similar to the ALP (and, hence, GSO) estimate. It does not show any
unphysical behaviour.

5.5.3 The Ī2-φ̄γ-dependence of the overall energy for I2-independent phase
energies

As discussed in Section 5.3.2, the present TSO estimate for fibre-embedded composites
generally depends on four of the five macroscopic transversely isotropic invariants, so that

W̃ = W̃ (Ī1, Ī2, J̄4, J̄5) = W̃ (λ̄`, γ̄`, γ̄t, φ̄γ). This means that the effective strain energy W̃
depends for coupled longitudinal and transverse shear deformations on the macroscopic
Ī2-invariant (and thus on the coupling invariant φ̄γ). This is generally true even for phases
whose energies are independent of I2. In order to investigate this Ī2-φ̄γ-dependence in
more detail, we consider a fibre-embedded composite with matrix and fibre phases that
exhibit isotropic Gent-type behaviour. We consider four different fibre volume fractions,
nF = {0.1, 0.2, 0.3, 0.4}, and two different fibre stiffnesses, µF = {10, 100}. The remaining
material parameters are µM = 1 and JF

m = JM
m = 3. Further, a coupled shear deformation
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of γ̄` = γ̄t = 1.0 is applied. Figure 5.9 shows the corresponding effective energies W̃ (φ̄γ)

as a function of the coupling invariant φ̄γ, normalised with respect to W̃ |φ̄γ=0. The results

reveal that the influence of the overall energy on the φ̄γ-invariant depends on the phase
properties and the volume fractions. However, the Ī2-φ̄γ-dependence of the present TSO
estimate for Gent-type phase energies is rather weak. This observations agrees with results
by Agoras et al. [4] for estimates that are based on the GSO homogenisation method.
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6 Homogenisation of Fibrous Networks

A variety of materials can be modelled at the small-scale as a network of a large number
of single chains (or fibres) with a certain orientation in space. This is especially the case
for two material classes: Rubber-like materials with their underlying structure of polymer
chain networks and (soft) biological tissues which consist of certain collageneous network
structures and different types of collagen fibres. This chapter presents the basic concepts of
such network models and the associated homogenisation techniques required to obtain the
effective network responses. In this process, an important ingredient of network models
is the stochastical description of the orientation of the fibres or chains by means of a
probability density function. We will especially focus on scenarios where the orientation
leads to an overall behaviour of the network which belongs to the symmetry group of
transverse isotropy. Moreover, we recall that the overall goal in this thesis is the application
of the presented homogenisation methods to the modelling of collageneous (biological)
tissues. However, a lot of concepts for network models were derived in the context of rubber
elasticity and there is very little exchange between the research communities. Hence,
references for further reading are split between the two fields. In the context of rubber
elasticity, we refer to the seminal works of Treloar [482] and Deam & Edwards [90] as
well as to the works of Treloar [481], Treloar & Riding [483], and Wu & van der
Giessen [522] for details about full network models for polymers and rubber materials.
For further reading in the field of network models for collageneous tissues, we refer to the
fundamental works of Lanir [275, 276].

6.1 Fundamentals of network models

If a material has on the microscale a characteristic network-like structure consisting of
a large number of fibres or chains, the effective material behaviour on the macroscale
can be obtained from so-called network models. The basic idea of a network model is to
properly describe the mechanical behaviour and the micro-kinematics of a single fibre and
to compute the effective response of the whole network by applying appropriate averaging
and homogenisation techniques. In this process, the network model idealises the real
microstructure of the material by assuming that the fibres connect the origin of a unit
sphere, referred to as microsphere, with some point on the associated sphere surface, such
that the orientations of the fibres coincide with the ones in the real microstructure. This
results in a model as exemplary shown in Figure 6.1a. Subsequently, it proves useful
to introduce a unit vector r0 ∈ R3 which connects the two end points of a fibre in the
undeformed reference configuration. Doing so, it makes sense to describe the vector in
spherical coordinates, leading to

r0(Θ,Φ) = sin[Θ] cos[Φ] es
1 + sin[Θ] sin[Φ] es

2 + cos[Θ] es
3 . (6.1)

Therein, Θ ∈ [0, π) denotes the polar angle, Φ ∈ [0, 2π) is the azimuthal angle, and the es
i-

coordinate system (i = 1, 2, 3) represents a laboratory frame of reference, see Figure 6.1b.
It is easy to observe from (6.1) that |r0| =

√
r0 · r0 = 1. Now, it is essential to describe the

micro-kinematics of the vector r0 which is done by means of a general mapping operator
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Figure 6.1: a) Visualisation of a microsphere network model consisting of fibres/chains with certain
orientations in space. b) The spherical coordinate system and parametrisation of a space orientation,
defined by the referential vector r0, in the polar angle Θ and the azimuthal angle Φ.

Fr : r0 7→ r = Fr(r0) which yields the vector r in the actual configuration. In particular,
it is convenient to postulate the existence of a linear map

Fr(Θ,Φ) : r0 7→ r = Fr r0 , (6.2)

where the second-order tensor Fr(Θ,Φ) describes the micro-deformation of the referential
vector r0. Next, it is consequent to assign to each vector r0(Θ,Φ) a potential Wr. As
we focus on the purely hyperelastic case, we state that the potential is a function of the
micro-deformation Fr, such that Wr = Wr(Fr). At this point, it should be emphasised
that although the derivations in this section were based on the idea of a network made
of actual fibres or chains, the micro-kinematical description in Eq. (6.2) can be regarded
in a more general way as the description of the microscopic material behaviour in the
direction initially aligned with the vector r0. Hence, it serves as a general description
of a space orientation and does not necessarily have to be an actual fibre or chain. The
space orientation can be regarded as a tube-like segment aligned with the vector r0. If we
recall some basic kinematical relations from Sections 2.1.2 and 2.1.3, we can formulate the
microscopic deformation measures

λr = |r| = |Fr r0| , νr = |F−Tr r0| , υr = |cof[Fr]r0| , (6.3)

where the micro-stretch λr, compare also Eq. (2.17), describes the longitudinal stretch
of the tube-like segment, whereas νr and the area stretch υr quantify the cross-sectional
deformation of the tube. Those micro-kinematical measures are useful for the constitutive
formulation of strain-energy functions Wr, which is further addressed in Section 6.2.2.
However, we also note that if the space orientation shall describe the behaviour of an actual
fibre, the real fibre geometry is idealised by the vector r0 and the stretch λr describes the
end-to-end length and not the contour length of the fibre. This means that any further
geometrical information, such as the contour length or waviness of the fibre, has to be
accounted for through the constitutive formulation of the strain-energy function Wr.

The orientation density function The key idea of the network model is that the
orientations of the fibres in the idealised microsphere should be identical to the ones in the
real microstructure. Hence, there is a certain probability of finding the end point of a fibre
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on a specific point of the microsphere surface. Let this surface be denoted by Ω . Since
we further postulate that the number of fibres is large enough to assume a continuous
distribution of fibres in the microsphere, the orientation of the fibres can be described in
a statistical sense by means of an orientation density function (ODF) p(r0) = p(Θ,Φ).
The ODF describes the one-point probability that the vector r0 points to an infinitesimal
area element dΩ = sin[Θ] dΘ dΦ ∈ Ω of the microsphere surface Ω . Considering the
spherical coordinates and the periodicity of the angles Θ and Φ, the ODF has to satisfy
the conditions

p(r0) = p(−r0) and p(Θ,Φ) = p(Θ + nπ,Φ) = p(Θ,Φ + 2nπ) (6.4)

with n ∈ N . These conditions suggest that the field of directional (or spherical) statistics
has to be consulted and that the ODF has to be defined in terms of bivariate spherical
probability functions, see, for example, Mardia & Jupp [310]. Some basics on directional
statistics are also provided in Appendix B.2. Next, it makes sense to introduce a continuous
averaging operator over the microsphere surface, reading

〈
(·)
〉
Ω

:=

∫

Ω

p(Θ,Φ) (·) dΩ with

∫

Ω

(·) dΩ =

∫ 2π

0

∫ π

0

(·) sin[Θ] dΘ dΦ . (6.5)

It is consequent to formulate a normalisation condition for the ODF, requiring that

〈
1
〉
Ω

=

∫

Ω

p(Θ,Φ) dΩ = 1 . (6.6)

Note that this can be regarded as a continuous version of the saturation condition formu-
lated in Eq. (4.23)2. For completeness, it is further remarked that the ODF can also be
chosen as a Dirac Delta function with a certain number of masses, which means that the
continuous fibre distribution degenerates to a discrete number of fibres. This procedure
would lead to classical discrete chain models that are used in polymer mechanics, such
as the three-chain models by James & Guth [247] and Wang & Guth [505], the four-
chain model by Flory & Rehner [131] and Treloar [480], or the eight-chain models
by Arruda & Boyce [13] and Kroon [266], see also Beatty [28].

Effective network response: Variational energy minimisation Having defined
the micro-energy Wr(Fr) and the averaging operator (6.5), the averaged stored energy in
the microsphere is obtained as ΠΩ = 〈Wr(Fr)〉Ω . Then, in direct analogy to Section 4.3.3,
we demand that the micro-deformations Fr are such that ΠΩ is minimised. Hence, the
effective energy W̄ is defined in terms of the variational minimisation problem

W̄ (F̄ ) = min
Fr

{〈
Wr(Fr)

〉
Ω

}
. (6.7)

Further, the micro-deformations are linked to the macroscopic deformation gradient via

F̄ =
〈
Fr
〉
Ω
, (6.8)

which is a continuous version of the overall average deformation condition (4.32). Accord-
ing to Govindjee et al. [170], it is useful to formulate the variational problem (6.7) in
terms of the Lagrange functional

L (Fr,Pr) =
〈
Wr(Fr)

〉
Ω

+Pr ·
(
F̄ −

〈
Fr
〉
Ω

)
(6.9)
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where the second-order tensor Pr contains nine scalar Lagrange multipliers that enforce
condition (6.8). While the stationarity condition of L with respect to Pr simply results
in Eq. (6.8) (as expected), an interesting result appears for the stationarity condition of
L with respect to the micro-deformations Fr, which reads

∂FrL =
〈
∂FrWr(Fr)

〉
Ω
−Pr = 0 → Pr =

〈
∂FrWr(Fr)

〉
Ω

(6.10)

The last expression seems to be a reasonable formulation for the macroscopic first Piola–
Kirchhoff stress, as it depicts the average of the microscopic first Piola–Kirchhoff stresses

Pr := ∂FrWr(Fr) . (6.11)

As a matter of fact, it is easy to show that the Lagrange multiplier tensor Pr represents the
macroscopic stress tensor P̄ = ∂F̄ W̄ by utilising the derivative of Eq. (6.8) with respect
to F̄ , giving I = 〈∂F̄Fr〉Ω , and assuming that F ∗r is a solution for the variational problem.
With that, we can formulate

P̄ = ∂F̄ W̄ =
〈
∂F̄Wr(F

∗
r )
〉
Ω

=
〈
(∂F̄F

∗
r )T∂F ∗r Wr(F

∗
r )
〉
Ω

=
〈
(∂F̄F

∗
r )T

〉
Ω
Pr = Pr . (6.12)

In addition to the work of Govindjee et al. [170], an attempt to formulate an effective
network energy on the basis of a minimisation principle as formulated in (6.7) was made
by Chen et al. [76] for the modelling of collageneous tissue. However, instead of a con-
tinuous fibre distribution, they proceeded from a discrete number of fibres and formulated
an estimate in terms of a TSO homogenisation approach. Moreover, Miehe et al. [329]
formulated a variational minimisation principle for the scalar fluctuations of the stretch
λr and the tube contraction νr on the surface Ω . This elegant model is known as the
non-affine microsphere model. Finally, an energy relaxation based on a so-called maximal
advance path constraint was formulated by Tkachuk & Linder [477].

6.2 Affine network model

The variational minimisation problem in Eq. (6.7) generally leads to non-uniform micro-
scopic deformations Fr. Alternatively, one can apply an affinity assumption, Fr = F̄ , such
that each vector r0 experiences the macroscopic deformation. This leads to the affine map

F̄ : r0 7→ r = F̄ r0 . (6.13)

With this, the micro-deformation measures from Eqs (6.3) can be reformulated to

λ̄r = |r| = |F̄ r0| , ν̄r = |F̄−T r0| , ῡr = |cof[F̄ ]r0| . (6.14)

Further, the effective network energy is directly given as

W̄V(F̄ ) =
〈
Wr(F̄ )

〉
Ω

(6.15)

by means of a simple averaging of the fibre energies over the microsphere surface Ω .
We recall from Section 4.3.5 that W̄V denotes the Voigt estimate, which arises from the
assumption of uniform micro-deformations. As stated before, the Voigt estimate is an
upper bound for the effective behaviour, but serves as a reasonable prediction if the affinity
assumption is justified, for example, by experimental observations.
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Ī1 Ī2 Ī3

λ̄r = |F̄ r0| 3〈λ̄2
r〉Ω◦ 3J̄3〈λ̄−5

r 〉Ω◦ 〈λ̄−3
r 〉−2

Ω◦

ν̄r = |F̄−T r0| 3J̄−1〈ν̄−5
r 〉Ω◦ 3J̄2〈ν̄2

r 〉Ω◦ 〈ν̄−3
r 〉2Ω◦

ῡr = |cof[F̄ ]r0| 3J̄4〈ῡ−5
r 〉Ω◦ 3〈ῡ2

r 〉Ω◦ 〈ῡ−3
r 〉−1

Ω◦

Table 6.1: Link between the microscopic deformation measures λ̄r, ν̄r and ῡr and the macroscopic prin-
cipal invariants for isotropic network models.

6.2.1 Closed-form integral forms for isotropic networks

Although we focus in this thesis on non-uniform fibre distributions, we briefly discuss
the special case when the fibres are distributed in a uniform manner. For this scenario,
the distribution function simplifies to the constant value p = 1/(4π) and the associated
averaging operation, defined in Eq. (6.5), can be formulated as

〈
(·)
〉
Ω◦

:=
1

4π

∫

Ω

(·) dΩ =
1

4π

∫ 2π

0

∫ π

0

(·) sin[Θ] dΘ dΦ such that
〈
1
〉
Ω◦

= 1 . (6.16)

With this, together with Eq. (6.1), it is easy to show that
〈
r0

〉
Ω◦

= 0 and
〈
r0 ⊗ r0

〉
Ω◦

= 1
3
I . (6.17)

These results further emphasise that a uniform fibre network does not have any preferred
orientation and depicts the prime example for spherical symmetry. Consequently, as dis-
cussed in Section 3.5.3, the symmetry group of the overall material behaviour is identified
as MG = O(3) and the effective material response becomes isotropic and invariant with
respect to any rotations Q ∈ O(3). Any such rotation only leads to a rotated frame of
reference, es∗

i = Qes
i, which has no effect on the results of effective quantities computed

from the averaging operation in Eq. (6.16). Moreover, it can be shown that the three
macroscopic principal invariants of the isotropic set I I

iso can be obtained by averaging
operations of the micro-deformation measures which are given in (6.14). Such relations
were first introduced by Kearsley [251] for Ī1 and Ī2 and later generalised by Carol
et al. [73], amongst others. An overview is provided in Table 6.1.

6.2.2 Fibre energies and associated network response

So far, the microscopic energy Wr of a single fibre (or space orientation) was assumed to be
a general function of the micro-deformation Fr. In this section, we provide further results
and comment on cases where the energy Wr is a function of the deformation measures
formulated in Eq. (6.14).

Formulations based on the stretch λ̄r The majority of formulations for Wr is based
on the assumption that the energy is a function only of the stretch λ̄r, such that Wr(Fr) =
Wr(λ̄r). This is an appropriate formulation under the assumption that a fibre or a chain
shows a one-dimensional spring-like mechanical behaviour. The one-dimensional character
becomes clear by formulating the stress tensor Pr associated with a single fibre, given by

Pr = ∂FrWr(λ̄r) =
Pr(λ̄r)

λ̄r
r⊗ r0 where Pr(λ̄r) = ∂λ̄rWr(λ̄r) . (6.18)
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Therein, use was made of chain rule and the derivative ∂Frλ̄r = λ̄−1
r F̄ r0 ⊗ r0 = λ̄−1

r r⊗ r0.
Further, Pr denotes a scalar nominal stress. With (6.18), we see that Pr is associated with a
nominal traction vector Pr r0 = λ̄−1

r Pr(λ̄r)r, whereas Pr r
⊥
0 = 0, with r0·r⊥0 = 0. This means

that a stretch-dependent fibre energy Wr(λ̄r) does not induce any stress contributions
transverse to the vector r0. Furthermore, the fourth-order elasticity tensor of a single fibre
is obtained as

Lr = ∂2
FrFr

Wr(λ̄r) =
(Lr(λ̄r)

λ̄2
r

− Pr(λ̄r)

λ̄3
r

)
r⊗ r0 ⊗ r⊗ r0 +

Pr(λ̄r)

λ̄r
(I ⊗ r0 ⊗ r0)T23 (6.19)

where Lr(λ̄r) = ∂λrPr(λ̄r) = ∂2
λ2r

Wr(λ̄r) denotes a scalar nominal stiffness modulus. Note

that the results in Eqs (6.18) and (6.19) can be generalised to non-affine deformations by
simply replacing λ̄r by λr from Eq. (6.3)1 and taking r from the general map in Eq. (6.2).
Next, we formulate the macroscopic first Piola–Kirchhoff stress tensor P̄V associated with
the energy W̄V from (6.15), giving

P̄V = ∂F̄ W̄V =
〈
Pr
〉
Ω

=
〈Pr(λ̄r)

λ̄r
r⊗r0

〉
Ω

= F̄ S̄V with S̄V =
〈Pr(λ̄r)

λ̄r
r0⊗r0

〉
Ω
. (6.20)

Therein, the notation in terms of the second Piola–Kirchhoff stress tensor S̄V is obtained
by noting that, with r⊗ r0 = F̄ r0 ⊗ r0, it is possible to pull the affine deformation F̄ in
front of the averaging operator 〈(·)〉Ω . This step is very useful, as S̄V and the associated
tensor base r0 ⊗ r0 are symmetric and only require to carry out a double integral for
six coefficients, while the non-symmetric tensor base r ⊗ r0 entails a double integral for
each of the nine coefficients. Moreover, note that an averaging operation 〈r0⊗ r0〉Ω solely
applied to the structural-tensor-like dyadic product r0 ⊗ r0 would lead to formulations
that are in line with the orientation tensors introduced by Advani & Tucker III [3] and
thereon based models by Freed et al. [137] and Gasser et al. [151]. However, it has
to be remarked that such a preintegration of the orientations generally does not lead to
the same results than the original integration in (6.20) due to the disregarded coupling
with the non-constant factor Pr(λ̄r)/λ̄r. Next, the macroscopic nominal elasticity tensor
is obtained as

L̄V = ∂F̄ P̄ =
〈
Lr

〉
Ω

=
〈(Lr(λ̄r)

λ̄2
r

−Pr(λ̄r)
λ3
r

)
r⊗r0⊗r⊗r0+

Pr(λr)

λ̄r
(I⊗r0⊗r0)T23

〉
Ω
, (6.21)

We recall that the nominal elasticity tensor is major symmetric and contains 45 independ-
ent coefficients, see Table A.2, which means that 45 double integrals have to be carried
out in expression (6.21). However, as for the nominal stress, it is possible to reduce this
number by employing Eq. (3.114) and computing L̄V from its material counterpart

C̄V = ∂C̄S̄V =
〈(Lr(λ̄r)

λ̄2
r

− Pr(λr)

λ3
r

)
r0 ⊗ r0 ⊗ r0 ⊗ r0

〉
Ω
. (6.22)

This fourth-order tensor is total symmetric and only contains 15 independent coefficients.
Hence, the computation of L̄V by means of Eq. (3.114) only requires to carry out 15
additional double integrals, if we further assume that S̄V is already known from the stress
computation.
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It can be seen that making a specific choice for the energy Wr(λ̄r) enters the derived
stress and stiffness tensors in terms of the scalar derivatives Pr(λ̄r) and Lr(λ̄r). Further, the
energy Wr(λ̄r) can be obtained in very different ways. Of course, it is possible to directly
employ well-known constitutive relations, such as the quadratic potential formulated in
Eq. (3.174). Yet, also any J4-based strain-energy function can be applied by noting that
we can formulate a respective measure J̄4r = λ̄2

r for each fibre. Hence, one can also em-
ploy the J4-dependent standard reinforcing model (3.173) or the exponential energy from
Eq. (3.175). More such functions can be found in the review paper of Chagnon et al.
[74]. Moreover, apart from defining the energy Wr in a constitutive way, it is also possible
to derive it from further microstructural considerations and bottom-up approaches. For
example, Buehler [63], Grytz & Meschke [172] and Maceri et al. [306] obtained
the energy of single collagen fibres by setting up detailed small-scale models and carrying
out further homogenisation steps. It this process, it is interesting to note that the elasti-
city of single fibres (in collageneous tissue) or chains (in polymers) at small scales is often
of entropic nature. Hence, if we write the strain energy as

Wr = ρr0ψr = ρr0(εr − θηr) , (6.23)

we see that changes of Wr can be caused by the internal energy εr, leading to energetic
elasticity, or the entropy ηr, leading to entropic elasticity. Models for the latter are usually
based on the idea that a single chain consists of multiple segments, the so-called Kuhn
segments. Subsequently, conformation changes of the chain are described by means of
statistical mechanics and lead to an entropic response. If the segments are rather aligned,
one arrives at the worm-like chain model by Kratky & Porod [261] and its development
by Marko & Siggia [315], which has been used for polymers as well as for proteins
and collageneous tissues. If one rather assumes that the chain forms a random coil and
the segments are thought to be freely joined with each other, one commonly proceeds
from an entropy prescription ηr = k ln[p], where k is the Boltzmann constant and p is
a probability which is usually described in terms of the Gaussian statistics by Kuhn
[268, 269] or the Langevin statistics by Kuhn & Grün [270] and James & Guth [247].
For instance, the Gaussian approach, with p = p0 exp[−3λ̄2

r/2] and εr = 0, leads to
Wr(λ̄r) = 3nkθλ̄2

r/2 + W0, where p0 is a normalisation constant, n is the number of chains
and W0 is a constant energy. Interestingly, with Table 6.1, we see that the associated
effective energy in a uniform network is found as W̄V(I1) =

〈
Wr

〉
Ω◦

= nkθI1/2 + W̄0,

see also Treloar [479]. Then, with a proper choice for W̄0 such that W̄V normalises
properly and setting µ = nkθ, we see that the effective network response is identified
as the Neo-Hooke energy from Eq. (3.159). However, the single material parameter µ is
in this context not just a simple calibration parameter, but has a clear micromechanical
meaning and constitutes the product of the number of chains in a unit volume, Boltzmann
constant and absolute temperature. Similar relations can also be found for other analytical
strain-energy functions from Section 3.8.3. For instance, Horgan & Saccomandi [229]
commented on the micromechanical meaning of the Gent function, given in Eq. (3.166),
whereas Ehret [111] generalised these considerations to the Ogden-type materials.

Formulations based on the stretch λ̄r and the area stretch ῡr If the fibre energy
Wr is in addition to the stretch λ̄r also dependent on the area stretch ῡr, we obtain
Wr(Fr) = Wr(λ̄r, ῡr). With this, it is possible to formulate fibre energies in line with
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the tube models by Heinrich & Straube [195], Heinrich et al. [196], Heinrich &
Kaliske [194], and Edwards & Vilgis [105]. In those approaches, the ῡr-dependent
energy terms account for so-called tube-like topological constraints, which are based on the
assumption that the deformation of a single fibre may be restricted by the deformation
of neighbouring fibres. The tube constraint is a very important ingredient for meaningful
network models of rubber elasticity and was applied by, for example, Miehe et al. [329]
and Mistry & Govindjee [337]. However, it may also be an interesting approach in
modelling collageneous tissue. Further, an interesting observation can be made if the
fibre energy based on Gaussian statistics from the previous section is added a similar
contribution for the area stretch ῡr, which subsequently will lead to a quadratic potential in
the area stretch ῡr. With Table 6.1, it can be seen that the associated effective response for
a uniform network will contain an additional dependence on the macroscopic Ī2-invariant
and leads to formulations reminiscent of the Mooney-Rivlin strain-energy function by
Mooney [340] and Rivlin & Saunders [404]. Further details can be found in the
article of Fried [140].

Formulations based on the stretch λ̄r and the Jacobian J̄ In addition to the
deformation measures formulated in Eqs (6.3) and (6.14), one can also define a micro-
Jacobian Jr = det[Fr] which describes the volume change of the tube-like segment aligned
with the vector r0. In an affine network, the micro-Jacobian is equal to the Jacobian
associated with the macroscopic deformation gradient and becomes independent of the
orientation of r0, such that Jr = J̄r = J̄ = det[F̄ ]. In the classical works on rubber
elasticity by Wall & Flory [498] and Flory [129, 130], it was explained that a J̄-
dependent contribution to Wr accounts for the energetic elasticity in the network and
supplements the entropic description of single chains. In the context of a Gaussian chain
description, it was outlined by Boyce & Arruda [58] and Bischoff et al. [38] that
such a contribution results at the macroscale in a logarithmic energy term reminiscent of
the one given Eq. (3.160). Bischoff et al. [37] explained that this can be interpreted
as a repulsion term which accounts for interchain repulsive forces. While the λ̄r- and
J̄-dependent energy contributions have in such a formulation an additive characteristic,
such that Wr(λ̄r, J̄) = W λ

r (λ̄r) + W J
r (J̄), it is also possible to formulate an multiplicative

coupling by employing the deviatoric energy

Wr(F̆r) = Wr(λ̆r) with λ̆r = J̄−1/3λ̄r (6.24)

This form directly follows from the deviatoric-volumetric split explained in Section 3.7.2.
The dependence on the isochoric part of the deformation may be motivated through mi-
cromechanical considerations, which is often the case in rubber elasticity by referring to
the work of Flory [129], or may just represent a constitutive assumption. In any case, it is
interesting to formulate the stress tensor of a single fibre resulting from the energy (6.24),
reading

Pr(λ̆r) = ∂FrWr(λ̆r) = P̆r(λ̆r)J̄
−1/3

(
λ̄−1
r r⊗ r0 − 1

3
λ̄r F̄

−T ) where P̆r(λ̆r) = ∂λ̆rWr(λ̆r) .
(6.25)

It is easy to see that the traction transverse to r0 is Pr r
⊥
0 = −P̆rJ−1/3λ̄rF̄

−T r⊥0 /3 6= 0,
which means that the fibre stress in Eq. (6.25) does not have a one-dimensional charac-
teristic. This is in contrast to the stretch-based formulation in Eq. (6.18). Therefore,
Sansour [417] and Helfenstein et al. [197] commented that the energy (6.24) based
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on the deviatoric stretch is not appropriate to model a one-dimensional spring-like fibre
behaviour. However, the transverse stress contributions could also be thought as (desired)
reaction stresses necessary to maintain that the tube-like segment enclosing a fibre (which
may represent a surrounding fluid medium) experiences no hydrostatic pressure, since it
holds that pr = −J̄−1Pr · F̄ /3 = 0, compare Eq. (3.29).

6.3 Transversely isotropic networks models

In this section, we investigate the special case of a homogeneous fibre distribution in the
azimuthal direction Φ. To do so, we postulate that the ODF is split into two terms,
reading

p(Θ,Φ) = pΘ(Θ) pΦ(Φ) , (6.26)

where pΘ(Θ) and pΦ(Φ) depict univariate probability functions for the fibre distribu-
tion in the polar and the azimuthal direction, respectively. Both the probability func-
tions have to be periodic in their respective argument, hence, pΘ(Θ) = pΘ(Θ + nπ) and
pΦ(Φ) = pΦ(Φ + 2nπ), with n ∈ N . Such periodic functions can be constructed from any
standard univariate probability function by formulating the associated wrapped probab-
ility functions, such as exemplary shown for π- and 2π-periodic functions in Eqs (B.33)
and (B.30), respectively. However, the special case of a homogeneous distribution in azi-
muthal direction simplifies pΦ to the constant value

pΦ =
1

2π
. (6.27)

For completeness, we note that the averaging operation and the normalisation condition
for the remaining polar contribution of the ODF then read

〈
(·)
〉
Ω

=
1

2π

∫

Ω

pΘ(Θ) (·) dΩ and

∫ π

0

pΘ(Θ) sin[Θ] dΘ = 1 , (6.28)

where the last relation directly follows from Eqs (6.6) and (6.26). Obviously, the homogen-
eous azimuthal fibre distribution entails that the orientation of the es

1- and es
2-directions in

the laboratory frame of reference becomes completely arbitrary. Hence, we can identify a
rotational symmetry around the es

3-axis and observe that the use of any coordinate system
es∗
i = QΦ

es3
es
i, with Φ ∈ [0, 2π), is equivalent and will not change anything in the material

behaviour of the network. This suggests that the material response becomes transversely
isotropic with es

3 being a preferred direction. In fact, it is known from Section 3.5.4 that
rotational symmetry represents one of the five types of transverse isotropy and it is easy to
show that the network with homogeneous azimuthal fibre distribution satisfies the other
four types as well. For example, symmetry with respect to a two-fold axis transverse to es

3

requires that the material behaviour must not change if the preferred direction is rotated
by Qπ

es⊥3
es

3 = −es
3, where the definition of Qπ

es⊥3
follows from Eq. (3.80). This symmetry

is immediately fulfilled because we demanded pΘ(Θ) = pΘ(Θ + nπ) which still implies
the symmetry pΘ(r) = pΘ(−r), see also Eq. (6.4). Concluding, the network model with
homogeneous fibre distribution in azimuthal direction belongs to the transversely isotropic
symmetry group

MGti = {QΦ
es3
,Qπ

es⊥3
,−I | 0 ≤ Φ < 2π} ⊂ O(3) . (6.29)
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As a consequence, the effective network behaviour, such as the energy W̄V, becomes a
function of the macroscopic right Cauchy–Green tensor C̄ and a structural tensor M̄ =
ā0 ⊗ ā0, where the macroscopic preferred direction ā has to be collinear with the es

3-axis
of the laboratory frame of reference. Furthermore, any of the invariant sets introduced in
Section (3.5.4) can be used as a proper integrity basis for the two macroscopic argument
tensors. Yet, as for the TSO estimate in Section 5.3.2, the two invariant sets I ı

ti and I 
ti

are particularly useful, because they allow the formulation of generic deformation gradients
F̄ ı and F̄  as defined in Eq. (3.95) and (3.100), respectively. The two generic tensors are
each defined in coordinate systems eıi and ei (i = 1, 2, 3) in which eı3 and e3 are aligned
with the preferred direction of the material. Hence, F̄ ı and F̄  are perfectly aligned with
the es

i-coordinate system of the transversely isotropic network and can directly be used for
the fibre map in Eq. (6.13). Choosing invariant set I ı

ti, the vector r can then be written
as

r(I ı
ti; Θ,Φ) = F̄ ı(I ı

ti) r0(Θ,Φ) = λ̄t sin[Θ] cos[Φ] es
1 + sin[Θ](λ̄t sin[Φ] + γ̄t cos[Φ]) es

2

+ λ̄` cos[Θ] + γ̄` sin[Θ] cos[Φ− ψ̄γ] es
3 .

(6.30)
Subsequently, it is possible to formulate the deformation measures from Eq. (6.14) in terms
of macroscopic invariants. For instance, the stretch of the vector r0 reads

λ̄r(I
ı
ti; Θ,Φ) = λ̄r(λ̄`, λ̄t, γ̄`, γ̄t, ψ̄γ; Θ,Φ)

=
{
λ̄2

t sin2[Θ] cos2[Φ] + (λ̄t sin[Θ] sin[Φ] + γ̄t sin[Θ] cos[Φ])2

+ (λ̄` cos[Θ] + γ̄` sin[Θ] cos[Φ− ψ̄γ])2
}1/2

,

(6.31)

Hence, the stretch of the vector r0(Θ,Φ) can directly be expressed in terms of macroscopic
strain invariants. Note, a vector r(I 

ti) and the thereon based stretch λ̄r(I

ti) can be derived

in direct analogy. Further, if the fibre energy Wr(λ̄r) is a function of the fibre stretch, the
associated stress tensor of a single fibre with respect to a general deformation F̄ reads

Pr(I
ı
ti; Θ,Φ) = ∂F̄ W̄r(I

ı
ti) = Pr(λ̄r)

∑

Iı∈I ı
ti

{∂Iıλ̄r ∂F̄Iı} . (6.32)

Therein, each of the five summands consists of a scalar-valued derivative ∂Iıλ̄r and a tensor
base ∂F̄I

ı, where Iı ∈ I ı
ti. Explicit relations for the five tensor bases can be found in de-

Botton et al. [92] and Bleiler et al. [44]. They account for the procedure of rotating
a general deformation F̄ , together with the knowledge of the preferred direction ā0, into
the appropriate coordinate system of the generic tensor F̄ ı. Further, if the invariant set
I I

ti is used to describe the energy, such that W̄V = W̄V(I I
ti ), one might need to conduct

further applications of the chain rule when carrying out the derivatives ∂IıI
I for II ∈ I I

ti

and Iı ∈ I ı
ti. Yet, they can be straightforwardly derived from Eqs (3.96). Finally, note

that further relations for the invariant-based formulations, such as the effective stress P̄V

or the elasticity tensor L̄V, defined in Eqs (6.20) and (6.21), can be derived from Eq. (6.32)
and further derivations by carefully addressing the required chain rules.

6.4 Numerical quadrature over the sphere

The computation of the effective network response requires to carry out the double in-
tegrals associated with the continuous averaging operator 〈(·)〉Ω , given in Eq. (6.5). Due
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to the possibly highly nonlinear behaviour of single fibres and non-uniform distribution
functions p, it is in general not possible to obtain closed-form solutions of the integrals.
Respectively, analytical results may only be found if confining attention to some special
cases, such as done by Itskov et al. [245] by restricting to an isotropic network model
for which the averaging operator simplifies to 〈(·)〉Ω◦ , see Eq. (6.16). However, in gen-
eral the integrals have to be carried out by means of numerical quadrature schemes, which
means that the continuous averaging operation is approximated by a sum of discrete values
evaluated at NΩ points on the microsphere surface Ω , giving

〈
f(r)

〉
Ω

=

∫

Ω

f(r) dΩ =

∫ π

0

∫ 2π

0

f(r) sin[Θ] dΦ dΘ ≈
NΩ∑

i=1

wi f(ri) , (6.33)

Therein, wi (i = 1, . . . , NΩ) are NΩ scalar weighting factors and ri are the associated
discrete space orientation vectors. In order to be consistent with the normalisation condi-
tions (6.16)2 and (6.17), they have to satisfy1

1

4π

NΩ∑

i=1

wi = 1 ,

NΩ∑

i=1

ri = 0 ,
1

4π

NΩ∑

i=1

wi r
i ⊗ ri = 1

3
I . (6.34)

The appropriate choice of weighting factors wi and space orientations ri is a decisive aspect
for meaningful implementations of network models in a numerical setup. An insufficient
number of quadrature points or an inappropriate scheme may lead to critical inaccuracies
of the results, which was explained in detail in the studies of Verron [493] and Itskov
[242]. It can further lead to spurious material anisotropies, see Ehret et al. [113]. In
theory, the accuracy of the quadrature can be guaranteed by employing adaptive schemes
in connection with an appropriate choice of numerical tolerance values. However, adaptive
methods are not optimal when it comes to computational costs and efficiency. Thus,
general applications rather demand for reliable and fast non-adaptive quadrature schemes.
A variety of different weighting and point sets has been used for microsphere models.
For instance, Miehe et al. [329] used an integration scheme by Baz̆ant & Oh [26]
with NΩ = 42 and obtained good results for their isotropic network model (hence, if the
averaging operator reduces to 〈(·)〉Ω◦). Alastrué et al. [7] observed that the scheme of
Heo & Xu [200] with NΩ = 368 is sufficient also for highly anisotropic fibre distributions.
In general, it is particularly useful to employ quadrature schemes that offer a variable
number of integration points and allow to refine the discretisation if needed. For instance,
the very useful family of Lebedev points by Lebedev [279] and Lebedev & Laikov [280]
offers discretisations from NΩ = 6 up to NΩ = 5810. Figure 6.2 exemplary shows the
quadrature points for four different discretisations with NΩ = {6, 50, 230, 770}. Therein,
the values for OL refer to the degree of spherical harmonics which can be solved exactly
with the respective number of points. The finest discretisation, with NΩ = 5810, is

1Note that slightly different formulations may be found in the literature for Eqs (6.34)1 and (6.34)3, which
is due to the fact that the ODF p is required in this work to normalise according to Eq. (6.6). In contrast,
other works may proceed from a normalisation factor 1/(4π) in front of the integral in Eq. (6.5), such

that 〈(·)〉Ω := 1
4π

∫
Ω
p(Θ,Φ) (·) dΩ . Consequently, with the quadrature 〈f(r)〉Ω ≈

∑NΩ

i=1 wif(ri) and as

Eq. (6.6) becomes 〈1〉Ω = 1
4π

∫
Ω
p(Θ,Φ) dΩ = 1, conditions (6.34)1 and (6.34)3 transform to

∑NΩ

i=1 wi = 1

and
∑NΩ

i=1 wi r
i ⊗ ri = I/3, respectively.
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Figure 6.2: Lebedev-type quadrature points for different discretisations of the microsphere surface Ω .
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Figure 6.3: Sloan–Womersley-type quadrature points for different discretisations of the microsphere sur-
face Ω .

able to exactly solve spherical harmonics up to a degree of OL = 131. An additional
advantage of the Lebedev points is that they are invariant with respect to octahedral
rotations of the microsphere. This is beneficial if certain symmetries of the functions to be
integrated shall be exploited. For example, due to the symmetry of the ODF, formulated
in Eq. (6.4), it suffices to perform the integration on one half-sphere and double the
results. The arrangement of the Lebedev points on the surface of the microsphere easily
allows to account for this property. Moreover, an alternative family of quadrature points
was proposed by Womersley & Sloan [521] and Sloan & Womersley [446]. The
Sloan–Womersley points range between NΩ = 4 in the coarsest version and NΩ = 27556
in the finest one. Four different discretisations, NΩ = {9, 49, 256, 784} are visualised in
Figure 6.3. Therein, OS refers to the ability of the discretisations to integrate spherical
polynomials of degree OS exactly. The finest version with NΩ = 27556 is associated
with OS = 165. Unfortunately, the Sloan–Womersley points do not share the convenient
symmetry properties with the Lebedev points. In summary, both the Lebedev and the
Sloan–Womersley points represent excellent tools for a reliable and efficient numerical
integration of the integrals arising in a network model.
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7 The Multiscale Muscle Model

This chapter presents a microstructurally-based, two-phase, multiscale model for skeletal
muscle tissue. The aim of the model is to provide the macroscopic strain energy on the
basis of a detailed description of the mechanically relevant parts of the microstructure. The
key feature of the multiscale model is that it does not require any constitutive assumptions
or calibration on the macroscale. Many of the topics discussed in the previous chapters are
used to derive the model, in particular the explanations on multiscale methods in Part II.
Note that this chapter only provides the most necessary basic knowledge of the anatomical
and physiological structure of skeletal muscles. For a more general introduction to the topic
the interested reader is referred to the comprehensive textbooks of Schmalbruch [419],
MacIntosh et al. [308], Lieber [285], or other suitable literature on anatomy.

We remark that parts of this and the following chapter have previously been published
in Bleiler et al. [44].

7.1 A two-phase model for skeletal muscle tissue

A human body (and that of others, such as animals) contains three different muscle types,
which are the skeletal muscles, the cardiac muscle (the heart) as well as the smooth
muscles. We focus on skeletal muscles, which are a very important component of the body
and have the primary task of generating force and enabling (voluntary) movement. This
is based on their ability to actively contract as a response to neural stimulations. Due to
their various tasks in the body, different skeletal muscles show a great diversity in size and
shape. One could say that they reflect the architectural principle form follows function.
However, despite this diversity, different skeletal muscles are basically built the same way.
Inside the highly heterogeneous microstructure of skeletal muscle tissue, two structural
components are mainly responsible for the mechanical characteristics of the overall mater-
ial behaviour: (i) the muscle fibres, which are the muscle cells and contain the sarcomeres
(the activatable units), and (ii) the extracellular matrix (ECM), which contains the colla-
geneous (connective) tissues with various types of collagen fibres and other proteins like
elastin. The ECM is in the literature also referred to as intramuscular connective tis-

macroscale

homogenisation

ef3
ef2

ef1

muscle fibre BF
0

ECM BM
0

collagen fibres

microscale

RVE

P̄

Figure 7.1: Multiscale scheme for the microstructurally-based modelling of skeletal muscle tissue.
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sue (IMCT). The muscle fibres are responsible for the excitable (active) behaviour of the
muscles, while the extracellular matrix and the collagen fibres contained therein ensure
passive stiffness and stability. The extracellular matrix is organised in three different col-
lageneous layers which cover different parts of the muscle tissue. The endomysium coats
individual muscle fibres, whereas the perimysium envelops the muscle fascicles, which are
bundles of multiple muscle fibres. Finally, the entire surface of the muscle is covered by
the epimysium. This constitutes a clear hierarchical structure across the different length
scales of skeletal muscle tissue. The aim is now to describe the material at a macroscopic
material point P̄ by means of a strain-energy function W̄ . As before, the material point
is parametrised by the referential position vector X̄. We assume that the thick outermost
collageneous layer, the epimysium, must be considered as a macroscopic heterogeneity (de-
pendent on the macroscopic position X̄) and should not enter the material description for
muscle tissue at the point P̄. On the other hand, muscle fibres as well as the endomysial
and perimysial layers appear at much smaller length scales and are regarded as micro-
scopic heterogeneities. Thus, we propose a two-phase model for skeletal muscle tissue and
postulate that the reference configuration, B0, of the material consists of a muscle fibre
phase BF

0 and an extracellular matrix phase BM
0 . Together with a saturation condition,

compare Eq. (4.10), we can formulate1

B0 =
⋃

α

Bα0 = BF
0 ∪ BM

0 with α = {F,M} . (7.1)

The associated multiscale scheme of the two-phase model is visualised in Figure 7.1. In
the following, we provide some further explanations and modelling assumptions regarding
this multiscale approach.

7.1.1 The length scales and the representative volume element

The multiscale approach shown in Figure 7.1 requires a meaningful definition of the in-
dividual scales. However, this is not easy when dealing with biological tissues and the
associated variability in the material structure. This is already evident in the definition
of the macroscopic length scale, which describes the size of the entire muscle. Without
including other muscle types like smooth and cardiac muscles, the human body contains
about 650 skeletal muscles (mostly occurring in pairs). The largest ones are the latissimus
dorsi and the gluteus maximus muscle, which have lengths in the range of decimetres
(10−1 m). In contrast to this, the stapedius muscle in the ear, which is the smallest, is
less than a millimetre (10−3 m) in size. This means that the macroscopic length scale
already shows variations of two orders of magnitude. However, it is assumed that the
macroscopic variability is to some extent associated with according variabilities on the
micro- and mesoscale and that the relative proportions remain comparable. For the fol-
lowing considerations, we assume that the macroscale is in the range of centimetres, such
that lmacro ∼ 10−2 m, which is true for most muscles responsible for the movement of the
human body. Furthermore, we know from Section 4.1 that the microscopic length lmicro is

1The letters F and M are used to indicate that associated quantities refer to the muscle fibre and
the extracellular matrix. This serves to clearly distinguish such quantities from the considerations in
Chapter 5, where the letters F and M were used to describe general two-phase composites with a fibre
and a matrix phase.
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defined by the size of typical inhomogeneities on the microscale, which is here identified as
one muscle fibre with the coating layer of extracellular, collageneous tissue. As the name
suggests, muscle fibres are long fibre-like structures, which are aligned with the ef

3-axis.
In this connection, the ef

i-coordinate system (i = 1, 2, 3) represents a laboratory frame
of reference for the description of the microstructure, see Figure 7.1. Their cross-sections
have an irregular, polygonal shape in the transverse ef

1-ef
2-plane and “diameters” of about

50 − 80µm. This makes it easy to identify the microscopic length scale in the range of
around lmicro ∼ 5 · 10−5 m. After having defined lmicro and lmacro, we still need an appropri-
ate definition of the representative volume element and the associated mesoscopic length
scale. We recall from Section 4.1 that the RVE should be chosen such that it guaran-
tees statistical uniformity and that it should be the smallest possible volume sample of
the microstructure which represents the macroscopic material behaviour with sufficient
accuracy. As the here employed analytical homogenisation methods do not require an
actual geometrical model of the microstructure, one can say that the first requirement
is automatically met if the RVE itself is described by mean of representative statistical
parameters of the microstructure. With regard to the second requirement, it has to be
examined how many muscle fibres the RVE must contain. In this context, it is useful to
consider existing literature on related micromechanical studies of muscle tissue. For in-
stance, Sharafi & Blemker [434] investigated in their microscopic studies an ensemble
of about 15 muscle fibres and a size of about 200µm. Martin et al. [317] and Vir-
gilio et al. [494] used for their studies about an agent-based model a similar geometry
consisting of 14 fibres and a size of about 200µm. Furthermore, Spyrou et al. [459]
employed in their multiscale muscle model (based on the FE2 homogenisation method) a
simple RVE with only two fibres, whereas their follow-up work considered a much larger
RVE with about 50 muscle fibres and a size of 350µm, see Spyrou et al. [460]. All in
all, lmeso ∼ 10−4 m seems to be a suitable assumption for the mesoscopic length scale and
the magnitude of the RVE . It should also be noted that this size roughly corresponds
to that of a muscle fascicle. In conclusion, the multiscale muscle model can be regarded
to well satisfy the hypothesis of separation of length scales formulated in Eq. (4.1). In
particular, the difference between meso- and macroscopic length scale is two orders in
magnitude. However, the large variability of skeletal muscle tissue must be pointed out
again. This prevents a clear and generally valid definition of the absolute length of the
scales. The principle of scale separation may require individual validation in special cases.

7.1.2 Perfect bonding between the muscle fibres and the extracellular matrix

The muscle model is based on the assumption that the muscle fibres and the extracellular
matrix are perfectly bonded at their interface. Hence, we assume that the model satisfies
geometrical compatibility according to Eq. (4.16) as well as statical compatibility according
to Eq. (4.18), such that Jχ(X)K = 0 and JT (X)K = JP (X)KNΓ(X) = 0 for all X ∈ ΓB =
∂BF

0 ∪ ∂BM
0 . The reason for this is the strong interconnection between the endomysium

and a part of the muscle fibre’s cell membrane, which is called basement membrane. A
protein called dystrophin plays an important role in this. However, it must be noted that
the assumption of perfect bonding at the interface is very suitable for the description of
healthy muscle, but might be wrong and inappropriate when dealing with pathological
cases and diseased muscles. For example, one such disease is the Duchenne muscular
dystrophy, which is associated with a lack of dystrophin and thus leads to a massive
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weakening of the muscle structure. Similar consequences can be observed for a number of
other forms of muscular dystrophy.

7.1.3 Statistical description of the microstructure

Skeletal muscle tissue is a prime example for a random composite and the presence of
a multitude of possible realisations < ∈ S of the microstructure. However, it is com-
pletely clear that a detailed description of characteristic functions X α(X,<) cannot be
realised for the entire sample space S and instead a statistical description of one rep-
resentative microstructure should be made based on the ergodicity assumption. Then,
the one-point probabilities of the two characteristic functions X α(X), α ∈ {F,M}, are
described by the respective volume fractions nF and nM, compare Eq. (4.23). Further,
we postulate that the two-point probability pFM can be described by means of a shape
tensor ZFM

d due to an ellipsoidal symmetry of the microstructure, see Eq. (4.27). Since
the ef

3-axis has already been identified as the longitudinal axis of the muscle fibres, we
remain with the characterisation of the ef

1-ef
2-plane transverse to it. Once again it must

be mentioned that the characterisation of the structure is strongly dependent on whether
healthy or pathological tissue is considered. In general, the ef

1-ef
2-plane shows in healthy

muscle tissue a quite regular arrangement of the polygonal muscle fibres (muscle cells)
and an associated uniform distribution of their midpoints. This can be evaluated from
sufficiently high-resolution cross-sectional images and appropriate image processing tools.
An alternative and very elegant method for such characterisations is based on the simil-
arity of microscopic muscle cross-sections and artificially generated Voronoi tessellations,
which were established by Dirichlet [97] (and thus also known as Dirichlet tessellation)
and Voronoi [497]. In particular, Sánchez-Gutiérrez et al. [415, 416] showed that
the polygonal (cell) pattern in the ef

1-ef
2-plane of skeletal muscles agrees very well with

centroidal Voronoi tessellations2. This similarity enables the generation of representative
artificial cell patterns and the determination of further statistical parameters based on
the examination of this data. In our case, the isotropic distribution of the midpoints of
the muscle fibres can be derived from this. Hence, it can be concluded that the RVE is
statistically isotropic in the ef

1-ef
2-plane and that the shape tensor can be formulated as

ZFM
d = (I − ef

3 ⊗ ef
3) + ω ef

3 ⊗ ef
3 with ω →∞ , (7.2)

see also Section 5.1.2. Moreover, it is useful to not only describe the two-point probability
of the characteristic functions, X α, but also the average shape of the muscle fibres in
the RVE . A reasonable approach is to assume that this can be described with the same

2In brief, the centroidal Voronoi tessellation starts with a Poisson–Voronoi diagram, based on randomly
distributed generating points (starting seeds), and proceeds with an iterative process in which the centroid
of a current Voronoi cell (also known as Dirichlet region or Thiessen polygon) is chosen as a generating
point of the next tessellation, see Lloyd [293] and Du et al. [100]. Doing so, Sánchez-Gutiérrez
et al. [416] showed that, for example, the distribution of the number of cell edges in the Voronoi diagram
correlates well with the associated frequency in the real muscle tissue after four iteration steps (resulting
in a distribution in which about 50% of the cells have hexagonal shape). Similar examples for other biolo-
gical tissues were also shown by Honda [227, 228] and Bock et al. [49]. Moreover, in contrast to these
isotropic distributions, the generation of anisotropic Voronoi tessellations is explained, for example, in
Labelle & Shewchuk [271] and Du & Wang [101]. This might be relevant—again—for certain patho-
logical cases. For completeness, basic considerations on the statistics of Voronoi diagrams are provided
by Aurenhammer [17].
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shape tensor as the distribution, leading to Zi = ZFM
d , where Zi refers to the shape of the

fibres. Such a prescription leads to the muscle material being described as a two-phase
composite with circular cylindrical fibres that are aligned along the preferred axis ef

3 and
distributed randomly and isotropically in the plane transverse to it. This is supported by
the quite uniform pattern of the muscle fibres (cells) in cross-sectional images of the muscle
or in appropriately generated Voronoi diagrams. In this connection, Takaza et al. [470]
evaluated high-resolution images and formulated best-fit ellipses for the polygonal cross-
sections of the muscle fibres in the ef

1-ef
2-plane. They observed that the average ratio

of long axis to short axis of the ellipses was about 1.65, but they did not identify any
preferred orientation of the fibres in an averaged sense. This emphasises that Eq. (7.2)
also serves as an appropriate description of the shape of a muscle fibre in the RVE in an
averaged sense.

7.2 Constitutive modelling of the phases

One of the key advantages of the presented two-phase framework is that the mechanical
behaviour of the two phases can be described separately. Doing so, the constitutive model-
ling and the application of appropriate assumptions is shifted from the macroscopic to the
microscopic scale. In the following, we introduce the constitutive material descriptions for
the two phases, first for the muscle fibre phase and then for the extracellular matrix phase.
As the extracellular matrix is the key contributor to the passive mechanical material be-
haviour, we introduce a detailed model based on the parametrisation of single collagen
fibres. The computation of the effective response of the whole ensemble of collagen fibres
will subsequently lead to equations which are in line with the ones arising in the network
models from Chapter 6. Before we specify the constitutive behaviour of the two phases in
more detail, model assumptions are discussed that apply to both phases.

Hyperelastic behaviour of both phases Within this work, we assume that both
phases exhibit purely hyperelastic material behaviour. We thus ignore any rate- or history-
dependent phenomena such as viscoelasticity of the phases. Hence, the mechanical con-
stitutive behaviour of the two phases is fully described by hyperelastic potentials (strain-
energy functions) W α(F ) for α = {F,M}. As already noted in Section 3.2.1, the con-
sideration of history-dependent material behaviour, such as viscosity, would require the
addition of internal variables to the list of arguments for the energies W α.

Existence of an energy- and stress-free reference configuration of both phases
It was already noted in Section 3.6.1 that the definition of an energy- and stress-free
reference configuration can sometimes be challenging when treating biological materials.
This can be due to a variety of phenomena in the microstructure of biological tissues.
Typical examples are tissue growth or osmotic effects, see the references mentioned in
Section 3.6.1. For the investigations in this thesis, we assume that both phases normalise
properly in the reference configuration, such that

W α(F )
∣∣
F=I

= 0 and P α(F )
∣∣
F=I

= 0 , (7.3)

for α = {F,M}. However, we note that the presented multiscale model offers an elegant
option for integrating residual stresses if needed. That is because they can be formulated
exactly in the phase in which they occur.
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Incompressibility of both phases and the overall muscle tissue In the continuum-
mechanical treatment of soft biological tissues, it is usually assumed that physiologically
realistic deformations are accompanied by negligibly small volumetric strains and that the
material can thus be modelled as incompressible. This is attributed to the high water
content in the tissue. In skeletal muscles, water makes up about 76–77% of the total mass,
as measured by Iseri et al. [240], Hargens et al. [179], and Ward & Lieber [506].
The resulting (nearly) incompressible material behaviour of the whole muscle was shown in
experiments by Takaza et al. [471] and Böl et al. [53]. However, high water contents
can be found not only in the entire muscle, but also in each of the two phases themselves,
see Sjøgaard & Saltin [444]. This suggests that in the considered two-phase model
according incompressibility assumptions can be formulated individually for both phases
on the microscale, leading to the two separate constraint functions

RF = det[F (X)]−1 = 0 ∀X ∈ BF
0 and RM = det[F (X)]−1 = 0 ∀X ∈ BM

0 . (7.4)

Indeed, it was shown in experiments of Huxley [237], Elliott et al. [115], Elliott
& Millman [116] as well as Smith et al. [451] that isolated muscle fibres are practically
incompressible upon deformation, thus justifying constraint RF in Eq. (7.4)1. Moreover,
incompressibility is also a very common and reasonable assumption when modelling col-
lageneous tissues. This was shown in experiments by Carew et al. [71], Chuong &
Fung [78], and Holzapfel et al. [222] for arterial walls, which have a similar structure
than the extracellular matrix in skeletal muscles. Hence, it makes sense to apply constraint
RM in the present model. The simultaneous demand for incompressibility in both phases
inevitably results in the incompressibility of the muscle tissue at the macroscale and the
corresponding constraint equation

R = det[F̄ (X̄)]− 1 = 0 . (7.5)

Yet, we remark that this is a direct consequence from Eq. (7.4) and does not depict an
additional modelling assumption on the macroscale.

7.2.1 The muscle fibres

The muscle fibres (the cells of skeletal muscle tissue) are composed of bundles of parallel
myofibrils, which in turn contain the serially arranged sarcomeres. Individual sarcomeres
are separated from each other by the Z-discs and contain the proteins actin, myosin and
titin. The sarcomeres are responsible for the “active” behaviour of muscle tissue through
activation-triggered structural changes of the proteins actin and myosin. That is, neural
stimulations trigger the conversion of chemical energy, provided by the hydrolysis of ad-
enosine triphosphate (ATP), into mechanical energy (and non-mechanical energy in the
form of heat) and lead to a contraction of the sarcomeres. Further, the passive stiffness
of the muscle fibres is mainly addressed to titin. There is rich literature which focused
on the investigation and mechanical characterisation of individual components inside the
muscle fibre. Above all, a lot of studies treated the sarcomere dynamics and the beha-
viour of the two proteins actin and myosin upon activation, such as the ones by Weber
& Portzehl [508], Huxley [235], Huxley & Simmons [236], Lieber & Baskin [286],
and many others. Comprehensive studies on the structure of titin and its contribution
to the muscle fibre stiffness were presented by, for example, Linke et al. [290], Prado
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et al. [386], Li et al. [284], and Herzog [203]. Moreover, Goldstein et al. [165],
Luther [304], and Ogneva et al. [364] investigated the stiffness of the Z-disc. Each of
these structures contributes to the stored elastic energy in the muscle fibres during passive
deformation and/or active contraction. Thus, a comprehensive description for the energy
function W F has to account for the energies of the individual structural elements and their
spatial arrangement in the fibre. Alternatively, it is also possible to describe the mech-
anical behaviour of the muscle fibre using a constitutive approach for the strain-energy
function and to calibrate the model to experimental data of isolated muscle fibres. Appro-
priate experiments on skinned muscle fibres (without the surrounding collaganeous tissue)
were performed by, for example, Hellam & Podolsky [198], Gollapudi & Lin [166],
Meyer & Lieber [324], Smith et al. [452], and Rehorn et al. [396]. Under non-active
conditions, Meyer & Lieber [324] as well as Smith et al. [452] exhibited nearly-linear
stress-strain behaviour of individual muscle fibres during uniaxial tensile tests. Based on
these observations and by focusing herein on the passive mechanical behaviour of muscle
fibres, we utilise an isotropic I1-based Neo-Hookean energy formulation

W F
µ (F ) = 1

2
µF (I1 − 3) + 1

2
µF (J − 1)(J − 3) . (7.6)

Note that this depicts the distortional energy contribution according to the distortional-
dilatational split3 from Eq. (3.140). The associated first Piola–Kirchhoff stress tensor
can be computed from the derivative P F

µ = ∂FW F
µ or by making use of the generic form

provided in Eq. (3.147) and the scalar derivatives of W F
µ with respect to invariants I1 and

J which are given in Eqs (3.159)2 and (3.171)2. The stress tensor reads

P F
µ (F ) = µF F + µF(J2 − 2J)F−T . (7.7)

The here proposed Neo-Hookean strain-energy function well describes the behaviour of the
muscle fibre that is observed in uniaxial experiments. Beyond that, however, multi-axial
test data are necessary to make conclusions about the direction-dependent properties of
muscle fibre. It can be assumed that the structure of the individual muscle fibre com-
ponents can result in pronounced anisotropy, which must be taken into account in further
investigations.

7.2.2 The extracellular matrix

The mix of various types of collagen fibres as well as elastin fibres within a ground sub-
stance of proteoglycans is characteristic for the extracellular matrix within soft biological
tissues. In the following, only a rough overview of the components considered relevant
for the mechanical behaviour of the ECM will be given. For detailed insights into the
highly complex structure of the ECM, we refer to the comprehensive surveys of Mayne

3Note that the phase energies were formulated in Bleiler et al. [44] by means of the deviatoric-
volumetric energy split from Section 3.7.2. Thus, the fibre energy was introduced as W F(F ) = µF (Ĭ1−3)/2
based on the deviatoric part of the first invariant, Ĭ1, given in Eq. (3.131). The associated first Piola–
Kirchhoff stress reads P F(F ) = µFJ−2/3DF = µFJ−2/3(F − I1 F−T /3), where the projection tensor D
has been defined in Eq. (3.125). The formulations based on the deviatoric-volumetric energy split are
completely equivalent with the here presented formulations based on the distortional-dilatational split
for a muscle model that is based on the Voigt assumption, which will be introduced in Section 7.3.2.
However, phase energies based on the deviatoric-volumetric split cannot be used for the TSO estimates
from Chapter 5, which is why the phase energies used here are based on the distortional-dilatational split.
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& Sanderson [320], Purslow & Duance [390], Kjær [252], Purslow [388], Gillies
& Lieber [162], and citations therein. For the mechanical characterisation of the ECM
by means of a strain-energy function, it is commonly accepted to apply an additive split
which reads

W M
µ (F ) = W M

g (F ) + W M
c (F ) . (7.8)

Therein, an isotropic groundmatrix part W M
g accounts for the direction-independent be-

haviour of the ground substance and the elastin fibres, whereas a generally anisotropic
part W M

c describes the collagen reinforcement. This additive split was first proposed by
Weizsäcker et al. [512] and Holzapfel & Weizsäcker [226].

The groundmatrix The energy W M
g describes the elastic contributions from the

amorphous, gel-like ground substance of the ECM and the elastin fibres contained therein.
The ground substance is mainly composed of water and trapped molecules like pro-
teoglycan. This arrangement is typical for the ECM of soft biological tissues and is often
associated with the presence of osmotic pressures, see, for example, Lu et al. [303].
The presence of osmotically active constituents in skeletal muscle tissue was for example
studied by Fenn [128]. Further, measurements on the “osmotically active water fraction”
in muscles and further explanations were provided in the works of Hill [206], Hill &
Kupalov [208] as well as Millman et al. [334]. The studies suggested that osmotic
effects and fluid flow between the ECM and the muscle fibre can particularly occur during
and after increased muscle activity, which might lead to phenomena such as swelling of the
tissue. However, such effects are not accounted for in the present analysis and we postu-
late that the contribution of the ground substance is mainly through hydrostatic pressure
due to the incompressibility constraint RM in Eq. (7.4)2. Next, in addition to the ground
substance, the elastin fibres are the other important component of the groundmatrix. It
is interesting to note that the arrangement of elastin fibres in the ECM is very similar to
the structure of polymer chains in rubber-like materials. Hence, elastin forms a random
(thus uniformly distributed) network of coiled fibres which leads to an entropic nature
of the network elasticity. This direct similarity to rubber elasticity4 has been shown by
Hoeve & Flory [217, 218], Dorrington & McCrum [98], Gosline [168], and Aaron
& Gosline [1]. At this point, it is interesting to recall some explanations from Chapter 6,
especially those made in the context of Eq. (6.23). There it was explained that a purely
entropic energy of a single fibre, Wr = −ρr0θηr, and the assumption of Gaussian statistics
for the entropy ηr leads for uniform fibre networks to an effective energy reminiscent of the
Neo-Hookean strain-energy function. This is quite remarkable, since Weizsäcker et al.
[512] and Holzapfel & Weizsäcker [226] also adopted a Neo-Hookean strain-energy
function for the groundmatrix contribution W M

g in connection with the split introduced
in Eq. (7.8). Hence, it is reasonable to describe the groundmatrix of the ECM by means
of the isotropic, I1-based strain-energy function

W M
g (F ) = 1

2
µM (I1 − 3) + 1

2
µM (J − 1)(J − 3) , (7.9)

4Weis-Fogh & Andersen [509] made a contradictory statement and argued that there is a significant
contribution of energetic elasticity. Thus, they questioned that the theory of rubber elasticity and random
network conformation is appropriate for modelling elastin. This entailed some lively discussions and
responses by other authors, in particular by Hoeve & Flory [218]. In the end, subsequent studies
(mentioned in the text) showed that the results of Weis-Fogh & Andersen [509] have to be adequately
taken into account, but that the assumption of the random network conformation of elastin is still correct.
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where µM is the ground-state shear modulus of the groundmatrix. We remark that the
derivation of the Neo-Hookean energy from a network model with Gaussian statistics would
lead to a micromechanical meaning of the stiffness parameter µM, because it would be the
product of the number of elastin chains in a unit volume, the Boltzmann constant and the
absolute temperature. However, we assume that the Neo-Hookean part of the energy W M

g

does not only describe the elastin network, but may also include contributions from other
groundmatrix components and thus proceed with a more general meaning of parameter
µM. Further, the first Piola–Kirchhoff stress associated with Eq. (7.9) is given by

PM
g (F ) = µM F + µM(J2 − 2J)F−T . (7.10)

An experimental confirmation and some further comments on the applicability of the Neo-
Hooke energy for modelling networks of elastin fibres (and hence the groundmatrix of the
ECM) can also be found in Watton et al. [507].

The collagen reinforcement The collageneous structures in the ECM of the muscle are
described by means of the elastic energy W M

c . The collageneous structures themselves are
compounds of a large number of different collagen fibre types. In skeletal muscles, one can
identify (at least) fibres of type I, III, IV, V, VI, VIII, XII, XIII, XIV, XV, XVIII, and XIX,
see Kovanen [259]. The various types can vary greatly in their mechanical properties and
their structural arrangement in the tissue. The amount and the influence on the mechanical
material behaviour of the different collagen fibre types usually depends on the examined
tissue, but the most dominant one is typically the collagen of type I. It exhibits among
the different collagen types the largest contribution to the stiffness of biological tissues,
see Gelse et al. [156]. One reason for that is its very aligned characteristic. While
there are collagen fibre types which form a loose random network similar to the previously
considered elastin fibres, collagen of type I is usually arranged in a very structured, helical
manner. In skeletal muscles, the type I fibres in the endomysium form a helical wrapping
around individual muscle fibres, see Figure 7.2a, whereas a similar wrapping around muscle
fascicles is provided by the perimysium, see Purslow & Trotter [391] and Purslow
[389]. The whole muscle is accordingly coated by type I fibres in the epimysium, which is
not taken into account here.

In the following we present a modelling framework that allows the consideration of
different collagen fibre types and their individual properties, such as orientation and dis-
tribution. After these more general introductions, we will focus on the contribution of the
collagen fibres of type I. Starting point is a geometrical model of an idealised muscle fibre
that represents the shape of the polygonal fibres in the RVE in an averaged sense. A
suitable formulation was presented in Section 7.1.3 by defining the average muscle fibre
by means of the shape tensor Zi = ZFM

d , given in Eq. (7.2). Hence, the geometrical model
for an average (idealised) muscle fibre in the RVE is defined as a cylinder of which the
longitudinal axis is aligned with the ef

3-axis and the cross section in the ef
1-ef

2-plane is
circular. This is exemplary shown in Figure 7.2b. Further, as the energy W M

c has to
account for the collagen fibres in the endo- as well as in the perimysial layer, we postu-
late that an idealised muscle fascicle can accordingly be described by such a cylindrical
geometry. We assume that the different collagen fibre types form planar networks on the
surface of the muscle fibres/fascicles. This is supported by corresponding studies on the
endomysial layer by Trotter & Purslow [486] and Purslow & Trotter [391], and
on the perimysial layer by Purslow [387, 388]. Next, we say that the fibre network on
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Figure 7.2: a) High resolution image of the endomysial layer and the collagen fibres contained therein.
The muscle fibre has been extracted. Figure from Purslow & Trotter [391] with permission. b) An
average (idealised) muscle fibre based on the shape tensor Zi with helically wrapped collagen fibres and
the respective (tangential) unit vectors a0 and b0 on an infinitesimal surface element. The polar angle Θ
defines the angle between the fibre unit vectors and the longitudinal axis of the muscle fibre, ef

3.

the surface element of the idealised fibre/fascicle may contain two (mechanically equival-
ent) fibre families (clock- and counter-clockwise), which are parametrised by the two unit
vectors

a0(Θ,Φ) = − sin[Θ] sin[Φ]ef
1 + sin[Θ] cos[Φ]ef

2 + cos[Θ]ef
3 ,

b0(Θ,Φ) = + sin[Θ] sin[Φ]ef
1 − sin[Θ] cos[Φ]ef

2 + cos[Θ]ef
3

(7.11)

by means of a polar angle Θ ∈ [0, π) and an azimuthal angle Φ ∈ [0, 2π), see Figure 7.2b.
To account for the statistical orientation and dispersion of the individual collagen fibre
types in the ECM, we assume the existence of an individual orientation density function
(ODF) for each of them and that they read

pζ(a0) = pζ(b0) = pζΘ(Θ) pζΦ(Φ) . (7.12)

Therein, the superscript ζ indicates the collagen fibre type and we implied that both fibre
families of the same fibre type have an identical ODF. Further, we assume that the ODF
can be split into a polar part pζΘ(Θ) and an azimuthal part pζΦ(Φ). It is reasonable to
postulate for the azimuthal distribution a homogeneous relation, pζΦ = pΦ = 1/(2π), since
the planar fibre network should be uniform around the surface of the muscle fibres, see also
Horowitz et al. [231]. The possibility to include two fibre families of the same fibre
type is particularly useful for the description of the helical arrangement of type I fibres.
In contrast, for the description of fibre types with random distribution it is sufficient to
consider one fibre family. At this point it should be mentioned that the formulations
presented here for the planar fibre network on the surface of the idealised muscle fibre
are in line with the seminal studies on planar, two-dimensional collagen fibre networks by
Lanir [275] and Lokshin & Lanir [294]. Furthermore, it is obvious that the two unit
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vectors, a0 and b0, exhibit a clear similarity with the unit vector r0 that was introduced
in the context of the microsphere model in Chapter 6. This was already indicated by
the choice of the angles Θ and Φ in the parametrisation of the vectors a0 and b0, which
correspond to the polar and the azimuthal angle in the spherical es

i-coordinate system,
respectively, see Figure 6.1b. These similarities allow us to consider the two vectors, a0

and b0, in the es
i- instead of the ef

i-coordinate system and thus in the idealised model of
the microsphere. Accordingly, all of the concepts introduced in Chapter 6 can be applied
directly to the collagen fibre networks examined here. It is thus consequent to describe
the elastic energy of a collagen fibre that is idealised by a unit vector a0 or b0 by means of
individual hyperelastic potentials W ζ

cf for each collagen fibre type. Further, the kinematics
of the two fibre families are defined by the maps

F ζ
a (Θ,Φ) : a0 7→ aζ = F ζ

a a0 and F ζ
b (Θ,Φ) : b0 7→ bζ = F ζ

b b0 , (7.13)

which transport the referential vectors a0 and b0 to their counterparts aζ and bζ in the
actual configuration, respectively. With this, deformation measures like the ones defined
in Eq. (6.3) can be defined accordingly. For instance, the actual stretches read

λζa(Θ,Φ) = |aζ | =
√
aζ · aζ and λζb(Θ,Φ) = |bζ | =

√
bζ · bζ . (7.14)

To quantify the reorientation of individual vectors (and thus collagen fibres) it is useful
to refer to some fixed coordinate axis. For instance, the reorientation of a0 and b0 with
respect to the longitudinal axis of the muscle fibre, ef

3 = es
3, is measured by the difference

of the referential polar angle Θ and the actual polar angles θζa and θζb, which are computed
from the relations

cos[θζa] = (λζa)−1aζ · es
3 = (λζa)−1aζ3 and cos[θζb] = (λζb)−1bζ · es

3 = (λζb)−1bζ3 , (7.15)

compare Eq. (2.18). The distinct second-order tensors F ζ
a and F ζ

b in Eq. (7.13) allow for
individual, non-affine deformations for each collagen fibre type. In general, those deform-
ations have to be computed from the energy minimisation principle defined in Eq. (6.7).
It should be noted in this connection that what was referred to in Chapter 6 as the mac-
roscale of the fibre network here represents the microscale of the muscle. This means that
the macroscopic deformation of the collagen fibre network is not the deformation gradient
F̄ at the macroscopic position X̄, but the deformation gradient FM at a microscopic local
position X ∈ BM

0 . One could therefore say that the individual collagen fibres are defined
on a further length scale below the microscale, which can be denoted as nanoscale5. In
this work, however, we assume instead of individual non-affine kinematics for each collagen
fibre type affine deformations within the collagen fibre network. This leads to formula-
tions as provided in Section 6.2. Hence, the mapping tensors F ζ

a and F ζ
b coincide with

the deformation gradient, FM, of the surrounding ECM tissue at the microscopic local
position X ∈ BM

0 , such that
F ζ
a = F ζ

b = FM . (7.16)

5We recall from Section 4.1 that the prefixes of the three length scales—micro, meso, and macro—do
not refer to absolute sizes, but put the scales in relation to each other. Therefore, the nanoscale does
not necessarily refer to the nanometre range (although this fits well in the present case), but is generally
introduced as a length scale below the microscale. Based on the meaning of the Greek word nános, the
nanoscale is accordingly a dwarf-scale.
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This implies that associated deformation measures become independent of the collagen
fibre types, such that aζ = a, bζ = b, λζa = λa, λζb = λb, θζa = θa, and θζb = θb.
It was noted in Section 6.2 as well as in Section 4.3.5 that the assumption of uniform
deformations can serve as a good prediction if justified by experimental evidence. In this
connection, Chandran & Barocas [75], Jayyosi et al. [248], and Krasny et al.
[260] carried out detailed studies and compared results based on the affinity assumption
with real deformations in collagen fibre networks observed from high resolution images.
They observed that collagen fibre networks generally show non-affine deformations, but
that the deviations resulting from the affinity assumption are often in an acceptable range.
In addition, pronounced non-affine effects often come into play during deformations which
are far from the physiologically sensible range for muscles.

As a last remark in relation to the kinematics of the fibre network, we note that the
interaction of the two fibre families can be accounted for by means of appropriate strain
measures, such as the one which is usually referred to as J8-invariant. It is obtained by
formulating structural tensors Ma = a0 ⊗ a0 and Mb = b0 ⊗ b0 for the two fibre families
and introducing the scalar measure tr[MaMbCM] = (a ⊗ a0) · (b ⊗ b0) = cos[2Θ]a · b,
where CM = F T

MFM and a0 ·b0 = cos[2Θ], see Spencer [457]. This strain measure can be
used as an argument for a correspondingly introduced interaction energy, as it was done,
for example, in the works of Holzapfel & Ogden [223] and Nerurkar et al. [353],
see also Chagnon et al. [74]. However, we do not use such formulations in this work.

To obtain the effective response of the collageneous network, averaging operators are
introduced for each fibre type via

〈
(·)
〉ζ
Ω

:=
1

2π

∫

Ω

pζΘ(Θ) (·) dΩ , (7.17)

where we recall from Eq. (6.5) that dΩ = sin[Θ] dΘ dΦ ∈ Ω describes an infinitesimal
area element on the microsphere surface Ω . Further, we obtain formulations reminiscent
of the ones in Section 6.3, since we assumed a uniform fibre distribution in the azimuthal
orientation space. Accordingly, the normalisation condition for the remaining polar parts
of the ODF reads ∫ π

0

pΘ(Θ) sin[Θ] dΘ = 1 . (7.18)

It was further noted in Section 6.3 that the polar ODF must be a univariate, π-periodic
function. A suitable formulation for the description of collagen networks is the von-Mises
distribution function, which is also presented in Appendix B.2. It reads

p̃ζΘ(Θ) =
exp
[
bζ cos[2 (Θ−Θζ

m)]
]

2π I0(bζ)
, (7.19)

where Θζ
m is the mean of the distribution of a specific collagen fibre type, bζ is a parameter

for the spreading around the mean, and I0 is the modified Bessel function of first kind of
order zero, given in Eq. (B.32). After a consistent normalisation due to Eq. (7.18), the
resulting polar ODF is given by pζΘ(Θ) = p̃ζΘ(Θ)/Iζ , where Iζ =

∫ π
0
p̃ζΘ(Θ) sin[Θ] dΘ.

Finally, the resulting energy W M
c for the collageneous part of the extracellular matrix

phase is obtained by the sum of the effective network responses of all accounted collagen
fibre types. The contribution of each collagen fibre type will be taken into consideration
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by introducing volume fractions nζ for the individual collagen fibre types, along with the
saturation condition

∑
ζ n

ζ = 1. With that, we obtain the transversely isotropic energy

W M
c (FM) =

∑

ζ

nζ
〈
W ζ

cf (λa) + W ζ
cf (λb)

〉ζ
Ω
. (7.20)

For collagen fibre types that only consist of one fibre family, the second summand is
omitted. Further, by exploiting the structure of the vectors a0 and b0, it becomes clear
that they equally contribute to the average network quantities and that any difference in
orientation of the two fibre families will be averaged out. Hence, it suffices for fibre types
that consist of two fibre families to account for the contribution of one fibre family twice.

The predominant collagen fibres in the extracellular matrix of skeletal muscles are of type
I and III. These two types add up to a volume fraction of about 95% of the total collagen
amount in the endomysium, reported by Duance et al. [102], Light & Champion
[288], and Listrat et al. [291]. As it is known that especially collagen of type I plays
a key role for the mechanical behaviour of biological tissues, see Gelse et al. [156], we
restrict ourselves to the consideration of type-I fibres, resulting in ζ = {I}. We therefore
also omit the contribution of type-III fibres, which are much more compliant than fibres
of type I, see Asgari et al. [14], and form a more loose, non-aligned mesh of fibres, see
Kovanen [259]. Combining all arguments and definitions from above finally leads for the
anisotropic network energy to the compact form

W M
c (FM) = 2nI

〈
Wcf(λa)

〉
Ω
, (7.21)

where nI is the volume fraction of type-I collagen in the ECM. For the sake of a compact
notation, we omit from Eq. (7.21) onwards the superscript I for the strain energy W I

cf , for
the ODF pI

Θ and, accordingly, for the ODF parameters ΘI
m and bI, as well as the average

operator 〈(·)〉IΩ . Further, it has been tacitly assumed in the course of these explanations
that the fibre energy Wcf depends on the stretch λa. Such a formulation is employed in the
following, but can be generalised in a straightforward manner to include additional deform-
ations measures, such as the ones defined in Eq. (6.3), see also Section 6.2.2. Consequently,
a stretch-based formulation for the fibre energy entails for the first Piola–Kirchhoff stress
of the collagen reinforcement

PM
c (FM) = ∂FM

W M
c = 2nI

〈Pcf(λa)

λa
a⊗ a0

〉
Ω
, (7.22)

where Pcf = ∂λaWcf is the scalar fibre stress, compare Eq. (6.18). The stiffness tensor LM
c

is accordingly obtained from Eq. (6.21). In order to complete the modelling part on the
ECM, we remain with the specification of the fibre energy Wcf of a single collagen type-I
fibre. That is the focus in the next section.

7.2.3 Modelling of collagen fibres

It has already been pointed out before that collageneous structures are important com-
ponents in biological tissues and that collagen fibres of type I play a decisive role in the
mechanical behaviour of the ECM. In turn, the mechanical properties of collagen fibres,
here expressed in form of the hyperelastic potential Wcf, are determined by their hierarch-
ical microstructure and the shape of the fibres themselves. We mention here again that
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λ < λw

λ ≥ λw

Figure 7.3: Crimped and uncrimped state of a collagen fibre with initial waviness λw.

only a brief overview on the physiological characteristics is given and we refer to the stand-
ard textbook of Fratzl [134] and the references contained therein for a deeper insight
into the topic. Starting on the smallest (considered) length scale, collagen fibres consist
of triple helical tropocollagen molecules with a diameter of about 1.5 nm (10−9 m) and a
length of about 300 nm. Multiple molecules are arranged in staggered arrays and form col-
lagen fibrils with diameters of about 50–250 nm. The molecules interact on the fibril-level
through intermolecular covalent cross-links (between two molecules) and so-called weak
bonds. Finally, bundles of densely packed fibrils form the collagen fibre. However, it should
be noted that the distinction between fibril and fibre is sometimes a little vague. Collagen
fibres usually appear in a crimped (curled, wavy, crinkled) form in the unloaded reference
configuration. The same applies to many of the substructures of collagen fibres, such as
the intermolecular cross-links. These properties have a major influence on the shape of the
stretch-stress curve that arises when the collagen fibre is subjected to a tensile force in its
longitudinal axis. Namely, this entails a classical J-shaped stretch-stress curve which con-
sists of a flat toe region at lower stretches, an intermediate heel region and a quasi-linear
region at higher stretches. In the toe region, the collagen fibre is crimped and the resist-
ance against tensile load is mainly due to a straightening of the collagen fibre itself as well
as to according straightening and alignment of underlying microstructures like the colla-
gen molecules. A large proportion of the elastic energy in this stretch range is entropic in
nature and stems from the removal of disorder in the molecular microstructure, see Misof
et al. [336] and Buehler & Wong [64]. As the stretch increases, one can identify a
threshold stretch λw at which the collagen fibre itself becomes fully straightened, as de-
picted in Figure 7.3. Beyond this point, the elastic energy is mainly energetic in nature
and stems from the elongation of the collagen molecules and intermolecular sliding. This
means that the strain energy of a collagen fibre results from the stretch-induced changes
of the entropy ηcf and the internal energy εcf and is given by Wcf = ρcf0(εcf− θηcf), compare
Eq. (6.23). Comprehensive multiscale models which take into account entropic and ener-
getic mechanisms during collagen stretching were proposed by, for example, Buehler [63],
Tang et al. [474], Maceri et al. [306, 307], and Marino & Vairo [313]. These mod-
els are based on a detailed description of the underlying microstructure and subsequent
upscaling and homogenisation steps. They rely on microstructural parameters, such as
the cross-link stiffness, and can be particularly helpful when modelling pathological cases
which go along changes of associated structures. Since these multiscale approaches are
often associated with considerable additional computational effort, Marino et al. [311]
investigated how the microstructurally-based parameters correlate with the parameters
of generic strain-energy functions such as the exponential-based model from Eq. (3.175).
However, instead of employing multiscale models, one may proceed with a rather con-
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stitutive, structural-based approach by postulating that the energy of a fibre can be split
via

Wcf(λ) = W b
cf (λ) + W s

cf (λ) . (7.23)

Therein, the contribution W b
cf accounts for the bending stiffness of the crimped collagen

fibre (and associated entropic effects in its microstructure) whereas W s
cf accounts for the

stretch-based elasticity of the uncrimped fibre. The first contribution may be obtained
by assuming specific geometrical forms for the fibre and formulating according structural
models. By doing so, a helical spring model was formulated by Freed & Doehring
[136] and Grytz & Meschke [172], an elastica-based model by Garikipati et al.
[150], and a crimped beam model by Marino & Wriggers [314]. Ultimately, the energy
contribution W b

cf , associated with the toe region, is very small compared to the stretch-
based contribution W s

cf and a reasonable assumption is to omit the first term in Eq. (7.23).

Hence, by setting W b
cf = 0, the energy is fully specified by the stretch-based term, such

that Wcf = W s
cf . Subsequently, a simple but very useful prescription for the energy reads

Wcf(λ) =

{
1
2
µcf (λ− λw)2 if λ ≥ λw

0 else ,
(7.24)

which has been proposed in the classical works of Lake & Armeniades [273], Lanir
[275] and Decraemer et al. [93]. This formulation is similar to the quadratic potential
in Eq. (3.174), but it was added a case distinction6 to exclude fibres which are not stretched
beyond the initial waviness λw. Hence, we postulate that collagen fibres only store energy
when they are fully uncrimped and that they have no compressive stiffness. The derivation
of Eq. (7.24) with respect to the stretch yields the scalar stress

Pcf(λ) = ∂λWcf(λ) =

{
µcf (λ− λw) if λ ≥ λw

0 else ,
(7.25)

which is required to compute the stress PM
c in Eq. (7.22). We clearly see that Pcf de-

scribes a linear stretch-stress relationship for stretches beyond the initial waviness λw.
This is an advantage of this model, since strain-energy functions like the exponential one
in Eq. (3.175) tend to overestimate stresses at higher stretches due to their highly nonlinear
nature. The same applies to the frequently used worm-like chain model. It was previously
noted that this model describes entropic elasticity, which, when used for collagen fibres,
leads to an unphysical inextensibility at high stretches, see Maceri et al. [306, 307].
Here, we can proceed with a further derivation of the stress Pcf which yields the scalar
stiffness

Lcf(λ) = ∂2
λ2Wcf(λ) =

{
µcf if λ ≥ λw

0 else .
(7.26)

Hence, the scalar stiffness represents a piecewise constant step function, where the step is
at λw and has the value of the fibre stiffness µcf.

It is remarked that strain-energy functions of the form given in Eq. (7.24) are often
accompanied with a distribution function for the initial waviness λw, denoted by pλw . This

6Such a case distinction can also be formulated by means of Macaulay brackets (also known as Föppl
symbol) 〈(·)〉 = [(·) + |(·)|]/2, such that Wcf(λ) = µcf〈λ− λw〉2/2. However, this entails a risk of confusion
with the averaging operators that are also defined via angle brackets and is therefore not used here.
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is based on the assumption that a vector (a space orientation) describes not only one single
fibre, but an entire population of fibres with different degrees of crimp. This generally
leads to an integral formulation for the strain-energy function of one space orientation.
We provide some further details and remarks on this aspect in Appendix B.3. Moreover, we
formulate closed-form solutions for the case that pλw take the form of Beta and triangular
distributions. In the following, however, we proceed with formulation (7.24), which is
equivalent to choosing a Dirac delta function for pλw .

Finally, it is interesting to compare the material model for the ECM formulated in
Sections 7.2.2 and 7.2.3 with the modelling assumptions for fibrous tissues that were
formulated in the seminal work of Lanir [276]:

(L1) Each fiber is thin and perfectly flexible. It has no compressive strength and if con-
tracted will buckle under zero load.

(L2) The effect of the matrix flow during deformation is that of a hydrostatic pressure.
The flow stops at the point when the forces binding the matrix to the fibers counteract
the effect of the pressure.

(L3) Each fiber is subjected to a uniaxial strain which is the tensorial transformation of
the overall strain in the fiber’s direction (affine deformation).

(L4) The kinematics of the fiber vector [...], correspond to that of a straight fiber and are
subject to the assumptions [...][(L1)-(L3)]. Thus a stretched fiber coincides with its
vector.

(L5) The unfolding of the fiber during deformation squeezes the fluid matrix. The matrix’s
reaction is through hydrostatic pressure.

We may refer to them as Lanir’s assumptions for fibrous tissues. Accordance with these
assumptions is not really a must, but they provide a good overview of the most important
phenomena in fibrous tissues that should be taken into account and are therefore good
indicators for the suitability of the model. In our case, (L1) is taken into account by the
energy function selected in Eq. (7.24) for individual collagen fibres and (L3) is covered
by the affine deformation prescription in Eq. (7.16). (L2) agrees with the here made
assumption that the contribution of the ground substance of the ECM is mostly through
hydrostatic pressure in order to maintain the incompressibility of the tissue. (L4) and
(L5) were added by Lanir for tissues with crimped collagen fibres. (L4) is fully in line
with the basic principle of the microsphere model which states that fibres are idealised
by a straight vector that connects the end points of the fibre, see Section 6.1. Finally,
concerning (L5), the model does not directly include the effect of the matrix squeezing
during fibre uncrimping (unfolding), but accounts for the hydrostatic pressure of the matrix
upon deformation in a general sense.

7.3 The effective behaviour on the macroscale

In this section we formulate the effective strain energy at the macroscopic point P̄ which
occurs due to a macroscopic deformation F̄ . Two approaches for this will be presented in
the following. The first one formulates an estimate for the macroscopic energy by means
of the tangent second-order homogenisation method presented in Chapter 5. The second
approach is based on the Voigt assumption and therefore postulates that the deformations
in the microstructure are uniform. In both cases, the model assumptions made up to
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this point and the constitutive modelling of the two phases on the microscale lead to
an incompressible, transversely isotropic material behaviour on the macroscale. In turn,
this entails that the macroscopic material response becomes a function of an appropriate
transversely isotropic set of macroscopic strain invariants, which serves as integrity basis
for the macroscopic Cauchy–Green strain C̄ and the structural tensor M̄ , where the
latter indicates the direction of the muscle fibres. The transverse isotropy results from
the statistical considerations in Section 7.1.3, in particular the definition of the shape
tensor ZFM

d , and from the description of the two phases. In turn, the transverse isotropy
of the energy W M

c is a direct consequence of the shape tensor Zi, which describes the
average shape of the muscle fibres in the RVE . This means that the material symmetry
on the macroscale follows directly from the composition of the microstructure and the
arrangement of the two phases. Changes in these statistical descriptions would directly
result in corresponding material symmetries on the macroscale.

7.3.1 The effective behaviour based on variational homogenisation

Appropriate estimates for the effective macroscopic strain energy of the multiscale muscle
model can be generated by means of the TSO homogenisation method from Chapter 5. It
takes into account the microstructural composition (described by the characteristic func-
tions X α) by means of one- and two-point probabilities through the volume fractions
and the microstructural P-tensor, which in turn depends on the shape tensors ZFM

d and
Zi. This means that the TSO estimate accounts for the shape and the orientation of the
fibres (the inclusion) and their distribution. The TSO estimate for the effective macro-
scopic strain-energy function of a two-phase composite with fibrous microstructure and
incompressible, transversely isotropic phases is given in Eq. (5.64) and reads

W̃ (F̄ ) = nF
[
W F
µ (F̄F)+ 1

2
(F̄ − F̄F) ·P F

µ℘(F̄F, ℘
F)
]

+nM
[
W M
µ (F̄M)+ 1

2
(F̄ − F̄M) ·PM

µ (F̄M)
]
,

(7.27)
where P F

µ℘ = P F
µ + ℘FF̄−TF . The macroscopic deformation gradient F̄ in expression (7.27)

is formulated in the generic form (5.83), along with (5.84), whereas the fibre deformation
F̄F is given by Eqs (5.85) and (5.87). The matrix deformation F̄M is expressed in terms
of F̄F by utilising the overall average condition (5.18). Consequently, the computation of

the energy W̃ demands to solve for four scalar unknowns. These are the three unknown
coefficients of the average fibre deformation F̄F, hence, the longitudinal shear γ̄F`, the
transverse shear γ̄Ft and the coupling measure φ̄Fγ, and the constraint pressure ℘F. The
required four scalar equations are the (1,1)-, (2,2)-, (3,1)-, and (3,2)-components of the
tensorial equation (5.79). Further, the macroscopic first Piola–Kirchhoff stress tensor

P̃ = ∂F̄ W̃ can be computed from Eq. (C.7), along with the associated remarks.

7.3.2 The effective behaviour based on the Voigt assumption

We have to assume that a heterogeneous deformation field on the microscale based on a
variational energy minimisation is the most accurate solution we can obtain. However, it
has already been mentioned a few times in this work that the assumption of homogeneous
microscopic deformations may be a suitable approach if it can be justified by further con-
siderations. For the specific case of skeletal muscle tissue, Fung [145] provides arguments
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motivated through its underlying physiology why the relative motion of the two phases
might be of minor importance. He states that

“[...]the muscle cells and the surrounding tissues are so well integrated that their
relative motion has probably little significance.”

Thus, Fung does not deny heterogeneous deformations per se, but he considers their
influence on the mechanical behaviour of the overall muscle to be negligible. The reason for
this is a somewhat broader interpretation of the importance of the protein structures, such
as dystrophin, that has already been mentioned in Section 7.1.2. Instead of only assuming
perfect bonding at the interface between muscle fibre and ECM, Fung’s postulate goes a
step further and states a more general, very close interconnection of the two phases. Based
on these explanations, it seems sensible to suggest an alternative uniform prescription

F (X) = F̄ (7.28)

for the microscopic deformations. This entails the Voigt estimate

W̄V(F̄ ) = nF W F
µ (F̄ ) + nM W M

µ (F̄ ) (7.29)

for the macroscopic strain-energy function. It was noted in Section 7.1.2 that pathological
changes in muscle tissue can weaken the internal structure and question the assumption of
perfect bonding at the interface of the two phases. Of course, this applies all the more to
the affinity assumption made here for the entire microscopic deformation. This means that
the use of the Voigt estimate (7.29) should be restricted especially to the modelling and
simulation of healthy muscle tissue. Further, it was noted in Section 4.3.5 that the Voigt
estimate generally takes into account the microstructure only by means of the volume
fractions, which describe the one-point probabilities of the characteristic functions X α.
However, in addition to this explicit consideration of the microstructural statistics, it is
very interesting to note that the energy in Eq. (7.29) also contains an implicit dependence
on the shape tensor Zi through the strain-energy function W M

c . This means that the Voigt
estimate takes into account the shape and the orientation of the muscle fibres. Finally,
the macroscopic first Piola–Kirchhoff stress tensor based on the Voigt estimate reads

P̄V(F̄ ) = ∂F̄ W̄V − ℘̄ J̄ F̄−T = nFP F
µ (F̄ ) + nMPM

µ (F̄ )− ℘̄ J̄ F̄−T . (7.30)

Therein, ∂F̄ W̄V constitutes the macroscopic extra stress and ℘̄ is a macroscopic Lag-
range multiplier which comes into play because of the macroscopic incompressibility con-
straint (7.5), compare Eq. (3.27).
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8 Parameters, Results and Discussion of the
Multiscale Muscle Model

8.1 Model Parameters

The constitutive modelling of the two phases in Section 7.2 results in an overall model for
skeletal muscle tissue with eight model parameters. Table 8.1 summarises these parameters,
classifies them as material or structural parameters, and describes the microstructural
meaning. The three material parameters µF, µM, µcf are directly connected to stiffnesses
of the microstructural components, whereas the two volume fractions nM, nI refer to the
microstructural composition of the material and the three remaining parameters λw, Θm,
b characterise the structure of the collagen type-I fibre network. It becomes obvious that
especially the collagen network plays a key role within this new modelling approach. The
choice of specific model parameters is a crucial step towards a meaningful material model,
thus, we aim to give a broad overview over literature data and variations of the three
material and the five structural parameters in this section.

8.1.1 Material parameters

As shown in Table 8.1, the proposed model contains three material parameters related to
the stiffness of microstructural components. One of the parameters describes the stiffness
of the muscle fibres while the other two describe stiffnesses inside the extracellular matrix
structure.

Muscle fibre The choice of a Neo-Hookean energy for the description of the muscle fibres
was motivated in Section 7.2.1 by the nearly-linear stretch-stress relationships observed
by Meyer & Lieber [324] and Smith et al. [452]. Consequently, the data of Smith
et al. [452] are used for the estimation of the material parameter µF. Therein, the relevant
experiments are performed on isolated muscle fibres of human gracilis and semitendinosus
muscles. Taking the reported averaged sarcomere slack length of 2.31µm, see Smith
et al. [452], as the stress-free reference configuration, a standard least-squares fitting
routine yields the parameter µF

grac = 12.452 kN/m2 for the gracilis muscle data and µF
semi =

parameter classification meaning

nM structural volume fraction of the ECM
nI structural volume fraction of type-I collagen fibres inside the ECM
µF material (passive) stiffness of the muscle fibre
µM material stiffness of the isotropic groundmatrix of the ECM
µcf material stiffness of type-I collagen fibres/fibrils
λw structural waviness of the type-I collagen fibres
Θm structural mean preferred orientation of the type-I collagen fibres
b structural spreading/dispersion of the type-I collagen fibres

Table 8.1: Summary, classification and meaning of the eight model parameters for the presented skeletal
muscle model, which result from the constitutive modelling of the two phases in Section 7.2.
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ECM groundmatrix stiffness

study [kN/m2] (± SD) specimen

[226] 61.046 abdominal aorta rat
9.5852 tail artery

[222] 0.3 adventitia layer rabbit carotid artery
3 media layer

[225] 15.12± 9.32 adventitia layer human coronary artery
2.54± 1.26 media layer
55.8± 21.18 intima layer

[109] 0.5 nucleus pulposus human intervertebral disc
950 annulus fibrosus

Table 8.2: Collection of stiffness values for the Neo-Hookean material parameter describing the ground-
matrix part of the extracellular matrix in different biological tissues. The data from Holzapfel &
Weizsäcker [226] and Holzapfel et al. [225] result from own experiments, whereas the model of
Holzapfel et al. [222] was fitted to experimental data by Chuong & Fung [77] and the model of
Ehlers et al. [109] was fitted to experimental data by Iatridis et al. [238]. (SD=standard deviation)

14.440 kN/m2 for the semitendinosus muscle data. Utilising both muscle data in a single
optimisation step, an averaged parameter for the muscle fibre of µF = 13.446 kN/m2 is
obtained. This is equivalent to the mean between µF

grac and µF
semi. Recalling that the

muscle fibre stiffness is of less influence on the overall muscle stiffness and the fact that
µF

grac and µF
semi differ only moderately, we proceed with µF = 13.446 kN/m2 to describe the

mechanical behaviour of the skeletal muscle fibre.

Extracellular matrix The constitutive description of the ECM in terms of the energy
W M contains the two material parameters µM and µcf, which account for the stiffness of
the ECM groundmatrix and the collagen type-I fibres, respectively.

As explained in Section 7.2.2, the groundmatrix energy part W M
g and its material para-

meter µM account for the non-collageneous parts of the extracellular matrix, which are,
for instance, the elastin fibres and proteoglycans. A collection of reported values for the
Neo-Hookean stiffness parameter µM is given in Table 8.2. Obviously, the summarised
stiffness values show a very broad variation not only between the different types of spe-
cimen but also between different subjects of the same tissue type, observable from the
standard deviations in the experiments of Holzapfel et al. [225]. In general, these
variations make it very difficult to find an appropriate and reliable parameter for the
ECM groundmatrix, especially for materials where the ECM occupies large portions of
the tissue, like in the specimen used in the reported experiments. In muscle tissue, how-
ever, the groundmatrix of extracellular matrix content is small. Further, the elastin fibres
in the groundmatrix have an about 1000 times smaller stiffness than collagen fibres, see
Gosline et al. [167], which means that the contribution of the collagen fibres clearly
dominates the passive mechanical behaviour of the tissue. Given the range of reported
numbers, for example by Holzapfel et al. [225], the groundmatrix stiffness parameter
is chosen herein as µM = 40 kN/m2, which is a reasonable choice given the overall range
of reported parameters.

The second material parameter related to the ECM is the stiffness µcf of a collagen type-
I fibre. Due to its importance for the mechanical behaviour of many different biological
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tissues, there exist a comprehensive body of literature about the properties of type-I
collagen fibres. The general stretch-stress relation of collagen fibres can be described by
a flat toe region at the beginning that eventually evolves to a nearly-linear stretch-stress
curve after the initially crimped fibres have been uncrimped at higher stretches. Thus,
most studies report on the constant stiffness of the linear stretch-strain region in the form
of a scalar modulus, which is sometimes also referred to as Young’s modulus. However,
Young’s modulus is no suitable term for a stiffness quantity in the finite deformation regime
and the scalar modulus (or an incremental Young’s modulus) has to be properly defined.
For instance, a scalar nominal tangent moduli can be formulated as EP = ∂λP = ∂2

λ2W
and, analogously, a scalar Cauchy tangent moduli might be introduced as Eσ = ∂ln[λ]σ, see
Mihai & Goriely [333]. From the previous consideration, we are already familiar with
the nominal description and we identify P = ∂λW as the scalar nominal stress, whereas
σ = λ ∂λW is a scalar Cauchy stress (λ is of course the stretch parameter). With these
considerations and the definition given in Eq. (7.24), the parameter µcf is identified as a
constant nominal tangent modulus. From experimental studies, however, the nature of the
moduli provided in these studies is not always clear and care needs to be taken. Moreover,
experiments based on methods like indentation do not necessarily provide information
on the required tensile stiffness due to the anisotropy of the collagen fibres, see Wenger
et al. [513]. Further, the experimentally observed collagen stiffness seems to be dependent
on the surrounding conditions (for example, ambient or in solution), see van der Rijt
et al. [401]. Nominal moduli for the tensile stiffness of collagen type-I fibrils/fibres
were reported by, for example, Sasaki & Odajima [418] and Gentleman et al. [159].
Sasaki & Odajima [418] reports a value of 43 GN/m2 and Gentleman et al. [159]
fibre-diameter-dependent values ranging between 26.97 GN/m2 and 48.47 GN/m2. In both
of these studies, the collagen was extracted from the bovine achilles tendon. Shen et al.
[436] measured moduli in a range of 860± 450 MN/m2 for collagen extracted from the sea
cucumber dermis. These magnitudes were also reported in the studies of van der Rijt
et al. [401], which were used by Gindre et al. [163] in their simulations.

8.1.2 Structural parameters

In addition to the material parameters, the proposed model also requires the specification
of the five structural parameters associated with its microstructure, which are the two
volume fractions nM and nI, and the three parameters λw, Θm and b describing the col-
lageneous network, see Table 8.1. Assuming experimental muscle tissue specimen sizes in
the millimetre or centimetre range, the specimen contain representative amounts of muscle
fibres and muscle fibre bundles. Thus, to compare model predictions with experimental
results, structural parameters for endo- and perimysium need to be taken into account by
appropriate adding or averaging, see also Gindre et al. [163].

The volume fractions nF and nM The volume fraction nM accounts for the amount
of connective tissue and is obtained by the sum of the perimysial content nM

peri and the
endomysial content nM

endo, hence:

nM = nM
peri + nM

endo . (8.1)

For bovine muscles, Purslow [389] reported values in the range of 0.43%− 4.6% for nM
peri

and 0.47%−1.2% for nM
endo. In general, they observed higher variations for the perimysium
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amount of dry connective tissue amount of collagen type I

w.r.t. to total dry muscle w.r.t. to the sum of types I and III

perimysium endomysium perimysium endomysium

muscle nMperi [%] nMendo [%] nI
peri [%] nI

endo [%]

a) 1.4 0.5 56.8 44.8
b) 1.7 0.3 75.5 46.7
c) 4.7 0.3 59.3 41.5
d) 6.4 0.1 58.3 43.6
e) 7.0 n.d. 63.5 41.4
f) 3.3 0.5 59.5 41.9

Table 8.3: Experimental data on the microstructural composition of the perimysial- and endomysial
layers for six bovine muscles extracted from data published in Light et al. [289]. a) Psoas major, b)
Longissimus dorsi, c) Pectoralis profundis, d) Semitendinosus, e) Gastrocnemius, f) Sternomandibularis.
(w.r.t.= with respect to, n.d.=not determined)

than for the endomysium. Light et al. [289] presented an extensive study on six different
types of bovine muscles and reported 1.4%−7.0% for nM

peri and 0.1%−0.5% for nM
endo. The

experimental results of Light et al. [289] are summarised in Table 8.3. For the volume
fraction nM (without distinguishing between peri- and endomysial contribution), Lieber
et al. [287] found a value of 5%.

The volume fraction nI The volume fraction nI can be calculated by a weighted mean
between the peri- and the endomysial tissues via

nI =
nM

peri n
coll
peri n

I&III
peri n

I
peri + nM

endo n
coll
endo n

I&III
endo n

I
endo

nM
peri + nM

endo

. (8.2)

Therein, ncoll
peri and ncoll

endo account for the amount of collageneous tissue inside the respect-
ive connective tissues, while nI&III

peri and nI&III
endo describe the amount of collagen type-I & -III

fibres inside the respective collageneous tissues. Based on the works of Light & Cham-
pion [288] and Light et al. [289], ncoll

peri is 95.3%, ncoll
endo is 42.4%, and nI&III

peri is equal to
nI&III

endo and 95%. Table 8.3 lists nI
peri and nI

endo for six bovine muscles. For the semitendi-
nosus muscle, for example, nI is 0.52 and for psoas major, nI is 0.43. This coincides with
the range of values reported in Listrat et al. [291].

The waviness parameter λw For the waviness parameter λw, we refer to a recent study
of Mohammadkhah et al. [339]. They comprehensively investigated the waviness of
collagen fibres in chicken and porcine skeletal muscle tissue for the undeformed and for
various deformed states. Mohammadkhah et al. [339] experimentally determined for
the reference configuration a λw between 1.12 and 1.17. For completeness, we also refer
to the images in the works of Rowe [410] and Trotter & Purslow [486], where the
crimped state of the fibres is depicted very nicely and which can serve as a basis for an
image-based estimation of the waviness parameter.

The mean orientation Θm The mean orientation Θm of the collagen fibre type I fibres
in the perimysial layer is frequently reported to be around 55 degree, see, for example,
Rowe [410] and Purslow [387, 389]. In the endomysial layer, Θm is found to be around
59 degree, as reported by, for example, Purslow & Trotter [391].



8.2 Results and Discussion 165

The collagen dispersion b Further, the parameter b describes the spreading/dispersion
of the collagen type-I fibres around the mean orientation Θm. Figure B.6b shows the π-
periodic von Mises probability density function pΘ for some exemplary values of b. Com-
paring these probabilities to experimentally measured distributions for the endomysial
layer by Purslow & Trotter [391], it can be concluded that in endomysium b ranges
around 1 and thus shows a rather wide distribution over the polar orientation space. Yet,
the study of Purslow & Trotter [391] refined the understanding of the collagen dis-
tribution in the endomysial layer, which before was commonly assumed to be completely
randomly oriented, such as in Trotter & Purslow [486]. In contrast, the collagen
fibres in the perimysial layer are much more aligned around the mean orientation Θm and
form well-ordered sheets of criss-crossed arrangement, see, for instance, Rowe [411] or
Purslow [387]. Unfortunately, there are no experimental studies reporting on the colla-
gen orientation in the perimysium in the form of detailed distribution diagrams. However,
from Figure B.6b it can be concluded that a value for the parameter b around 10 might
well describe the aligned characteristic of the perimysial collageneous tissue. A reasonable
range for the spreading parameter b describing endo- and perimysium in an averaged sense
might thus be given between around 1 and 10.

For completeness, we remark that if distinct values are given for the peri- and the
endomysium, the network quantities λw,Θm, b are derived by the weighted averaging

Γ =
nM

peri Γperi + nM
endo Γendo

nM
peri + nM

endo

(8.3)

between the peri- and endomysial quantities, Γperi and Γendo, for Γ = {λw,Θm, b}.

8.2 Results and Discussion

In this section, results for the previously introduced muscle model are presented and
discussed. We focus on the microstructure-originated characteristics of the presented con-
stitutive description rather than on an extensive calibration of the model parameters to
macroscopic experiments. Further, the following examples shall depict the capabilities of
the new model to predict macroscopic properties without explicitly assuming them in the
form of macroscopic constitutive assumptions. In this sense, it suffices in the following to
consider the Voigt estimate W̄V as the macroscopic strain energy of the muscle tissue. We
first present in Section 8.2.1 results for the collagen fibre stretch in order to demonstrate
that the microstructure exhibits distinct reactions if subjected to different macroscopic
deformations. Moreover, we will show that a few microscopic model parameters are suffi-
cient to capture with the new model the experimentally-observed anisotropic mechanical
behaviour of skeletal passive muscle tissue, in particular if the tissue is subjected to uni-
axial tension experiments in muscle fibre direction (Section 8.2.2) and transverse to the
muscle fibre direction (Section 8.2.3). The dependence of the new model on the full set of
transversely isotropic invariants will be highlighted in Sections 8.2.4 and 8.2.5, where it is
shown that the Ī2- and J̄5-dependencies are direct consequences of the presented multiscale
modelling framework without the need of calibrating any according macroscopic material
parameter. Remark that the simulations in Sections 8.2.2 to 8.2.5 are performed using
a self-written Matlab code, which allows to compute the integrals involved in the aver-
aging operation 〈(·)〉Ω for the energy W M

c and the stress PM
c of the collageneous tissue by
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means of the build-in adaptive quadrature function integral2, see Shampine [431, 432].
The accuracy of the integration is ensured by setting the tolerances of integral2 to 10−6.
However, such adaptive quadrature schemes are not optimal with respect to computa-
tional efficiency and appropriate quadrature schemes with a fix number of suitable chosen
discrete points as introduced in Section 6.4 should be considered for scenarios where the
simulation time becomes a critical factor.

8.2.1 Macroscopically-driven collagen fibre stretch

First, we investigate the potential of choosing a comprehensive description for the collagen
fibre kinematics as introduced within this model. The deformation of the collagen fibres on
the microscale is driven by the macroscopic deformation, F̄ , and comprises a length change
and a reorientation of the collagen fibre end-to-end axis. Thereby, the collagen kinematics
follow in the presented model from the detailed description of the microstructure and
are not artificially introduced as a macroscopic constitutive assumption. This clearly
distinguishes the proposed model from other microstructurally-based muscle models like
the ones by Gindre et al. [163] and Spyrou et al. [459, 460]. For a fibre which is
parametrised by vector a0, see Eq. (7.11), length changes due to a general macroscopic
deformation, described by the generic tensor F̄ ı, are given by

λa(λ̄l, γ̄l, γ̄t, ψ̄γ; Θ,Φ) =
{
λ̄−1

l sin2[Θ] sin2[Φ] + (λ̄
−1/2
l sin[Θ] cos[Φ]− γ̄t sin[Θ] sin[Φ])2

+ (λ̄l cos[Θ]− γ̄l sin[Θ] sin[Φ− ψ̄γ])2
}1/2

.
(8.4)

Therein, we made use of the incompressible formulation (3.103) for F̄ ı, such that λa
becomes a direct function of the four macroscopic strain invariants {λ̄l, γ̄l, γ̄t, ψ̄γ}. Now,
we investigate the microscopic collagen fibre stretch as a consequence of applying certain
specific macroscopic loading conditions. This is achieved by subsequently simplifying
Eq. (8.4) for the cases of pure uniaxial stretch (γ̄` = γ̄t = 0), longitudinal shear (λ̄` = 1,
γ̄t = 0), and transverse shear (λ̄` = 1, γ̄` = 0). To illustrate the fibre stretch λa over the
range of Θ and Φ, we make use of an azimuthal equidistant projection plot. In such plots,
the upper half of a three-dimensional unit sphere is projected onto a two-dimensional
plane, see Figure 8.1. The restriction to the upper half sphere (Θ ∈ [0, π/2]) is justified by
symmetry and entails a clearer visualisation of the results. Further, since the investigations
in this section are purely kinematical, no model parameters have to be specified.

For uniaxial stretch in the preferred direction (γ̄` = γ̄t = 0), relation (8.4) for the
collagen stretch can be simplified to

λa
∣∣
γ̄`=γ̄t=0

=
√

(λ̄3
` cos2[Θ] + sin2[Θ])/λ̄` , (8.5)

and the stretch becomes independent of the azimuthal angle Φ and the coupling invariant
ψ̄γ. A collagen-stretch model of form (8.5) was also proposed by Purslow [387] and serves
as full kinematical description for the collagen fibres in, for example, Gindre et al. [163]
and Spyrou et al. [459, 460]. However, in those works, relation (8.5) is constitutively
obtained by considering the change in length of the diagonal of a rectangle, where the
latter depicts the unwrapped surface of an incompressible cylinder subject to a stretch
λ̄`. In contrast, in the proposed model Eq. (8.5) is directly obtained from the microscopic
descriptions of the collageneous structure. This rigorous microstructural approach will
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Figure 8.1: Illustration of the azimuthal equidistant projection over the upper half of the unit sphere.
The azimuthal angle of the three-dimensional space, ψ, is depicted in the two-dimensional projection as
angular/azimuthal angle, while the polar angle Θ is depicted in radial direction and ranges from 0 to π/2.
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Figure 8.2: Projection plot of the collagen fibre stretch λa due to a) a uniaxial tensile stretch λ̄` = 1.675
in preferred direction ā, b) a uniaxial compressive stretch λ̄` = 0.539, c) a longitudinal shear deformation
γ̄` = 1.0 with ψ̄γ = 0 and d) a transverse shear deformation γ̄t = 1.0. The range of values is λa ∈
{0.773, 1.675} for a), λa ∈ {0.539, 1.362} for b), and λa ∈ {0.618, 1.618} for c) and d).

especially prove to be beneficial when the collagen fibres are subjected to general and
more complex macroscopic deformations.

Figure 8.2a depicts the resulting projection plot for the collagen stretch λa for a macro-
scopic stretch of λ̄` = 1.675. The plot exhibits radial symmetry due to the Φ-independence
of relation (8.5). Moreover, the maximum value for the collagen stretch occurs at Θ = 0
and is equal to the applied macroscopic stretch λ̄`, whereas the minimum value at Θ = π/2

is exactly the transverse stretch 1/
√
λ̄`. The stretch λ̄` = 1.675 is chosen such that the

axisymmetric shear γ̄a is 1.0.

Figure 8.2b shows the distribution of the collagen fibre stretch for a macroscopic com-
pressive stretch of λ̄` = 0.539, which corresponds to γ̄a = −1. The plot is radial symmetric
like Figure 8.2a. However, the minimum value of the collagen stretch now occurs at Θ = 0
and equals the applied macroscopic stretch λ̄`, while the maximum value is observed at
Θ = π/2.

For a longitudinal shear deformation (λ̄` = 1, γ̄t = 0), Eq. (8.4) simplifies to

λa
∣∣
λ̄`=1,γ̄t=0

=
√

sin2[Θ]− (γ̄` sin[Θ] sin[Φ− ψ̄γ]− cos[Θ])2 . (8.6)
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Figure 8.3: Projection plot of the collagen fibre stretch λa due to a combined stretch and shear loading
with λ̄` = 1.675, γ̄` = γ̄t = 1.0, and four different values {0, 1, 2, 3} of the coupling invariant ψ̄γ . The
range of values over all four cases is λa ∈ {0.359, 2.110}.

In contrast to Eq. (8.5) of the previously investigated uniaxial loading case, the collagen
fibre stretch is now dependent on the azimuthal angle Φ and the macroscopic coupling
invariant ψ̄γ. However, the dependence on ψ̄γ only phase shifts the collagen stretch with
respect to the azimuthal orientation and does not alter the averaged results after the
integration over the range Φ ∈ [0, 2π) within the operator 〈(·)〉Ω . Hence, the network
energy W M

c is for the longitudinal shear independent on the choice of ψ̄γ. This confirms
the statement that ψ̄γ can be chosen arbitrarily whenever γ̄` γ̄t = 0, see Section 3.5.4.
The collagen stretches resulting from γ̄` = 1.0 and ψ̄γ = 0 in Eq. (8.6) are plotted in
Figure 8.2c.

For transverse shear, the collagen stretch is given by

λa
∣∣
λ̄`=1,γ̄`=0

=
√

cos2[Θ] + sin2[Θ]
(

sin2[Φ] + (cos[Φ]− γ̄t sin[Φ])2
)
. (8.7)

This relation is independent of the coupling invariant ψ̄γ as expected. The result for a
transverse shear γ̄t = 1.0 is shown in Figure 8.2d. As for the longitudinal shear, the
dependence on the azimuthal angle Φ indicates that this projection plot does not obey
radial symmetry.

In order to highlight the generality of Eq. (8.4), we also want to investigate the scenario
of combined axisymmetric, longitudinal and transverse shear deformation with λ̄` = 1.675
(corresponding to γ̄a = 1.0) and γ̄` = γ̄t = 1.0. Under these conditions, the collagen
stretch λa additionally depends on the coupling invariant ψ̄γ. Figure 8.3 exemplary shows
the collagen stretch for four different values ψ̄γ = {0, 1, 2, 3}. From Figure 8.3, one clearly
observes that the four different loadings not only cause a phase shift but also affect the
results of the integration when evaluating the averaging operation 〈(·)〉Ω and, hence, the
network energy W M

c .
Concluding this section, we want to emphasise that the comprehensive description for

the collagen fibre kinematics within the presented model results in distinct fibre-stretch
distributions for different macroscopic deformations. By recalling the case distinction
in the collagen fibre energy as defined in Eq. (7.24), it becomes clear that the detailed
knowledge about the stretch distribution is essential for the exclusion of fibres which are
not stretched beyond the waviness threshold, hence for fibres with λa < λw, which should
not contribute to the network energy. This switch is very important in collageneous tissue,
as discussed, for example, by Holzapfel & Ogden [224]. The present model includes the
switch for general macroscopic loadings in a natural way without the need of computing
critical angles or any other additional procedure.
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Figure 8.4: a) Collection of tensile experiments on skeletal muscle tissue. The blue and red shaded areas
depict the standard deviations of the results of Calvo et al. [67] and Takaza et al. [471], respectively.
The experiments of Hawkins & Bey [190] and Calvo et al. [67] were performed on rat tibialis anterior
muscles, whereas Morrow et al. [344] used rabbit digitorum longus muscles and Takaza et al. [471]
used pig longissimus dorsi muscles. b) Collection of simulation results for uniaxial tension and different
combinations of model parameters. Lines without and with markers depict volume fractions according
to longissimus dorsi and semitendinosus, respectively. Solid and dashed lines define the different collagen
stiffnesses µcf = {300, 500} MN/m2, and the line colours {blue, red, yellow, purple} stand for the different
wavinesses λw = {1.05, 1.1, 1.15, 1.2}.

8.2.2 Uniaxial tension in muscle fibre direction

Most mechanical tests on skeletal muscle tissue are tension tests in the direction of the
muscle fibre orientation, for example, in Hawkins & Bey [190], Calvo et al. [67],
Morrow et al. [344], and Takaza et al. [471]. Figure 8.4a shows the results of these
experimental studies in one graph. This figure impressively demonstrates the large inter-
tissue variations, since Hawkins & Bey [190] and Calvo et al. [67] performed experi-
ments on the rat tibialis anterior, Morrow et al. [344] on the rabbit digitorum longus
muscle, and Takaza et al. [471] on the pig longissimus dorsi muscle. Noticeable are the
different shapes of the stress-strain relations, which strongly indicates microstructural al-
terations in the specimen. In addition, Figure 8.4a shows the large intra-tissue variations,
visible through the large standard deviation in the experiments of Calvo et al. [67].
This suggests that microstructural variations are also present among specimen of the same
muscle type.

In what follows, we demonstrate the ability of the proposed model to capture such vari-
ations by varying the model parameters for ranges reported in literature and summarised
in Section 8.1. Note, it is not the aim to calibrate the model to macroscopic experimental
data. The macroscopic behaviour should be a consequence of microstructurally changes
and not the microstructural material parameters a consequence of macroscopic behaviour.
A description based on macroscopic calibration does not make sense within the context
of this work, as we aim to clearly follow a bottom-up approach and to investigate how
changes in the microstructural components effect the macroscopic behaviour.

To demonstrate the model’s ability to capture microstructural variations on the mac-
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Figure 8.5: Schematic diagram of the main influence regions of the model parameters on the strain-
stress-curve of skeletal muscle tissue subject to uniaxial tension in muscle fibre direction.

roscopic scale, we assume nM ∈ {0.02, 0.065} and nI ∈ {0.63, 0.52} (hence, the values for
the longissimus dorsi and semitendinosus given in Table 8.3). The values for the colla-
gen stiffness are µcf = {300, 500} MN/m2 and four distinct waviness parameters, λw ∈
{1.05, 1.1, 1.15, 1.2}. The remaining parameters are µF = 13.446 kN/m2, µM = 40 kN/m2,
Θm = 55◦, and b = 5. The amount of parameter combinations was chosen such that indi-
vidual stretch-stress curves can still be distinguished and linked to the according paramet-
ers. Further, the deformation gradient is given by F̄ = λ̄

−1/2
` (e1⊗e1 +e2⊗e2)+ λ̄` e3⊗e3

and ā = e3. We want to remark that for these uniaxial (axisymmetric) deformations,
the deformation field in the microstructure is indeed uniform and the Voigt assumption
in Eq. (7.28) depicts an exact result for the considered classes of materials. This means

that the energy W̄V is identical to the TSO-based energy W̃ from Eq. (7.27). Moreover,
the collagen fibre kinematics under this loading condition are according to Eq. (8.5). The
stress responses for λ̄` ∈ [1.0, 1.4] are shown in Figure 8.4a. By comparing those results
with the experiments in Figure 8.4a, one observes that the range of simulation results
qualitatively matches the experimentally measured stress curves. Individual character-
istics and shapes of the experimental curves, for example shorter or longer toe region,
can be represented by the model by altering the respective microstructural parameters,
for example the waviness λw. The exact correlation of the model parameters on specific
regions of the stretch-stress-curve would require an appropriate sensitivity analysis on the
parameters, which is not the scope of this paper. However, a schematic diagram for the
main influence regions of the model parameters during uniaxial stretch can be provided in
form of Figure 8.5, where it is especially highlighted that the amount and the stiffness of
collagen type-I fibres influence the slope of the curve at higher stretches.

A quantitative comparison between experimental results and our proposed approach
does not make sense, since none of the existing experimental studies report on the re-
quired microstructural components that are needed for our proposed approach. Moreover,
the workflow from cutting, freezing, thawing to testing of tissue specimen encompasses
many challenges and even small changes within the prepared tissue may alter the experi-
mental results. Hence only a qualitative comparison is possible. On the other hand, one
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Figure 8.6: a) Stress responses P̄xf and P̄f due to a uniaxial stretch λ1 transverse to the muscle fibre
direction or a uniaxial stretch λ̄` in muscle fibre direction, respectively. b) Hencky-type Poisson’s ratios
νH

21 and νH
31 due to the stretch λ1 transverse to the muscle fibre direction. The shaded area indicates the

stretch range in which Takaza et al. [471] measured nearly constant values for νH
21 and νH

31.

can alter material parameters and hence systematically investigate how the variation of
individual components alter the macroscopic behaviour using well-defined in-silico exper-
iments. Furthermore, we have already pointed out that a common issue in modelling soft
biological tissue is the identification of the stress-free reference configuration. This is a
particular challenge for materials with a prominent toe region at low stretches, as it is
the case for skeletal muscle tissue. This uncertainty in defining the stress-free reference
configuration can cause large shifts in the stretch-strain curves and differences between
simulations and experiments.

8.2.3 Uniaxial tension transverse to the muscle fibre direction

Next, we consider uniaxial tensile deformation transverse to the muscle fibre direction. To
do so, we assume that ā0 = e3 and that a stretch λ1 is applied in e1-direction. Then, with
the deformation gradient F̄ = λ1 e1 ⊗ e1 + λ2 e2 ⊗ e2 + λ3 e3 ⊗ e3, the incompressibility
constraint (7.5) resulting in λ2 = (λ1λ3)−1, and the boundary conditions P̄22 = P̄33 = 0 for
the stress tensor coefficients of the unloaded directions, one can compute the remaining
unknown stretch λ3, see Merodio & Ogden [323]. Moreover, we choose from the previous
section a fixed subset of parameters, which will be used here and in the following examples:
nM = 0.065, nI = 0.52, µcf = 300 · 106 N/m2, λw = 1.1 and µF = 13446 N/m2, µM =
40 · 103 N/m2, Θm = 55◦, and b = 5. Figure 8.6a depicts the stress response P̄xf in e1-
direction due to the stretch λ1. For comparison, the plot also contains the stress response
P̄f if a uniaxial extension λ̄` is applied in muscle fibre direction. The results reveal that
the tissue is much stiffer in its transverse direction than in fibre direction. This effect
was also experimentally observed by, for instance, Nie et al. [354], Takaza et al.
[471], Mohammadkhah et al. [338], and Wheatley et al. [515]. These matching
findings in simulation and experiments also strongly suggest that muscle tissue should not
be modelled as a fibre-reinforced material on the macroscopic scale, since the muscle fibres
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do not necessarily reinforce the material but just lead to an overall transversely isotropic
structure.

Further, the differences between the stretches λ2 and λ3 in the unloaded directions can
be described in terms of Hencky-type Poisson’s ratios νH

i1 = − ln[λi]/ ln[λ1] for i = 2, 3.
Therein, νH

i1 depict the extensions of the classical linear Poisson’s ratio to the finite-
deformation regime, as explained by Mihai & Goriely [333]. They are based on the
logarithmic Hencky strain, introduced in Section 2.1.5, which for the given diagonal form
of the deformation gradient simply reads Ē0 = ln[λ1] e1⊗e1 +ln[λ2] e2⊗e2 +ln[λ3] e3⊗e3.
The results for νH

21 and νH
31 are shown in Figure 8.6b. While the mechanical behaviour ex-

hibits isotropic behaviour for low stretches, hence, νH
21 = νH

31 = 0.5 for small λ1-stretches,
an anisotropic material behaviour can be observed at higher stretches. In this case, the
ratio νH

31, which is related to the muscle fibre direction, significantly increases if compared
to νH

21, which is related to the plane that is transverse to the muscle fibre direction. Note,
due to the tissue incompressibility, νH

21 +νH
31 = 1. For the considered deformation scenario,

Takaza et al. [471] experimentally measured νH
21 = 0.28 and νH

31 = 0.74. Moham-
madkhah et al. [338] reported νH

21 = 0.17 and νH
31 = 0.83. In order to compare these

constant values with the results obtained from our approach, we first need to specify the
stretch range in which the experimental values were observed. Takaza et al. [471]
as well as Mohammadkhah et al. [338] preloaded the tissue specimen before testing.
Taking into account the preloading, Takaza et al. [471] observed a nearly constant
Poisson’s ratio for 1.22 ≤ λ1 ≤ 1.27. This range is shaded grey in Figure 8.6b. One can
observe from Figure 8.6b that the simulation predicts in this range quite constant Poisson
ratios with νH

21 ∈ [0.14, 0.18] and νH
31 ∈ [0.82, 0.86]. Further, the simulation results for

this stretch range also agree very well with the experimental results of Mohammadkhah
et al. [338].

8.2.4 Simple shear deformation

For a transversely isotropic material with preferred direction ā = e3, we know that one
has to distinguish between a longitudinal (out-of-plane) simple shear F̄ = I + γ̄` e3 ⊗ e1

and a transverse (in-plane) simple shear F̄ = I + γ̄t e2 ⊗ e1. Further, one can further
consider an axisymmetric shear deformation, achieved by applying the uniaxial tension
F̄ = λ̄

−1/2
` (e1 ⊗ e1 + e2 ⊗ e2) + λ̄` e3 ⊗ e3, in which the stretch λ̄` is defined in terms

of the axisymmetric shear value γ̄a. The model parameters are chosen as previously (see
Section 8.2.3).

Figure 8.7a shows the results for three shear modes, hence, axisymmetric, longitudinal
and transverse shear deformations γj ∈ [0, 1] with j = {a, l, t}. Therein, the results are
presented in terms of the nominal stress quantities P̄j = ∂γjW̄j for j = {a, l, t}. The stiffest
response is observed for the longitudinal shear, while the axisymmetric shear shows the
lowest stress response. The greater stiffness of longitudinal shear modes compared to
transverse ones has also been observed in experimental studies by means of shear wave
elastography by Papazoglou et al. [368] (see also, for example, Gennisson et al.
[157] and Sinkus et al. [443] for anisotropy measurements of muscles and soft tissues via
elastography). Note, the collagen fibre stretches, which are due to the three shear modes
and which are described by Eqs (8.5), (8.6), (8.7), are visualised in Figures 8.2a, 8.2c, 8.2d,
respectively. It has to be pointed out that the distinct stress responses of the three different
shear modes are direct consequences of the detailed kinematical description of the collagen
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Figure 8.7: a) Comparison of the stresses P̄a, P̄`, and P̄t resulting from axisymmetric, longitudinal and
transverse shear deformations, respectively. b) Normalised strain energies W̄ /W̄ |ψ̄γ=0 for four different

combinations of coupled shear deformations.

fibres described in Eq. (8.4). In contrast, a model that models collagen solely based on the
muscle fibre stretch, λ̄`, as, for example, used by Gindre et al. [163] or Spyrou et al.
[459], neglects any collagen contribution during longitudinal and/or transverse shear (due
to λ̄` = 1). Moreover, being able to capture different mechanical responses for longitudinal
(γ̄`) and transverse shear (γ̄t), together with the previous reported link between invariant
sets I I

ti and I ı
ti, see Eqs (3.93) and (3.96), allows one to conclude a clear dependency of the

new model on the macroscopic J̄5-invariant. As a consequence, the proposed macroscopic
model naturally depends on invariants J̄4 and J̄5 and not, like for most macroscopically-
based muscle models, only on the J̄4-invariant. It is also worth mentioning that the
advantage of the presented model is not only that it includes a J̄5-dependence, but that
the multiscale framework and the microstructural parameters completely define how this
dependency appears on the macroscale. In contrast, Blemker et al. [47] considered
a J̄5-dependence and thus different longitudinal and transverse shear stiffnesses in their
phenomenological model, but set them equal at last because of the lack of macroscopic
experimental data to which the model should have been calibrated.

8.2.5 Coupled shear deformation

Similarly to the investigation of the J̄5-dependence in the previous section, we now in-
vestigate the influence of the Ī2-invariant on the overall energy of the new model. With
Eqs (3.97)5 and (3.98)2 in mind, this dependency is examined by considering coupled shear
deformations and varying the coupling invariant ψ̄γ. The influence of ψ̄γ on the collagen
fibre stretch λa has been shown in Section 8.2.1 and Figure 8.3. Now, to investigate the
influence of the coupling invariant ψ̄γ on the overall energy W̄ , the following four different
deformations will be considered herein: Coupled longitudinal and transverse shear with
(i) γ̄` = γ̄t = 0.5 and (ii) γ̄` = γ̄t = 1.0, as well as the coupling of all three shear modes
with (iii) γ̄a = γ̄` = γ̄t = 0.5 and (iv) γ̄a = γ̄` = γ̄t = 1.0. Model parameters are chosen
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as previously (see Section 8.2.3). The results for the macroscopic strain energy W̄ (ψ̄γ)
normalised to W̄ |ψ̄γ=0 are shown in Figure 8.7b. The results reveal a pronounced depend-

ency on the coupling invariant ψ̄γ, however, the magnitude shows to be dependent on
the applied deformation. From the strong ψ̄γ-dependency, it follows that the new model
exhibits strong emphasis on the macroscopic Ī2-invariant. We want to stress again that
this dependency is also a direct consequence of the microstructural settings and the choice
of the microstructurally-based model parameters and does not require any calibration on
the macroscale.

8.2.6 Future investigations

The focus in this chapter was to show whether the new multiscale muscle model is able to
qualitatively represent typical characteristics of skeletal muscle tissue and its anisotropic
properties. Further possible investigations should primarily focus on examining further
direction-dependent properties of the material model and comparing them to experimental
data. In particular, the model should be investigated for compressive loading scenarios
and the associated direction-dependent stress states. Very interesting experimental stud-
ies on such scenarios were carried out by Pietsch et al. [371] and Böl et al. [53].
The simulation of compressive loadings is also of interest when examining a characteristic
to which Mohammadkhah et al. [338] referred to as tension-compression-asymmetry.
They mean by this that they observed that the tensile stress of muscle tissue is about two
orders of magnitude higher than the stress under compressive deformations. However, it
is very difficult to produce reliable experimental results for this setup, especially because
a preload/prestretch is often applied to tissue samples before the tensile test, which com-
plicates the subsequent comparability with the compression tests (which are usually not
preloaded). The preloading step before the testing heavily influences the stretch-stress
curve because of the flat toe region at lower stretches. Finally, it would be interesting
to consider simple shear deformations with regard to the Poynting effect, see Poynting
[385]. In this context, Destrade et al. [96] observed that, depending on the orientation
of the tissue sample, simple shear deformations of biological materials can be associated
by a negative or a positive Poynting effects. Appropriate investigations would give further
insights into the anisotropic characteristics of muscle tissue and could represent a further
validation of the here presented muscle model.
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9 Conclusion & Outlook

Es soll sich regen, schaffend handeln,

Erst sich gestalten, dann verwandeln;

Nur scheinbar steht’s Momente still.
Das Ewige regt sich fort in allen:

Denn alles muß in Nichts zerfallen,

Wenn es im Sein beharren will.

Johann Wolfgang von Goethe

This work dealt with continuum-mechanical methods for the multiscale modelling of mater-
ials and the subsequent formulation of a novel microstructurally-based multiscale material
model for skeletal muscle tissue. After a detailed discussion of the principles of con-
tinuum mechanics and constitutive material theory, the work provided a comprehensive
introduction of the basic concepts of scale transition and homogenisation concepts. These
approaches are particularly necessary when classical single-scale modelling approaches are
not applicable, either because there is insufficient large-scale data available or more in-
sights into small-scale effects of the material are desired. This is especially the case when
considering (soft) biological tissues and in particular for skeletal muscle tissue.

The concluding remarks in this chapter primarily focus on the two most important
results of the present work. This is firstly the formulation of novel analytical estimates
for the effective strain energy of two-phase materials and secondly the introduction of a
multiscale approach for the modelling of skeletal muscle tissue.

An analytical estimate for hyperelastic two-phase composites In Chapter 5 of
this thesis, a novel estimate for the effective stored energy of a two-phase composite with
aligned fibrous microstructure and hyperelastic, incompressible, anisotropic phases was
derived. The estimate is based on the tangent second-order homogenisation method pro-
posed by Ponte Castañeda & Tiberio [382]. The method is consistently adapted for
scenarios that are particularly important for the modelling of biological soft tissue, which
in particular includes the case that the phases are anisotropic and incompressible. To
take into account the incompressibility of the fibre phase, we performed an asymptotic
analysis of the deformation field in the fibre phase, which resulted in a consistent con-
straint equation for the phase average of the fibre and an additional constraint pressure
term. By doing so, the constraint pressure induces in the fibre phase an additional hy-
drostatic stress component and provides a replacement for the volumetric terms, which
would become indeterminate in the incompressible fibre limit. Further, we performed an
asymptotic analysis to get regular expressions of the underlying equations in the incom-
pressible matrix limit. To obtain the resulting estimate for incompressible and generally
anisotropic phases requires one to solve for six scalar unknowns, which are the five un-
known coefficients of the average fibre deformation gradient F̄F and the constraint pressure
℘. This can easily be done numerically. If the two phases exhibit transversely isotropic
behaviour and the preferred directions are collinear to the alignment of the fibrous inclu-
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sions, then the number of unknown coefficients of F̄F reduces from six to four. Further, if
the phases are described as augmented isotropic materials with anisotropic J4-dependent
contributions, then one can additively split the overall effective energy and homogenise the
J4-dependent anisotropic phase energies with a simple Voigt-type averaging. This result is
quite remarkable and useful for most fibre-embedded materials that are typically modelled
by superimposing a mildly nonlinear isotropic part with a highly nonlinear J4-dependent
anisotropic contribution. For such materials, the homogenised nonlinear term can be effi-
ciently obtained by employing an easy-to-handle Voigt-type averaging. Besides exhibiting
a high degree of accuracy for most of the relevant scenarios, the biggest advantage of
the proposed TSO method is probably its relatively simple and handleable structure and
its applicability to very general phase properties. This generality is very important, in
particular, for applications to biological tissues.

A multiscale framework for the modelling of skeletal muscle tissue One main
goal of this thesis was the detailed introduction and discussion of a multiscale continuum-
mechanical modelling framework for the description of skeletal muscle tissue. The key
feature of this model is that the macroscopic material response is entirely based on the
mechanical description of the material characteristics and composition on smaller scales. In
detail, a two-phase model was proposed and the two phases were identified as the muscle
fibres and the extracellular matrix (the collageneous tissues). Differentiating between
muscle fibre and extracellular matrix has the advantage that the mechanical (or other)
properties of the two phases can be described individually, as opposed to a macroscopic
single-scale modelling approach. This is beneficial as there often exist more comprehensive
and higher quality experimental data for microscopic constituents than on the macroscale.
The descriptions of the phases and the application of analytical homogenisation schemes
entailed a constitutive muscle model for the macroscopic behaviour of skeletal muscle tissue
with eight model parameters. The key advantage of this approach is that the paramet-
ers have direct microstructural meanings. Moreover, this novel modelling approach does
not require any calibration on the macroscale, on which data obtained from experiments
are rather uncertain, limited, simplified, and error-prone. This clearly differentiates the
proposed model from single-scale material models, in which the material parameters are
obtained (and limited) through extensive macroscopic calibration to experimental data.
Five of the eight model parameters are structural parameters and can ideally be determ-
ined by utilising image-based methods, which means that no material tests are necessary.
The remaining three material parameters in the new model are directly related to the stiff-
ness of microstructural components, for which extensive and reliable data is available in
the literature. Further, as a consequence of the multiscale approach, macroscopic material
characteristics like incompressibility and transverse isotropy follow directly from the mi-
croscopic considerations and are not added as constitutive assumptions on the macroscale.
In this sense, the presented results focused on emphasising the model capability of predict-
ing macroscopic characteristics directly from the microstructural settings. For instance,
it was shown that the transversely isotropic framework relies on all five strain invariants,
while for macroscopic single-scale muscle models the dependencies have to be included in a
constitutive fashion. The results presented in this thesis are based on a Voigt assumption,
which means that the deformation in the microstructure is assumed to be uniform. This
is an appropriate assumption for healthy muscle tissue and sufficient to demonstrate the
qualitative capabilities of the model. However, the microstructure and the composition of
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living tissues can undergo severe changes and the assignment of modelling assumptions is
a highly dynamic process. For example, the consideration of diseased tissue, in which the
strong integration of the microstructural components is no longer given, requires that the
microscopic deformation is calculated on the basis of a variational minimisation principle.
Such an approach was introduced in this work by means of an estimate based on the also
presented TSO homogenisation method.

The new modelling framework offers great potential for a variety of applications, in
particular for scenarios where the microstructure of the muscle tissue undergoes morpho-
logical changes. Such structural changes are often associated with diseases and patholo-
gical conditions and can be directly included in the model through the adaption of the
respective microstructurally-based model parameters. The advantage in connection with
the multiscale model is that there is rich literature and a large number of studies that deal
in detail with the accompanying changes in the microstructure and provide much data that
can be used for the model. Diseases and phenomena that were considered in such a way
are for example immobilisation by Hibino et al. [204] and Jalal et al. [246], cereb-
ral palsy by Smith et al. [452], abberant repair and development of fibrosis by Mann
et al. [309], botulinum neurotoxin therapies in patients with spasticity by Thacker
et al. [476], and stroke by Jalal et al. [246]. The model can also be combined with
studies on remodelling processes in the collageneous structures, such as those of Kuhl
et al. [267] and Menzel & Waffenschmidt [321]. The same applies for problems
such as failure and rupture of single collagen fibres, see Cacho et al. [66] or Veres &
Lee [492]. A very promising extension would also be the combination with agent-based
models, such as the ones by Martin et al. [317] or Lee et al. [282], to be able to
simulate growth and atrophy processes in the tissue or phenomena like wound healing.
Some of the mentioned applications may require appropriate extensions of the presented
model and it has to be investigated whether this only affects the energy formulations of
the two phases or even requires the addition of a third phase. For instance, pathological
cases which are accompanied by high volume fractions of intramuscular fat might require
the formulation of three-phase models and the consideration of appropriate constitutive
models for fat tissue, see Mihai et al. [332].

An indispensable part of future studies is the further investigation of the mechanical
structure of the muscle fibre and respective extensions of the multiscale muscle model.
The here considered experimental data set a solid foundation for assuming a nearly-linear
behaviour of the muscle fibre in this work. Yet, possible anisotropy and more distinct
nonlinearity of the muscle fibre, as observed by, for example, Linke et al. [290], should
be investigated. Without a doubt, however, the incorporation of active contractile effects
is the most important upcoming extension of the model. Ideally, this is done by directly
describing the elastic energy in the sarcomeres, especially in the actin, myosin and titin
proteins. This way, the active behaviour can be directly integrated into the multiscale
model by describing the increased elastic potential of the activated muscle fibre.

Finally, it should be noted that an extended multiscale model may lead to considerable
additional computational effort and can only be used to a limited extent for some applic-
ations, such as for the implementation in finite-element software. In such cases, it could
be helpful to utilise surrogate models, as proposed by Wirtz et al. [520], or to correlate
the microstructurally-based model parameters with those of generic and easy-to-handle
strain-energy functions, such as shown by Marino et al. [311].
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Epilogue

Some comments on the concept of phenomenology

If one deals with multiscale modelling and the corresponding literature, one inevitably
comes across the concept of phenomenology. Unfortunately, however, the term is often
given a negative connotation when used in the context of continuum mechanics. In many
cases it is employed to describe models that are not based on multiscale approaches, often
with the addition “only”. Such comparisons are intended to show the superiority of any
kinds of special models over such which are “only phenomenological”. The author does
not know when this became common in the continuum-mechanical community (maybe it
is also elsewhere), but it must be said that I unfortunately also used such terms myself.
That was before I was made aware1 that phenomenology is not just a loose term but a
philosophical school that is concerned with the structures of experience and consciousness.
It is particularly connected to the Austrian-German philosopher and mathematician Ed-
mund Gustav Albrecht Husserl (1859-1938). On the contrary, I am (clearly) not
a philosopher, but I believe that I have understood the basic ideas of phenomenology to
such an extent that I can say that the use of the term in continuum mechanics should be
enjoyed with more caution. To explain this briefly, we have to note that the concept of
observable phenomena is (obviously) the central construct of phenomenology. This can
be, for example, an experimentally measured stress-strain curve (hence, an observed ma-
terial behaviour). The observation of such phenomena is thereby regarded as a decisive
step for gaining knowledge2. Applied to the basic problem of continuum mechanics, which
is finding appropriate constitutive formulations, this means that the description of the
phenomenon “stress-strain curve” by means of suitable mathematical tools is a proper
phenomenological approach. If this is done correctly, this approach cannot be wrong or
insufficient. A phenomenological approach guarantees an unbiased and objective view on
the things as they are and it does not require any further subjective opinion of the observer.
However, problems may arise if the procedure is not based on the description of observed
phenomena. An example for this comes from skeletal muscle modelling: For a long time,
experiments on muscle tissue were mainly (if not even exclusively) performed in a uniaxial
manner along the muscle fibre. This would be sufficient for the description of the material
behaviour exactly for this deformation state. Yet, in a three-dimensional setting, one needs
to describe the material behaviour also for other loadings and, for instance, requires the
stiffness of the material across the muscle fibre, too. The existence of fibres in the material
has led some researchers to assume that muscle is a fibre-reinforced material and that the
stiffness of the material in the transverse plane would be lower. However, a number of
recent experiments3 led to the generally accepted assumption that the transverse direction
is even stiffer. A critical statement now would be that the incorrect modelling was due to
the “inadequate phenomenological models” and that better models were needed. This is
of course wrong. The falsity of the assumption that muscle is a fibre-reinforced material is

1One of the reasons was reading the novel Schlafende Sonne by Thomas Lehr.
2A beautiful German word for this is Erkenntnisgewinn and describes what should always be the upper-

most maxim in (not only, but most of all) scientific research.
3See the references in the main text.
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because of a lack of proper phenomenology in the modelling process. In order to describe
the material behaviour transverse to the muscle fibre, one should observe the correspond-
ing phenomenon first, namely a proper experimental stress-strain curve for this type of
loading. The observation that muscle tissue contains fibres a priori has nothing to do with
the objective assessment of the transverse mechanical behaviour. However, of course, it
can help to deduce the material symmetry properties of the material and to perform the
necessary material testing.

Now, to jump forward a little bit, I want to comment on the fact that multiscale mod-
elling approaches are often considered as a superior alternative to phenomenological ap-
proaches. I do not agree with that. Using multiscale modelling approaches does not (must
not!) prevent from following the ideas of phenomenology. It is in fact ridiculous to think
that a multiscale approach would be non-phenomenological. Even if a model includes
smaller scales, like a continuum-mechanical microscale (for instance in the range of mi-
crometres), it is in a physical sense still “macroscopic” and relies on phenomenological
concepts like pressure, volume, temperature, heat, and work (or even mass). Further,
the constitutive modelling is in multiscale approaches just shifted from larger to smaller
scales, but is of course still necessary. In turn, this modelling step still demands for a
proper description of the experimentally derived stress-strain curves (phenomena!) of the
phases on smaller scales.

This short excursion may provide some clarifications for the classification4 of different
methods and models in continuum mechanics. The author thinks that an attempt should
be made to avoid incorrect use and the associated discrediting of an entire philosoph-
ical study. For a lot of applications in continuum mechanics, for instance, the pairing
“multiscale models and single-scale models” seems to be a better distinguishing feature
than the misleading pairing “multiscale and phenomenological”.

To conclude the present thoughts and to emphasise the importance of the term phe-
nomenon once more, we quote Clifford Truesdell [490]:

“The task of the theorist is to bring order into the chaos of the phenomena of nature,
to invent a language by which a class of these phenomena can be described efficiently
and simply.”

A comment on the law of parsimony in multiscale modelling

The modelling of materials by means of a multiscale approach may possibly result in a
large set of model parameters. This is because the properties of a variety of small-scale
structures and their interactions have to be included and accounted for. In this work, for
instance, the multiscale muscle model contains eight model parameters, see Table 8.1. I

4In biomechanics, one also finds the pairing “phenomenological versus biophysical”. This is also not
fully appropriate. In addition to the fact that a model cannot be non-phenomenological, a model which
aims on describing a biological material (or system) that is not biophysical would be very poor. To
see this, we have to consult the definition of biophysics that is provided by the Biophysical Society :
“Biophysics is the field that applies the theories and methods of physics to understand how biological
systems work.” (https://www.biophysics.org/what-is-biophysics). Any kind of model should be based on
physics (for example the physical balance relations) and the term “biophysical” is not completely suitable
to distinguish it from other methods. For example, also a simple Neo-Hookean material model can be
named biophysical if it properly describes the behaviour of a biological material.
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made the experience that this number of parameters makes some people think that the
modelling would conflict with the law of parsimony and ideas like Occam’s razor. However,
this objection is inappropriate. The set of model parameters that results from a modelling
ansatz across several scales usually does not have the meaning of “fitting parameters”,
whose only task is to ensure that an existing stress-strain curve is exactly reproduced.
The multiscale approach is therefore not in competition with a simpler (single-scale) con-
stitutive material description, since it does not have the task of being calibratable to
the macroscopic behaviour, but rather provides further insights and relationships between
small-scale structures. Lokshin & Lanir [294] formulated a very descriptive explanation
and clarification in the context of their model:

“A common objection is that under high number of parameters, a model can fit to a
wide spectrum of behaviors merely by virtue of the high number of adjustable para-
meters. While this is a valid objection, especially in phenomenological models, the
present case of structure-based formulation is different, and for several reasons: first,
the parameters represent entities having well defined structural or mechanical signi-
ficance which are key determinants of the tissue’s response. Hence the parameters
are not mere mathematical factors, as is the case in phenomenological models.”





Appendix
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A Tensor calculus

This appendix provides some basics and explanations on tensor calculus. The notation
used in this work mainly follows the book of de Boer [51] and the thereon based lecture
notes of Ehlers [107]. Important parts of de Boer’s book [51], originally in German,
can also be found as English translation in the appendix of de Boer [52]. We refer the
reader to these very comprehensive works for a more general introduction to the field of
vectors and tensors and the very basics of tensor calculus, like distributive or commutative
properties of tensor multiplications, fundamentals of vector and tensor analysis as well as
integral theorems and further topics. Further extensive explanations can also be found
in the book of Itskov [243], wherein however the notation might differ to the herein
employed. In this appendix, we will give a rather pragmatic overview specialised to the
needs of this work. Calculation rules may be introduced without a proof and we refer to
the mentioned literature for further details.

A.1 Basics

With few exceptions, we denote scalars (zeroth-order tensors) by light small letters
{a, b, c, . . . } ∈ R or Greek letters {α, β, γ, . . . } ∈ R. Yet, especially Greek letters might
have fixed meanings for specific quantities. Vectors (first-order tensors) are usually de-
noted by small boldface letters {a, b, c, . . . } ∈ Rn, where n stands for the dimensionality
of the vector, which is a three-dimensional Euclicdian space in this work. Their index
notation is given by a = ai ei, where ai is a vector of coefficients, ei is the Cartesian
basis, and i ranges from 1 to n such that i = 1, 2, 3 for n = 3. With some abuse of
the convention, some vectors are indicated by capital letters to highlight their referential
representation in contrast to their actual one. Second-order tensors are mostly denoted
by boldface capital letters {A,B,C, . . . ,A ,B ,C , . . . } ∈ Rn⊗n. Their index notation
reads A = Aij ei ⊗ ej, where (mostly) i, j = 1, 2, 3. The dyadic product “⊗” defines
an outer product, such that, for instance, two vectors result in a second-order tensor
a ⊗ b = aibj ei ⊗ ej. Two vectors can as well be connected by a dot product “·”, such
that a · b = aibi. Therein and elsewhere, the occurrence of double indices demands the
usage of the Einstein summation convention, which means that, for instance, aibi serves
as a shorthand notation of the sum

∑n
i=1 aibi. In this work, the dot product always

defines an inner product with a scalar as result, hence, a · b = 〈a, b〉. When applied to
higher than first-order tensors, this means that the single dot does not indicate a simple
contraction. Multiplications between second-order tensors can be a scalar dot product
A · B = 〈A,B〉 = AijBij, cross and double cross products as defined in Section A.2,
a tensor product (simple contraction) AB = AikBkj ei ⊗ ej, or a dyadic (outer) tensor
product A ⊗ B = AijBjk ei ⊗ ej ⊗ ek ⊗ el. Therein, the simple contraction as well as
contractions in general are carried out by utilising the Kronecker delta symbol, as defined
in Eq. (A.1). Hence, AB = (Aij ei⊗ ej) (Bkl ek ⊗ el) = AijBklδjk ei⊗ el = AijBjl ei⊗ el.
Moreover, fourth-order tensor are usually denoted by blackboard bold capital letters
{A,B,C} ∈ Rn⊗n⊗n⊗n. Their index notation is given by A = Aijkl ei ⊗ ej ⊗ ek ⊗ el,
where the four-dimensional coefficient matrix is designated by an upright capital letter (in
contrast to italic capital letters for second-order tensors). Furthermore, the rather rarely
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used third-order tensors are written as A3 = A3
ijk ei⊗ej⊗ek, whereas sixth-order tensors

read A6 = A6
ijklst ei ⊗ ej ⊗ ek ⊗ el ⊗ es ⊗ et. Products of tensors of equal order result

in tensors of the same order. This settles the required number of contractions, hence,
AB = C (simple contraction) and AB = C (double contraction). If a tensor is applied
on a tensor of lower order, the order difference of these two defines the order of the result-
ing tensor and the required number of contractions, hence, Aa = b (simple contraction)
and AA = B (double contraction). Finally, the transposition of second-order tensors
gives AT = Aji ei ⊗ ej = Aij ej ⊗ ei. Any second-order tensor A can be decomposed
into a symmetric part sym[A] = (A + AT )/2 = sym[A]T and a skew-symmetric part
skw[A] = (A −AT )/2 = − skw[A]T , such that A = sym[A] + skw[A]. In turn, a tensor
A is symmetric if skw[A] = 0. Transpositions of third and higher-order tensors require
an indication such as ATij , where the transposition consequently denotes an interchanging
of the i-th and j-th basis. Remarks on the different symmetry properties of fourth-order
tensors are provided in Section A.7.2.

A.2 Fundamental tensors

The introduction of an important set of fundamental (identity) tensors relies on the defin-
ition of the Kronecker delta:

δij =

{
1 if i = j

0 if i 6= j .
(A.1)

This means that in a three-dimensional space, where i, j = 1, 2, 3, the only non-zero
combinations are δ11 = δ22 = δ33 = 1. Based on the Kronecker delta, the following
quantities are introduced:

• The second-order fundamental (identity) tensor:

I = δij ei ⊗ ej :

{
Iu = u
IA = A

: identical map (A.2)

• The fourth-order fundamental tensors:

I = (I ⊗ I)T23 :

{
IA = A
I A = A : identical map

IT = (I ⊗ I)T24 : IT A = AT : transposing map1

Itr = I ⊗ I : ItrA = tr[A]I : tracing map
Isym = 1

2
(I + IT ) : IsymA = sym[A] : symmetrising map1

(A.3)

• The sixth-order fundamental tensor

I6 = ((I ⊗ I ⊗ I)T35)T24 : I6B3 = B3 : identical map (A.4)

1Note that the transposing and the symmetrising maps become identical maps in the space of symmetric
second-order tensors, meaning that IT A = IsymA = IA = A if A ∈ SYM(3).
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Another class of fundamental tensors relies on the introduction of the Levi-Civita symbol

εijk =





1 even permutation

0 double indexing

−1 odd permutation.

(A.5)

This means that the only non-zero combinations are ε123 = ε231 = ε312 = 1 and ε321 =
ε213 = ε132 = −1. Based on the Levi-Civita symbol, we obtain the following quantities:

• The third-order fundamental (permutation) tensor

E = εijk ei ⊗ ej ⊗ ek :

{
u× v = E(u⊗ v)
A×B = E(ABT )

: vector cross product
: tensor cross product

(A.6)

• The sixth-order permutation tensor:

E6 = (((E ⊗ E)T45)T35)T23 : A××B = E6(A⊗B) : tensor double cross product
(A.7)

A.3 Selected rules of tensor calculus

Selected rules for the trace, transpose, inverse, determinant and cofactor:

tr[A] = A · I (A.8)

tr[AB] = AB · I = AT ·B = A ·BT (A.9)

(AB)T = BTAT (A.10)

(AB)−1 = B−1A−1 (A.11)

tr[AB] = AB · I = AT ·B = A ·BT (A.12)

det[AT ] = det[A] (A.13)

det[αA] = α3 det[A] (A.14)

det[AB] = det[A] det[B] (A.15)

det[A+B] = det[A] + cof[A] ·B +A · cof[B] + det[B] (A.16)

cof[AB] = cof[A] cof[B] (A.17)

cof[AT ] = (cof[A])T = cof[A]T (A.18)

cof[αA] = α2 cof[A] (A.19)

Selected rules for the divergence operator:

Div[Au] = AT ·Grad[u] + Div[AT ] · u
Div[Aijuj ei] = Aijuj,i + Aij,iuj

}
(A.20)

Div[u⊗A] = u⊗Div[A] + Grad[u]AT

Div[uiAjk ei ⊗ ej ⊗ ek] = (uiAjk,k + ui,kAjk) ei ⊗ ej

}
(A.21)
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Div[A⊗ u] = A⊗Div[u] + Grad[A]u

Div[Aijuk ei ⊗ ej ⊗ ek] = (Aijuk,k + Aij,kuk) ei ⊗ ej

}
(A.22)

Div[(A⊗ u)T23 ] = A⊗GradT [u] + Div[A]⊗ u
Div[Aikuj ei ⊗ ej ⊗ ek] = (Aikuj,k + Aik,kuj) ei ⊗ ej

}
(A.23)

Selected integral theorems:
∫

V
Grad[u] dV =

∫

∂V
u⊗NdA (A.24)

∫

V
Div[u] dV =

∫

∂V
u ·NdA (A.25)

∫

V
Div[A] dV =

∫

∂V
ANdA (A.26)

∫

V
Div[A3] dV =

∫

∂V
A3NdA (A.27)

A.4 The (outer) tensor double cross product

The (outer) tensor double cross product between two second-order tensors A ∈ R3⊗3 and
B ∈ R3⊗3 is introduced in terms of the sixth-order permutation tensor E6 in Eq. (A.7).
The double cross product preserves the order of the two input tensors and results in a
second-order tensor as well. In index notation, it reads

A××B = AklBst εksi εltj ei ⊗ ej , (A.28)

where ε is the Levi-Civita symbol that has been defined in Eq. (A.5). The double cross
product is related to the vector cross product via

(A××B)(u× v) = Au×Bv − Av ×Bu , (A.29)

where u ∈ R3 and v ∈ R3 are two arbitrary vectors. Some basic calculation rules of the
double cross product are

A××B = B××A , (A.30)

(A××B)T = AT××BT , (A.31)

(A××B) ·C = (B××C) ·A = (C××A) ·B . (A.32)

Some useful identities in terms of the trace operator are given by

A××B = (tr[A] tr[B]− tr[AB])I − tr[A]BT − tr[B]AT +ATBT +BTAT , (A.33)

A××A = (tr[A]2 − tr[A2])I + 2(AT − tr[A]I)AT , (A.34)

A××I = tr[A]I −AT . (A.35)

The double cross product offers a very pleasant notation for operations like the cofactor,
the determinant, and the inverse of a tensor and allows to write them in a compact and
closed-form way. Doing so, for an arbitrary second-order tensor A these quantities read

cof[A] = 1
2
(A××A) , det[A] = 1

6
(A××A) ·A , and A−1 =

3AT××AT

(A××A) ·A , (A.36)
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respectively. In (A.36), we used the relation A−1 = det−1[A] cof[AT ] in order to obtain
the expression for the inverse. Furthermore, the principal invariants of a tensor A are
given by

IA1 = tr[A] , IA2 = tr
[
cof[A]

]
, IA3 = det[A] , (A.37)

see also Eq. (3.73). The relations (A.36)1 and (A.36)2 allow to express these principal
invariants as

IA1 = 1
2
(A××I) · I , IA2 = 1

2
(A××A) · I , IA3 = 1

6
(A××A) ·A . (A.38)

Using Eq. (A.34), we find the alternative identities

IA2 = 1
2
(tr[A]2 − tr[A2]) , IA3 = 1

6
(tr[A]3 − 3 tr[A] tr[A2] + 2 tr[A3]) (A.39)

for the second and third invariant, respectively. Further explanations on the beneficial
implications of the double cross product notation in continuum mechanics can be found
in de Boer [51] and Bonet et al. [55].

A.5 The eigenvalue problem and the null space of tensors

The eigenvalue problem of an arbitrary second-order tensor A ∈ R3⊗3 is given by

Ab = λAb ⇔ (A− λAI)b = 0 , (A.40)

where λA denotes an eigenvalue and b ∈ R3 the associated eigenvector of A. For non-
trivial solutions b 6= 0, it is demanded that the characteristic polynomial, defined as
pA = det[A − λAI], is equal to zero. With Eqs (A.16) and (A.37), the evaluation of the
characteristic polynomial delivers

pA = det[A− λAI]

= det[A]− cof[A] · λAI +A · cof[−λAI] + det[−λAI]

= det[A]− λA cof[A] · I + λ2
AA · I − λ3

A

= IA3 − λAIA2 + λ2
AI

A
1 − λ3

A .

(A.41)

Hence, pA = 0 represents a cubic function for the three eigenvalues λA. It can easily be
shown that the characteristic polynomial and, consequently, the eigenvalues are invariant
with respect to a rotated tensor A+ = QAQT where Q ∈ SO(3). This follows from

p+
A = det[A+ − λ+

AI]

= det[QAQT − λ+
AI]

= det[QAQT ]− λ+
A cof[QAQT ] · I + (λ+

A)2QAQT · I − (λ+
A)3

(A.42)

and an investigation of the determinant

det[QAQT ] = det[Q] det[A] det[QT ] = det[A] , (A.43)

the cofactor

cof[QAQT ] · I = cof[Q] cof[A] cof[QT ] · I = Q cof[A]QT · I
= cof[A]QTQ · I = cof[A] · I ,

(A.44)
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as well as

QAQT · I = AQTQ · I = A · I . (A.45)

It directly follows from these considerations that

p+
A = pA ⇒ λ+

A = λA . (A.46)

It is remarked that the identities in Eqs (A.43), (A.44), and (A.45) are no surprise, since
these three expressions are nothing else than the principal invariants of A, which are of
course invariant with respect to transformations QAQT .

Moreover, the tensor A ∈ R3⊗3 has full rank, denoted by rank[A] = 3, if none of the
eigenvalues λA is zero or, equivalently, if det[A] 6= 0. However, if these conditions are not
satisfied, then rank[A] < 3 and there is a null space or kernel

ker[A] = {n ∈ R3 |An = 0} . (A.47)

Therein, n is (are) the eigenvector(s) associated to the zero eigenvalue(s). The dimension
of the null space ker[A] is defined as the nullity, denoted by nullity[A]. For instance,
nullity[A] = 1 if exactly one eigenvalue is zero. Further, the nullity and the rank of a
tensor are related through

rank[A] + nullity[A] = dim[A] , (A.48)

where dim[A] = 3 for A ∈ R3⊗3.
Now, we apply the previously outlined principles to the eigenvalue problem of a fourth-

order tensor A ∈ R3⊗3⊗3⊗3 and formulate

AB = λAB ⇔ (A− λA I)B = 0 . (A.49)

Therein, λA is an eigenvalue of A and B ∈ R3⊗3 denotes the associated second-order
eigentensor. In analogy to the eigenvalue problem for second-order tensors, one has to
proceed with the formulation of a characteristic polynomial

pA = det[A− λA I] = 0 . (A.50)

This expression demands for the calculation of a determinant of a fourth-order tensor,
which is not as straightforward as for second-order tensors. Valuable investigations on the
treatment of this problem and some solutions can be found in the fundamental works of
Betten [33, 34] and Betten & Helisch [35]. They outlined the idea of introducing
two-dimensional matrix representations of the coefficients of fourth-order tensors. This
concept is also followed and explained by Itskov [241]. Here, we introduce suitable
matrix representations for fourth-order tensors and the associated vector representation of
second-order tensors in Section A.7.2. Doing so, the 34 = 81 coefficients of a fourth-order
tensor are arranged as R9×9-matrix. This allows for a straightforward computation of the
determinant and, consequently, of the eigenvalues λA. The R9×9-matrix form suggests
that a fourth-order tensor generally has nine eigenvalues. Hence, a full-ranked fourth-
order tensor A has rank[A] = 9. In analogy to the previous considerations, the respective
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eigentensor that is associated with a zero eigenvalue depicts a null space of the fourth-order
tensor and we can write

ker[A] = {N ∈ R3⊗3 |AN = 0} . (A.51)

Subsequently, a similar relation to Eq. (A.48) is formulated as

rank[A] + nullity[A] = dim[A] , (A.52)

where dim[A] = 9 for A ∈ R3⊗3⊗3⊗3.

A.6 Tensor analysis

Some selected derivatives in the field of tensor analysis are given in this section. Further
basic relations can be found in Ehlers [107], whereas the focus here is on providing
derivatives that involve fourth-order tensors.

The derivatives of the principal invariants read

∂IA1
∂A

=
tr[A]

∂A
= I (A.53)

∂IA2
∂A

= A××I = tr[A]I −AT (A.54)

∂IA3
∂A

=
det[A]

∂A
= 1

2
A××A = cof[A] (A.55)

Selected product rules for time derivatives of vectors:

(a · b)· = ȧ · b+ a · ḃ (A.56)

(a× b)· = ȧ× b+ a× ḃ (A.57)

Some selected derivation rules:

∂A

∂A
= I (A.58)

∂A

∂A
= Isym if 2A ∈ SYM (A.59)

∂A−1

∂A
= −(A−1 ⊗A−T )T23 (A.60)

∂A−T

∂A
= −(A−T ⊗A−T )T24 (A.61)

∂ cof[A]

∂A
= det[A]

(
(A−T ⊗A−T )− (A−T ⊗A−T )T24

)
(A.62)

∂(αA)

∂C
= A⊗ ∂α

∂C
+ α

∂A

∂C
(A.63)

∂(A ·B)

∂C
=
(∂A
∂C

)T
B +

(∂B
∂C

)T
A (A.64)

2If A ∈ SYM belongs to the group of symmetric tensors, the derivative ∂A
∂A =

∂Aij
∂Akl

ei ⊗ ej ⊗ ek ⊗ el
has to be minor symmetric, such that

∂Aij
∂Akl

=
∂Aji
∂Akl

=
∂Aij
∂Alk

(see Section A.7.2 and Table A.2 for more

details on the symmetries of fourth-order tensors). It is easy to see that I is not minor symmetric, since
IT12 = IT34 = IT 6= I. In contrast, IT12

sym = IT34
sym = Isym.
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A
T

en
so

r
ca

lc
u
lu

s

∂A−1

∂B
= −

([(([(∂A
∂B

)T24
A−1

]4)T24)T14
A−T

]4)T14
= −(A−1)is

∂Ast
∂Bkl

(A−1)tj ei ⊗ ej ⊗ ek ⊗ el (A.65)

∂(αA)

∂C
= A⊗ ∂α

∂C
+ α

∂A
∂C

=
(

Aijkl
∂α

∂Cmn
+ α

∂Aijkl

∂Cmn

)
ei ⊗ ej ⊗ ek ⊗ el ⊗ em ⊗ en (A.66)

∂(Au)

∂C
=
(( ∂A

∂C

)T46)T56
u+ A

∂u

∂C
=
(∂Aijkl

∂Cmn
ul + Aijkl

∂ul
∂Cmn

)
ei ⊗ ej ⊗ ek ⊗ em ⊗ en (A.67)

∂(AB)

∂C
=
(( ∂A

∂C

)T35)T46
B + A

∂B

∂C
=
(∂Aijkl

∂Cmn
Bkl + Aijkl

∂Bkl

∂Cmn

)
ei ⊗ ej ⊗ em ⊗ en (A.68)

∂(AB)

∂C
=
(([(( ∂A

∂C

)T35)T46]6

B
)T35)T46

+
[
A
∂B
∂C

]6

=
(∂Aijst

∂Cmn
Bstkl + Aijst

∂Bstkl

∂Cmn

)
ei ⊗ ej ⊗ ek ⊗ el ⊗ em ⊗ en (A.69)

∂(u⊗ v)

∂C
=
(( ∂u

∂C
⊗ v

)T24)T34
+ u⊗ ∂v

∂C
=
( ∂ui
∂Ckl

vj + ui
∂vj
∂Ckl

)
ei ⊗ ej ⊗ ek ⊗ el (A.70)

∂(A⊗B)

∂C
=
((∂A

∂C
⊗B

)T35)T46
+ A⊗ ∂B

∂C
=
( ∂Aij
∂Cmn

Bkl + Aij
∂Bkl

∂Cmn

)
ei ⊗ ej ⊗ ek ⊗ el ⊗ em ⊗ en (A.71)

∂(A⊗B)T23

∂C
=
(((∂A

∂C
⊗B

)T23)T46)T25
+
(
A⊗ ∂B

∂C

)T23
=
( ∂Aik
∂Cmn

Bjl + Aik
∂Bjl

∂Cmn

)
ei ⊗ ej ⊗ ek ⊗ el ⊗ em ⊗ en (A.72)

∂(A⊗B)T24

∂C
=
(((∂A

∂C
⊗B

)T24)T26)T35
+
(
A⊗ ∂B

∂C

)T24
=
( ∂Ail
∂Cmn

Bkj + Ail
∂Bkj

∂Cmn

)
ei ⊗ ej ⊗ ek ⊗ el ⊗ em ⊗ en (A.73)

∂(A⊗ u⊗ v)

∂C
=
((∂A

∂C
⊗ u⊗ v

)T35)T46
+
((
A⊗ ∂u

∂C
⊗ v

)T46)T56
+ A⊗ u⊗ ∂v

∂C
(A.74)

Table A.1: Some selected tensor derivation rules. Therein, (·)i represents an incomplete mapping and
i indicates the order of the resulting tensor. The incomplete mapping requires to carry out a sufficient
number of inner contractions, see Ehlers [107].



A.7 On fourth-order tensors 193

A.7 On fourth-order tensors

A.7.1 Derivation of the nominal stress and elasticity tensors

For the derivation of nominal stresses and elasticity tensors of an invariant-based strain-
energy function of a transversely isotropic material, it is essential to formulate the deriv-
atives of the invariants with respect to the deformation gradient F . Those quantites are
called tensor generators. For the set I ı

ti, they read

∂F I1 = 2F , ∂F I2 = 2F (I1I −C) , ∂FJ = J F−T ,

∂FJ4 = 2FM , ∂FJ5 = 2 (FCM + FMC) .
(A.75)

Accordingly, the first Piola-Kirchhoff (nominal) stress tensor associated with a strain-
energy function

W = W (I ı
ti) = W (I1, I2, J, J4, J5) (A.76)

is given by

P = ∂FW = 2 ∂I1W F + 2 ∂I2W F (I1I −C) + J∂JW F−T

+ 2 ∂J4W FM + 2 ∂J5W (FCM + FMC) .
(A.77)

The second derivative of W with respect to F requires repeated use of the chain rule and
leads to some lengthy expressions for the stiffness tensor L. For the sake of brevity, we
therefore restrict attention to a strain-energy function W (I1, J, J4, J5) which results in the
stiffness tensor

L = ∂FP = ∂2
FFW

= 2 ∂I1W I + 4 ∂2
I21

W F ⊗ F + J ∂JW
(
F−T ⊗ F−T − (F−T ⊗ F−T )T24

)

+ J2 ∂2
J2W F−T ⊗ F−T + 2 ∂J4W (I ⊗M)T23 + 4 ∂2

J2
4
W FM ⊗ FM

+ 2 ∂J5W
(
(I ⊗CM)T23 + (I ⊗MC)T23 + (FF T ⊗M )T23 + (FMF T ⊗ I)T23

+ (F ⊗ FM)T24 + (FM ⊗ F )T24
)

+ 4 ∂2
J2
5
W M̃ ⊗ M̃

+ 2 J∂2
I1J

W (F ⊗ F−T + F−T ⊗ F ) + 4 ∂2
I1J4

W (F ⊗ FM + FM ⊗ F )

+ 4 ∂2
I1J5

W (F ⊗ M̃ + M̃ ⊗ F ) + 2 J ∂2
JJ4

W (F−T ⊗ FM + FM ⊗ F−T )

+ 2 J ∂2
JJ5

W (F−T ⊗ M̃ + M̃ ⊗ F−T ) + 4 ∂2
J4J5

W (FM ⊗ M̃ + M̃ ⊗ FM) ,
(A.78)

with the abbreviation M̃ = FMC + FCM . If one considers isotropic, generalised
Neo-Hookean materials W (I1, J), the stress and the stiffness tensor reduce to

P = 2 ∂I1W F + J ∂JW F−T (A.79)

and

L = 2 ∂I1W I + 4 ∂2
I21

W F ⊗ F + 2 J ∂2
I1J

W (F ⊗ F−T + F−T ⊗ F )

+ (J ∂JW + J2 ∂2
J2W )F−T ⊗ F−T − J ∂JW (F−T ⊗ F−T )T24 ,

(A.80)

respectively. If one further neglects coupling between I1 and J one obtains the stiffness
tensor

L = 2 ∂I1W I + 4 ∂2
I21

W F ⊗ F + (J∂JW + J2∂2
J2W )F−T ⊗ F−T

− J∂JW (F−T ⊗ F−T )T24 .
(A.81)
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A.7.2 Matrix representations of fourth-order tensors

Fourth-order tensors frequently arise in the field of continuum mechanics and a lot of
situations require the computation of the inverse or the determinant of these tensors.
In theory, such operations are well defined and straightforward extensions of the theory
of second-order tensors. However, fourth-order tensors have a four-dimensional coeffi-
cient matrices, which is a little bit cumbersome in practical use. For example, dealing
with fourth-order tensors in numerical codes (for example in commercial software like
Matlab) has the drawback that a lot of standard operations and functions available
for two-dimensional matrices cannot be directly used for fourth-order tensors and their
four-dimensional coefficient matrices. Thus, it proves useful for a variety of applications
to introduce a specific two-dimensional matrix representation, denoted by A, for the 81
coefficients Aijkl of a fourth-order tensor A = Aijkl ei ⊗ ej ⊗ ek ⊗ el (i, j, k, l = 1, 2, 3)
and, accordingly, a vector representation, denoted by B, for the 9 coefficients Bij of a
second-order tensor B = Bij ei ⊗ ej. Such formulations were for example proposed by
Itskov [241] and Balzani [24]. Here, we suggest a representation where coefficient pairs
ij and kl are transformed according to

[11]→ [1], [12]→ [2], [13]→ [3], [21]→ [4], [22]→ [5],

[23]→ [6], [31]→ [7], [32]→ [8], [33]→ [9] ,
(A.82)

which results in the two-dimensional matrix forms

A =




A1111 A1112 A1113 A1121 A1122 A1123 A1131 A1132 A1133

A1211 A1212 A1213 A1221 A1222 A1223 A1231 A1232 A1233

A1311 A1312 A1313 A1321 A1322 A1323 A1331 A1332 A1333

A2111 A2112 A2113 A2121 A2122 A2123 A2131 A2132 A2133

A2211 A2212 A2213 A2221 A2222 A2223 A2231 A2232 A2233

A2311 A2312 A2313 A2321 A2322 A2323 A2331 A2332 A2333

A3111 A3112 A3113 A3121 A3122 A3123 A3131 A3132 A3133

A3211 A3212 A3213 A3221 A3222 A3223 A3231 A3232 A3233

A3311 A3312 A3313 A3321 A3322 A3323 A3331 A3332 A3333




, B =




B11

B12

B13

B21

B22

B23

B31

B32

B33




.

(A.83)
Thus, A is represented as a R9×9-matrix, whereas B becomes a R9×1-matrix (vector).
With these representations at hand, the coefficients of the tensor product AB can be
simply calculated by the standard matrix-vector multiplication AB. Consequently, the
main advantage of the representations (A.83) is that they easily allow to calculate, for
example, the rank, determinant, or null space of a fourth-order tensor by using numerical
codes and functions written for two-dimensional matrices. Furthermore, the coefficients
of the fourth-order inverse A−1 are obtained by calculating the two-dimensional inverse
A−1, since the matrix multiplication A−1A equals the 9×9-identity matrix. Also note
that (A.83)1 makes clear that a fourth-order tensor in the three-dimensional space has
dim[A] = 9 and that, in turn, rank[A] = 9 holds for a full-ranked fourth-order tensor A.
A major symmetry of the tensor A, described by A = AT = (AT13)T24 , shows up through
the symmetry of the matrix representation A. Hence, this leads to the common procedure
of dropping out the lower diagonal of the matrix as independent coefficients and there
remain 45 independent coefficients. If a fourth-order tensor A exhibits minor symmetry,
accompanied with A = AT12 = AT34 , alternative matrix representations prove useful, such
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symmetry rule independent coefficients

none A 34 = 81
major A = AT

((
9
2

))
= 45

minor A = AT12 = AT34 62 = 36
major and minor (super) A = AT = AT12 = AT34

((
6
2

))
= 21

total (complete) A = AT = AT12 = AT34 = AT23
((

3
4

))
=
(

6
4

)
= 15

Table A.2: Overview on the different symmetry rules of fourth-order tensors and the associated number
of independent coefficients. Therein,

(
n
k

)
= n!

k!(n−k)! is the binomial coefficient and
((
n
k

))
=
(
n+k−1

k

)
is

the so-called multiset coefficient, which are valuable tools from the field of combinatorics and allow for a
straightforward derivation of the number of independent coefficients.

as the prominent Voigt notation, see Voigt [496]. Since a minor symmetric fourth-order
tensor only has 36 independent coefficients, this representation is given by a R6×6-matrix
and reads

[Aijkl]
V =




A1111 A1122 A1133 A1123 A1113 A1112

A2211 A2222 A2233 A2223 A2213 A2212

A3311 A3322 A3333 A3323 A3313 A3312

A2311 A2322 A2333 A2323 A2313 A2312

A1311 A1322 A1333 A1323 A1313 A1312

A1211 A1222 A1233 A1223 A1213 A1212



. (A.84)

Minor and major symmetry of a fourth-order tensor is expressed by the symmetry of the
matrix representation [Aijkl]

V and the number of independent coefficients consequently
reduces to 21. This is also referred to as super symmetry. A fourth-order tensor which in
addition to the super symmetry also holds the condition A = AT23 is totally symmetric.
This is also called complete symmetry, because a fourth-order tensor is then completely
symmetric in all indices. In the theory of continuum mechanics, the various symmetry
conditions arise, for instance, in the different formulations of the fourth-order elasticity
tensors. Major symmetry immediately follows from the occurrence of a hyperelastic po-
tential and holds for all of the discussed elasticity tensors in this work. In addition, minor
symmetry is given when the associated second-order stress tensor is symmetric. Hence,
the large-strain material formulation C as well as the small-strain version Llin are super
(major and minor) symmetric, as a result of the associated symmetry of the stress tensors
S and σlin, respectively. In the theory of linear, small-strain elasticity, one can observe
total symmetry of the elasticity tensor in the so-called rari-constant theory, while the far
more frequently employed super symmetry of the elasticity tensor is associated with the
multi-constant theory, see, for example, Love [300] or Campanella & Tonon [68]. In
this context, the additional symmetry condition A = AT23 is referred to as Cauchy rela-
tion. Furthermore, total symmetry arises when a fourth-order tensor is composed of the
dyadic product of four equal vectors. This is the case, for example, for the dyadic product
M ⊗M = a0 ⊗ a0 ⊗ a0 ⊗ a0 of the structural tensor M .

An overview on the different symmetry conditions and the resulting number of inde-
pendent coefficients of a fourth-order tensor in the three-dimensional space is given in
Table A.2.

For completeness, we provide the matrix representations of the subspace tensors {A}[
and {B}[, which are employed in Chapter 5. In this subspace, fourth- and second-order
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tensors are defined by {A = Aijkl ei ⊗ ej ⊗ ek ⊗ el}[ and {B = Bij ei ⊗ ej}[, respectively,
with i, k = 1, 2, 3 and j, l = 1, 2. The associated matrix representations are given by

{
A
}[

=




A1111 A1112 A1121 A1122 A1131 A1132

A1211 A1212 A1221 A1222 A1231 A1232

A2111 A2112 A2121 A2122 A2131 A2132

A2211 A2212 A2221 A2222 A2231 A2232

A3111 A3112 A3121 A3122 A3131 A3132

A3211 A3212 A3221 A3222 A3231 A3232



,
{
B
}[

=




B11

B12

B21

B22

B31

B32



, (A.85)

which means that {A}[ becomes a R6×6-matrix. However, this matrix form must not be
confused with the Voigt notation which results in a R6×6-matrix as well.

A.7.3 On the representation of transversely isotropic elasticity tensors

The elasticity tensor of transversely isotropic, linear-elastic materials can be represented
as a linear combination of six elementary fourth-order tensors E[α] = E

[α]
ijkl ei⊗ej⊗ek⊗el,

α = 1, 2, 3, 4, 5, 6, which were proposed by Walpole [499, 500]. Further details are also
provided by Ponte Castañeda [378]. The six elementary tensors are strongly related
to the two structural tensors M and D = I −M , which were introduced in Eqs (3.82)
and (3.88), respectively. A linear combination aM + bD, with arbitrary a, b ∈ R, of these
two tensors gives a formulation of a general transversely-isotropic, second-order tensor.
Consequently, the definition of the six elementary fourth-order tensors is based on the
various possible dyadic (outer) products between M and D and the originally provided
index notations read

E
[1]
ijkl = 1

2
DijDkl ,

E
[2]
ijkl = MijMkl ,

E
[3]
ijkl = 1

2

(
DikDjl +DilDjk −DijDkl

)
,

E
[4]
ijkl = 1

2

(
MilDjk +DilMjk +MikDjl +DikMjl

)
,

E
[5]
ijkl = MijDkl ,

E
[6]
ijkl = DijMkl .

(A.86)

A reformulation in absolute tensor notation gives the expressions

E[1] = 1
2

(D ⊗D) ,

E[2] = M ⊗M ,

E[3] = 1
2

(
(D ⊗D)T23 + (D ⊗D)T24 −D ⊗D

)
,

E[4] = 1
2

(
(M ⊗D +D ⊗M)T23 + (M ⊗D +D ⊗M )T24

)
,

E[5] = M ⊗D ,

E[6] = D ⊗M .

(A.87)

As the structural tensor D is a combination of the identity tensor I and the structural
tensor M , we can also formulate the six elementary tensors as combinations solely of I
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and M :

E[1] = 1
2

(I ⊗ I − I ⊗M −M ⊗ I +M ⊗M ) ,

E[2] = M ⊗M ,

E[3] = 1
2

(
− I ⊗ I + I ⊗M +M ⊗ I +M ⊗M +

+ (I ⊗ I − I ⊗M −M ⊗ I)T23 + (I ⊗ I − I ⊗M −M ⊗ I)T24
)
,

E[4] = 1
2

(
(I ⊗M +M ⊗ I)T23 + (I ⊗M +M ⊗ I)T24

)
− 2M ⊗M ,

E[5] = M ⊗ I −M ⊗M ,

E[6] = I ⊗M −M ⊗M .

(A.88)

The first four tensors are idempotent projection tensors and fulfil the relations E[α]E[α] =
E[α] and E[α]E[β] = O for α, β = 1, 2, 3, 4 and α 6= β. They are in fact an additive
decomposition of the symmetrising map, which is easy to deduce from Eqs (A.88), hence,

E[1] + E[2] + E[3] + E[4] = 1
2

(
(I ⊗ I)T23 + (I ⊗ I)T24

)
= Isym . (A.89)

In contrast, the two tensors E[5] and E[6] are nilpotent, hence, E[5]E[5] = E[6]E[6] = O. They
are involved in a sum which yields the tracing map:

2E[1] + E[2] + E[5] + E[6] = I ⊗ I = Itr . (A.90)

Further projection tensors appear by certain combinations of the six elementary tensors.
For instance, an axisymmetric projection tensor can be formulated as

E[a] = 1
3

(E[1] + 2E[2] − E[5] − E[6]) . (A.91)

It is idempotent, E[a]E[a] = E[a], and obeys “orthogonality” with the projection tensors
E[3] and E[4], such that E[a]E[3] = E[3]E[a] = O and E[a]E[4] = E[4]E[a] = O. Two further
projection tensors are

J = 1
3

(2E[1] + E[2] + E[5] + E[6]) = 1
3
Itr and K = E[a] + E[3] + E[4] , (A.92)

which satisfy the relations J + K = Isym, JJ = J, KK = K, and JK = KJ = O.
Note, for completeness, that a slightly different set of elementary tensors was given by

Walpole [501]. However, it can be shown that the tensors therein are just rearranged
forms of the ones presented here.
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B Further mathematical explanations and details

B.1 The Legendre transform

Basics Consider a scalar- and finite-valued, differentiable function f(X ). The general-
ised argument X may be a scalar X ∈ R (f : R → R), vector X ∈ R3 (f : R3 → R),
second-order tensor X ∈ R3⊗3 (f : R3⊗3 → R), or higher-order tensor. The function f
is assumed to be convex in X , see, for example Eqs (3.112) for corresponding convexity
conditions if X ∈ R3⊗3. We say that the derivative of f with respect to its argument X
is given by Y = ∂Xf . Obviously, the dimension of Y is equal to the dimension of the
argument X . For scalar-valued X , the derivative Y is nothing more than the slope of the
curve f . Now, the Legendre transform of f is defined as

f ?(Y) = 〈X ,Y〉 − f(X ) (B.1)

where the original argument X has to be replaced by solving Y = ∂Xf for X and sub-
stituting it into f ?(Y). The expression 〈X ,Y〉 stands for the inner product of X and Y ,
which is a simple multiplication of X and Y for a scalar X and an appropriate scalar dot
product for vector- and tensor-valued X . The function f ? is called dual to the original
function f and it is dependent on Y . The interesting feature of the Legendre transform is
that the derivative of the dual function with respect to the new argument Y is now given
by ∂Yf ? = X . This connection motivates the designation of {X ,Y} as a so-called conjug-
ate pair. The concept of the Legendre transformation can be generalised to non-convex
functions f(X ), if we replace the definition of f ? in Eq. (B.1) by

f ?(Y) := sup
X
{〈X ,Y〉 − f(X )} , (B.2)

which is referred to as the Legendre-Fenchel transformation or convex conjugate. In
Eq. (B.2), sup is the supremum. The Legendre-Fenchel transform is not only a gener-
alisation of the Legendre transform to non-convex functions f , but it can even be used
for non-smooth f which are not continuously differentiable. In that case, one may have
several subgradients Y ∈ ∂Xf as elements of the subdifferential ∂Xf instead of a derivat-
ive Y = ∂Xf . However, independent of the convexity and smoothness properties of the
function f , its dual function f ? is always convex. Furthermore, the two functions f and
f ? are related through the Fenchel inequality

〈X ,Y〉 ≤ f(X ) + f ?(Y) ∀X ,Y . (B.3)

With the knowledge that the dual function f ? is always convex, it becomes clear that the
Legendre-Fenchel transform (f ?)? := f ?? of the dual function is convex as well. Thus, the
double transform f ?? cannot be the involution of f if it is a non-convex function. In this
case, f ?? rather has the remarkable property that it depicts the convex envelope Cf(X )
of the function f . This is also referred to as convexification. If f is convex, however, the
double transform f ?? it the involution of f , which leads us to

f ??(X ) = sup
Y
{〈X ,Y〉 − f ?(Y)} =

{
f(X ) if f(X ) is convex

Cf(X ) if f(X ) is non-convex.
(B.4)
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In any case, we have the inequality

f ??(X ) ≤ f(X ) . (B.5)

Now, we want to introduce a generalisation of the classical Legendre transformation,
which proves very useful in this work. This generalised transformation is defined by

f ∗(Y) := stat
X
{〈X ,Y〉 − f(X )} (B.6)

and the difference to the previously introduced transforms is indicated by writing f ∗

instead of f ?. The generalised Legendre transform f ∗ is defined in Eq. (B.6) by means of
a stationarity operation. It is performed by formulating the stationarity condition

∂X{〈X ,Y〉 − f(X )} = Y − ∂Xf(X ) ⇒ Y = ∂Xf(X ) , (B.7)

solving it for X and inserting the result back into Eq. (B.6) to get the transform f ∗(Y).
This is essentially the approach of the original Legendre transformation, as defined in
Eq. (B.1). However, the applicability of the generalised Legendre transform is extended
to non-convex and non-smooth functions. This makes it similar to the Legendre-Fenchel
transformation, however, there are important differences. The Legendre-Fenchel transform
f ?, defined by Eq. (B.2), seeks for a supremum. That means that if there are multiple
solutions of the stationary condition Y = ∂Xf(X ), one proceeds with the solution which
maximises the transform f ?. This optimisation step is the reason for the convexity of f ?.
In turn, the generalised Legendre transformation does not perform such an optimisation
and, based on that observation, we note that the transform f ∗ is not necessarily convex.
This means that the generalised Legendre transform f ∗ can be multi-valued, whereas the
Legendre-Fenchel transform f ? is single-valued. In short, we can conclude that f ∗ contains
more information than the supremisation-based f ?. This has implications on the double
transform (f ∗)∗ := f ∗∗, which is found to always give the original function f , regardless
of the convexity properties of f . Hence, we can write

f ∗∗(X ) = stat
Y
{〈X ,Y〉 − f ∗(Y)} = f(X ) . (B.8)

Example The concept of the Legendre- and the Legendre-Fenchel transformation shall
be briefly shown here based on a one-dimensional function f : R → R, defined by

f(x) = x2 − |x| . (B.9)

Hence, the general argument X simply becomes a scalar variable x ∈ R. A visualisation
of the function f(x) over x is provided in Figure B.1a. With this, we directly see that f
is non-convex and that it is not differentiable at x = 0, which is caused by the absolute
value function |x|. However, as we noted above, we can formulate a subdifferential ∂xf
at x = 0. This subdifferential contains all possible subgradients, which essentially means
that it depicts a range of values determined by the limit values of the derivative from the
left and from the right. For the given function f , it is easy to compute the limit values
limx→0− ∂xf = 1 and limx→0+ ∂xf = −1. The subdifferential at x = 0 is thus given by
∂xf = [−1, 1]. Together with the derivatives at x 6= 0, we have

∂xf(x) =





2x+ 1 if x < 0

[−1, 1] if x = 0

2x− 1 if x > 0 ,

(B.10)
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c)

−1 1
x∗

f∗(x∗)

Figure B.1: Visualisation of the generalised Legendre transformation. a) The original function f(x) =
x2 − |x|, b) the derivative ∂xf(x) of f for x 6= 0 and the subdifferential of f at x = 0, c) the swallowtail-
shaped generalised Legendre transform f∗(x∗).

see Figure B.1b. Now, Eq. (B.6) for the generalised Legendre transform and the associated
stationary condition read

f ∗(x∗) = stat
x
{xx∗ − f(x)} and x∗ = ∂xf(x) , (B.11)

respectively. Hence, the dual variable Y is now denoted by x∗. Subsequently, the station-
arity condition (B.11)2 is solved for x by making use of Eq. (B.10), yielding

x =





1
2
(x∗ − 1) if x∗ < 1

0 if x∗ ∈ [−1, 1]
1
2
(x∗ + 1) if x∗ > −1 .

(B.12)

Obviously, there are multiple values for x in the range x∗ ∈ [−1, 1] due to the non-convexity
of f . However, we keep all these solutions and substitute them into Eq. (B.11)2 to get the
generalised Legendre transform

f ∗(x∗) =





1
4
(x∗ − 1)2 if x∗ < 1

0 if x∗ ∈ [−1, 1]
1
4
(x∗ + 1)2 if x∗ > −1 .

(B.13)

By looking at the visualisation of f ∗ in Figure B.1c, we directly see that the generalised
Legendre dual of the non-convex function f is non-convex and multi-valued and that the
curve of f ∗ has a so-called swallowtail shape. For instance, the curve of f ∗ intersects the
axis at x∗ = 0 three times. Recalling that x∗ is the derivative (or subdifferential) ∂xf , this
tells us that the curve of f has three extrema, which are of course the two global minima
at x = ±1/2 and the local maximum at x = 0. Subsequently, we can apply the generalised
Legendre transformation on f ∗(x∗), giving

f ∗∗(x) = stat
x∗
{xx∗ − f ∗(x∗)} = x2 − |x| = f(x) . (B.14)

Therein, we note that the stationarity condition reads x = ∂x∗f
∗, which highlights the

duality of the conjugate pair {x, x∗} once more. We note that the double transform f ∗∗ is
identical to the original function f , as expected.
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Figure B.2: Visualisation of the Legendre-Fenchel transformation. a) The dual function f?(x?) of f , b)
the derivative ∂x?f

? of f? for x? 6= 0 and the subdifferential of f? at x? = 0, c) the double Legendre-
Fenchel transform f??(x) and (in grey) tangents on f??. The convexity of f?? is elucidated since none of
the tangents is above the curve f??, which is essentially the second convexity statement (3.112)2.

Now, we compute the Legendre-Fenchel transform f ? of f to show the difference to the
generalised Legendre transform f ∗. From Eq. (B.2), we know that

f ?(x?) = sup
x
{xx? − f(x)} and x? = ∂xf(x) , (B.15)

where the latter equation is the stationary condition and we denote the conjugate variable
with x?. The stationarity condition is the same as for the Legendre transformation and
results in expression (B.12) for the variable x by replacing x∗ with x?. However, instead of
keeping all solutions for x, we only proceed with those ones which maximise the expression
xx? − f(x) for a given x?. This is the essence of the supremum. The Legendre-Fenchel
transform is then obtained as

f ?(x?) =

{
1
4
(x? − 1)2 if x? < 0

1
4
(x? + 1)2 if x? ≥ 0 ,

(B.16)

see Figure B.2a. We observe that the graph of f ? is identical to f ∗ above the point where
f ∗ intersects itself. However, f ? misses the part below this point and therefore represents
a convex and single-valued function. At x? = 0, the curve of the dual function f ? is non-
differentiable, but we can find the subdifferential ∂x?f

? ∈ [−1/2, 1/2]. This is plotted in
Figure B.2b, together with the derivatives at x? 6= 0. Recalling the fundamental duality
relation between x and x?, we know that x = ∂x?f

? and observe from Figure B.2b that
there is a one-to-one relation between x? and its conjugate argument x. Thus, we lost the
information about the non-convex part of the original function f . Computing now the
double Legendre-Fenchel transform gives the convex envelope of f :

f ??(x) = sup
x?
{xx? − f ?(x?)} =





x2 + x if x < −1
2

−1
4

if x ∈ [−1
2
, 1

2
]

x2 − x if x > 1
2





= Cf(X ) . (B.17)

Hence, the non-convex part of f between x = −1/2 and x = 1/2 is replaced in f ?? by a
straight line with slope ∂xf

?? = x? = 0.
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B.2 Fundamentals on probability theory

Probability density functions are a fundamental mathematical tool for the statistical de-
scription of continuously distributed variables. In the continuum-mechanical context, those
variables may represent any kind of field, such as deformation or stress fields. However,
particularly useful are probability density functions for the description of structural char-
acteristics of a material, especially in multiscale studies, as explained in Section 4.2. In this
section, basics and examples are presented for the description of a scalar variable X ∈ R.
Yet, most of the concepts can be generalised to higher dimensions in a straightforward
manner.

Basics The probability Pr that a continuously distributed variable X ranges in the
interval [a, b], with {a, b ∈ R; a < b}, is described by means of a univariate probability
density function (PDF) pX in terms of the relation

Pr(X ∈ [a, b]) =

∫ b

a

pX(x) dx . (B.18)

The support of the PDF is given by RX = {x ∈ R : pX(x) > 0}. Hence, the PDF has an
infinite support RX = R = (−∞,∞) if the variable X is distributed over the whole range
of R, whereas the PDF has a finite support RX = [x[, x]] if the variable X is distributed in
a closed interval [x[, x]]. The PDF is zero outside of RX. Further, it is straightforward to
formulate the cumulative distribution function (CDF)

FX(x) = Pr(X ≤ x) =

∫ x

−∞
pX(u) du , (B.19)

where the lower bound can be replaced by r[ for PDF with finite support. Since it is reason-
able that the overall probability Pr(X ∈ RX) is one, we have the limit value limr→∞ FX = 1
for infinite supports and FX|x=x] = 1 for finite supports. Next, it is useful to consider the
moments of a PDF in order to describe the distributions in a statistical sense. The first
(raw) moment defines the mean value x̄, which represents the expectation value of the
distribution. It reads

x̄ := E[X] =

∫

RX

x pX(x) dx . (B.20)

With this, it is possible to distinguish between raw moments with respect to zero and the
central moments with respect to the mean. The n-th central moment is defined as

E
[
(X− E[X])n

]
=

∫

RX

(x− x̄)n pX dx . (B.21)

It is easy to see that E
[
(X − E[X])0

]
= 1 and E

[
(X − E[X])1

]
= 0. The second central

moment is defined as the variance

σ2
x := E

[
(X− E[X])2

]
(B.22)

and its square root denotes the standard deviation σx. In addition to the moments, it
is also possible to further characterise the distribution in terms of other measures. For
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Figure B.3: Visualisation of the normal (Gaussian) distribution. a) The probability density function pX.
b) The cumulative distribution function FX. N (0, 0.25) solid black, N (0, 1) solid gray, N (−1, 0.5) dashed
black, N (1, 2) dashed gray.

instance, the mode xm is the most likely value of the distribution. Hence, it depicts the
argument of the maximum (peak) of the PDF, such that

xm = arg max
x∈RX

pX(x) . (B.23)

This means that the CDF has an inflection point at xm. We recall that if the structure of
a material shall be described, one usually has to proceed from such statistical measures
and does not have the full knowledge on the continuous distribution of a variable X. In
turn, one has to choose a suitable PDF which can be constructed on the basis of values
such as the mean or the variance. Four examples of such functions are discussed in the
following.

Examples

• Normal (Gaussian) distribution

X ∼ N (x̄, σ2
x ) , pX(x) =

1√
2πσ2

x

exp
[
− (x− x̄)2

2σ2
x

]
, FX(x) =

1

2

(
1 + erf

[ x− x̄√
2σ2

x

])
(B.24)

Therein, X ∼ N (x̄, σ2
x ) means that the variable X has the probability distribution of

N (x̄, σ2
x ). The normal distribution is dependent on two parameters, which are the mean

and the variance. It is symmetric with respect to the mean and has infinite support. The
support, mean, mode and the variance of the normal distribution as well as the following
distributions are summarised in Table B.1. Further, the CDF contains the error function

erf[x] =
1√
π

∫ x

−x
exp[−t2] dt , (B.25)

which entails the typical sigmoidal shape for this function. The Gaussian distribution is
visualised in Figure (B.3) for four different parameter combinations.

• Beta distribution

X ∼ Beta(β1, β2) , pX(x) =
xβ1−1 (1− x)β2−1

B[β1, β2]
, FX(x) = Ix[β1, β2] (B.26)
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distribution support RX mean x̄ mode xm variance σ2
x

N (x̄, σ2
x ) (−∞,∞) x̄ x̄ σ2

x

Beta(β1, β2) (0, 1) β1
β1+β2

β1−1
β1+β2−2

β1β2
(β1+β2)2 (β1+β2+1)

Beta(β1, β2, x
[, x]) (x[, x]) β1x]+β2x[

β1+β2

(β1−1)x]+(β2−1)x[

β1+β2−2
β1β2 (x]−x[)2

(β1+β2)2 (β1+β2+1)

Tri(x[, xm, x]) (x[, x]) x[+xm+x]

3
xm (x]−x[)2+(x]−xm)2+(xm−x[)2

36

Table B.1: Selected properties of the normal, Beta, four-parameter Beta and the triangular distribution.
For the Beta distributions it is assumed that β1 > 1/2 and β2 > 1/2.
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Figure B.4: Visualisation of the (four-parameter) Beta distribution. a) The probability density function
pX. b) The cumulative distribution function FX. Beta(−3, 3, 1, 1) solid black, Beta(−2, 2, 1, 5) solid gray,
Beta(−2, 2, 10, 10) dashed black, Beta(−5, 4, 8, 2) dashed gray.

Therein, the Beta function B[β1, β2] and the incomplete Beta function Bx[β1, β2] are given
by

B[β1, β2] =

∫ 1

0

tβ1−1 (1− t)β2−1 dt and Bx[β1, β2] =

∫ x

0

tβ1−1 (1− t)β2−1 dt . (B.27)

Further, Ix = Bx[β1, β2]/B[β1, β2] is the incomplete regularised Beta function and entails
the sigmoidal shape of the CDF. The Beta distribution has finite support RX = [0, 1] and
relies on two parameters, β1 and β2. Further characteristics of the Beta distribution are
discussed in the context of the four-parameter Beta function in the following.

• Four-parameter (scaled and shifted) Beta distribution

X ∼ Beta(β1, β2, x
[, x]) , pX(x) =

(x− x[)β1−1 (x] − x)β2−1

(x] − x[)β1+β2−1 B[β1, β2]
, FX(x) = Iτx [β1, β2] (B.28)

where τx = (x − x[)/(x] − x[). The four-parameter Beta distribution scales the support
from the interval [0, 1] to the interval [x[, x]], which is very practical in many applications.
The scaled Beta distribution is visualised in Figure (B.4) for four different parameter
combinations. From there, we see that it allows to describe very different distributions.
For instance, β1 = β2 = 1 results in a uniform distribution of the values between x[ and
x]. Another special case (not shown here) is given when β1 = β2 = 1/2, resulting in an
Arcsine distribution that has two modes at the boundaries of the support. In general, the
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Figure B.5: Visualisation of the triangular distribution. a) The probability density function pX. b) The
cumulative distribution function FX. Tri(−2, 0, 2) solid black, Tri(−2, 1, 2) solid gray, Tri(2, 3, 4) dashed
black, Tri(−4,−3, 1) dashed gray.

Beta distribution is symmetric with respect to the mean (which is provided in Table B.1)
whenever β1 = β2. Yet, distinct choices for the two parameters allow to describe very
general asymmetric distributions.

• Triangular distribution

X ∼ Tri(x[, xm, x]) , pX(x) =





2 (x− x[)

(x] − x[)(xm − x[)
if x ∈ [x[, xm] ,

2 (x] − x)

(x] − x[)(x] − xm)
if x ∈ (xm, x]] ,

. (B.29)

The triangular distribution provides an easy and very good way if only very few statistical
measures are given and a more detailed description by means of a Beta distribution may
not be sensible. It is defined in terms of three parameters and has the finite support [x[, x]].
Despite its simple structure, the triangular distribution is very flexible, as highlighted in
Figure B.5. It allows to describe symmetric as well as asymmetric distributions around
the mean. Further, the expressions for the ODF and the CDF (not displayed here) only
contain simple polynomials, which are easy to implement and to evaluate. This can be
an advantage in comparison to the Beta distribution, which demands the evaluation of
different forms of Beta functions.

Directional statistics The probabilistic description of a variable Xθ on a repeating
periodic interval (such as a variable on a circle) requires the consideration of directional
statistics, which is also referred to as circular or spherical statistics. A comprehensive
overview on this field is given in the textbook of Mardia & Jupp [310]. The key difference
to the standard treatment discussed so far is that the ODF now has to account for the
periodicity of the probability with which events may occur. For instance, if the variable
Xθ is defined on the circle, which means on the interval between 0 and 2π, any probability
p(Xθ+2nπ), n ∈ N , should be identical to p(Xθ). However, it is easy to formulate suitable
2π-periodic wrapped orientation density functions via

pw(Xθ) =
∞∑

k=−∞
p(Xθ + 2πk) , (B.30)
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Figure B.6: The π-periodic von Mises orientation distribution function. a) π-Mises(0, 10) black, π-
Mises(π/2, 1) gray. b) x̄θ = 0 and b = {0, 1, 2, 5, 10}.

where one can apply any standard ODF p. Thus, we can formulate, for example, wrapped
versions of the normal or the Beta distribution. Yet, this might result in tedious expressions
because of the sum from minus to plus infinity. As an alternative to a wrapped version of
the normal distribution, one can use the 2π-periodic von Mises distribution, defined as

Xθ ∼ Mises(x̄θ, b) , pXθ(x) =
exp
[
b cos[x− x̄θ]

]

2πI0(b)
(B.31)

where

I0(x) =
1

π

∫ π

0

exp
[
x cos[t]

]
dt (B.32)

is the modified Bessel function of first kind of order zero. The von Mises ODF contains
two parameters. These are the mean x̄θ and a parameter b that describes the dispersion
of the probability around the mean value. Moreover, if a variable Xθ is rather described
on an interval [0, π], Eq. (B.30) can accordingly be defined as

pw(Xθ) =
∞∑

k=−∞
p(Xθ + πk) . (B.33)

The π-periodic version of the von Mises ODF reads

Xθ ∼ π-Mises(x̄θ, b) , pXθ(x) =
exp
[
b cos[2(x− x̄θ)]

]

πI0(b)
. (B.34)

The periodicity of this function becomes clear from looking at Figure B.6a. Further, the
influence of parameter b is shown in Figure B.6b. If b → ∞, the von Mises distribution
becomes a Dirac delta function at x̄θ.

B.3 Population-based modelling of space orientations

The network models from Chapter 6 rely on the definition of a strain-energy function Wr

for each space orientation, which in turn was described by a vector r0. This analogously
holds for the network model for the collageneous network in Section 7.2.2, where a space
orientation was described by a vector a0 or b0. If the energy of one space orientation,
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λ

Figure B.7: A space orientation which represents a population of fibres with different degrees of crimp.

say r0, is described by a strain-energy function of the form introduced in Eq. (7.24), one
might conclude that the vector r0 either describes exactly one single fibre with specific
waviness λw or that the vector r0 describes a whole population of fibres which all have
the same waviness. In relation to the latter, however, it seems reasonable to assume that
the fibres have different degrees of crimp, as shown in Figure B.7, and to accompany the
energy formulation with stochastical descriptions for the distribution of the waviness λw

in terms of a undulation distribution function. The distribution function shall be denoted
by pλw . Alternative terms in the literature are waviness or crimping distribution function.
Fan & Sacks [124] referred to it as fractional ensemble fiber recruitment, whereas the
early work of Soong & Huang [454] called it a collagen arrival density. Regardless of
how the distribution is named, the resulting strain-energy function for a space orientation
is given by the integral formulation

Wr(λ) =

∫ λ

λ[w

Wcf(λ, λw) pλw(λw) dλw (B.35)

where λ[w is the lower bound of the distribution. A physically meaningful requirement for
the lower bound is λ[w > 0, since stretches are always non-negative (see Section 2.1.3).
Interestingly, this constraint allows the occurrence of fibres that are uncrimped and store
elastic energy in the reference configuration. Of course, this contradicts the assumption of
an energy- and stress-free reference configuration and rather leads to a residually stressed
material. In turn, requiring an energy- and stress-free reference state of Wr leads to λ[w ≥ 1.
There is no similar constraint for the upper bound λ]w, but it makes sense to postulate
that the waviness of the curliest fibre is still finite. Hence, the function pλw should be
chosen from the set of continuous, univariate probability distributions with support on
a bounded interval [λ[w, λ

]
w]. One such function is the four-parameter Beta distribution,

which was introduced in the previous section. A distribution λw ∼ Beta(β1, β2, λ
[
w, λ

]
w)

for the waviness of the fibres has been used in the studies of, for example, Sverdlik &
Lanir [467], Lokshin & Lanir [294], Chen et al. [76], Fan & Sacks [124], Fata
et al. [125], Weisbecker et al. [510], and Avazmohammadi et al. [18]. However,
also probability distributions with support on a semi-infinite interval [λ[w,∞] have been
used in the literature, such as the Gamma distribution by Sacks [413] and Bischoff
[36] and the Weibull distribution by Hurschler et al. [234]. The early works of Lake
& Armeniades [273], Decraemer et al. [93], and Lanir [276] considered a classical
Gaussian normal distribution, which however may include unphysical non-zero probabil-
ities for negative threshold stretches λw due to its unbounded support and should thus be
avoided.

By looking at Eq. (B.35), we see that the incorporation of such probability functions
naturally leads to an integral formulation for the energy of one space orientation. This
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eventually leads to some cumbersome expressions in combination with network models,
since this leads to triple integrals for the resulting network quantities. It would therefore be
very practical if the integral in Eq. (B.35) could be solved analytically. This is done in the
following for a Beta-distributed waviness as well as a triangularly distributed waviness by
utilising the computer algebra software Mathematica. Before presenting these results,
however, it must be noted that the direct calculation of analytical solutions for the integral
in Eq. (B.35) is not possible. Instead, the expression has to be reformulated into the
convolution

Wr(λ) = Wcf(λ) ∗ pλw(λ) . (B.36)

Strictly speaking, this convolution is equivalent to the integral in Eq. (B.35) with integ-
ration boundaries from −∞ to λ, but since the value of the integral from −∞ to λ[w is
zero, the results are completely equivalent. With this convolution-based expression, it is
possible to find closed-form expressions for the energy Wr. For a Beta-distributed fibre
waviness, meaning that λw ∼ Beta(β1, β2, λ

[
w, λ

]
w), we obtain

Wr(λ) =





0 if λ ≤ λ[w ,

µcf
(λ]w−λ[w)−β1 (λ−λ[w)2+β1 Γ[β1] 2F̃1[β1,1−β2,3+β1,τ1]

B[β1,β2]
if λ ∈ (λ[w, λ

]
w] ,

µcf
(β2

1+β1)(λ−λ]w)2+2β1β2(λ−λ]w)(λ−λ[w)+(β2
2+β2)(λ−λ[w)2

2 (β1+β2)(1+β1+β2)
if λ ∈ (λ[w, λ

]
w] ,

(B.37)

where

τ1 =
λ− λ[w
λ]w − λ[w

and 2F̃1[a, b, c, d] =
2F1[a, b, c, d]

Γ[c]
(B.38)

Therein, 2F1 is the Gaussian hypergeometric function and Γ[c] = (c − 1)! is the Gamma
function. Further details on such (a little bit exotic) mathematical functions can be
found in the mathematical handbook of Bronshtein et al. [60] and the comprehensive
overview by Olver et al. [366] on all kinds of mathematical functions. Subsequently, the
scalar stress Pr and the scalar stiffness Lr can be obtained by means of a simple derivation
of Eq. (B.37) with respect to stretch λ. Yet, instead of directly deriving the quite lengthy
expression (B.37), it is useful to compute Pr and Lr by means of the relations

Pr(λ) = ∂λWr(λ) = ∂λWcf(λ) ∗ pλw(λ) = Pcf(λ) ∗ pλw(λ) (B.39)

and

Lr(λ) = ∂λPr(λ) = ∂λPcf(λ) ∗ pλw(λ) = Lcf(λ) ∗ pλw(λ) . (B.40)

This is because Pcf and Lcf become gradually simpler expressions, see Eqs (7.25) and (7.26),
and the calculation from Eqs (B.39) and (B.40) usually leads to a more compact appear-
ance of the results. In any case, the stress Pr is given as

Pr(λ) =





0 if λ ≤ λ[w ,

µcf

(
τ2 Iτ1 [β1, β2] +

(λ]w−λ[w) τ
β1
1 (1−τ1)β2

(β1+β2)B[β1,β2]

)
if λ ∈ (λ[w, λ

]
w] ,

µcf τ2 if λ > λ]w ,

(B.41)
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where

τ2 =
β1 (λ− λ]w) + β2 (λ− λ[w)

β1 + β2

. (B.42)

The stiffness is given by the compact expression

Lr(λ) =





0 if λ ≤ λ[w ,

µcf Iτ1 [β1, β2] if λ ∈ (λ[w, λ
]
w] ,

µcf if λ > λ]w .

(B.43)

In Eqs (B.41) and (B.43), Iτ1 [β1, β2] is the incomplete regularised Beta function which was
introduced in the context of Eq. (B.26). We directly see that the stiffness Lr is nothing
else than the CDF of the Beta distribution scaled by the collagen fibre stiffness µcf. Hence,
the step function that describes Lcf is transformed to a sigmoidal curve for Lr.

The strain-energy function Wr for triangularly distributed initial wavinesses λw ∼
Tri(λ[w, λ

m
w , λ

]
w) can be formulated by an analog evaluation of the convolution-based ex-

pressions and reads

Wr(λ) =





0 if λ ≤ λ[w ,

µcf
(λ−λ[w)4

12 (λ]w−λ[w)(λmw−λ[w)
if λ ∈ (λ[w, λ

m
w ] ,

µcf

(
− (λ]w−λ)4

12 (λ]w−λmw )(λ]w−λ[w)
+

(λ−λ̄w)2+σ2
λw

2

)
if λ ∈ (λm

w , λ
]
w] ,

µcf
(λ−λ̄w)2+σ2

λw

2
if λ > λ]w ,

(B.44)

where λ̄w = (λ[w + λm
w + λ]w)/3 is the mean, λm

w is the mode, σ2
λw

is the variance, see
Table B.1. The nice feature of the triangular distribution is that the resulting expressions
only contain simple polynomials, which allows a very simple implementation. To complete
these investigations, the scalar stress is given by

Pr(λ) =





0 if λ ≤ λ[w ,

µcf
(λ−λ[w)3

3 (λ]w−λ[w)(λmw−λ[w)
if λ ∈ (λ[w, λ

m
w ] ,

µcf

(
(λ]w−λ)3

3 (λ]w−λmw )(λ]w−λ[w)
+ λ− λ̄w

)
if λ ∈ (λm

w , λ
]
w] ,

µcf (λ− λ̄w) if λ > λ]w ,

(B.45)

and the scalar stiffness reads

Lr(λ) =





0 if λ ≤ λ[w ,

µcf
(λ−λ[w)2

(λ]w−λ[w)(λmw−λ[w)
if λ ∈ (λ[w, λ

m
w ] ,

µcf

(
1− (λ]w−λ)2

(λ]w−λmw )(λ]w−λ[w)

)
if λ ∈ (λm

w , λ
]
w] ,

µcf if λ > λ]w .

(B.46)
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C Further remarks and results of the TSO estimates

from Chapter 5

C.1 Macroscopic stress tensor

The first Piola-Kirchhoff stress tensor is derived from the macroscopic potential W̄ by a
derivation with respect to the macroscopic deformation gradient F̄ , see Eq. (4.5). Accord-

ingly, the effective stress tensor associated with the TSO estimate W̃ defined in Eq. (5.15)
is derived as

P̃ = ∂F̄ W̃ = ∂F̄

{∑

α

nα
[
W α(F̄α) + 1

2
(F̄ − F̄α) · P α(F̄α)

]}

=
∑

α

nα
[
FTαP α(F̄α) + 1

2

[
(I− FTα )P α(F̄α) + FTα Lα(F̄α)(F̄ − F̄α)

]]

=
∑

α

1
2
nα
[
(I + FTα )P α(F̄α) + FTα Lα(F̄α)(F̄ − F̄α)

]
.

(C.1)

In this process, one has to utilise the tensor derivation rule (A.64). The stress tensor P̃
contains not only the phase averages F̄α, but also their derivatives with respect to the
macroscopic deformation gradient, defined by the fourth-order tensors

Fα := ∂F̄ F̄α . (C.2)

Hence, in order to calculate the macroscopic stress tensor P̃ for a two-phase composite,
one has to solve for the 2 × 81 = 162 unknown coefficients of FF and FM. To do so, we
first note that 81 scalar equations can be obtained from a derivation of the overall average
condition (5.18) with respect to F̄ , giving

∂F̄

{
F̄ = nF F̄F + nM F̄M

}
⇒ I = nF FF + nM FM . (C.3)

With this, the 81 coefficients of FM can be expressed in terms of FF. In turn, the remaining
81 coefficients of FF are obtained by accordingly deriving the tensorial equation (5.26) with
respect to F̄ , hence

∂F̄

{
F̄ − F̄F = P [LM(F̄ − F̄F)− nM ∆P ]

}
. (C.4)

To exploit this expression, one has to utilise the derivation rules provided in Ap-
pendix (A.6), in particular the ones associated with fourth-order tensors, such as
Eqs (A.68) and (A.69). Further, one has to be careful with the elasticity tensor LM of
the matrix, since calculating the derivatives in Eq. (C.4) will result in terms LM(F̄ ), eval-
uated at the overall deformation gradient, and terms LM(F̄M), evaluated at the phase
average F̄M, which arise from the derivative ∂FP

M(F̄M).

Two-phase fibre composites In Section 5.1.2, we put the focus on two-phase compos-
ites with fibrous microstructure, which entailed that the (i, 3)-coefficients (i = 1, 2, 3) of
the phase averages F̄F and F̄M are uniform and equal to the respective coefficients F̄i3 of
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the macroscopic deformation gradient, see Eq. (5.31). The remaining unknown coefficients
are computed by means of the subspace equation (5.32). Accordingly, the computation of
FF has to separated. The derivative of Eq. (5.31) with respect to F̄ directly provides 27
scalar equations:

∂F̄

{
(F̄F)i3 = F̄i3

}
→ (FF)i3st = Ii3st = δisδ3l . (C.5)

The remaining 54 scalar equations have to be derived from Eq. (5.32) via

∂F̄

{{
[P−1 − LM](F̄ − F̄F) + nM ∆P = 0

}[}
, (C.6)

which has to be solved for the 54 unknown coefficients (FF)ijst = ∂Fst(FF)ij for i, s, t =
1, 2, 3 and j = 1, 2.

Incompressible two-phase fibre composites For fibre composite with incompressible

phases, an estimate for the macroscopic energy W̃ was derived in Section 5.2.3 in terms
of Eq. (5.64). The associated first Piola-Kirchhoff stress tensor is given by

P̃ = ∂F̄ W̃µ = ∂F̄

{∑

α

nα
[
W α
µ (F̄α) + 1

2
(F̄ − F̄α) · P α

µ (F̄α)
]

+ 1
2
nF(F̄ − F̄F) · ℘FF̄−TF

}

=
∑

α

1
2
nα
[
(I + FTα )P α

µ (F̄α) + FTα Lαµ(F̄α)(F̄ − F̄α)
]

+ 1
2
nF
[
(I− FTF)℘FF−TF +

(
F−TF ⊗ ∂F̄℘F − ℘FFTF(F−TF ⊗ F−TF )T24

)T
(F̄ − F−TF )

]
.
(C.7)

Of course, we know from Section (3.3.2) that P̃ constitutes in the context of macroscopic
incompressibility the extra stress which has to be supplemented by a term ℘̄F̄−T that
includes the Lagrange multiplier ℘̄ in order to satisfy the macroscopic incompressibility
constraint (5.61). The term ℘̄F̄−T thereby replaces the stress contribution P̃Λ(F̄ ) =

∂F̄ W̃Λ(F̄ ) = Λ̃∞J̄(J̄−1)F̄−T from the overall energy split (5.59), which in the macroscopic
incompressible limit contains an indeterminate form “∞ × 0” because the macroscopic
Lamé constant Λ̃∞ tends to infinity and (J̄ − 1) tends to zero. Moreover, the stress

tensor P̃ in (C.7) contains in addition to the two fourth-order tensors FF and FM also
the second-order tensor ∂F̄℘

F, which denotes the derivative of the constraint pressure
(Lagrange multiplier) ℘F with respect to F̄ . Hence, 81 + 81 + 9 scalar unknowns have to

be solved to determine the stress tensor P̃ . As before, we still have 81 scalar equations
from Eq. (C.3) and 27 scalar equations from Eq. (C.5). Further, 54 equations are obtained
from

lim
ΛM→∞

∂F̄

{{
[P−1 − LM](F̄ − F̄F) + nM ∆Pµ℘ = 0

}[}
. (C.8)

This means that it proves useful to first calculate the derivative of Eq. (5.63) and sub-
sequently the limit as ΛM → ∞. This is simpler than directly calculating the derivative
of Eq. (5.79). Finally, the remaining 9 equations have to be constructed from appropri-
ately addressing the incompressibility constraint (5.45) in the fibre phase and the resulting
constraint upon the tensor FF.
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C.2 Implications of augmented isotropic phases with J4-based
anisotropic parts

For the considered fibre composites with collinear orientation of the cylindrical inclusions
and the phase’s preferred direction, together with phase energies of the form as given
in (5.93), it can be shown that the J4-dependent anisotropic phase energy terms do not
alter the microscopic deformation tensors F̄α. As stated in Section 5.3.4, this is because
the solution of Eq. (5.79) becomes independent of the J4-based energy terms. This fact is
explained in the following in more detail.

We first note that the matrix energy enters Eq. (5.79) by means of the elasticity tensor
LM
µ and the microstructural tensor {X0}[. Further, both phases contribute to Eq. (5.79)

through the stress tensors P α
µ . Hence, we have to show that each of these quantities does

not alter the solution of Eq. (5.79). For matrix energies as given in (5.93), the associated
dilatational part of the elasticity tensor is

LM
µ (C,M ) = LM

iso(I1, I2) + LM
aniso(J4) + LMJ

µ (J) , (C.9)

where the anisotropic, J4-dependent term is given by

LM
aniso = ∂2

FFW M
aniso = 2 ∂J4W

M
aniso (I ⊗M )T23 + 4 ∂2

J2
4
W M

aniso FM ⊗ FM . (C.10)

Making use of the expanded form (C.9), Aµ in (5.67)2 can subsequently be formulated as

Aµ =
(
(LM

iso)T23ξ
)
ξ +

(
(LM

aniso)T23ξ
)
ξ +

(
(LMJ

µ )T23ξ
)
ξ . (C.11)

Now, inserting (C.10) in (C.11) and recalling the collinearity of the axis of transverse
isotropy of the matrix phase and the cylindrical inclusions, one can observe that the J4-
dependent tensor bases of LM

aniso are
((

(I ⊗M )T23
)T23ξ

)
ξ = δijMkl ξk ξl ei ⊗ ej = 0 and(

(FM ⊗ FM)T23ξ
)
ξ = FimMmk FjnMnl ξk ξl ei ⊗ ej = 0 .

(C.12)

This holds since M = e3 ⊗ e3 and ξ3 = 0. Hence, it can easily be shown that the
dilatational part Aµ of the acoustic tensor does not contain any J4-dependent terms.
From this, one can conclude that P0, P1, P2 as well as {X0}[ are also independent of any
J4-dependent part of W M

µ .
Next, we investigate how the anisotropic elasticity tensor LM

aniso, given by (C.10), and the
anisotropic stress tensors P α

aniso = ∂FW α
aniso = 2 ∂J4W

α
aniso FM enter Eq. (5.79). Therefore

we note that the dilatational elasticity tensor LM
µ and the stress tensors P α

µ in Eq. (5.79)
only occur in the subspace form. Subsequently, we can observe that for the J4-dependent
tensor bases of the elasticity tensor,

{
(I ⊗M)T23 = δikMjl ei ⊗ ej ⊗ ek ⊗ el = O

}[
and

{
FM ⊗ FM = FimMmj FknMnl ei ⊗ ej ⊗ ek ⊗ el = O

}[
,

(C.13)

and for the J4-dependent tensor base of the stress tensor,
{
FM = FimMmj ei ⊗ ej = 0

}[
(C.14)

holds since {M = 0}[. Hence, for the considered class of composites with phase energies
as defined in (5.93), the solution of Eq. (5.79) is independent of any anisotropic parts of
the two phases.
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C.3 Estimates for composites with a matrix phase described by
an isotropic Neo-Hookean part augmented by a
J4-dependent anisotropic energy term

In Chapter 5, general TSO results were provided for composites with incompressible and
transversely isotropic phases. In this connection, estimates for the effective strain energy
are obtained by solving Eq. (5.79), subject to condition (5.45), and substituting the results
into expression (5.64). Further, setting up Eq. (5.79) requires the computation of the
integrals in (5.72)2. Therein, the integrands are dependent on the elasticity tensors LM

µ

and LM
Λ of the matrix phase through Eqs (5.67)-(5.71). Typically no closed-form solutions

can be found for the integrals (5.72)2 and, in turn, there exist no closed-form expression

for the effective energy W̃ for general loading conditions and general nonlinear matrix
behaviour. However, it is possible to simplify the results and to obtain closed-form relations
if the strain-energy of the matrix phase is described by an isotropic Neo-Hookean part
augmented by a J4-dependent anisotropic energy term. This is the focus of this section,
which subsequently proceeds from matrix energies of the form

W M
µ (I1, J, J4) = 1

2
µM (I1 − 3) + W M

aniso(J4) + 1
2
µM (J − 1)(J − 3) . (C.15)

Note that this formulation is still anisotropic and the transversely isotropic term W M
aniso

can be a highly nonlinear, J4-dependent strain-energy function.

C.3.1 Explicit representation of the microstructural tensor {X0}[

First note that, for the class of matrix energies defined by (C.15), the second derivative
∂2
I21

W M
µ equals zero. This substantially simplifies the expression for the elasticity tensor

LM
µ and, subsequently, the tensors B0, B1 and B2, which are needed for the computation

of {X0}[, see 5.2.3. Moreover, as stated in Section 5.3.1 and shown in C.2, the tensorsB0,
B1 and B2 are independent of any transversely isotropic (potentially highly nonlinear)
J4-based contribution W M

aniso of the matrix energy. Thus, by further making use of an
overall deformation gradient tensor F̄ of the form (5.83), it is possible to calculate the
integrals in (5.72)2 analytically and to obtain explicit expressions for the microstructural
tensors P0, P1, P2. These explicit expressions enable us to find an analytical solution for
the pseudoinverse G = P† and to identify the resulting ten non-zero coefficients of the
tensor {X0}[, namely,

(X0)1111 = (1 + λ̄` + 2 λ̄2
1 λ̄`)µ

M/(λ̄2
1 λ̄`) , (X0)2222 = (2 + λ̄2

1 λ̄` (1 + λ̄`))µ
M ,

(X0)1122 = (X0)2211 = (λ̄` − 1)µM , (X0)1221 = (X0)2112 = µM ,

(X0)1212 = (2 + λ̄2/λ̄1)µM , (X0)2121 = (2 + λ̄1/λ̄2)µM ,

(X0)3131 = (X0)3232 = 2µM ,

(C.16)

where λ̄1 and λ̄2 are determined by Eqs (5.84). The compact forms of LM
µ and {X0}[

result in a significant simplification of Eq. (5.79). In particular, the (2,2)-component of
Eq. (5.79) can now be used to obtain an analytical expression for the constraint pressure
℘F. In turn, this expression can then be substituted into the (1,1)-component and ℘F

drops from the set of unknowns. Moreover, it can be shown that the dependence of the
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overall energy on the overall coupling invariant φ̄γ completely vanishes. Subsequently, the
fibre phase invariant φ̄αγ can be identically set to φ̄γ, that is, φ̄γ = φ̄αγ = 0. This means
that the (3,2)-component of Eq. (5.79) is of no further use. As a consequence, the (3,1)-
and the (1,1)-components of Eq. (5.79) represent the two scalar equations for the two
unknown shear measures γ̄F` and γ̄Ft, respectively. They remain coupled only through the
first invariant ĪF

1 = λ̄2
` + 2 λ̄−1

` + γ̄2
F` + γ̄2

Ft, which may occur in the first derivatives ∂I1W
F
µ

and ∂J5W
F
µ in the term ∆Pµ℘. Whenever the overall longitudinal or the transverse shear

is zero, the two equations for the unknowns γ̄F` and γ̄Ft become fully uncoupled, leading to
γ̄F` = 0 for γ̄` = 0 and γ̄Ft = 0 for γ̄t = 0. Concluding, a matrix energy of the form (C.15)
reduces the homogenisation to determining the two unknown shear measures {γ̄F`, γ̄Ft},
or, equivalently, {γ̄F`, λ̄F1}. Further, the effective energy becomes a function of only three
macroscopic invariants, that is,

W̃ = W̃ (λ̄`, γ̄`, γ̄t) = W̃ (Ī1, J̄4, J̄5) . (C.17)

where the Ī2-independence directly follows from Eq. (3.97). In order to provide some
specific results but at the same time avoiding lengthy expressions, we show in the following
explicit results for two specific loading scenarios for composites with I2-independent fibres.
Subsequently, we present estimates for general loading conditions for composites where the
isotropic part of the both phases is described by a Neo-Hookean energy.

C.3.2 Estimates for combined axisymmetric and longitudinal shear

Based on the previous findings, we first investigate the case of combined axisymmetric and
longitudinal shear loading, i. e. γ̄t = 0. The average longitudinal shear γ̄F` of the fibre can
then be directly calculated from the relation

γ̄F` −
2 γ̄` µ

M

2nM
(
∂I1W

F
µ (ĪF

1 , J̄4, J̄F
5 ) + λ̄2

` ∂J5W
F
µ (ĪF

1 , J̄4, J̄F
5 )
)

+ (1 + nF)µM
= 0 , (C.18)

where ĪF
1 = λ̄2

` +2 λ̄−1
` + γ̄2

F`, J̄4 = λ̄2
` , and J̄F

5 = λ̄2
`(λ̄

2
` + γ̄2

F`). It is clear that the derivatives
∂I1W

F
µ and ∂J5W

F
µ may, because of ĪF

1 and J̄F
5 , still be a function of γ̄F`. Hence, the

possibility of finding closed-form solutions for γ̄F` from Eq. (C.18) generally depends on
the chosen strain-energy functions W F

iso, W F
aniso, and W F

coupl. Explicit results for the case
that the isotropic part W F

iso of the fibres exhibits Neo-Hookean behaviour will be presented
in Section C.3.4. The effective energy for combined axisymmetric and longitudinal shear
is given by

W̃ (λ̄`, γ̄`)

= nF
[
W F
µ (ĪF

1 , J̄4, J̄
F
5 ) + (γ̄` − γ̄F`) γ̄F`

(
∂I1W

F
µ (ĪF

1 , J̄4, J̄
F
5 ) + λ̄2

` ∂J5W
F
µ (ĪF

1 , J̄4, J̄
F
5 )
)]

+ nM
[

1
2
µM(λ̄2

` + 2 λ̄−1
` + γ̄2

M` − 3) + W M
aniso(J̄4) + 1

2
(γ̄` − γ̄M`) γ̄M` µ

M
]
,

(C.19)
where γ̄M` = (γ̄`−nFγ̄F`)/n

M. Note that for this loading scenario it holds that det[F̄M] = 1,
entailing that the J-dependent part W MJ

µ of W M
µ vanishes.
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C.3.3 Estimates for combined axisymmetric and transverse shear

For a combined axisymmetric and transverse shear deformation, i. e. γ̄` = 0, the ho-
mogenisation reduces to determining the unknown stretch λ̄F1 by solving the following
equation

1

(nM)2 λ̄2
1 λ̄

3
F1 λ̄

2
`

[
2 (nM)3 ∂I1W

F
µ (ĪF

1 , J̄4, J̄5) λ̄2
1 (1− λ̄4

F1 λ̄
2
`)

+µM
(
nF (λ̄1 − λ̄F1)3 λ̄2

` (λ̄1 + λ̄F1) + (nM)3 λ̄2
1 (λ̄4

F1 λ̄
2
` − 1)

+ (nM)2 (λ̄1 − λ̄F1)
[
λ̄` (λ̄3

1 + λ̄3
F1) + λ̄1 (2 + λ̄2

F1 λ̄`) + λ̄2
1 λ̄F1 λ̄`

(
1 + 2 λ̄2

F1 λ̄`
)])]

= 0 .

(C.20)
Recalling that the relation between the stretch λ̄F1 and the shear parameter γ̄Ft is given
by Eq. (5.87)1, the equation above can also be formulated in terms of γ̄Ft. However, using
λ̄F1 leads to more compact expressions. The effective energy for combined axisymmetric
and transverse shear deformation is obtained by

W̃ (λ̄`, γ̄t)

= nF W F
µ (ĪF

1 , J̄4, J̄5) + nM

[
µM

2

(( λ̄1 − nFλ̄F1

nM

)2

+
( λ̄F1 − nFλ̄1

nMλ̄1λ̄`λ̄F1

)2

+ λ̄2
` − 3

+ nF (λ̄1 − λ̄F1)2 n
F (λ̄2

1 + λ̄2
F1) + 2 (1− 3nF + (nF)2) λ̄1λ̄F1

((nM)2λ̄1λ̄F1)2

)
+ W M

aniso(J̄4)

]

+
nF (λ̄1 − λ̄F1)

2 (nM)3 λ̄2
1λ̄

3
F1λ̄

2
`

[
2 ∂I1W

F
µ (ĪF

1 , J̄4, J̄5) (nM)3 λ̄2
1 (λ̄2

` λ̄
4
F1 − 1)

+ µM
(
− nFλ̄2

` (λ̄1 − λ̄F1)3 (λ̄1 + λ̄F1) + (nM)3λ̄2
1 (1− λ̄2

` λ̄
4
F1)

+ (nM)2 (λ̄1 − λ̄F1)
[
λ̄F1 − λ̄3

1λ̄` − λ̄2
1λ̄

3
F1λ̄

2
` − λ̄1

(
2− λ̄2

F1λ̄` + 2 λ̄2
F1λ̄

2
`

)])]
.

(C.21)

In Eqs (C.20) and (C.21), the arguments of the fibre energy W F
µ and its first derivative

∂I1W
F
µ are given by ĪF

1 = λ̄2
` + 2 λ̄−1

` + γ̄2
Ft = λ̄2

` + λ̄2
F1 + (λ̄`λ̄F1)−2, J̄4 = λ̄2

` , and J̄5 = λ̄4
` .

C.3.4 Estimates for general loading conditions and composites with a fibre
phase exhibiting neo-Hookean behaviour for the isotropic part of the
energy

Now, we consider composites that exhibit for the isotropic part of the matrix phase as well
as for the fibre phase Neo-Hookean behaviour. The energy of the fibre is then given by

W F
µ (I1, J4, J5) = 1

2
µF (I1 − 3) + 1

2
µF (J − 1)(J − 3) + W F

aniso(J4, J5) . (C.22)

Of course, the J-dependent term W FJ
µ does not contribute to the energy due to the in-

compressibility condition (5.45). However, it has to be kept in expression (C.22) to be
consistent in the derivation of the stress tensor P F. The longitudinal and transverse shear
modes become fully uncoupled for composites with phase energies described by (C.15) and
(C.22). In this case, the shear values γ̄F` and γ̄Ft (or, equivalently, the stretch λ̄F1) can be
determined independently from each other. This is true for general loading conditions.
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The average longitudinal shear γ̄F` in the fibre phase is now calculated from

γ̄F` −
2 γ̄` µ

M

nM (µF + 2 λ̄2
` ∂J5W

F
aniso(J̄4, J̄F

5 )) + (1 + nF)µM
= 0 . (C.23)

This equation is obtained by making use of ∂I1W
F
µ = µF/2 in Eq. (C.18). For a general non-

linear behaviour of the anisotropic energy part W F
aniso, Eq. (C.23) depends on γ̄F` explicitly

as well as implicitly through J̄F
5 = λ̄2

`(λ̄
2
` + γ̄2

F`). However, by dropping the J5-dependence
and assuming a J4-dependent anisotropic behaviour of the fibre phase (∂J5W

F
aniso = 0),

Eq. (C.23) reduces to the explicit relation

γ̄F` =
2 γ̄` µ

M

nM µF + (1 + nF)µM
. (C.24)

Hence, for a composite where both phases are described by Neo-Hookean isotropic en-
ergies augmented by anisotropic, J4-dependent contributions, the effective strain energy
is given by

W̃ (λ̄`, γ̄`, γ̄t) = nF
[µF

2

(
λ̄2
` + λ̄2

F1 +
( 1

λ̄`λ̄F1

)2

− 3
)]

+ nM
[µM

2

(( λ̄1 − nFλ̄F1

nM

)2

+
( λ̄F1 − nFλ̄1

nMλ̄1λ̄`λ̄F1

)2

+ λ̄2
` − 3

+ nF (λ̄1 − λ̄F1)2 n
F (λ̄2

1 + λ̄2
F1) + 2 (1− 3nF + (nF)2) λ̄1λ̄F1

((nM)2λ̄1λ̄F1)2

)]

+
nF (λ̄1 − λ̄F1)

2 (nM)3 λ̄2
1λ̄

3
F1λ̄

2
`

[
µF (nM)3 λ̄2

1 (λ̄2
` λ̄

4
F1 − 1)

+ µM
(
− nFλ̄2

` (λ̄1 − λ̄F1)3 (λ̄1 + λ̄F1) + (nM)3λ̄2
1 (1− λ̄2

` λ̄
4
F1)

+ (nM)2 (λ̄1 − λ̄F1)
(
λ̄F1 − λ̄3

1λ̄` − λ̄2
1λ̄

3
F1λ̄

2
` − λ̄1

(
2− λ̄2

F1λ̄` + 2 λ̄2
F1λ̄

2
`

)))]

+
µ̃

2
γ̄2
` +

∑

α

nα W α
aniso(J̄4) ,

(C.25)
where J̄4 = λ̄2

` and λ̄F1 has to be calculated from Eq. (C.20) with ∂I1W
F
µ = µF/2. Further,

the effective longitudinal shear modulus, µ̃, is provided by Eq. (5.98)2.
In conclusion, Eq. (C.25) provides an expression of the effective energy for general

combined deformations. It is explicit except for one scalar unknown, the transverse fibre
shear γ̄Ft (or λ̄F1), which in a numerical setting can easily be calculated from the algebraic
equation (C.20). Moreover, the anisotropic energy terms, W α

aniso(J̄4), are added up by a
Voigt-type averaging and are unaffected by macroscopic longitudinal or transverse shear
deformation. This is in agreement with the observations in Section 5.3.4. Furthermore,
if we use Eq. (C.25) and restrict ourselves to an isotropic matrix phase (W M

aniso = 0) and
combined axisymmetric and longitudinal shear deformation (γ̄t = 0), we observe that the

new estimate W̃ is identical to the LI estimate W̃LI by Lopez-Pamies & Idiart [297]. If
we further restrict attention to isotropic Neo-Hookean phases (i. e. W F

aniso = W M
aniso = 0),

the new estimate becomes identical to the BHS estimate W̃BHS by deBotton et al. [92].
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[265] Kröner, E.: Statistical Continuum Mechanics. CISM Courses and Lectures No. 92,
Springer-Verlag, Wien 1971.

[266] Kroon, M.: An 8-chain Model for Rubber-like Materials Accounting for Non-affine
Chain Deformations and Topological Constraints. Journal of Elasticity 102 (2011),
99–116.

[267] Kuhl, E.; Garikipati, K.; Arruda, E. M. & Grosh, K.: Remodeling of bio-
logical tissue: Mechanically induced reorientation of a transversely isotropic chain
network. Journal of the Mechanics and Physics of Solids 53 (2005), 1552–1573.
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[420] Schröder, J.: Theoretische und algorithmische Konzepte zur phänomenologischen
Beschreibung anisotropen Materialverhaltens. Dissertation, Bericht Nr. F 97/3 aus
dem Institut für Baumechanik und Numerische Mechanik, Universität Hannover
(1996).
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[512] Weizsäcker, H. W.; Holzapfel, G. A.; Desch, G. W. & Pascale, K.: Strain
Energy Density Function for Arteries from Different Topographical Sites. Biomedical
Engineering / Biomedizinische Technik 40 (1995), 139–141.

[513] Wenger, M. P. E.; Bozec, L.; Horton, M. A. & Mesquida, P.: Mechanical
properties of collagen fibrils. Biophysical Journal 93 (2007), 1255–1263.

[514] Weyl, H.: The Classical Groups : Their Invariants and Representations. Princeton
University Press, Princeton 1946.

[515] Wheatley, B. B.; Odegard, G. M.; Kaufman, K. R. & Haut Donahue,
T. L.: How does tissue preparation affect skeletal muscle transverse isotropy?
Journal of Biomechanics 49 (2016), 3056–3060.

[516] Willis, J. R.: Bounds and self-consistent estimates for the overall properties of
anisotropic composites. Journal of the Mechanics and Physics of Solids 25 (1977),
185–202.

[517] Willis, J. R.: Variational and Related Methods for the Overall Properties of Com-
posites. Advances in Applied Mechanics 21 (1981), 1–78.

[518] Willis, J. R.: The Overall Elastic Response of Composite Materials. Journal of
Applied Mechanics 50 (1983), 1202–1209.



Bibliography 253

[519] Willis, J. R.: Variational Estimates for the Overall Response of an Inhomogen-
eous Nonlinear Dielectric. In Ericksen, J. L.; Kinderlehrer, D.; Kohn, R.
& Lions, J. L. (Editors): Homogenization and Effective Moduli of Materials and
Media. Springer, New York 1986, The IMA Volumes in Mathematics and its Applic-
ations, vol 1.

[520] Wirtz, D.; Karajan, N. & Haasdonk, B.: Surrogate modeling of multiscale
models using kernel methods. International Journal for Numerical Methods in En-
gineering 101 (2014), 1–28.

[521] Womersley, R. S. & Sloan, I. H.: How good can polynomial interpolation on
the sphere be? Advances in Computational Mathematics 14 (2001), 195–226.

[522] Wu, P. D. & van der Giessen, E.: On improved network models for rubber
elasticity and their applications to orientation hardening in glassy polymers. Journal
of the Mechanics and Physics of Solids 41 (1993), 427–456.

[523] Zajac, F. E.: Muscle and tendon: properties, models, scaling, and application
to biomechanics and motor control. Critical reviews in biomedical engineering 17
(1989), 359–411.

[524] Zaoui, A.: Continuum Micromechanics: Survey. Journal of Engineering Mechanics
128 (2002), 808–816.

[525] Zee, L. & Sternberg, E.: Ordinary and Strong Ellipticity in the Equilibrium
Theory of Incompressible Hyperelastic Solids. Archive for Rational Mechanics and
Analysis 83 (1983), 53–90.

[526] Zheng, Q.-S.: Theory of representations for tensor functions - a unified invariant
approach to constitutive equations. Applied Mechanics Reviews 47 (1994).

[527] Zheng, Q.-S. & Spencer, A. J. M.: Tensors which characterize anisotropies.
International Journal of Engineering Science 31 (1993), 679–693.

[528] Zohdi, T. I. & Wriggers, P.: An Introduction to Computational Micromechanics.
Springer-Verlag, Berlin 2008, 2 edn.





Released Report Series

CBM-01 Thomas Heidlauf: Chemo-Electro-Mechanical Modelling of the Neuromuscular
System, September 2015

CBM-02 Michael Sprenger: A 3D Continuum-Mechanical Model for Forward-Dynamics
Simulations of the Upper Limb, October 2015

CBM-03 Ellankavi Ramasamy: A Modelling-Simulation-Analysis Workflow for Invest-
igating Socket-Stump Interaction, April 2019

CBM-04 Andreas Hessenthaler: Multilevel Convergence Analysis: Parallel-in-Time In-
tegration for Fluid-Structure Interaction Problems with Applications in Car-
diac Flow Modeling, February 2020

CBM-05 Mylena Mordhorst: Towards a Stable and Fast Dynamic Skeletal Muscle
Model, April 2020

CBM-06 Pouyan Asgharzadeh: Image-based Analysis of Biological Network Structures
using Machine Learning and Continuum Mechanics, May 2020




	Introduction
	Motivation
	Objectives and contextualisation of this thesis
	Micromechanics and homogenisation
	Continuum biomechanics and muscle modelling

	Outline of this thesis

	Continuum Mechanics
	Fundamentals of Continuum Mechanics
	Kinematics
	Motion of a body
	The deformation gradient
	The Cauchy–Green tensors, stretch, and shear
	Deformation decomposition
	Measures of strain

	The concept of stress
	Physical balance relations
	General balance structure
	Balance of mass
	Balance of linear momentum
	Balance of moment of momentum
	Balance of energy
	Balance of entropy


	Fundamentals of Material Theory
	The mechanical boundary-value problem
	Problem formulation
	The need for constitutive relations

	Constitutive framework
	Principle of determinism
	Principle of local action
	Principle of material frame-indifference
	Principle of material symmetry
	Principle of dissipation

	Internal constraints
	Principle of determinism for constrained materials
	The assumption of material incompressibility

	Variational principles in mechanics
	Basics on variational calculus
	The principle of minimum potential energy in elastostatics
	The principle of stationary potential energy under constraints

	Theory of invariants and material symmetry groups
	Implications of frame-indifference
	Invariant formulations for isotropic tensor functions
	The isotropic symmetry group
	The transversely isotropic symmetry group

	Further physical and mathematical requirements
	Normalisation
	Growth conditions
	Existence of minimisers

	Further remarks on constitutive modelling
	Legendre transforms and the idea of complementary energies
	Deviatoric-volumetric split of the energy
	Connection to the infinitesimal theory

	Analytical formulations for strain-energy functions
	A distortional-dilatational energy split
	Linearisation conditions for ItiI-dependent strain energies
	Examples of strain-energy functions



	Micromechanics and Homogenisation
	Continuum Micromechanics
	The multiscale problem
	The macroscale problem
	The microscale problem
	Microstructural interface conditions

	Microscale statistics
	Microstructural statistics
	Field statistics

	Scale transition and effective quantities
	Micro-macro transition: Connecting the scales
	The Hill macrohomogeneity condition
	Extremum principles for the effective energy
	Convergence and uniqueness of energy functionals
	Uniform microscopic fields: Voigt- and Reuss-type bounds


	Variational Homogenisation of Nonlinear Composites
	The Tangent Second-Order Method
	Specialisation to two-phase materials
	Two-phase composites with aligned fibrous microstructures

	Fibre composites with incompressible phases
	Asymptotic analysis for incompressible fibres
	A constrained variational principle for incompressible fibres
	Asymptotic analysis for incompressible matrix behaviour

	Fibre composites with incompressible, transversely isotropic phases
	Transversely isotropic phase behaviour
	Overall transversely isotropic behaviour
	Linearised behaviour of the TSO estimate
	Augmented isotropic phases with unidirectional reinforcement

	Alternative estimates and bounds for two-phase fibre composites
	Results and discussion of the new TSO estimate
	Results for composites with an isotropic Neo-Hookean matrix phase
	Results for isotropic Gent-type matrix and fibre
	The 2–dependence of the overall energy


	Homogenisation of Fibrous Networks
	Fundamentals of network models
	Affine network model
	Closed-form integral forms for isotropic networks
	Fibre energies and associated network response

	Transversely isotropic networks models
	Numerical quadrature over the sphere


	Microstructurally-based Model for Skeletal Muscle Tissue
	The Multiscale Muscle Model
	A two-phase model for skeletal muscle tissue
	The length scales and the representative volume element
	Perfect bonding between the muscle fibres and the ECM
	Statistical description of the microstructure

	Constitutive modelling of the phases
	The muscle fibres
	The extracellular matrix
	Modelling of collagen fibres

	The effective behaviour on the macroscale
	The effective behaviour based on variational homogenisation
	The effective behaviour based on the Voigt assumption


	Parameters, Results and Discussion of the Multiscale Muscle Model
	Model Parameters
	Material parameters
	Structural parameters

	Results and Discussion
	Macroscopically-driven collagen fibre stretch
	Uniaxial tension in muscle fibre direction
	Uniaxial tension transverse to the muscle fibre direction
	Simple shear deformation
	Coupled shear deformation
	Future investigations


	Conclusion & Outlook
	Epilogue

	Appendix
	Tensor calculus
	Basics
	Fundamental tensors
	Selected rules of tensor calculus
	The (outer) tensor double cross product
	The eigenvalue problem and the null space of tensors
	Tensor analysis
	On fourth-order tensors
	Derivation of the nominal stress and elasticity tensors
	Matrix representations of fourth-order tensors
	On the representation of transversely isotropic elasticity tensors


	Further mathematical explanations and details
	The Legendre transform
	Fundamentals on probability theory
	Population-based modelling of space orientations

	Further remarks and results of the TSO estimates from Chapter 5
	Macroscopic stress tensor
	Implications of augmented isotropic phases with J4-based anisotropic parts
	Estimates for a matrix phase with isotropic part of Neo-Hookean type
	Explicit representation of the microstructural tensor {X0}
	Estimates for combined axisymmetric and longitudinal shear
	Estimates for combined axisymmetric and transverse shear
	Estimates for general loading conditions and composites with a fibre phase exhibiting neo-Hookean behaviour for the isotropic part of the energy


	Bibliography


