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Deutsche Zusammenfassung

Biologische Netzwerke existieren in den strukturellen Elementen biologischer Umgebun-
gen: vom Zytoskelett in Zellen bis zum Fasernetzwerke in Muskeln und vom Osteozyten-
netzwerk bis zur Knochentrabekelstruktur. Diese Netzwerkstrukturen sind evolutionär
entworfen, um eine Vielzahl von Aufgaben zu erfüllen. Sie sind robust genug die Dy-
namik biologischer Prozesse zu bewältigen und erfordern zugleich minimale Ressourcen.
Aufgrund des evolutionären Konstruktionsprinzips des Designs dieser Netzwerkstruk-
turen existiert eine starke Wechselwirkung zwischen den strukturellen Eigenschaften und
der Funktionalität. Diese biologische Struktur-Funktions-Beziehung besteht in mehreren
Skalen der Umgebung mit diversen physikalischen Eigenschaften, was einerseits die Unter-
suchung und das Verständnis ihrer Details erschwert. Diese Beziehung ermöglicht es an-
dererseits jedoch, anhand der Struktur, die Funktionalität zu untersuchen und umgekehrt.

Heutzutage ermöglichen „Rich-Content“ 3D-Bildaufnahmetechnologien die Darstellung
der Struktur dieser Netzwerke mit einer beispiellosen Auflösung, die eine detaillierte Ana-
lyse dergleichen ermöglicht. Bildgebende Verfahren werden nicht nur in Forschungslabors,
sondern auch in Kliniken immer häufiger eingesetzt. Dies hat dazu geführt, dass 1) große
Menge an Daten (Big Data) von biologischen Netzwerkstrukturen verfügbar sind und 2)
datengetriebene Modelle direkt in die Praxis umgesetzt werden können. Um dies zu tun,
sind datengetriebene Modelle erforderlich, die automatisch die Struktur einer biologis-
chen Umgebung untersuchen und diese mit ihrer Funktionalität oder Dysfunktionalität
korreliert können.

Mit der Verfügbarkeit von Big Data biologischer Strukturen besteht der Bedarf an
Methoden, diese Informationsmenge nutzbar zu machen. Klassische Untersuchungsmeth-
oden biologischer Strukturen besteht darin, repräsentative Parameter wie Materialpara-
meter (z. B. Steifigkeit), mechanische Konstitutionsgesetze (z. B. lineare Elastizität), geo-
metriebeschreibende Parameter (z. B.Krümmung von Filamenten in Proteinnetzwerken)
und Mikroarchitekturparameter (z. B. trabekuläres Knochenvolumen) mit bestimmten
Funktionen zu korrelieren (z. B. Belastbarkeit von Zytoskelettnetzwerken) oder Dysfunk-
tionalität (z. B. Erhöhung des Frakturrisikos durch Osteoporose). Theorethisch erlaubt
dieser Ansatz einen hohen Automatisierungsgrad und damit eine schnelle Diagnose von
Krankheiten oder Untersuchung biologischer Strukturen gestattet, verhindert diese vorein-
genommen Analyse, die nicht sämtliche in den Daten vorhandene Information verwendet,
die Nutzung des vollständigen Potenzials des verfügbaren Big Data zu nutzen. Daher
besteht ein Bedarf an Algorithmen, die die gesamten in Bildern verfügbaren Informa-
tionen nutzen können, um eine automatische Merkmalsextraktion und eine Korrelation
der Struktur mit der Funktion von Interesse durchzuführen. Dieser Ansatz spiegelt sich
im Konzept der Algorithmen des Maschinellen Lernens wieder.

Diese Dissertation befasst sich mit der Entwicklung, Anwendung und Validierung einer
Reihe solcher Methoden zur automatischen Analyse der Struktur-Funktions-Beziehung
auf zwei verschiedenen Skalen in biologischer Umgebungen mit einem starken Wechselspiel
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zwischen Struktur und Funktion: Proteinnetzwerke auf der Nanoskala und Knochen auf
der Mikro- und Makroskala.

Proteinnetzwerke erfüllen in biologischen Umgebungen viele Funktionen,
z. B. Tragfähigkeit, Skelettformbildung, Mobilität, Material- und Informationstrans-
port. Die Struktur der zytoskelettalen Proteinnetzwerke als formbestimmende Proteine
der Zelle wird von interne und externe mechanische Anregungen beeinflusst. Diese
Struktur wird Änderungen unterworfen, etwa um Aufgaben wie die Zellteilung zu erfüllen
oder als Reaktion auf äußere mechanische Belastungen oder Krankheiten wie Krebs.
Wenn man die Struktur der Proteinnetzwerke und ihre evolutionären Entwurfsprinzipien,
die zur Erfüllung der mechanischen Aufgaben führen, versteht, kann man 1) den Zustand
des Proteinnetzwerks als Prognosemittel analysieren, um zwischen gesunden und kranken
oder beladenen und nicht beladenen Zuständen zu unterscheiden, 2) unterscheidende
funktionelle Eigenschaften verschiedener Proteinnetzwerke finden und 3) die Mechanis-
men verstehen, die in der Struktur entwickelt wurden, um die untersuchte mechanische
Funktionalität bereitszustellen.

Der erste Teil dieser Dissertation befasst sich mit der quantitativen und automatischen
Analyse der Struktur von Proteinnetzwerken anhand von 3D-Mikroskopiebildern. Im Ge-
gensatz zu den gründlich untersuchten biochemischen Aspekten von Proteinnetzwerken
fehlte ein Rahmenwerk zur quantitativen Beschreibung und Untersuchung der Struktur
von Proteinnetzwerken. Daher wurde in Rahmen dieses Dissertation zunächst eine Bild-
verarbeitungsmethode entwickelt, die die Struktur des Netzwerks automatisch extrah-
iert und in eine Reihe von Strukturmerkmalen auflöst, die es ermöglichen, den Zustand
eines Proteinnetzwerks quantitativ zu beschreiben. Anschließend wird das entwickelte
mathematische Rahmenwerk für die Proteinnetzwerkanalyse verwendet, um Modelle des
Maschinellen Lernens zu erstellen, die automatisch die strukturellen Aspekte von Protein-
netzwerken lernen und die Struktur mit ihrer Funktionalität in Beziehung setzen können.
Diese Modelle werden dann auf Filamentous temperature sensitive Z Proteine angewandt.
Filamenteous Temperature Sensitive Z (FtsZ) ist ein prokaryotisches Homolog des euk-
aryotischen Zytoskelettproteins Tubulin, das während der Zellteilung ins Spiel kommt.
Als erste Anwendung führen die entwickelten Modelle des Maschinellen Lernens eine
End-to-End Klassifizierung der Isoformen dieses Proteinnetzwerks mit 7 von 8 korrekten
Vorhersagen durch. Anschließend wird durch Kombination einer Reihe von Mikro-Finite-
Elemente-Simulationen und Ensemble-Methoden gezeigt, dass diese Proteinnetzwerke eine
tragende Funktion in Plastiden von Chloroplasten ausüben; daher wirken sie als Plasto-
skelett. Darüber hinaus erreichen die entwickelten Maschinen Lernenmodelle einen Kor-
relation von R2 = 0, 98 für die Vorhersage des mechanischen Verhaltens bei kleinen und
großen Deformationen. Schließlich wird das Modell verwendet, um die vorher definierten
Strukturmerkmale zu extrahieren, die es dem Proteinnetzwerk ermöglichen, große Deform-
ationen zu ertragen, ohne ihre Stabilität zu verlieren (adaptive Stabilität der Netzwerke).
Die Robustheit der Modelle wird gründlich validiert, indem eine Kreuzvalidierung sowie
ein Vergleich zwischen den Ergebnissen des Modells und einer manuellen Segmentierung,
Merkmalsextraktion und Klassifizierung durchgeführt werden.

Die Knochenstruktur, als ein biologisches Netzwerk im Mikro- und Makromaßstab,
ist ebenfalls eng mit seiner mechanischen und biologischen Funktionalität verbunden.
Ähnlich wie das Proteinnetzwerk des Zytoskeletts übernimmt der Knochen die Funktion
der Lastaufnahme. Die Knochenstruktur wird von internem Prozesse wie Alterung und
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genetische Erkrankungen, z.B. Osteogenesis Imperfecta, sowie äußere Anregungen wie
mechanische Belastung beeinflusst. Die mechanische Belastung ist die Hauptantriebskraft
der Organisation der Knochenstruktur. Darüber hinaus findet im Knochen ein ständi-
ger Prozess der Knochenneubildung und Knochenresorption statt, der als Architekt der
Knochenstruktur wirkt. Alterung wirkt sich auf diese (Re-)Modellierung des Knochens
aus. Daher manifestiert sich das Altern tief in der Knochenstruktur. Bis heute sind die
Auswirkungen des Alterns auf die Knochenstruktur und die (Re)Modellierung nicht voll-
ständig bekannt. Die Mikrocomputertomographie ist in den letzten Jahren zur primären
bildgebenden Technik zur Abbildung der Mehrskalenstruktur des Knochens geworden.
Der gängige Ansatz der Bestimmung einer Anzahl von Knochenstrukturparametern wie
der mittleren Dicke der Kortikalis oder einzelner Trabekel oder der Dichte der Knochen-
masse im gesamten Gewebe anhand von Mikrocomputertomographieaufnahmen war je-
doch bis heute nicht vollständig erfolgreich bei der Lösung der Frage nach den Ursachen
und genauen Auswirkungen der alterungsbedingter Veränderungen der Knochenstruktur.
Darüber hinaus war dieser Ansatz nicht in der Lage, die Auswirkungen von Krankheiten
wie Osteoporose oder Osteogenesis Imperfecta auf die Knochenstruktur und die Knochen-
materialeigenschaften vollständig zu erfassen und zu analysieren.

Der zweite Teil dieser Arbeit befasst sich daher mit der Entwicklung
einer Reihe von Deep-Learning-basierten Modellen, die hochauflösende 3D-
Mikrocomputertomographiebilder von Knochen automatisch mit drei strukturver-
ändernden Prozessen korrelieren: 1) interne Reize: Alterung und 2) Osteogenesis
Imperfecta-Krankheit und 3) äußere Reize: Regeneration durch äußere mechanische
Belastung des Knochens. Dazu wird zunächst ein tiefes neuronales Netzwerk entworfen,
das in der Lage ist, in einer präklinischen Studie eine Kurzzeitalterungsvorhersage mit
einer Genauigkeit von 95% durchzuführen. Dieses Modell wird dann verwendet, um die
lokalisierte Manifestation des Alterns in Knochen zu untersuchen. Zweitens wird das
Altersbewertungsmodell verwendet, um zu zeigen, dass eine in-vivo Belastung nach 15
Tagen zu einem um 5 Tagen verjüngten Erscheinungsbild des Knochen führt. Darüber
hinaus wurde in einer klinischen Studie ein weiteres Deep-Learning-basiertes Modell
entwickelt, das zum ersten Mal automatisch eine End-to-End-Erkennung verschiedener
Arten von Osteogenesis Imperfect anhand von hochauflösenden peripheren quantitativen
Computertomographiebildern von Radien bei Patienten im Alter zwischen 25 und 75
Jahre durchführt. Das Modell erreicht eine Genauigkeit von 99% bei der Erkennung
von Krankheitstypen und wird verwendet, um die Auswirkungen des OI-Typs auf die
Knochenmakro- und mikroarchitektur zu verstehen. Die entwickelten Deep-Learning-
Modelle sind kreuzvalidiert und weisen eine hohe Robustheit in Bezug auf Alter,
Geschlecht und Bildgebung auf.

Insgesamt konnte in dieser Dissertation gezeigt werden, dass eine datengetriebene auto-
matische Analyse biologischer Netzwerkstrukturen Aufschluss über die tief verwurzelte
Struktur-Funktions-Beziehung geben kann. Dies ist möglich, indem modernste Algorith-
men für Maschinelles Lernen mit neu entwickelten Strukturmerkmalen kombiniert wer-
den, die anhand quantitativer Bildgebung und kontinuumsmechanischer Modellierung
abgeleitet wurden. Um so Methoden zur Analyse von Bilddaten mit hohem Inhalt zu en-
twickeln, mit denen biologische Netzwerkstrukturen auf der Grundlage ihrer untersuchten
Funktionalität aufgelöst werden können.





Abstract

Biological networks are the structural units of biological environments from cytoskeleton in
cells to fibre networks in muscles and from osteocyte network to bone trabecular structure.
These network structure are evolutionary designed to perform a multitude of tasks while
being robust enough to handle the dynamic nature of the biological processes and requiring
as little resources as necessary. Due to the evolutionary construction principle behind the
design of these network structures, there exists a strong interplay between the structural
characteristics and the functionality. This structure-function relationship holds across
a multi-scale and multi-physics environment which makes it burdensome to investigate
and understand its details. However, this relationship enables us to study functionality
through investigating the structure and vice versa.

Recently, rich-content 3D imaging technologies enable resolving the structure of these
networks with unprecedented resolution allowing a detailed analysis of them. Additionally,
imaging facilities have become more and more available not only in research laboratories,
but also in clinics. This has resulted in 1) availability of big data on biological network
structures and 2) feasibility of utilizing data-driven models directly in practice. However,
to do so, one requires data-driven models that automatically investigate the structure of
a biological environment and correlate it to its functionality or dysfunctionality.

With the availability of such big data on biological structure, the need for methods that
can take advantage of this amount of information is imminent. The traditional technique
in investigating biological structures is through extracting representative parameters such
as material parameters (e.g. stiffness), mechanical constitutive laws (e.g. linear elasti-
city), geometry describing parameters (e.g. curvature of filaments in protein networks)
and micro-architecture parameters (e.g. trabecular bone volume) and correlating these
to certain functionality (e.g load bearing characteristic of cytoskeletal networks) or dis-
functionality (e.g. increase of fracture risk in bone due to osteoporosis). Although this
approach creates a high level of automatizing and therefore faster disease prognosis or
investigation of biological structures, its bias and negligence of the remaining information
present in images hinders it from progressing and completely utilizing the potentials of
the available big datasets. Therefore, there exist the need for algorithms that can use the
entirety of the information available in images while performing an automatic feature ex-
traction and correlation of the structure to the function of interest. This matches greatly
with purpose in development of machine learning-based algorithms.

This thesis is devoted to the development, application and validation of a series of such
methods for automatic analysis of the structure-function relationship on two different
scales of biological environments with strong interplay between the structure and function
naming protein networks on the nano scale and bone on the micro and macro scale.

Protein networks carry out many functionalities in biological environments such as load
bearing, skeletal shape forming, mobility, transportation of material and information. The
structure of cytoskeletal protein networks as the shape defining protein of cell are affected
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by internal and external mechanical stimuli. The structure undergoes changes to carry
out tasks such as cell division or in response to external mechanical loads and due to
diseases such as cancer. By understanding the structure of the protein networks and
the evolutionary design principles leading to their performance in the mechanical tasks,
one can 1) analyze the state of the protein network as a prognostic tool to distinguish
between healthy/unhealthy or loaded/non-loaded states, 2) find distinguishing functional
characteristics of different protein networks and 3) understand the mechanisms developed
in the structure to execute the investigated mechanical functionality.

The first part of this dissertation is devoted to quantitatively and automatically analyz-
ing the structure of protein networks using 3D microscopy images. Unlike the biochemical
aspects of protein networks which has been thoroughly studied, there existed the lack of
a framework to quantitatively describe and investigate the structure of protein networks.
Therefore, one focus of this dissertation is in developing an image processing method that
automatically extracts and resolves the structure of the network into a series of structural
features allowing to quantitatively describe the state of a protein network. Afterwards,
the designed mathematical framework for protein network analysis is utilized to create
machine learning models that automatically learn the structural aspects of protein net-
works and can relate the structure to their functionality. These models are then applied on
Filamentous temperature sensitive Z proteins, a prokaryotic homolog of the eukaryotic
cytoskeletal protein tubulin, which comes into play during cell division. As a first ap-
plication, the developed machine learning models perform an end-to-end classification of
isoforms of this protein networks with 7 out of 8 correct predictions. Afterwards, by com-
bining a series of micro finite element simulations and ensemble methods, it is shown that
these protein networks carry out a load bearing functionality in plastids of host chloro-
plasts; hence they act as a plastoskeleton. Moreover, the developed regression machine
learning models achieve a R2 = 0.98 in predicting mechanical behaviour in case of small
and large deformations. At last, the model is utilized to extract developed structural
features that enables the protein network to undergo large deformations without losing
their stability (adaptive stability of the networks). The robustness of the models are thor-
oughly validated by performing cross-validation as well as comparison between the results
of the model and unbiased manual segmentation, feature extraction and classification.

Bone structure, a biological network of micro and macro scale, is also deeply connected
to its mechanical and biological functionality. Similar to a cytoskeletal protein networks,
bone carries out load bearing and skeletal functionality as well as transportation of nutri-
tion. The bone structure is dictated by its internal processes such as maturation, aging
and genetic diseases e.g. Osteogenesis Imperfecta as well as external stimuli such as mech-
anical loading. Mechanical loading is the main driving force in organization of the bone
structure. Moreover, a constant process of bone formation and bone resorption is taking
place in bone that acts as the architect of the bone structure. Aging also affects this
(re)modeling of the bone. Therefore, aging is deeply manifested in the bone structure.
Micro computed tomography has recently become the go to imaging technique in recent
years for acquisition of images containing the multi scale structure of the bone. Up to
this day, the effects of aging on bone structure and (re)modeling is not fully understood.
The usual approach of determination of a set of bone parameters such as thickness of the
structure in different bone compartments or the density of the bone matter in the whole
tissue has not been fully successful in resolving aging related changes in bone structure.
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Moreover, this approach has also not been fully capable of detecting and analyzing the
effects of bone structure- and material properties-modifying diseases such as Osteoporosis
or Osteogenesis Imperfect.

The second part of this thesis is devoted to designing a set of deep learning-based mod-
els that automatically correlate 3D high resolution micro computed tomography images
of bones to three structure altering processes naming 1) internal stimuli for: aging and 2)
Osteogenesis Imperfect disease and 3) external stimuli: regeneration by external mech-
anical perturbations. To do so, first a deep neural network is designed which is capable
of performing short-term age prediction in a preclinical study with 95% accuracy. This
model is used to investigate localized manifestation of aging in bones. Second, the age
assessment model is utilized to show that in vivo loading leads to a 5 days rejuvenated
appearance of bones after 15 days of loading. Moreover, in a clinical study, another deep
learning-based model is designed to automatically perform, for the first time, an end-to-
end detection of different types of Osteogenesis Imperfect from high resolution peripheral
quantitative computed tomography images of radii in patients between 25 and 75 years.
The model reaches 99% accuracy in disease type detection and is used to understand the
effects of OI type on bone macro/micro-architecture. The designed deep learning models
are cross validated and show high robustness to age, gender and imaging setup.

In summary, this dissertation, demonstrates that data-driven automatic analysis of
biological network structures can shed light on the deeply embodied structure-function
relationship. This is only possible by combining the state of the art machine learn-
ing algorithms with novel designed structural features derived from quantitative imaging
and continuum-mechanical modeling to develop methodologies for analyzing rich-content
image data to resolve the biological network structures based on their investigated func-
tionality.

This dissertation was supported by the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) under Germany’s Excellence Strategy – Cluster of Excel-
lence EXC 2075 “Data-Integrated Simulation Science (SimTech)” and Transregio/SFB
TRR141.





1 Introduction

1.1 Motivation
The evolutionary procedure behind the design of biological processes [70] has often led
to investigations involving multiple scales and physics. This complexity lies under the
purpose-oriented strategy of optimizing multiple parameters e.g. material and energy
consumption, while maximizing the capability in pursuing the desired goal. Additionally,
the dynamic nature of biological processes where the structure, mechanism and goals of
the system simultaneously vary, contribute to the complications involved in understanding
them. The traditional approach of investigating biological processes is based upon the
fact that one can understand the overall mechanism of a biological system by separately
studying smaller subsystems in addition to exploring the corporation of each of them.
The span of success of this approach decreases with the increase in the complexity of the
system due to the accumulation of errors originating from neglecting the concurrency of
sub-mechanisms and the multilayer nature of the system. This makes such traditional
approaches limited in comprehending biological systems.

There exists a strong connection between the structure and the function in biological
processes. This relationship is grounded on the evolutionary process fueling the devel-
opment of these two aspects of a biological process hand in hand [158]. Therefore, it
is often observed that intricate biological processes such as multifunctionality of protein
networks (PN) in cells [100] or load-induced (re)modeling of bone [364] is carried out by
multifarious structural entities. It is important to note that the definition of structure in
biological environments exceeds way beyond the classical mechanical load bearing assem-
blies. As in biological environments structure and function are not two clearly separated
entities. In the context of this thesis, a structure is as described by Oxford dictionary: ”an
arrangement and organization of interrelated elements in a material object or system, or
the object or system so organized” [315]. Structural analysis of biological networks across
different scales has the potential to shed light on the dynamics of biological processes.
Although, the structure-function relation in most biological environments is evident, the
intricacy of this relation and the complexity of the structures involved has encumbered the
analysis of biological processes by understanding the structures involved. In this thesis,
the link between mechanical function and structure of some biological systems naming
cytoskeletal protein networks and bone are investigated.

The emergence of computer modeling since 1950s has opened new doors for structural
analysis of biological systems. The most straight forward use case of this approach has
been to put new theories of governing mechanism in biological environments to test. This
enables extracting new concepts such as development of constitutive law though computer
models e.g. models of muscle contraction [132]. These concepts can be further validated
by or developed from experimental data. Regardless of the revolutionary capabilities made
possible by traditional computational modeling, the models are often either too generic
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or are built specifically upon a single subject which leads to them being too specific. This
results in lack of robustness in models representing the dynamics of a complete biological
process. Moreover, manual production of models from each biological sample is often
too time consuming to be used for building a database of computer models for a specific
biological system.

In the past decade the amount of acquired data has exponentially increased [217].
Meanwhile, the data analysis hardware has improved drastically. Recent advances in
data acquisition technologies in the field of biomedicine allow unprecedented insight in
biological processes across different scales. In addition, the increase in parallel com-
putation power with the newest multi-thousands core graphic cards, enables to process
this enormous amount of data in sufficient time. Data-driven structural analysis with
specifically-designed automatic model generator algorithms overcome the aforementioned
problems regarding the mass analysis of structures without the manual labor costs.

Biomedical imaging has been adopted as one of the main prognostic as well as in-
vestigatory means by physicians and researchers. Recent advance in acquiring 3D and
4D (time resolved) images, make them even more suitable to study biological processes.
The flexibility and variety of capturing images at several resolutions in different imaging
methods makes them a suitable building ground for creating computer models. Through
biomedical imaging, not only the relatively realistic geometry of the structure is cap-
tured, but also the multiscale and multilayered nature of biological systems are recorded.
This makes biomedical images a well suited input for data-driven methods for analyzing
biological structures. Moreover, the accumulation of data and the presence of suitable
hardware call for objective oriented end-to-end algorithms that are designed to answer
specific biomedical research questions of ”how are biological structures related to their
functionality?” (Fig 1.1).

Machine learning (ML)-based methods has proven to be capable of producing such
end-to-end algorithms based on image data. Machine learning (ML) as prominent facade
of artificial intelligence (AI) has been increasingly utilized to speed up and automate
methods for computational biomedical image analysis [111]. ML-based methods consume
the entirety of information recorded in an image and has the potential to automatically
correlate the information in the image to the biological process of interest. This may
permit an automatic inclusion of the interplay of different parameters in contrast to
selectively extracting specific structural features to study. Moreover, when needed, ML
methods allow consideration of the hierarchical nature of the biological structures. In
contrast to the primary approach of using ML as a black box for analyzing biological
systems [356], recent advances in quantitative analysis of the learning processes permit
a deeper understanding of mechanisms under investigation. This makes ML a great
candidate for researching dynamic biological processes.

This work focuses on a data-driven approach to analyze the structure-function rela-
tionship in two different biological environments/scales: 1) Protein networks built from
nanobiopolymers and 2) metaphyseal bone containing cortical shell and trabecular struc-
ture using 3D image data. Despite basic differences between these biological settings,
their mechanisms and the implications of pixel intensities, the acquired rich-content data
(3D images) represent the structure-function relationship of interest in both biological
network structures. Therefore, the same fundamental approach for developing methods
using image processing and machine learning for investigating the biological mechanism
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Figure 1.1: Investigating structure-function relationship in biological environments is possible
through purpose oriented data acquisition and data analysis algorithms using newly
available data acquisition machines such as confocal microscopes and HR-pQCT
scanners, parallel computing hardware e.g. GPU clusters and big data analysis
platforms such machine learning libraries.

has been utilized. Needless to say, each of these problems present their specific challenges
in data analysis. Therefore, various algorithms and method of machine learning and image
processing for decoding each of them has been selected.

At the nano scale of protein networks, I aimed at developing a series of methods for an
automatic and fast assessment of cytoskeletal protein networks based on 3D microscopy
images. The approach can be broken down into: 1) designing an image processing al-
gorithm that quantitatively describes the structure of a PN allowing not only distinction
between different PNs but also between different states of the same PN, 2) creating an
in-silico experimental setup permitting a quantitative representation of the mechanical
responses of the PN an 3) using feature-based ML algorithms (e.g. random forest) to cor-
relate the extracted structural features to the mechanical behavior of the PN. Creating
such ML models allows an end-to-end application of PN state assessment from microscopy
images as well as determination of the structural features developed in the network to
create such mechanical characteristic.

In contrast, at the micro/macro scale, many research has been devoted to establishing
this relationship. However, for many tissues no precise link has been found between the
structure and function. Specially, bone as a load bearing tissue, has been investigated
extensively. The load bearing functionality provided by the bone’s structure is effected
by certain physiological and patho-physiological processes. Therefore, these perturbations
are utilized in this thesis to study the structure-function relationship in bone. To do so, I
developed machine learning models that link the structure of bone encoded in images to
the effects these perturbations on the bone structure. The chosen perturbations are: 1)
maturation-related changes in bone structure, 2) mechanical loading aiming at reversing
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the aging-related changes and 3) alterations in bone structure due to diseases. In order
to do this, in a preclinical study, which allows inducing controlled structural adapta-
tions, I designed a deep neural network (DNN) capable of predicting the skeletal age of
the subject based on X-ray images and a tool to analyze the learned structural features
corresponding to the maturation stages. Furthermore, this DNN is applied on images
of bone treated with in vivo loading to study the rejuvenation effects of this mechanical
treatment. Afterwards, in a clinical study, the DNN was modified to investigate manifest-
ation of bone-structure-altering Osteogenesis Imperfecta disease in patients in order to
automatically identify specific disease types. This overall approach allowed an unbiased
automatic investigation of bone structural changes induced by the aforementioned mech-
anical function-altering perturbations. Despite the considerable recent progress, there are
yet many unanswered questions about the structure-function relationship in bone tissue
and how functionality/dysfunctionality of bone can be studied through its structure. In
micro/macro-scale focused part of this thesis, this relationship is investigated by develop-
ing and applying a series of bone quality assessment models utilizing ML.

1.2 Outline and the Structure of the Thesis
This thesis is divided into six chapters and is structured in the following way. In the
first chapter, a general introduction to biological networks, their structure-function rela-
tionship and the ML-based approach developed in this thesis is provided. Further, the
investigated biological environments i.e. protein networks at the nano scale and bone at
the micro/macro scale are introduced here. Chapter 2 contains the biological and math-
ematical background of a network representation of the mentioned biological structures.
This chapter further consists of an overview about the functionality of protein networks
and state of the art mechanical modeling approaches for describing this functionality.
Chapter 3 demonstrates how quantitative imaging is utilized to study the structure of
biological networks by taking advantage of rich-data containing detailed structural in-
formation. It is further demonstrated how machine learning-based algorithms could be
used to analyze such big data to automatically resolve the image data and the network
structure.

In chapter four, the developed methodologies for investigating structure-function rela-
tionship at the nano scale of protein networks is presented. This chapter consist of three
sections:

1. The first section contains the developed imaging and ML methods for resolving and
automatically classifying protein network structures from 3D confocal laser scan-
ning microscopy images. As a first application, how this is used to extract structural
features that quantitatively describe the assembly of Filamentous temperature sens-
itive Z (FtsZ) proteins is demonstrated. As the second application, the capability
of the method to highlight structural similarities and differences of two isoforms
of this protein network is showcased. The third presented application highlights
the designed ML classifier of protein network structure and its performance in an
end-to-end classification of two protein isoforms.

2. The second section includes a finite element simulation framework designed to ex-
tract the mechanical behaviour of a protein network from 3D confocal microscopy
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data. The designed setup allows to investigate the response of the networks in small
and large deformations and extract the failure scenarios of the networks.

3. The third section contains the developed machine learning-based method that cor-
relates the structural features of the network (extracted in the first section) with the
mechanical characteristics (extracted in the second section) which allows to determ-
ine the structural features corresponding to the specific mechanical characteristics
of the protein networks e.g. adaptive stability.

In Chapter five, the developed methods to study structure-function relationship on the
micro and macro scale for bone tissue is demonstrated. This is done by studying the
effects of three different internal and external perturbations (aging, mechanical loading
and osteogenesis imperfecta disease) on bone tissue. This chapter includes three sections:

1. The first section contains my developed deep learning model for studying the mani-
festation of aging in bone structure. In this section, an end-to-end bone age assess-
ment model from µCT images is presented, which is utilized to further investigate
the localization of aging information in bone.

2. The second section includes the utilization of the model introduced in the first
section to analyze the effects of in vivo loading on appeared age in bones and show
that this treatment leads to younger appearing bones.

3. The third section showcases the modified deep neural network from the first section
to perform a bone quality assessment task. This model is utilized to detect different
types of osteogenesis imperfecta disease in bone. Furthermore, it is demonstrated
how this deep neural network, for the first time, can detect the osteogenesis imper-
fecta type automatically from high resolution peripheral quantitative tomography
scans.

The last chapter is a conclusion of the work presented in this thesis. Moreover, the
future possibilities with respect to basic research and clinical studies are provided in
chapter six.

1.3 Data Source
The image data utilized in this work is categorized and acquired from three different
sources:

1. 3D confocal laser scanning microscopy images of FtsZ protein networks, used in
Chapter 4, were acquired at the Plant Biotech Lab, University of Freiburg, by
Bugra Özdemir under supervision of Dr. Steffanie Müller and Prof. Ralf Reski.

2. µCT images of mice (female C57Bl/6J) tibiae and fibulae, used in Chapter 5, were
acquired by Dr. Annette Birkhold and Prof. Bettina Willie at Julius Wolf Institute,
Charité Universitätsmedizin Berlin.
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3. HR-pQCT images of adult human radii, used in Chapter 5, were acquired under
the supervision of Prof. Bettina Willie at Shriners Hospital for Children - Canada,
Department of Pediatric Surgery, McGill University in a study funded by Mereo
BioPharma Group PLC.
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2 General Background on Biological
Network Structure and Functionality

If one considers the evolution as the architect of biological systems, it is much more
realistic to imagine evolution as a experiencing entity rather than an engineer as suggested
by Francois Jacob [158]. This means that instead of drafting a plan before creation (as an
engineer would do), evolution assembles possibilities till meeting the needs of the system.
This makes the convergence of to a solution found by evolution and engineering approach
hardly possible. In this chapter, the concept of biological network structures and how this
concept facilitates understanding structure-function relationship through an engineering
point of view is briefly represented.

Biological networks depict biological systems in an abstract manner by apprehending
essential attributes of them. The reader should be aware that in the context of this thesis,
a biological network structure is not exactly the same classical/mathematical represent-
ation of a biological network, e.g. , graphs of protein signaling [41] although they have a
certain share of similarities. In this regard, a biological network structure, is a modular,
hierarchical and robust structure whose functionality is deeply entangled in every aspect
of its structure. The concept of modularity, which is usually mentioned as a principle
of biological networks [130, 153], is often what leads to the hierarchy observed in not
only the structure, but also the functionality of the system as well. This modularity is
similar in engineered systems where one uses modules, e.g., subroutines of code to per-
form specific tasks (functions) for performing a more complex task. Therefore, in the
context of biological network structures, a module could be defined as: A set of connec-
tions (nodes) between simpler structural elements (points, segments) which have great
interactions with each other to perform a sub-task of the system. A module has a strong
interplay with other modules where this interactions allows performing complicated tasks
as the goals of the evolutionary design. The next feature of the biological network struc-
tures is the robustness to tolerance. Since the structure should function in any realistic
scenario, independent of severeness of inference or insult, which the system undergoes, to
a great degree. These interference could contain a multitude of possibilities such as Es-
cherichia coli undergoing tens of degrees fluctuations of surrounding temperature [295].
However, the structural and mechanical robustness is dominantly present in biological
network structures; hence, this characteristic is investigated in this thesis.

In this work, the introduced concept of biological network structures as a platform to
investigate structure-function relationship through the scales in two biological environ-
ments naming cytoskeletal protein networks and bone tissue is utilized. Exploring this
relationship requires a basic understanding of the characteristics of these structures as
well as their functionality. Here, these biological network structures are introduced and
an overview of their functionality is provided.
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2.1 Cytoskeletal Protein as an Example of a Network
structure: a Brief Overview

The renowned developmental biologist, Paul A. Weiss, describes cells as a whole system
”lest our necessary and highly successful preoccupation with cell fragments and frac-
tions obscure the fact that the cell is not just an inert playground for a few almighty
masterminding molecules, but is a system, a hierarchically ordered system, of mutually
interdependent species of molecules, molecular groupings, and supramolecular entities;
and that life, through cell life, depends on the order of their interactions” [7].

At any instance multiple processes are taking place inside this system (cell). The cyto-
skeleton, as a network of interconnected filamentous biopolymers, provides the cell the
ability to transfer packages of material and information between cells, move and undergo
deformations while maintaining the structural integrity. It has been recently shown that
internal and external physical stimuli in form of forces can effect the mechanical and bio-
logical behaviour of the cell [161, 338]. The three main functionalities of the cytoskeleton
are: to spatially arrange the content of the cell, to connect the cell to the surround-
ing environment and to manage the dynamics of force generation in the cell resulting in
movement as well as change of morphology [100]. This is achieved by the interplay of a
multitude of cytoplasmic proteins and organelles.

The modular structural elements of the cytoskeleton have been thoroughly investigated
in vitro. The advancements in light microscopy, recently, has enabled the investigation of
spatial and temporal characteristics of cytoskeleton structure. For instance, it has been
shown that there exists up to 150 proteins which contain binding domains for the actin
protein, as one of the major cytoskeletal biopolymers [79]. Wave complex, a molecular
formation of actin regulators [225], has been demonstrated to create travelling waves cor-
relating to cell protrusion using high resolution light microscopy [355]. This and many
similar observations point towards the idea of a strong bond between the structure of
the cytoskeletal biopolymers and the structural functionality of not only the cytoskeleton
but also the whole cell. Despite the ever growing list of the proteins interacting with
cytoskeleton, the three cytoskeletal protein networks associated with the structural func-
tionality of eukaryotic cells are microtubules, actin and intermediate filaments [297]. In
the context of this thesis, a protein network is defined as a modular network structure
with biopolymer molecules as building blocks.

2.2 Cytoskeletal Structural Blocks
As introduced before, there exists a high level of modularity in the cytoskeleton. The
proteins of the cytoskeleton consists of multiple copies of small protein blocks forming a
relatively large structure. Therefore, depending on the assembly of these pieces, many
structural formations are possible. The three cytoskeletal protein networks control the
morphology and mechanics of the cytoskeleton structure. All these proteins types form
networks that have specific mechanical behaviour, can undergo deformation and can re-
assemble themselves to respond to external stimuli such as forces. The force is produced
in cytoskeleton through a combination of polymerization and depolymerization of actin
filaments and microtubules. This also leads to dynamic changes of cell shape. Moreover,
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molecular units (motors) moving along the protein filaments enable transportation of
material as well as organization of organelles. The overall structure of these protein net-
works are regulated by multiple classes of proteins: filament forming nucleation-promoting
factors, growth terminating capping proteins, growth promoting polymerases and stabil-
izing protein such as crosslinkers. The distinguishing characteristic of these protein net-
works are the mechanical resistance to deformation (stiffness), the rate of assembly and
their associated molecular motors [100].

Microtubule, the cytoskeletal protein network exhibits the highest stiffness and possess
the most complex assembly/disassembly behaviour of the cytoskeletal protein networks.
Proteins of microtubules have a extremely high persistence length (5mm), which is the
measure used for describing the stiffness of biopolymers. Microtubules have a hollow
polymeric structure with 25 and 17nm external and internal diameters made from two
isoforms of tubulin [293]. Filaments of microtubules are prone to buckling under com-
pression [40]. This stiffness comes into play in the interphase part of the cell cycle where
chromosomes of the cell are separated into two.

Actin filaments show considerably less rigidity in comparison to microtubules, due to
having many crosslinkers binded to their network. The network structure is highly or-
ganized and can undergo relatively high mechanical forces [100]. The filaments have a
double helical form made from two spiraling strands. The actin protein networks consist
of groups of aligned filaments which enables filopodial protrusions which is a key factor in
communications between cells. Moreover, the actin filament network is involved in force
generation required for active changes of cell shape, e.g., the process of phagocytosis. They
dynamic behaviour of actin filament network is caused by constant elongation of the fila-
ments which makes it suitable for creation of the tension forces required for cell movement
(migration) [269]. Another distinguishing aspect of actin protein network is that, unlike
microtubule, as a response to the local signals transmitted in cell, it is constantly being
assembled and disassembled. This behaviour is for example seen in migration processes
such as crawling leukocytes where the actin proteins are steadily assembled in the frontier
edge of the cell and enable the cell to move by providing forward tension forces [257].

Intermediate filaments exhibit the least stiffness in cytoskeletal protein networks and
can mainly withstand tensile forces. In the network of intermediate filaments, crosslinking
amongst themselves as well as to other biopolymers of the cytoskeleton has been reported
[358]. It has been shown that cells form intermediate filament networks in case of experi-
encing mechanical stress [101]. furthermore, intermediate filament network contributes in
the structural integrity of the eukaryotic nucleus. However, due to not being polarized,
it does not play a role in the dynamic/active mechanical behaviour of the cytoskeleton.

The above mentioned mechanical functionality of the major cytoskeletal protein net-
works is only a few examples from a long list. To study the structure-function relationship
in the protein networks creating the cytoskeleton, the next logical step would be to un-
derstand their mechanics. In the next section a summary of mechanical models developed
for representing the behaviour of these protein networks is provided.
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2.3 State of the Art in Modelling Cytoskeletal Protein
Network Structure

The cytoskeleton is the main player in cellular mechanics. Analyzing the mechanical
behaviour of the cytoskeleton is a common approach for understanding the mechanics of
cells. There exist two main goals for mechanical activities of cells naming maintenance and
transportation of intercellular signals as well as materials. At first glance, it is observed
that cells exhibit a viscoelastic behaviour [350]. This means that after experiencing a
deformation, cells tend to recover their original shape. This is of course dependant on the
magnitude of deformation as well as its duration. The recovery takes place in a viscoelastic
manner. This is due to the fact that cells are capable of storing elastic energy and they
can dissipate this energy by viscous friction, which is based on the rate of deformation
being applied to them. It is a common practice to consider cells as incompressible entities
[84]. The most simple viscous behaviour can be expresses in terms of a one-dimensional
combination of linear springs and dampeners. From this, the elementary viscous solid
model can be build by having a spring in parallel to a series of a spring and a dampener.
This model considers cells as a homogeneous entity and absolutely ignores the details of
structural elements inside the cell. The mathematical representation of such model can
be described by:

σ(t) =

∫ t

t0

G(t− t0)δϵ, (2.1)

where σ, G(t), t0, t and ϵ represent the stress, relaxation module, starting time, end time
and strain respectively. Although this models provides a good basis for understanding
the mechanical cell behaviour as a whole, it is not at all efficient in explaining different
mechanical functionality of structural elements of cell.

Another simplistic approach to model the cytoskeletal mechanics is the concept of
tensegrity structures developed by Donald Ingber [154]. The tensegrity concept is based
on the idea of ”tensional integrity rather than compressional continuity” in the structural
elements of the cytoskeleton (Fig. 2.1).

A tensegrity model, similar to a rheological model, tries to represent the whole cytoskel-
eton as a modular structure consisting of continuous tension elements (cables) and dis-
continuous compression elements (rods). Originating from a class of architectural designs,
this model can explain the process of adaptive integrity of cytoskeletal network structure.
The concept is created to study force distribution in geodesic domes. Such a model is
fundamentally different to the approach of this work which aims to analyze the structure
to understand it relationship to function. Nevertheless, the tensegrity model is the first
of its kind to try to relate the mechanical characteristics of the cytoskeleton to its ar-
chitecture/structure rather than its material characteristics. It is worth mentioning that
regardless of its simplicity, this model is to some extent capable of providing clarifica-
tion on ”how can these structure undergo deformations while maintaining their structural
integrity?”. This is done by creating a rather complex network of two aforementioned
elements, which can regulate the forces in the structure by deforming the continuous ten-
sional elements and adapting the non-deformable compressional elements. Although the
concept of tensegrity structure is quite helpful in understanding the approach of cyto-
skeletal networks in dealing with deformations, it is clear that to find better insight on
the mechanics of the networks, one requires more sophisticated/detailed models. Con-
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Figure 2.1: Schematic of representation of a tensegrity structure with a continuous tensional
element (green cable) and multiple rigid compressional elements (yellow rods).

tinuum mechanics has been the prevailing playground for creating mechanical models of
biological environments in the last half century and can provide the tools needed to create
such models for cells and cytoskeletal protein networks. A series of such models for cells
as a bulk are introduced and then more specific models for cytoskeletal protein networks
are provided.

2.3.1 Nonlinear Continuum Mechanics of Cells and Protein Networks
In the context of cell mechanics, continuum mechanics models pursuit to represent the
mechanical behaviour of a cell as a homogenized bulk rather than including the details
of interaction of different elements inside the cell [113, 267, 330] . Continuum mechanics
is based on a series of conservation principles naming conservation of mass, linear mo-
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mentum, angular momentum, energy and entropy. The first three conservation principles
can be shown as:

d

dt

∫
V

ρ dV = 0, (2.2)

d

dt

∫
V

ρẋ dV =

∫
S=∂V

Tn dS +

∫
V

ρb dV, (2.3)

d

dt

∫
V

(x× ρẋ) dV =

∫
S

(x×T)n dS +

∫
V

(x× ρb) dV, (2.4)

with ρ and V representing the density and volume of the body undergoing deformation,
ẋ denoting the velocity, t representing traction, T as the Cauchy stress tensor, n as
the unit vector perpendicular to surface element dS, b as the body force, t as time and
x as the distance of each point on the body from the reference point of the angular
momentum. Eq. 2.4 implies the symmetry of the stress tensor i.e. T = TT and Eq.
2.2 could be considered as the preservation of volume. The nonlinearity of the system
arises from Eq. 2.3. Finding an analytical solution for this complex system of equations
is very cumbersome, if not impossible. This calls for numerical methods for finding an
approximate solution to the system of equations. Recently, finite element (FE) method
has been the go to discretisation approach for carrying out a numerical solutions of such
systems of equations [382].

The elastic/viscoelastic behaviour of the cell is represented in Eqs. 2.2 and 2.3. It is
common to consider quasi-static condition for modeling the behaviour of the cell. This
means that the velocity and acceleration terms in these equations will vanish. Further-
more, it is also a common practice to neglect the inertia terms due to the very small
mass of the cell [275]. However, one can consider the drag force of intercellular elements
by introducing a viscous component to the momentum equation. Moreover, continuum
mechanics is utilized to represent the mechanical behaviour of cell in multi-physics setup
as a smeared out porous body where the protein networks are considered a homogeneous
porous structure, saturated with a viscous interstitial fluid [317, 327].

The continuum mechanics concept would implement regional variation in the model’s
mechanical response to describe the inhomogeneity of the body. This is performed by
specifically developing a constitutive equation for the overall cell behaviour. Such con-
stitutive equations are derived in a two step process: 1) performing experiments to identify
a mechanical behaviour of the subject (cells, biopolymer network or a protein filament)
and 2) finetunning and validating the model in an observatory manner with experimental
approaches. In chap. 3 a comprehensive detail of such methods and the analysis process
is provided. Although this approach to modeling the mechanical behaviour of biological
network structures seems highly intuitive, the main disadvantages lie in practicality of
performing the aforementioned steps. With this concept at hand, more detailed mechan-
ical models for each of cytoskeletal components has been developed. An overview of these
models are provided in the next section.

2.3.2 Mechanical Models of Cytoskeletal Protein Networks
Schaap et al. showed that microtubule filaments exhibit a linear stress-strain relationship
[293]. This relationship is obtained using atomic force microscopy (AFM) experiments
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where a cantilever beam is pushed against the object and its deflection is measured using
a laser beam. Afterwards, by using contact mechanics knowing the mechanical properties
of the cantilever beam, it is possible to extract the stress-strain relationship of the object
[290]. Furthermore, it is shown that up to a strain value of 0.15, the microtubule filaments
behave elastically and then exhibit plastic behaviour [131]. A classical Euler-Bernoulli
beam can be a suitable surrogate model for microtubule filaments based on a very high ef-
fective length relative to their thickness. This provides directly the mechanical framework
to investigate the buckling of these filaments [62]. Such an approach enables investigating
the vibrations in filaments as well. Although it was shown that microtubule plays a signi-
ficant role in the overall morphology of the cytoskeleton as well as in its dynamics, a lack
of developed mechanical models for microtubule is evident. Particle dynamics has been
used by Allain et al. [6] to create a dynamic model of microtubule network. Moreover,
Buxton et al. [50] further developed a microtubule protein network model based on the
Bernoulli beam concept.

Actin is the most investigated cytoskeletal protein network in terms of mechanical be-
haviour. An increase in length as well as density of the filaments in the actin network
results in an increase in stiffness [110, 160]. The length and density are both regulated
by biochemical and mechanical signals; hence, such signals can dictate the shape of the
cytoskeleton according to the functional requirement. Various mathematical models have
been developed to represent the mechanics of these networks with regard to their function-
ality. For instance, coarse-grained Brownian dynamic models are capable of representing
a portion of the networks features. Utilizing such models provide insight to interactions
between different components of the cytoskeleton which might be impossible to observe
by methods such as live cell microscopy imaging [178]. The bending of filaments and
stretching of the proteins is the approach of the networks for absorbing the energy from
the external force. Moreover, the actin filaments dictate the shape of cytoskeleton mostly
through disassembly rather than unfolding [178]. Brownian dynamics have been used by
Lou et al. [221] to study cytoskeletal reorganization of actin protein networks during
micropipette aspiration. This process was shown to be successful by utilizing microscopy
imaging of green fluorescent protein (GFP) fusion proteins. This led to understanding
the distribution of myosin II and crosslinkers at the membrane [221]. A direct result of
this model is that the response of crosslinkers of the actin protein network to certain
deformations are different among them. Although this finding was validated by imaging
techniques, it was only possible through mechanical modeling of the network.

The most recent computational model of mechanical behaviour of cytoskeletal protein
networks is based on non-local elastic theory developed by Eringen [91]. In this model, one
can consider the nonlocal Euler-Bernoulli beam model by Civalel et al. [61] to investigate
the bending of microtubule filaments. In this approach, as mentioned before, a microtu-
bule filament is considered a classical Euler-Bernoulli beam from which one would be able
to calculate bending value based on forces being applied to it. The nonlocal elasticity de-
viates from the classical elasticity theory by considering the atomic forces that arise when
different parts of small structure (protein network) get close to each other. This is due to
the fact the classical elasticity runs into conflicts with atomic theory of lattice dynamics.
Nonlocal elasticity provides a set of differential equations which describe the deformation
of a homogeneous isotropic body. By considering a series of simplifying assumptions, one
can transform them into a set of partial equations for which analytical solutions can be
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determined. The nonlocal elasticity theory assumes that strain values at all points in a
body influence the stress value at each point of the body (in contrast to classical elasticity
where stress of a point is only dependant on the stress of that point, [91]).

The impact of all the points in the body on the stress value of one point comes into
play by introducing a scale effect in the constitutive equation. In nonlocal elasticity, the
underlying equations have spatial integrals depicting the weighted averages of influence
of strain values at all the points on the point of interest in the body. Therefore, in the
constitutive equations of nonlocal elasticity a length factor is present. In case of a homo-
geneous, isotropic elastic material, the theory is presented in the following formulation:

divσ + ρ(b− ∂2u

∂t2
) = 0, (2.5)

σ(x) =

∫
V

α(|x− x′|, χ)τ(x′) dV (x′), (2.6)

τ (x′) = λε(x′)δ + 2µε(x′), (2.7)

ε(x′) =
1

2
(
∂u(x′)

∂x′ +
∂u(x′)

∂x′ ), (2.8)

with x′ as the velocity vector, σ as the nonlocal stress tensor, u as the displacement,
τ as the Cauchy stress tensor, x being the position vector of the point in reference
configuration, x as the position vector of the point in actual configuration, ε as the strain
tensor, α(|x − x′|) denotes the Euclidean distance, χ as material constant and λ and µ
are the Lamé constants. The nonlocality comes with α(|x − x′|) where the distance to
other points influences the strain at the point of interest. The atomic characteristics of
the material such as lattice parameter and granular distance dictates the value of α.

As for the case of nonlocal elasticity, these equations could be transformed into a weak
form and solved using numerical methods. Although, nonlocal elasticity introduces a
meaningful depth to the mechanics of cytoskeletal protein networks, its practicality is
restrained to analyzing the behaviour of single filaments. This is mostly due to the fact
that in case of having a complex network of filaments, the distance kernel (α(|x − x′|))
needs to be precisely considered. Moreover, the computational costs of numerical solu-
tions of the nonlocal elasticity equations often outweighs the precision gains in mechanical
representations. Furthermore, the required material parameters requirer extensive exper-
iments which up to this point have not been carried out for all of the cytoskeletal protein
networks.

Utilizing more comprehensive mechanical models to describe cytoskeletal protein net-
works specific lead to knowledge with respect to its behaviour. However, one should con-
sider the level of precision required for the specific problem. In our case, which concerns
with the structure-function relationship of the network as a whole, the atomic behaviour
of the proteins is not the key. Therefore, choosing a linear elastic material law to model
the behaviour of the protein network is sufficient [118, 205]. This is due to the fact that
the errors introduced by this choice are negligible when it comes to analysing the mech-
anical behaviour of the whole network; hence, linear elasticity is up to this point the go
to model for the analysis of whole network structures.

The introduced cytoskeletal protein networks are extremely complicated structures and
many questions can not be answered. Since the main goal of this research is to present a



2.3 State of the Art in Modelling Cytoskeletal Protein Network Structure 17

completely new methodology to analyze structure-feature relationship in biological net-
works, a simpler network structure was needed to be able to develop ideas and validate
the results of the developed algorithms. This validation process is mostly performed by
utilizing manually made gold standards. Therefore, a simpler protein network structure
with same polymer characteristics and similar structural functionality was needed for this
work. Such network can be found in Filamentous Temperature Sensitive Z (FtsZ) pro-
teins. In the next section, a brief introduction to FtsZ protein network and what makes
it a great playground for the development of our methodologies is provided.





3 Quantitative Imaging and Machine
Learning

3.1 Biomedical Imaging
Images, are one of the main components in a data-driven analysis of the structure-
functional relationship in biological networks. This means that images are either directly
analyzed or indirectly after being put through an image processing framework. Imaging
techniques depends mostly on the scale of the structure of interest. This includes various
forms of microscopy modalities, e.g., light microscopy at nano- and micro-scale structures
and X-ray tomography at macro-scale structures. In this chapter, the imaging processes
and the ML method utilized to acquire and analyze the data in this thesis are introduced.

3.1.1 Imaging on the Nano-scale: Quantitative Imaging of
Cytoskeletal Protein Networks

Processes such as organelle organization, adaptive structural deformation and cytokinesis
can be visualized and studied using live-cell light confocal microscopy. In a perfect setting
for imaging cytoskeleton, the environment is non-toxic and far-red emissions and excit-
ation wavelengths are present [220]. Confocal imaging of cytoskeletal protein networks
such as microtubules and actin is possible through connecting fluorophores to taxanes and
phalloidines that can bind to microtubules and F-actin filaments, respectively [19, 365].
At the moment, one can find many reportoire of genetically encoded fluorescent proteins
that allow visualization of cytoskeletal protein networks [283]. Through the development
of methods such as CRISPR/Cas9, biochemists can now perform more effective fusion of
the fluorescent proteins to the proteins of interest [76, 253]. At this point, confocal mi-
croscopy can acquire subcelluar resolution. M ore advanced microscopy techniques such
as light-sheet microscopy allow demonstration of the embryonic development with great
resolution [173]. This requires new algorithms that are capable of handling the large
amount of produced image data. Moreover, the possibility of having large image datasets
on specific protein structures, calls for computational techniques that can quantitatively
analyze the structural information embedded in images. Quantitative imaging approaches
are being used not only in case of cytoskeleton research, but also in many other fields of
developmental biology.

As discussed in chapter 2, the structure of cytoskeletal proteins is a result of an evol-
utionary design process base upon a structure-function relationship. During their devel-
opment, cytoskeletal protein networks undergo dynamic assembly and disassembly based
on internal and external stimuli. One possible approach to investigate the applied forces
on the cytoskeletal protein networks is by determining the orientation in these networks
[379]. If many filaments of the network are aligned, one could use a 1D Fourier transform

19
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along an axis perpendicular to the filament direction to determine the frequency pattern
of the network [58]. To scale up to 2D quantitative description of protein networks, edge
detection methods can be utilized to calculate the orientation of fibers from the 2D micro-
scopy images. For instance, using edge detection methods, Wirsching and Cram showed
the dependency of the mechanical response of the cytoskeleton in case of stretch to myosin
II activity [363].

Conventional edge detection techniques aim to determine the alignment of filaments
through pixel coordinates. In the past few years, a series of new algorithms have been
developed to look more closely into the structure of protein networks through quantitative
imaging algorithms. For example Xu et al. [370], introduced SOAX as a tool to quantify
3D connectivity of protein networks and analyze the curvature of the network structures.
SOAX has been used to determine the coordination and connectivity of actin filaments
in yeas [368]. Such algorithms work based on the idea of active contours [56]. The
underlying idea of such algorithms is to combine classical edge detection methods with a
growth model that aims to let filaments grow on the image based along their calculated
curvature.

The process of filament tracking could be extremely difficult in presence of high noise or
complex networks. Moreover, the first required step for such methods is always segment-
ation of the image, which could be very cumbersome on its own. Therefore, researcher
have used a coarse grain orientation of the filaments of the cytoskeletal protein networks
to assess the orientation changes due to mechanical forces [37, 55]. This approach utilizes
a 2D Fourier transform on moving 2D image window to capture the orientation of the
filaments. Other approaches are based on creating a shape matrix (structural tensor)
from local intensity gradients, which are obtained from a moving window across the im-
age [273]. In such methods, the eigenvectors of the shape matrix provide information
about the orientation of the network. In case of the local 2D window on the image, the
first eigenvector shows the orientation of the filaments in that window. One could es-
timate the homogeneity of orientation in the network by analysing the similarity of the
orientations in different windows across the network. Such analysis has been used to
analyze the filaments of microtubule in Arabidopsis [216]. Such quantitative analysis of
filament orientation in cytoskeletal protein networks is mainly performed to see the effects
of mechanical forces on the cell.

Despite the recent interest in quantitatively analyzing the structure of cytoskeletal pro-
tein networks, there are still many aspects that cannot be described with existing methods.
For example, details of connectivity of filaments such as number of meeting filaments in
connections, the angles between them, the local changes in properties of the filaments
such as their thickness and many more cannot be extracted using the aforementioned
methods. Therefore, to proceed with correlating the structure to functionality of biopoly-
mer network, a method is developed that would extract a set of structural features with
which one could quantitatively describe the network structure. Details of the developed
method, its validation and applications is presented in 4.2.

Confocal Laser Scanning Microscopy

As far as the biopolymer protein networks, the CLSM data was obtained in a joint project
within SFB TRR141 project. The acquisition was carried out by Bugra Özdemir and Ralf
Reski. In the last two decades, many different imaging techniques such as CLSM [137],
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atomic force microscopy [135], cryo-electron tomography [162] and stimulated emission
depletion (STED) nanoscopy [81] has been used to visualize cytoskeletal protein networks
in 2D and 3D images. However, CLSM is the most common imaging technique in the
most recent protein network analysis research. Since the main source of images used in
this thesis is CLSM imaging, in this section, a short overview of this imaging technique,
its advantages and its shortcomings is provided.

CLSM has been the most used imaging instrument to examine subcellular structures.
This holds specially in case fluorescent microscopy. The most important advantage of
CLSM over older generation fluorescent microscopy methods is its ability to decrease out-
of-focus flare and therefore increase the sharpness of images and increasing resolution in
z direction (perpendicular to imaging plane) [138]. CLSM has been specifically useful in
the field of plant cell research where smaller size cells were proven to be more difficult to
image and analyze.

During the past decades, fluorescence microscopy has been increasingly used to invest-
igate dynamics of plant cells [214]. Immunofluorescence, made fluorescence microscopy an
extremely powerful tool to portray live cells. Moreover, the possibility of tagging proteins
with fluorescent agents made a breakthrough in visualizing these building blocks of life.
Nowadays, GFP-tagged protein can be imaged by CLSM technique at resolution higher
than light microscopy [138].

There exist a series of important restrictions for CLSM imaging. For instance, acquiring
sharp images along the z-axis of imaging was proven to be particularly difficult. This is due
to emanation of light from different directions towards the specimen at the vicinity of the
focal plane resulting in confusion of the focusing signal [360]. In case of the investigated
plastids, this could be specially troublesome where the chloroplast could have a substantial
thickness in the direction of imaging; whereas, in animal cells cultured for imaging, this
might not be the case. To overcome this difficulty, different approaches such as fixing
and embedding the cells [45] or compressing the cell [359] has been used. However, such
techniques are obsolete for the case of quantitative analysis of protein structures and
further correlating the structure to its dynamic functionality.

For a comprehensive explanation of principles of CLSM, the reader is referred to the
book of White et al. [357]. Here a short overview of the technique is provided. In
wide-field epifluorescence microscopy, an excitatory light converges to an expanding from
the focal plane when it hits the entirety of the subject placed at field of view. All the
excited regions emit the fluorescent signal, which together form the captured image. This
results in a great contamination of signals from other planes that are not being imaged yet
emitting fluorescent. As a result, the signal-to-noise ratio decreases drastically. In CLSM,
only a minimal portion of the subject is illuminated rather than the whole body. The
lenses used in light microscopy require a point spread function (PSF) since they can not
focus on an specific point. PSF describes the diffracted shape of the volume of interest.
The laser beam passing through a optical fiber is converged when passing through an
objective lens after exciting the specimen. Afterwards, the focused fluorescent emission
goes toward another small aperture objective, behind which the image is created. This is
done by means of a photomultiplier tube.

This complex process of CLSM microscopy enables visualizing the cytoskeletal protein
networks. Moreover, this technique is used to collect the images used for quantitative
analysis of FtsZ networks. In 4.2 a more detailed process of CLSM imaging FtsZ including
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the performed biochemistry is presented.
As the CLSM of fluorescence-labelled FtsZ in Physcomitrella patens reveals complex

geometrical patterns and as chloroplasts in loss-of-function mutants show distinct shape
defects, polymers of FtsZ might provide scaffolds ensuring the stability and structural
integrity of plastids [277]. This hints to a clear skeletal functionality of FtsZ isoforms;
Thus, the term plastoskeleton was coined for FtsZ polymers in P. patens plastids [277].
These FtsZ networks are reminiscent of geodesic domes in architecture [10]. Similar
FtsZ networks are not described for chloroplasts from other land plants, which might be
due to the fact that P. patens chloroplasts are evolutionary intermediate between free-
living bacteria and fully domesticated plastids of higher plants [279]. Because of this
intermediate position and its many experimental advantages, P. patens chloroplasts are
suitable objects for live-cell visualization and subsequent modelling [157].

3.1.2 Imaging on the Micro- and Macro-scale: Bone
In this section, an overview of the most common and advanced techniques in ima-
ging the structure of bone is provided, its micro-/macro-architecture, morphology and
(re)modeling. The classical technique to study bones is by means of histology. Current
state of the art imaging techniques such as µCT and HR-pQCT imaging enable visualiz-
ation of the 3D structure of the bone in a relatively noninvasive manner.

High-resolution X-ray Tomography

µCT permits the visualization of high-resolution 3D structure of bone. It became standard
method of quantitatively describing bone tissue level. µCT utilizes X-rays to create a 3D
portray of the internal structure of the bone. To do so, the X-ray attenuation distribution
of the imaged bone is captured as a 3D image. This process is possible by an X-ray beam
traversing through the bone and being attenuated by projection of internal structure of
the bone along its way. After capturing and converting the altered X-ray beam to electric
signal, a 3D matrix where each cell can correlate to bone structure is created.

Although Bohemian mathematician Radon developed the main idea of tomography in
1917, it wasn’t until 1960 when the computer technology drastically progressed that the
X-ray tomography became feasible. In 1963, Allan M. Cormack, who calculated radiation
absorption distributions of tissues in a body, used this technology for the first time in
biomedical imaging [65]. The first CT scanner was built in the 1970s, which led to its
creator Godfrey Housfield receiving the noble prize for Physiology and Medicine together
with Allan M. Cormack. In the 1980s, researchers started using CTs and by imaging with
longer exposure and higher resolutions. In 1989, Feldkamp et al. [95] was the first to use
µCT to image trabecular bone. Since 1994 commercial µCT scanners are available and
increasingly used by researchers to study bone micro-structure.

The bone imaging technology has improved drastically in recent years, which has led
to improvement in visualization and knowledge of bone micro/macro-architecture. In re-
search, HR-pQCT has become one of the prevailing bone imaging technique in the recent
years. HR-pQCT utilizes computational analysis of X-ray attenuation to acquire sectional
images [108]. HR-pQCT is commonly mistaken with µCT, but in fact these terms are
not inter changeable. This is due to the great difference of image resolution in the two
techniques (µCT up to a fracture of µm and HR-pQCT 30 − 273µm nominal isotropic
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pixel size). The resolution of HR-pQCT is marginally higher than structural details of
trabecular bone compartment [108]; therefore, it allows resolving the trabecular bone
structure. At the moment, two commercial HR-pQCT machines are available for acquir-
ing 3D scans of human bones allowing to resolve bone micro-architecture (XtremeCT,
SCANCO Medical AG, Brüttisellen, Switzerland). However, two different generations of
these scanners are available (Xtreme CT I and II).

Bone Structural Parameters

From the acquired CT image, one can calculate a series of structural parameters to quant-
itatively track the structure of the bone. These parameters can then be used to quantit-
atively characterize the structural changes taking place in bone as a result of mechanical
loading, disease, or effects of treatments.

CT images enable a 3D visual interpretation of bone micro-structure containing its
multi-scale nature. However, the amount of information embedded in these images is too
high to be evaluated manually. Therefore, the first and most common approach up to
now has been to reduce the dimensionality of the image data by to deduce predefined
bone parameters. This allows a more feasible assessment of bone quality. Morphometric
indices [39] extracted from binary images are introduced to carry out this dimension
reductions. It is important to notice that, morphometric indices are commonly calculated
based on the segmented image of the bone, since the determining algorithm can not
differentiate between bone and surrounding tissue. This segmentation is usually performed
by a global threshold. The fundamental structural, material properties and dynamics
difference between cortical and trabecular compartments of the bone calls for a separate
analysis of them. This is done by defining a region of interest (ROI) in which only
one of these bone compartments is present, before calculating the indices in the selected
ROI. Table 3.1 shows a series of most commonly determined trabecular and cortical
indices which usually can be automatically calculated in commercial softwares. It is
clear that these indices provide an description of the static state of the bone. Only very
recently, researchers have been focusing on time-resolved analysis of bone structures. For
instance, Birkhold et al. [28] have looked at aging/loading-induced (re)modeling of bones
by developing a 4D imaging framework to quantitatively analyze bone structure dynamics
[32].

Although these parameters are currently the go-to measurements for describing bone
quality, weather in terms of setting thresholds to calculate fracture possibility [169] or
to measure skeletal aging [280], there exists two main restrictions to the use of such
parameters:

1. The simplicity of their definition can not always express the complex manifestation
of bone structural multi-scale alterations due to aging or bone diseases such as
osteoporosis.

2. The attempt in finding correlations between the state of the bone (healthy/dis-
eased, young/old and immature/mature) and the morphometric indices could be
sometimes obsolete as the interplay of different bone structure modifications from
any internal and external stimuli on bone could be not present in these indices.

However, since structure of the bone, down to its smallest structural block, is already



24 Chapter 3: Quantitative Imaging and Machine Learning

Variable Sign Description

Bone volume fraction BT/TV Ratio of bone volume present in ROI to total volume
Trabecular thickness Tb.Th Mean thickness of trabeculae
Total area Tt.Ar Total cross-sectional area of the periosteal envelope
Cortical thickness Ct.Th Mean cortical thickness
Trabecular number TB.N Mean number of trabeculae per unit length
Cortical area Ct.Ar cortical volume (Ct.V) / ROI height
Trabecular separation Tb.Sp Mean distance between trabeculae
Cortical area fraction Ct.Ar/Tt.Ar Cortical area / Total area

Table 3.1: Common calculated morphometric indices.

captured with the high-resolution image data, if one could automatically correlate the
structure/image to the interested state, it would be possible to avoid calculating such
parameters. Moreover, this might allow an automatic extraction of any structural fea-
tures related to these functionality/dysfunctionality states. However, it is mentioned that
the huge dimensions of these data was the initial reason to introduce these indices. The
solution might be found in automatic data analysis; hence artificial intelligence and ma-
chine learning. ML methods and specifically deep learning enable correlating structured
data to structural concepts in an automatic manner. It is very clear that such correlation
can be made only in case of a real manifestation of the concept in the data available.
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3.2 Machine Learning-based Image processing
The main goal of machine learning (ML) is to find a solution for a problem by creating
self improving computer models. At the time of writing this thesis, ML is one of the most
active fields of research and a great number of researchers have decided to investigate
development of ML models to answer scientific questions in almost any field of research
that can gain knowledge by mass production and analysis of data. ML as the intersection
of mathematics, statistics and data science has seen a great success in recent years due
to development of new training/learning algorithms as well as exponential growth in
availability of data. ML models are currently being used not only in scientific research,
but also in manufacturing, finances, marketing and health care industries [166].

On its core, ML aims at answering two deeply connected questions: 1. How can mod-
els improve their functionality/usability through learning from the consequences of their
actions? and 2. What are the underlying laws that holds for any learning system in-
cluding humans and machines? Although most of researchers focus at answering the first
question, one should not forget that without investigating the second question, finding a
solution to the first one is not possible.

ML started as an abstract concept and improved drastically over the last three decades
to achieve a state in which it has a practical use in our every day life. ML as one of the
dominant aspects of ML as proven to become the go to approach for creating computer
models in fields of computer vision, natural language processing, speech recognition, ro-
botics and maybe the most prominent of all, image processing. The desired approach of
creating ML models in almost all of the fields is to train them on examples of possible
decisions-consequences. This is fundamentally different than the classical creation of com-
puter models where a set of rules is defined and created for to meet decisions in different
scenarios. Basically, ML models learn to automatically come up with any possible set of
rules to map the input information domain to the output domain.

Learning, can be described as the progression of performance in execution a task e.g.
improving decision making, measurements or predictions based on a training experience.
For instance, in the case of detecting lung nodules from chest X-ray scans [150], a model
is trained based on observing the scans and the location of nodules and is asked to find
them in a scan. Afterwards the model will be informed of the correctness of its decision
and this process is repeated to achieve higher performance in lung nodules detection task.

Various ML models has been developed to handle the wide variety of data as well as
problem types [46, 71]. In an abstract form, ML models can be seen as an automatic
search for a mathematical function that provides the desired output. The key concept
here is that the function is not dictated to the model. It rather will be found by the
model itself, hence, artificially intelligence. There exist a wide variety of approaches for
the search process and optimizing the desired function. The function approximation in
case of detecting lung nodules will be as follow: image as the input, a vector containing
the coordinates of the nodule as output (0 output in absence of nodules).

Regardless of the training model, a major challenge in terms of practicality as well as
scientific validity of the model is characterization of the capability of the model; hence,
measurement of its performance. In this regard following questions need to be answered:

1. What is the accuracy of the learning process during training?

2. To which level is the model capable of handling the errors in its learning process as
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well as errors present in the training data?

3. Is it actually possible to map the learning data to the desired output? Or in other
words, is there actually a set of underlying correlations to be learned?

4. Can the ML model be used to extrapolate results from its learning data? How far
can this extrapolation be considered truth worthy?

These questions need to be very carefully considered when choosing ML models. Spe-
cifically, in case of biomedical engineering, where mistakes may have drastic influences on
diagnosis and therapy of patients.

3.2.1 State of the Art
The widely utilized ML-based models follow the concept of supervised learning [185]. Su-
pervised learning is currently used for applications such as face recognition and medical
image analysis. In supervised learning, the model is trained to produce specific outcomes
about which the model knows. This is in contrast to unsupervised learning, in which the
model is responsible for finding a possible pattern in the data without knowing what the
model designer expects from it [20]. This makes supervised learning for tasks such as
biomedical image analysis e.g. disease detection, image classification and image segment-
ation an ideal case. Supervised learning models usually learn a function f(x) which maps
the input x to a probability distribution to the possible outcomes of y. There are various
possibilities for creation and optimization of f(x) e.g. ensemble methods [77], logistic re-
gression [33], support vector machines (SVM) [336], convolutional neural networks (CNN)
[117] and Bayesian classifiers [33].

Here, the source of information on biological network structure is image data. ML
could potentially enable us to correlate the structure captured in images to the desired
functionality. This desired functionality is a specific mechanical response of biopolymers
which will be, for example aging/loading-induced (re)modeling and manifestation of OI
diseases in bone, respectively. The ML-based models developed herein are either partially
or entirely created as image classifiers.

3.2.2 ML-based Image Classification
ML image classifiers aim to automatically extract relevant features correlating images to
a certain class. The features are extracted based on texture, morphology, pixel intensities,
color channels and a combination of any other information stored in the images. Such
classification task may in certain cases be trivial for humans, but the concept of automatic
extraction of related features makes classification a challenging task for machines; hence,
a great playground of ML. The difficulty is introduced by heterogeneity of the structures
in images.

State of the art ML-based image classification models rely on a comprehensive learning
stage. During learning a process of feature extraction takes place [24]. Features of an
image can be categorized into color, texture and dimension. Mapping the image to the
feature space can be considered the task of a feature extractor algorithm. Extracting
features describing an image, or more specifically, a structure present in an image has
proven to be a challenging task [125]. Features could be considered a representation of
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visual content present in an image. Therefore, a classifier would be able to separate
content from irrelevant information. Texture detection is usually performed by applying
filters on images to separate the content from semantic information. For example, using
2D Gabor functions, one can achieve segmentation close to human precision [306]. ML
models can be trained on these features or be utilized to extract them. The three ML
models that are most prominently used for the task of image classification are decision
trees, SVMs and CNNs. In this thesis, random forest models are used which are a part of
decision trees (4.5) and CNNs (5.2, 5.3 and 5.4). Although, at these chapters a detailed
descriptions of models used is provided, a short overview of these models can be useful
for the comprehension in understanding the role of ML in image classification.

3.2.3 Decision Trees
Decision tree (ensemble) methods are one of the most capable forms of ML models. These
models are suitable for analyzing unstructured datasets which makes them advantages for
training on features that are already extracted from images. These models utilize a
voting system and combine the decision from many simultaneously created model; hence
the term decision tree as these models create a set of highly randomized decision trees
[177]. Afterwards an induction algorithm is used to grow a tree. At each level of the
created tree (nodes) the induction algorithm tries to minimize the decision error on the
test dataset (a dataset which is not seen by the model during training). The elements of
a decision tree can be described as follow:

1. Root node: the entirety of the dataset.

2. Data Split: dividing a node into sub-datasets.

3. Decision node: further splitting of a sub-node.

4. Leaf: end nodes where no splitting takes place.

5. Pruning: converging nodes (opposite of splitting).

6. Branch: A sub-tree (part) of a decision tree

A decision tree segregates the data based on the corresponding classes while identifying
the parameters corresponding to the most homogeneous sub-dataset (Fig. 3.1).

Decision trees are greedy algorithms i.e. they do not always find the best fitting trees
[291]. Moreover, these models are prone to overfitting i.e. learning the training data by
heart so that extrapolation to test data is not possible. To tackle these shortcomings,
more advanced ML models based on decision trees are developed e.g. random forest and
gradient boosting models.

Random Forest

A random forest model (RF ) is created by training multiple (millions) of trees (Tr) on
random subsets (Sr) of the training data (x⃗) for the sake of predicting the state y [42].
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Figure 3.1: Using a decision tree in protein Classification. a) Quantitative imaging. b) Feature
extraction. c) Creating a decision tree.

For each Sr an entropy value describing the amount of information spent on each decision
making per (branching on nodes) is calculated as:

H(Sr) = −P(left)log2P(left) − P(right)log2P(right), (3.1)

with P(left) and P(right) denoting the probability distribution for the attribute branching
to left or right branch at each node. This allows determining the amount of information
gained at each node for the decision making process of the tree as on subset Sr for each
attribute A as:

Gain(Sr, A) = H(Sr)−
∑
V ∈A

|SrV |
|Sr|

H(SrV ), (3.2)

with SrV denoting the sub-subset. By calculating the information gain value for each
attribute on each subset, one can pick the attribute with highest information gain to
create nodes on. Employing the concept of entropy and gain, one can determine the
importance of each node in grown trees on the decision making task as:

In =
|SrV

|Sr|
H(Srn)−

|Sright
rV
|

|Sright
r |

H(Sright
rn )−

|Sleft
rV
|

|Sleft
r |

H(Sleft
rn ). (3.3)

At last, In is utilized to calculate the importance of each attribute in the dataset by
summing up the normalized importance of the nodes, on which that specific feature is
used.

After training multiple trees on subsets of the data, a voting is carried out on all trained
trees to map the dataset to the desired state:

RF (x⃗) =
n∑

i=1

T i
r(x⃗). (3.4)

Gradient Boosting

Similar to random forest, gradient boosting models aim at performing a mapping of
unstructured data to a certain target:

f ∗(x⃗) = y, (3.5)
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Here, a prediction model (f ∗) is produced in the form of an ensemble of weak prediction
models to map the set of features:

x⃗ =[x1, x2, . . . ], (3.6)

to a state (y :). During learning, new models are consecutively fitted to provide a more
accurate prediction [104], to construct the new models to be maximally correlated with
the negative gradient of the loss function Ψ, associated with how wrong the prediction
is. Given Nn training examples: {(x⃗1, y1), · · · , (x⃗N , yN)}, where x⃗i ∈ x⃗ and yi ∈ y, the
gradient boosting decision tree model estimates the function f of future x⃗ by the linear
combination of individual decision trees

fM(x⃗) =
M∑

m=1

T (x⃗; θm), (3.7)

where T (x⃗; θm) denotes the i-th decision tree, θm is its parameter set, M is is the number
of decision trees. The final estimation is determined in a forward stage-wise fashion, i.e.
based on an initial model f0(x⃗) of x⃗, the model of step m is determined as:

fm(x⃗) = fm−1(x⃗) + T (x⃗; θm), (3.8)

where fm−1(x⃗) is the model in step m − 1. θm is learned by empirical loss minimization
as

θm = argmin
θm

M∑
i=1

Ψ(yi, fm−1(x⃗) + T (x⃗; θm)), (3.9)

with the loss function Ψ. The assumption of linear additivity of the base function, leads
to the estimation of θm for best fitting the residual Ψ(y − fm−1(x⃗)). To this end, the
negative gradient of the loss function at fm−1 is used to approximate the residual R:

Rm,i = −
[
∂Ψ(y, f(xi)

∂f(xi)

]
f(x)=fm−1(x)

, (3.10)

with i as the index of the i-th example.

3.2.4 Support Vector Machine (SVM)
SVMs utilize a series of linear functions creating a hyper space to learn the classification
task [287]. In this process SVM models use an optimization technique to statistically de-
rive the hypothesis from the learning dataset. SVMs aim to look for hyperplanes dividing
the hyperspace of the dataset which enable classifying the images of the dataset. This
goal is only achievable if one has access to optimizing algorithms capable of handling large
amounts of data [328]. SVMs are greatly suitable for binary classification problems e.g.
healthy/diseased tissue, deformed/unreformed protein network structure and high/low
fracture possibility in bones. If we assume a set of samples l where each observation
is encoded as a (x,y)-pair with x ∈ RN being input image and y ∈ [[0, 1], [1, 0]] being
binary classes. The SVM looks for the best separating hyperplane which can be defined
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by means of a normal vector w. One could construct a pair of planes parallel to the
separating hyperplane as:

for y = [1, 0], w · x ≥ b+ 1, (3.11)
for y = [0, 1], w · x ≤ 1− b, (3.12)

where b denotes the offset of the parallel planes from the original. The goal of the SVM
model is to find the w, which often requires nonlinear computationally expensive solutions
[329]. However, with the help of linear kernels dimension of the input data is increased
while the overall size of it is decreased. Moreover, the dimension-wise error, ξ, and the
cost function, C of the optimization process:

1

2
||w||2 + C · (ξ), (3.13)

are subjected to the following constrain:

y(w · x− b) + ξ ≥ 1. (3.14)

SVM will carry out this optimization problem through iterations and hence find the separ-
ating hyper plane. Typically, numerical methods such as Adam optimization are employed
[179]. Recently, SVMs are utilized in many ML-based protein network classification mod-
els [163, 203]. However, the feature extraction capability and therefore analysis of what is
learned by SVMs are limited. Therefore, in this thesis, CNNs are utilized which are more
advanced classification models with the possibility of investigating the learning process of
the model.

3.2.5 Convolutional Neural Networks
Currently, the most used ML models for image classification, specifically for biomedical
image classification, are CNNs [211]. CNNs consist of convolutional layers that utilize
kernels to decrease the size of the data while accenting and extracting structural features
correlating to the desired class. CNNs have been in use since the early 80s [107]. The
success of CNNs in image classification was shown by Lecun et al in 1989 in recognizing
hand-written text [199]. In 1995, for the first time, Lo et al. utilized a CNN for biomedical
image analysis [215]. However, up until 2012 when Krizhevsky et al. took part with their
work ImageNet in the competition for classifying a huge dataset of images [187], the
research community did not pay much attention to CNNs. Their CNN, AlexNet, won the
competition way ahead of the other contributors by utilizing many convolutional layers.
From this point on, researchers realized that networks with more layers could unleash a
great potential in many fields of data analysis. This was the rise of deep neural networks
(DNNs).

This success was also noticed by medical image processing community. Hence, deep
learning has become a prominent contributor to the filed of biomedical image analysis.
Shen et al. wrote a detail overview of deep learning applications for biomedical image
analysis [302].

Similar to SVMs, deep learning, as a supervised ML algorithm, can be presented as

f(x,Θ) = y, (3.15)
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where each image x is paired with a class vector y by search for the model parameters
Θ. This search is carried out by minimizing a loss function L(y, ŷ), which measures the
difference between the real label, y, and the predicted label, ŷ. When the loss is below a
desired threshold, the CNN has reached the goal model f(x,Θ).

This search and optimization is carried out by means of training a neural network
which consist of activations, a, and model parameters Θ = (W, B), with W denoting a
set of weights and B the bias terms. a is a linear operation on image x and the model
parameters followed by a nonlinear transformation σ. This can be shown as:

a = σ(WTx+ b). (3.16)

The nonlinear transformation, σ, is usually performed by Sigmond or hyperbolic tangent
functions [211]. Stacking up multiple layers of transformations creates a deep neural
network shown as:

f(x,Θ) = σ(Wn
Tσ(Wn−1

T ...σ(W1
Tx+ b) + b) + b). (3.17)

The terminology ’hidden layers’ is usually used for the layers placed after the input
layer of the neural network that map the input onto output. A deep neural network is
simply a CNN with multiple hidden layers [211] (Fig 3.2).

After the last layer, the activations are used to perform a mapping of a probability
distribution onto the classes. This could be done, for example, using a softmax function
as:

Softmax(y|x; Θ) =
eW

T
i x+bi∑N

n=1 e
WT

nx+bn
, (3.18)

with Wi as the weight vector mapping to class i (Fig 3.3).
To find the best fitting Θ which includes all the trained weights and bias variables (Wi

and bi, respectively) for the dataset D one selects a subset of D (a batch) and update
Θ according to the gradients produced by passing the batch through the network. This
process could be performed through calculating maximum likelihood with the gradient
descent method. Maximizing likelihood could be considered as minimizing the negative
possibility, which can be further expressed in a logarithmic form as:

argminΘ −
N∑

n=1

log[P (yn|xn; Θ)], (3.19)

which is called cross-entropy loss function [304].

Training a DNN

Each training step of a DNN consists of a feed-forwards step and a backward computation
step. In the feed-forward step, the image is put through the network. After applying the
weights and summing up with bias parameters in each layer, the output will be sent to the
next layer of the network. After the last layer, a probability distribution for the image is



32 Chapter 3: Quantitative Imaging and Machine Learning

Figure 3.2: Visualization of a convolutional neural network. The input layer is convoluted,
while passing through the network creating a hyperspace of neurons. The training
process aims at optimizing the weights (arrows) to minimize the loss of the network.
Arrows are color coded from blue to red as low to high weight values, respectively.

calculated. Afterwards, the probability distribution is transformed to a label (y) and the
loss value (J) is calculated by comparing it to the real label (ŷ) as shown in Algorithm 1.
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Figure 3.3: Visualization of a operations in a DNN. Convolution, max pooling and flattening
are the three most typical operations taking place in a network that affect the
dimensions of the dataset.

Algorithm 1 Feed forward step
Data: image
initialization h(0) = x
for k = 1, 2, ..., l do
a(k) = b(k) +W(k)h(k−1)

h(k) = f(a(k))
end for
ŷ = h(l)

J = L(ŷ,y)

The activation in each layer is convoluted with multiple kernels in parallel as follows:

(a ∗K)(i, j) =
∑
m

∑
n

a(m,n)K(i−m, j − n), (3.20)

with K denoting a 2D kernel moving across the input and convolving parts of image
(windows). These convolution processes through the layers result in extracting features
corresponding to the mapping. Since the input of each layer is the output of previous one,
the deeper the layers, the more complex features will be built upon and extracted. In
essence, training a DNN is the act of finding the kernels that extract the relevant features
from the image for the task of mapping.

The backward computation step determines the gradient (g) of the error in each layer
of the network, in a backward manner. To do so, using the chain rule, the gradients are
propagated with respect to the next hidden layer. The weights and biased will be tweaked
in the direction of the gradients for the next training iteration (cf. Algorithm 2). In case
of a successful training process, iterations over these 2 steps, results in finding a local
minimum for the loss value; hence performing the correct prediction.
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Algorithm 2 Backward computation step
Data: image
initialization g← ∇ŷJ = ∇ŷL(ŷ,y)
for k = l, l − 1, ..., l do
g← ∇akJ = g ⊙ f ′(ak)
Compute gradients on weights and biases
∇bkJ = g
∇WkJ = g h(k−1)T

propagate the gradients w.r.t. the next lower hidden layer
g← ∇h(k−1)J = W(k)Tg
end for

Training process is excessively resource demanding. Only since less than 15 years, with
the availability of powerful graphics processing units (GPUs) and more recently tensor
processing units (TPUs), training a DNN is practical. Currently, supervised end-to-end
training of DNNs are very popular not only because of availability of powerful computation
facilities, but also because of development of highly specialized coding environments such
as Tensorflow [1] which are very efficient for training DNNs.



4 Analyzing Structure-function
Relationship at the Nano Scale:
Protein Networks

At the nano scale of protein networks, this work focuses at developing a series of methods
for an automatic and fast assessment of cytoskeletal protein networks (PN) based on
3D microscopy images. The approach can be broken down into: 1) designing an image
processing algorithm that quantitatively describes the structure of a PN allowing not only
distinction between different PNs but also between different states of the same PN, 2)
creating an in-silico experimental setup permitting a quantitative representation of the
mechanical responses of the PN an 3) using feature-based ML algorithms (e.g. random
forest) to correlate the extracted structural features to the mechanical behavior of the
PN. Creating such ML models allows an end-to-end application of PN state assessment
from microscopy images as well as determination of the structural features developed in
the network to create such mechanical characteristics.

The developed methodologies presented in this chapter, their validation and applica-
tions are previously published in [13], [10], [11], [255], [12] and [9].

4.1 FtsZ Protein Network Structure and Functionality
FtsZ protein family, as the evolutionary progenitor of actin and tubulin [278], has com-
plex biopolymer networks which clearly resemble a cytoskeletal protein network in the
chloroplasts of the moss Physcomitrella patens. As shown in chapter 2, the concept of
the cytoskeleton as the driving factor in determination of cell shape is well established.
In the case of eukaryotic organelles, however, there are still many unanswered questions
in terms of skeletal functionality of the present proteins. It has been shown that these
organelles undergo relatively large deformations and shape transformations while keep
their structural integrity (similar to cells). Reski et al. [278] proposed that the FtsZ
protein network is essential for the structural integrity of these plant organelles. There-
fore, he coined for the term ”plastoskeleton”. He chose this term to portray the similar
structural functionality of FtsZ protein network in chloroplast to the cytoskeleton in cell
[229, 255, 279].

Plants came to existence in an endosymbiotic process in which a eukaryotic cell took
a living cyanobacterium in itself and used it as a chloroplast [119]. This process was
truly extraordinary since afterwards the two organisms started to coexist with each other
creating one living. This involved not only gene transfer but also required restructuring
of cell compartments and hence the redefinition of protein functionalities of protein [191].
In the meantime, it is accepted that FtsZ is a prokaryotic homolog of the eukaryotic
tubulin [89] and during plastid division comes into play with ARC6, a descendant of a

35
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cyanobacterial cell division protein, which orchestrate the eukaryotic cell division [236].
Most bacteria have only one isoform of the FtsZ protein. However, plants posses up

to five isoforms of FtsZ protein in two families FtsZ1 and FtsZ2 [229]. All the FtsZ
families can be traced back to the same cyanobacterial protein. Moreover, the presence
of multiple families of FtsZ points toward distinguishing functionalities. One can name
three distinguishing factors for FtsZ1 and FtsZ2: 1) FtsZ1 has the serine residue similar to
tubulin and FtsZ2 has a threonine residue similar to bacterial FtsZ [83]. 2) In contrast to
FtsZ1, FtsZ2 has a conserved C-terminal domain which organizes the interactions between
different proteins involved in cell division [82]. 3) The biochemical characteristics of FtsZ1
and FtsZ2 are different.

Chlorophyll-containing chloroplast is the most investigated plastid which carries out the
task of photosynthesis in plants (Fig 4.1). It is common to see more than 100 chloroplasts
in a plant cells [16], specifically during leaf cell growth. This maximizes the capacity to
produce energy from CO2. Chloroplast also takes part in other vital functions such as
amino acid and fatty acid synthesis. This makes plastids essential organelles of cells. In
chloroplast, the molecular process of division has been thoroughly studied. This process is
carried out by utilizing three contractile elements. At first, a ring of FtsZ protein (Z ring)
is assembled around the chloroplast. Afterwards, a further ring formed by ARC5/DRP5B
is created. At last, a plastid dividing ring (PD) is formed on cytosolic surface [333]. In
the process of division, the mentioned rings contract on the membrane in a way that the
two sides start to separate from each other. This continues till one chloroplast becomes
two. The exact division mechanism is not totally known.

Studies have suggested that pairs of FtsZ proteins might come together to carry out
the plastid division [333]. This is based on the fact that an overexpression of FtsZ fam-
ilies result in chloroplast number decreasing as well as an increase in chloroplast size
[252]. Furthermore, studies about the FtsZ in chloroplast of the Physcomitrella patens
i.e. Martin et al. [230] and Gremillon et al. [121] have shown the contribution of FtsZ to
the structural integrity of the chloroplast [277]. The FtsZ isoforms have network struc-
tures similar to cytoskeletal networks with relatively lower complexity of the structure.
It has been suggested that FtsZ protein might be a molecular connection between cell
and organelle division in moss [176]. Fluorescence energy transfer (FRET) has enabled
researchers to show the hierarchical order of interaction between different FtsZ isoforms
[121]. However, up to this day it is unclear how the structure of the FtsZ participates
in the mechanical task of forming the plastid shape. Moreover, the questions about the
evolutionary design of these protein structure (similar to cytoskeletal proteins, Fig 4.2)
to carry loads remains unanswered.

The similarity of FtsZ to cytoskeletal proteins in their material characteristic, network
structure and functionality on one side, and the lower complexity of the FtsZ protein
network makes it the perfect candidate for this work. Therefore, for the nanoscale part of
this research, the focus is on analyzing the structure of FtsZ protein and understanding
the structure-function relationship by developing and applying ML-based models. The
designed methodologies are thoroughly validated and are ready to be used on more com-
plicated networks.
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Figure 4.1: Network architectures of FtsZ1-2 (a) and FtsZ2-1 (b). FtsZ1-2 and FtsZ2-1 net-
works within host chloroplasts (c and d, respectively). Image is courtesy of Bugra
Özdemir and Ralf Reski.

4.1.1 State of the Art in Analyzing the Structure of Protein
Networks

Examining protein-networks in their natural environment is crucial for understanding
their roles in cellular processes. Previous studies, which investigated protein networks,
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Figure 4.2: Plastoskeleton of a plastid shown by a 3D reconstructions of confocal image datasets
of plastoskeletal networks formed by FtsZ1-2 isoform. Image is courtesy of Bugra
Özdemir and Ralf Reski.

mainly focused on biochemical aspects. Imaging of fluorescent-labeled proteins in liv-
ing cells is a powerful technique for studying protein network overall shape but also its
structural details in a spatial and functional perspective [133, 151, 354]. Recent advances
within the imaging field, e.g., noninvasive multicolor or 3D imaging at the nanometer scale
[151, 354], enables the imaging of cytoskeletal structures in detail. Three-dimensional ima-
ging of actin has been performed using both stochastic optical reconstruction microscopy
(STORM) [368] and photoactivated localization microscopy (PALM) [318]. STORM and
PALM further enabled visualization FtsZ, the bacterial homolog of eukaryotic tubulin
[18, 144]. Other methods such as stimulated emission depletion microscopy (STED) are
able to resolve neurofilaments [342], keratin filaments [348], and primary cilia [375]. Many
studies have captured Z-stacks of images using confocal microscopy, while relatively few
studies have analyzed the cytoskeleton in 3D. Structured-illumination microscopy (SIM)
has been used to resolve actin filament arrays and microtubules in 3D [300, 347]. Addition-
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ally, the three-dimensional organization of FtsZ in dividing bacteria could be visualized
[18, 144, 316]. The fast advancing imaging technologies allow recently completely new 3D
and time-resolved visualizations of physiological processes [54, 60, 140, 212, 271] and are
therefore advancing our understanding of protein network morphology and physiology.
However, extraction of information about morphology and behavior of these networks is
to date largely limited to qualitative observations.

The lack of analytical tools for quantifying the structures remains a bottleneck, as
manual analysis of large data sets requires a great amount of time and are prone to bias
and error. Previous studies on the automated analysis of protein network data focused
mainly on segmentation and extraction of the biopolymer network structures [263, 311,
352, 366, 369], tracing the shape of individual filaments in 2D [5] or only on curvature and
orientation in 3D [370]. A recent study looking at more details of the network is limited
to 2D [381]. However, a computerized analysis of the structure of protein networks in
3D would enable the tracking of dynamical processes or the identification of pathological
changes in an automated manner. Additionally, linking the overall shape of a cell (or
plastid) to the organization of its internal supporting network structure would give further
insights into cell mechanics.

4.2 A Method to Describe and Learn the Structure of
Protein Networks

To enable an enhanced investigation of morphological aspects of protein networks, a novel
automated image processing method is proposed. This allows a detailed quantitative spa-
tial network analysis. This method processes high-resolution 3D image data sets of protein
networks to investigate the network structure from two different yet strongly connected
perspectives. The geometrical characteristics of the network as a continuous body are sep-
arated from the properties of the subunits of the structure and their connections. First,
the gross morphology of the network is considered. The introduced descriptors provide
a quantitative answer to the question ”how does the network look like?”. The second
one studies the protein network on a smaller scale with the aim of quantification of the
organizational characteristics of the network components and their relative positioning,
connections and distributions. Therefore, a spatial graph representing the network as a
set of nodes, segments and connections, is extracted from the 3D geometry. This part of
the quantification investigates the design of the network and aims to answer the question
”how is the structure built?”. For both perspectives, a number of robust and quantitative
descriptors are introduced to enable a reproducible, quantitative characterization of the
organization of protein networks.

The method is introduced and tested by applying it to confocal microscopy images of
fluorescent-labeled FtsZ proteins of Physcomitrella patens [240] (Fig. 4.3), a homolog of
the eukaryotic cytoskeleton protein tubulin. Based on these data, an image-based charac-
terization of a protein network structure on a sub-cellular level using measures extracted
from the gross morphology as well as the arrangement of the network components is
developed.
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Figure 4.3: Examples of networks and the corresponding chloroplasts hosting them. a) FtsZ1-2
networks show uniform size for segments and nodes. A common feature of FtsZ1-
2 networks is the presence of extraplastidic filaments which sometimes connect
multiple chloroplasts of a cell (arrowheads). b) FtsZ2-1 networks show detectable
heterogeneity in node size with the meganodes being noticeably larger. The megan-
odes are usually located at the chloroplast surface (arrowheads). Unlike FtsZ1-2,
in the networks of FtsZ2-1, no inter-plastidic connections are observed and occur-
rences of the extraplastidic filaments in general are very scarce. Image is courtesy
of Bugra Özdemir and Ralf Reski.



4.3 Designing a Protein Network Structure Descriptor Method 41

4.2.1 Protein Labeling and Confocal Laser Scanning Microscopy

FtsZ protein networks of Physcomitrella patens have relatively simple but dynamic struc-
tures [11]. This makes FtsZ the ideal first application to demonstrate and test the de-
veloped method. Furthermore, the similarity to eukaryotic cytoskeleton proteins, like
microtubuli, shows that these methods and ideas can also be easily applied to more com-
plex network structures. This is due to the fact that cytoskeletal PNs are, besides a
similar molecular structure, also assembled of the same basic structural units (points,
nodes, elements, and segments).

Total RNA was isolated from wild type Physcomitrella patens (”Gransden 2004” eco-
type) protonema using TRIzol Reagent (Thermo Fisher Scientific, USA) and used for
cDNA synthesis using Superscript III reverse transcriptase (Life Technologies, Carlsbad,
CA, USA). The coding sequence of PpFtsZ1-2 was PCR-amplified from this cDNA and
cloned into the reporter plasmid pAct5::Linker:EGFP-MAV4 (modified from Kircher et
al. [180]) to generate the fusion construct pAct5::PpFtsZ1-2:Linker:EGFP-MAV4. Then,
50µg of this plasmid was used for the transfection process. The moss material was grown
in a bioreactor [141, 143] and transfected according to the protocol described by Hohe et
al. [142]. The transfected protoplasts were incubated for 24h in the dark, subsequently
being returned to normal conditions (25± 1◦C; light-dark regime of 16 : 8h light flux of
55µmol s-1 m-2 from fluorescent tubes, Philips TL - 19 - 65W/25).

3D microscopy was performed directly on live cells between the 4th and 7th days after
the transfection, using a Leica TCS 8T-WS microscope. Images were generated using
HCX PL APO 100x/1.40 oil objective with a zoom factor of 10.6. For the excitation, a
white laser adjusted to 488nm was applied. The detection range was set to 503− 552nm
for the EGFP channel and 664 − 725nm for the chlorophyll channel. The pinhole was
adjusted to 106.1µm. Resulting images have a voxel size of 21nm in x−y dimensions and
240nm in z dimension. The image data sets were subsequently deconvolved using Huygens
Professional software (Scientific Volume Imaging B.V) based on the theoretical point
spread function and the Classical Maximum Likelihood Estimation (CMLE) algorithm.
Confocal imaging was performed by Bugra Özdemir. Examples are shown in Fig. 4.3.

4.3 Designing a Protein Network Structure Descriptor
Method

To extract quantitative measures of the network structure from 3D microscopic images,
an image processing framework containing several steps is designed. First, raw images
(Fig. 4.4b) are segmented using a semi-automatic iterative approach (Fig. 4.4c); second,
a 3D geometric volume model is created and its overall shape is analyzed (Fig. 4.4d).
Third, it is converted into a spatial graph, which allows to extract the network topology
(nodes, connections, segments; Fig. 4.5). From these two representatives of the network,
descriptors of the overall shape of the network and descriptors of the detailed morphology
of the network and the sub-structure are determined.
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Figure 4.4: (a) Confocal microscopy images of several fluorescent-labeled FtsZ proteins inside
chloroplasts of one Physcomitrella patens cell (voxel size: 101nm in x− y dimen-
sions and 300nm in z dimension). (b) Raw 3D image of one protein network of
FtsZ (voxel size: 21nm in x − y dimensions and 240nm in z dimension). (c)
Segmented network. (d) Wrapped hull determined from segmented image. Images
in (c) and (d) have the same voxel size as (b).

Figure 4.5: Transformation of the Segmented Image into a Spatial Graph. (a) Segmented image
of a protein network of FtsZ. (b) The spatial graph extracted of the segmented image.
Nodes are shown in light green and segments are shown in a yellow → red color
code with red representing thicker segments. (c) Zoomed in part of the network
showing individual points in white.

Segmentation to Extract Network

The image is segmented using an adaptive local threshold algorithm based on median
value in each 3D window (window size = 10 ∗ 10 ∗ 10 voxels and constant value = 10).
Next, the remaining filament discontinuities inside the network are manually corrected.
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Segmentation was performed in FEI Amira 6.2.0 (Thermo Fisher Scientific, USA).

Extraction of Network Gross Morphology

The gross morphology of the network is studied as a whole. Therefore, a solid outer
surface is defined for the segmented image to find the volume enclosing the network.
First, for each slice of the 3D image stack the convex hull, represented by the smallest
convex set containing all the voxels, is determined. The combination of all convex hulls
of all slices forms a wrapped hull around the whole network (FEI Amira 6.2.0 (Thermo
Fisher Scientific, USA)). Second, instead of the detailed network, the solid outer surface
of the network represented by its wrapped hull is analyzed. A shape matrix describing
the shape and the orientation of the wrapped hull of the network structure is calculated,
adapted from the shape analysis for whole cells and pulmonary systems presented by
Mc Creadie et al. [232] and Chandran et al. [57], respectively. Therefore, each voxel is
represented as X(i) = {x, y, z}, with x, y and z being the geometrical coordinates of voxel
i. Furthermore, for each voxel, the displacement vector from the center of mass is defined
as M(i) = X(i)−C, with C as the center of the mass. The shape matrix (S) representing
the solid outer surface is built as:

S =
1

n

n∑
i=1

Mx(i)Mx(i) Mx(i)My(i) Mx(i)Mz(i)
My(i)Mx(i) My(i)My(i) My(i)Mz(i)
Mz(i)Mx(i) Mz(i)My(i) Mz(i)Mz(i)

, (4.1)

with n as the number of voxels in the segmented image. This 3× 3 matrix is created for
the covariance of the coordinates of all voxels of the wrapped hull. This part was done
in Matlab 2017a (MathWorks, USA).

Calculation of Network Shape Descriptors

All the following steps are performed using an inhouse Matlab code (Matlab 2017a, Math-
Works, USA). Shape descriptors are defined and calculated based on the segmented image,
its wrapped hull and its shape matrix to characterize the spatial extensions of the network
as a whole:

1. The network volume is defined as

VPN = nPN ∗ δx ∗ δy ∗ δz (4.2)

and calculated from the number of the foreground voxels (nPN) of the segmented
image. δx, δy and δz are the extensions of the voxels in x-, y- and z-directions,
respectively.

2. The enclosed volume of the network is computed as

VEN = nEN ∗ δx ∗ δy ∗ δz (4.3)

and defined as the space occupied by the network and the empty space inside the net-
work. It is determined by counting the number of voxels (nEN) inside the wrapped
hull.
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3. The network volume density, ρPN , describes how densely the volume inside the
network (wrapped hull) is occupied by material. It is determined as the ratio of the
enclosed volume and the network volume

ρPN =
VPN

VEN

. (4.4)

4. The greatest and smallest diameters of the network, dmax
PN and dmin

PN , respectively, are
calculated by scaling the respective eigenvalues of the shape matrix, as introduced
for whole cell analysis [232]:

dmax
PN = 2

√
5λs,3,

dmin
PN = 2

√
5λs,1, (4.5)

where, λs,3 > λs,2 > λs,1 are the eigenvalues of the diagonalized resulted symmetric
shape matrix, which define the ellipsoid axes of the wrapped hull.

Spatial anisotropies in the network shape are quantified by analyzing the ratios between
the diameters/eigenvalues and the parameters stretch and oblateness of the network are
introduced. These descriptors have been previously presented to analyze the shape of
bone cells [226].

5. The stretch of the network, StPN , describes the elongation of the protein network
and is calculated as the difference between the largest (λs,3) and smallest eigenvalue
(λs,1) of the shape matrix, normalized by the largest one:

StPN =
λs,3 − λs,1

λs,3

. (4.6)

StPN ∈ [0, 1], where 0 corresponds to a perfect sphere and 1 refers to an infinitely
stretched object (cylinder).

6. The oblateness of the network, ObPN , is defined as

ObPN = 2 · λs,2 − λs,1

λs,3 − λs,1

− 1. (4.7)

ObPN ∈ [−1, 1] classifies rod-like and plate-like structures. If the second eigenvalue,
λ2, is closer to the greatest eigenvalue, λ3, then the object is considered to be
elongated. An oblateness value equal to −1 indicates a perfect rod and a value of 1
a perfect plate.

Extraction of a Spatial Graph

To extract information about the network micro-structure, a transformation to a nu-
merical representative, defined by points, nodes and segments, representing the different
elements of the complex network, is performed. This transformation process is built upon
the concept of tensegrity structures and spatial trusses introduced by Ingber et al. for the
analysis of cytoskeleton and endothelial mechanotransmission [154, 155], adapted from
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an implementation for extracting network geometry of collagen gels by Stein et al. [314].
First the edge voxels are determined using the gradient ∇f of the image f :

∇f =
∂f

∂x
ex +

∂f

∂y
ey +

∂f

∂z
ez, (4.8)

where ex, ey and ez are unit vectors forming an orthogonal basis. Second, the centerlines
of the filamentous structures are identified (Fig. 4.5b) based on calculating a distance map
of all voxels from the nearest edge voxel. Afterwards, points are placed at the centerline
of each structure entity [10]. A point is placed at any part of the structure at which a
change in either the thickness or the direction of the filament occurs (Fig. 4.5c). Hence,
the distances between the points are based on the resolution of the original image and
complexity of the structure. Last, all consecutive points are connected by elements. As
a result, the following components are determined to numerically represent the network
(Fig. 4.5b-c):

• Points: The basic entity of the extracted spatial graph. Points are connected
through elements.

• Elements: Connection between two points.

• Nodes: Points that are connected to more than two other points.

• Segments: A sequence of elements starting from one node and ending at another
node.

• Connection: Intersection of segments.

For further analysis, the following information is extracted at each point: an identification
(ID) number, coordination, thickness of the filament at that point and the IDs of the
neighboring points to which this point is connected to. The network extraction steps
were performed in FEI Amira (Thermo Fisher Scientific, USA).

Calculation of Network Element Descriptors

The segmented image and the information from the spatial graph are further analyzed
together to quantify details of the network structure details (inhouse Matlab code (Matlab
2017a, MathWorks, USA):

• Node descriptors (Fig. 4.6):
1. Number of nodes in the network, Nn.
2. Node thickness thni

is determined by the diameter of the filament at the loca-
tion of the node, ni.

3. Node density, ρn, is defined by

ρn =
Nn

VEN

, (4.9)

and determined by the number of nodes normalized to the volume enclosed by
the network (1/µm3). It has to be taken in mind, that this in not the same as
the network volume density.
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4. Node-to-node distance, dninj
,

dninj
= ∥ni − nj∥2 = (

√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2, (4.10)

is calculated as the Euclidean distance between two neighboring nodes, ni and
nj, with coordinates xi, yi and zi, and xj, yj and zj, respectively.

5. The node-to-surface distance, dnis, represents the closest distance of the node
ni to the surface of the network. This element descriptor represents the local
distribution of the nodes within the network.

6. Compactness of the network, CPN , is defined by

CPN =
dnc − dns

dnc
, with dnc =

1

n

n∑
i=1

dnic, and dns =
1

n

n∑
i=1

dnis,

(4.11)

Figure 4.6: Node descriptors. A spatial graph of a protein network of FtsZ represented by
nodes (light green) and segments (which are shown in a yellow → red color code
with red representing thicker segments.). The red dot indicates the position of the
center of the gravity of the network. The green arrows show the distances between
two connected nodes (dninj ). The blue arrow indicates the distance of a node to
the center of gravity dnic. The purple line represent the distance of a node to the
surface of the network dnis.

where, the node-to-center distance, dnic, is the distance of each node to the
center of gravity of all nodes. It is calculated according to node-to-surface
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distance (Eq (4.10)) by replacing the second node with the center of gravity.
The compactness of the network is defined as the difference between the mean
distance to the center of gravity and the mean distance to the network surface
of all nodes, normalized by the mean distance to the center of gravity; CPN ∈
[0, 1]. For CPN = 1, all the nodes are placed at the surface of the network.
In contrary, CPN converges toward 0 if all nodes are placed near the center of
gravity.

7. Node-to-surface to node-to-center distance ratio, dnis/dnic, provides informa-
tion on whether the node is located closer to the surface of the network or to
the center of gravity.

• Segment descriptors (Fig. 4.7a):
1. The total number of segments is denoted by Ns.
2. Segment length Ls is defined as

Ls =

np−1∑
i=1

li, (4.12)

where li is the Euclidean distance between two consecutively placed points on
the segment, S, and np is the number of the points forming segment S.

3. Segment curvature κs is determined as the menger curvature, i.e.,

κs =
2|vpn1 × vpn2|
|vpn1||vpn2||vnn|

, (4.13)

where, n1 and n2 are the nodes at the start and end of the segment and p is
the point on the segment which has the greatest distance to the straight line
from n1 to n2. These three points (n1, n2 and p) form a triangle (shown in blue
in figure 4.7a). Segment curvature is calculated as radius of the circle passing
through these three points by calculating vpn1, vpn2 and vnn as vectors from p
to n1, from p to n2 and from n1 to n2 respectively.

4. Mean segment thickness ths is given by

ths =
1

nps

nps∑
i=1

thi, (4.14)

where nps is the number of points on the segment and thi is the thickness of
the filament at point i on the segment.

5. Segment inhomogeneity Is characterizes how much the segment geometry
changes along its length. This can be extracted from the number of points, as
these represent the locations where the segment changes in terms of thickness
or direction:

Is = nps, (4.15)
where nps is the number of points on a segment and Is serves as a quantifier
of eccentricity of the points on the segment. A higher number of points on
a segment means that the segment exhibits more deviations in thickness and
direction.
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6. Mean point-to-point distance dpipj denotes the mean of all distances between
two consecutive points on a segment.

Figure 4.7: Segment and connection descriptors. (a) Local thickness of the segments ths are
shown in a yellow → red color code with red representing thicker segments. and
the diameter of the representing line element. The zoomed part of the segment
marked by green color shows how the length of the segment is calculated by the
summation of the distances between the points on that segment. Curvature of a
segment is shown by the purple arrow. The triangle formed by starting and ending
nodes and the point on the segment with greatest distance from the straight line
crossing the two nodes is shown by blue. (b) Types of connections and evaluation
of angles in a sample protein network. Examples of nodes with one, three, four
and five connections are marked with their numbers, respectively. The blue arrows
show the angles between the 3 vectors of a node with 3 connections.

• Connection descriptors (Fig. 4.7b):
1. The mean number of connections per node, nci , is the number of segments

starting/ending at a specific node. Nodes which connect to only one other
node are not included in this measure.

2. Open nodes, noe, denotes the percentage of all nodes in the network that are
only connected to one other node, i.e., nodes that are end nodes.

3. The mean angles between the segments at a connection, θ̄ci is defined as

θ̄ci =
1

n

n∑
j=1

θj, (4.16)

with,

θj = arccos
vk · vl

|vk||vl|
, k, l ∈ {1, . . . , n}, (4.17)

where θ̄ci is the average of angles (θj) between segments meeting in one con-
nection. Angle θj is evaluated by calculating the angle between the vectors vk

and vl, which start from node ni located at the center of the connection and
go to the first point on each of the meeting segments. Hence, for a node with
three connections, three different angles for each pair of outgoing segments
(three pairs) are calculated as θj, therefore, θ̄ci is the mean value of these 3
calculated angles (Fig. 4.7b, indicated in blue).
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Descriptors are calculated using an inhouse Matlab code (Matlab 2017a, MathWorks,
USA).

4.3.1 Validation of Feature Extraction Algorithm for PNs
I validate the developed image processing workflow by comparing data determined manu-
ally and the computed values using the analytical tools on a dataset of n = 9 images.
Therefore, manual segmentation and node extraction is performed (Fig. 4.8a) for all data
sets. Moreover, validation of the end-to-end classification is covered with proving the
independence of the results on the dataset separation.

Validation of Segmentation

Although several segmentation strategies exist [311, 369], to date no gold standard for this
specific segmentation problem has been developed. However, the focus of this study lies on
the quantification of structural characteristics of protein networks and not on advancing
the existing segmentation techniques. Here, a relatively simple segmentation approach
based on an adaptive threshold is chosen. However, further calculated parameters depend
on the segmentation outcome. Therefore, A validation of this part is performed. To
do so, the images have been manually segmented (MS) and the segmentation results
are compared to the results of the segmentation using the local adaptive threshold (AS)
technique. Segmentation results were compared using a Bland Altman diagram [34],
where mean values of the two techniques are plotted on the x-axis and the difference
between them is plotted on the y-axis.

Manual segmentation resulted in a trend of 5 ± 5% (1100 voxels) on average greater
segmented image (p=0.06). For 8 of the 9 images the differences in voxel number lie in
an acceptable range of ±1.96 SD (Fig. 4.8b). Therefore, this error for the purpose of the
current study is acceptable.

Validation of Node Identification and Placement

Furthermore, the node identification/placement is a crucial step, as the quantification of
the element descriptors depends on it. Therefore, the nodes in all nine networks have been
manually extracted (MNE) and are taken as the reference (ground truth) for the node
placement step (ANE) of the proposed method (Fig. 4.8a). All further descriptors are
directly derived from these two intermediate steps and are therefore not validated here.

First, the number of extracted nodes in each network is determined. Second, the vertex
error is calculated,

EV =
1

2|Nm|
∑

pm∈Nm

min
pa∈Na

||pm − pa||+
1

2|Na|
∑

pa∈Na

min
pm∈Nm

||pa − pm||, (4.18)

and the Hausdorff distance,

HD = max{ max
pm∈Nm

min
pa∈Na

||pa − pm||, max
pa∈Na

min
pm∈Nm

||pm − pa||}, (4.19)

[241] between the nodes in the manually and automatically extracted networks. Nm and
Na denote manually and automatically extracted networks, pm and pa are the nodes in
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Figure 4.8: Validation. (a) Automatically (white) and manually extracted nodes (red) of the
same sample network. (b) Bland Altman diagram for the volume of manual seg-
mentation (MS) and local adaptive threshold segmentation (AS) of 9 data sets.
(c) Bland Altman diagram for number of extracted nodes in manually (MNE) and
automatically extracted networks (ANE). (d) Calculated matrices for distances
between manually (MNE) and automatically extracted nodes (ANE). For each im-
age the distances between the nodes from the two techniques are represented as
a 2D matrix color-coded with values for distances between the two methods. (e)
Scatter plot of number of nodes in the network vs. the Hausdorff distance between
the networks in the manually and automatically extracted networks. The standard
deviation of calculated Hausdorff distances for 9 networks is shown as shaded er-
ror bars and a polynomial curve (blue curve) for the data from 9 image data sets
(f(x) = −0.001x2 + 1.33x+ 768 and R2 = 0.29) is fitted to the scatter plot

.

the manually and automatically extracted networks, respectively. Third, the distances
between the nodes in the manually and the automatically extracted networks have been
calculated and a color-code is assigned. The value of the cell (m,n) represents the distance
between the nth-manually extracted and mth-automatically extracted node. Last, the
relation between the Hausdorff distance and number of the nodes in the network, which
is directly related to the size and complexity of the network, has been analyzed.

No significant differences between the node numbers determined manually and with the
automated method were determined, only a trend of 4.2 more nodes using the proposed
automated method (p=0.33) was found. For 8 out of 9 networks the differences are in
the acceptable range of ±1.96 SD (Fig. 4.8c). The vertex error is 0.19 ± 0.4µm and the
Hausdorff distance is 0.94±0.20µm, respectively. Considering the voxel sizes, these values
lie in the range of the errors calculated by Xu et al. [370] and Xu et al. [369]: [1.08, 7.15]



4.3 Designing a Protein Network Structure Descriptor Method 51

and [1, 10] pixels. In all networks, except network 2 (8 out of 9), for each node in the
manually extracted network, there exists a node in the automatically extracted network
within a distance of 2µm (dark blue color; Fig. 4.8d)). This confirms the acceptable
error for the method’s ability to place nodes. When the number of nodes increases,
the Hausdorff distance tends to merge towards a value less than 1.3µm, where the second
derivative of the second-order polynomial curve (f(x) = −0.001x2+1.33x+768 and R2 =
0.29) fitted to the scattered diagram is −0.002 (Fig. 4.8e). It is assumed to have a similar
Hausdorff distance for higher node numbers, which would allow applying this method to
more complex protein networks, such as cytoskeletal protein networks. Considering the
image resolution and overall size of the networks, the Hausdorff and vertex error values
can be considered small enough to allow a quantitative analysis of the images. However,
when interpreting the results they have to be taken into account.

4.3.2 Structural Feature Extraction for the FtsZ1-2 Isoform
As first application, the developed tool is tested on dataset of n = 9 3D confocal micro-
scopy images of FtsZ1-2 protein networks of chloroplasts of Physcomitrella patens. To
identify relationships between calculated descriptors, regression analysis were performed
and Pearson correlation coefficients reported. Unless otherwise indicated, all results are
presented as mean ± standard deviation (SD). All statistical tests were performed in
Matlab (Matlab, 2017a, MathWorks, USA).

What is the shape of the network?

Primary gross morphology features of the network as a whole were evaluated (Fig. 4.9).
A wrapped hull of a network and its three diameters are shown for a sample network in
Fig. 4.9a-d. The enclosed volume of the network VEN showed a great variation (84.9 ±
56.9µm3), whereas the network volume VPN (17.2±9.74µm3) and network volume density
ρPN (0.23±0.06) displayed smaller variations. The greatest and smallest diameters of the
network, dmax

PN and dmin
PN , are 9.45± 4.32µm and 4.75± 2.47µm. Furthermore, the stretch

of the network StPN showed a smaller variation (0.51± 0.11) than the oblateness of the
network ObPN (−0.20± 0.38; Fig. 4.9 e-h).

Nodes - basis of the network

Individual nodes are identified and analyzed. For the investigated networks a wide range
of number of nodes was found (199 ± 130; Fig. 4.10a-d), whereas the size of individual
nodes (node thickness 50± 10nm) and normalized parameters like the compactness and
node density were more homogeneous (0.75±0.10 and 2.52±0.63 node/µm3, respectively).
Additionally, the relative positions of the nodes in the network give further insight into the
construction of the network. Connected nodes have been identified and the average node-
to-node distance (0.57±0.05µm) was determined. Analyzing the distribution of distances
showed, that 90% of all nodes are closer than 0.93µm to their closest neighbor. In contrast,
nodes have only an average distance of 0.50± 0.20µm to the surface of the network, with
90% of them being closer than 1.16µm to the surface (Fig. 4.10e,f). Moreover, the node-to-
center distance showed a considerable variation between the networks (Fig. 4.10g) whereas
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Figure 4.9: Network shape descriptors. (a) Raw image of a representative sample network of
FtsZ. (b-d) Wrapped hull of the same protein network shown from three perspectives
with the three diameters of the network shown as green arrows. The diameters were
extracted from the ellipsoid, defined by the shape matrix of the outer surface.. (e)
Enclosed volume of the network and network volume. (f) Network volume density.
(g) The greatest and smallest diameters of the networks. (h) Stretch and oblateness
of the networks. n= 9, data shown as mean ± standard deviation.

the node-to-surface to node-to-center distance ratio (Fig. 4.10h) showed less variation in
different networks (2.20± 0.74µm and 0.28± 0.09, respectively).

Segments - filamentous nature of the network

The analyzed networks had 258± 168 segments with a mean thickness of 25± 5nm and
a mean length of 0.78 ± 0.07µm. To obtain further details, distributions of curvatures,
lengths and inhomogeneities of segments were analyzed (Fig. 4.11a). The most observed
curvature was 4.35µm−1 (Fig. 4.11b), the distribution of lengths peaked at 0.33µm
(Fig. 4.11c), and the segment inhomogeneity, which quantifies the local changes of prop-
erties of a segment, peaked at 9.30 (Fig. 4.11d).

Connections - How is the network built?

In the next step, the structural characteristics of connections between segments are in-
vestigated. A closer look at the nodes and the connections where filaments meet, is
demonstrated in Fig. 4.11e for a sample network. The most observed number of con-
nections at a node was 3 and the second most observed was 4. Moreover, in average
3.11 ± 0.04 connections exist per node and 8.76 ± 2.33% of all nodes were open nodes.
The distribution of angles differed depending on the amount of connections at a node.
At nodes with 3 connections, a high probability of finding an angle around 90◦ exists
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Figure 4.10: Evaluated element descriptors for nodes. (a) Example of a FtsZ protein network
with relatively low node number and (b) the corresponding spatial graph with
emphasized nodes in green. (c) Example of a FtsZ protein network with relatively
high node number and (d) the corresponding spatial graph with emphasized nodes
in green. In the spatial graph the segments are shown in a yellow → red color
code with red representing thicker segments.(e) Normalized cumulative frequency
of the node-to-surface distances of the networks. Each line represents one image.
(f) Normalized cumulative frequency of the node-to-node distances in networks.
Each line represents one image. (g) Normalized cumulative frequency of the node-
to-center distances in networks. Each line represents one image. (h) Normalized
cumulative frequency of the node-to-surface to node-to-center distances ratio in
networks. Each line represents one image.

(Fig. 4.11f), whereas at nodes with 4 connections no preferred angle could be identified
(Fig. 4.11c).

From small to big networks

Combining information of shape and elements provides insight into relative changes in
the size of the networks. Investigating the relationship between enclosed volume of the
networks and calculated shape descriptors such as stretch and oblateness (Fig. 4.11g)
show low correlations (R2 = 0.18 and R2 = 0.00, respectively). In contrast, a higher
correlation exists between the number of the nodes in the network and the distance of
the nodes from the center (Fig. 4.11h), showing that a higher number of nodes results in
nodes being located further away from the center of mass (R2 = 0.81). The size of the
network also correlates strongly with the number of nodes in the network (R2 = 0.89;
Fig. 4.11i). If the network volume is twice as big (e.g. 100 → 200µm3), the number of
nodes is also approximately doubled; but with increasing network size the node placement
is not homogeneously propagated, as the average distance of the nodes from the center
increased at the same time by a factor of 1.5. Furthermore, the combination of node-
to-surface and node-to-center distance measurements (Fig. 4.10e and Fig. 4.10g) suggests
that the average value of compactness for the data is closer to 1 than to 0. This is



54 Chapter 4: Analyzing Structure-function Relationship at the Nano Scale

Figure 4.11: Element descriptors of connections and segments and derived analysis of calcu-
lated descriptors. (a) Sample network with segments shown in a yellow → red
color code with red representing thicker segments. (b) Normalized distribution of
segment curvature. (c) Normalized distribution of segment length. (d) Normalized
distribution of segment inhomogeneity. (e) Normalized distribution of angles at
nodes with three connections. (f) Normalized distribution of angles at nodes with
four connections. n=9; data shown as mean ± standard deviation. (g) Network
volume vs. stretch (gray) and oblateness (blue) (R2 = 0.18, R2 = 0.00). (h)
Number of nodes vs. average node-to-center distance (R2 = 0.81). (i) Number
of nodes vs. volume (R2 = 0.89). (j) Segment inhomogeneity vs. segment length
(R2 = 0.76). Data from all segments of nine networks are presented here. Each
circle represents a segment, each color represents a data set. (k) Segment in-
homogeneity vs. mean distance between points on segments (R2 = 0.59). n=
9.

confirmed by calculating the average compactness (Compactness=0.73). Besides these
global relationships between the size of networks and shape and element descriptors,
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segment growth can be analyzed on a local scale. On one hand, with longer segments
the segment inhomogeneity increases (Fig. 4.11j). On the other hand, the increase in
segment inhomogeneity results in smaller distances between the points within segments
(Fig. 4.11k).

The results presented so far show that the designed structural features are capable
of quantitatively describing protein network structure. Therefore, in the next step, the
capability of the designed structural features to distinguish two FtsZ isoforms is put to
test.

4.3.3 Distinguishing FtsZ isoforms: a Statistical Approach
In this part of the chapter, the second application of the developed quantitative imaging
method for structural characterisation and comparison of FtsZ1-2 and FtsZ2-1 network
structure is presented. Here, 40 confocal microscopy images (n = 20 3D images per iso-
form) were analysed with this method to identify and quantify structural differences in the
phenotypes of the two isoforms. For all outcome measures, differences between isoforms
were assessed by unpaired Student’s t-test. All values are presented as mean ± standard
deviation. Statistical significance was set at p = 0.05. Distributions are calculated as
mean±standard deviation of normalised probability or normalised cumulative probability
of descriptors from the network of each image.

Network Gross Morphology

To carry out a quantitative comparison of structural features of FtsZ1-2 and FtsZ2-1
networks, the method showcased in section 4.3 is utilized [10, 11, 13].

Network shapes show a great range of variations. However, quantitative comparison
of the networks structures belonging to the two isoforms reveals that three out of seven
structural features i.e., enclosed volume of the network, network density and smallest
diameter of the network exhibit distinctive (statistically significantly different) features,
while the four other shape descriptors are generic. The volume enclosed by FtsZ1-2
networks (69.5± 48.9µm3) is significantly greater than that enclosed by FtsZ2-1 (39.9±
15.4µm3) networks (p = 0.01; Fig. 4.12e). However, FtsZ1-2 and FtsZ2-1 networks have
similar network volumes (17.7 ± 10.2µm3 and 14.0 ± 4.4µm3, respectively, Fig. 4.12f).
This reveals that the space not occupied by material within the FtsZ1-2 networks is greater
than in FtsZ2-1. Quantitatively, this can be seen in the significantly lower network volume
density for FtsZ1-2 (0.30± 0.10) compared to that for FtsZ2-1 (0.36± 0.07; p = 0.02 Fig.
4.12g). Besides volume and density, the overall shapes of the networks show differences
between the two isoforms, as the smaller diameter is in FtsZ1-2 significantly greater than
in FtsZ2-1 (3.34 ± 2.36µm vs. 1.80 ± 0.79µm; p = 0.01; Fig. 4.12h). In contrast, the
greatest diameter of the networks (FtsZ1-2: 11.8 ± 5.96µm; FtsZ2-1: 8.86 ± 4.76µm),
the stretch of the networks (FtsZ1-2: 0.69 ± 0.20 and FtsZ2-1: 0.77 ± 0.11) and the
oblateness of the networks (FtsZ1-2: −0.17 ± 0.35 and FtsZ2-1: 0.02 ± 0.37) are not
significantly different for the two isoforms (Fig. 4.12h-j). However, the difference in the
sign of oblateness value for FtsZ1-2 and FtsZ2-1 points towards a trend of a more flat
and plate-like shape of FtsZ1-2 networks.
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Figure 4.12: Analysis of gross morphological shape of FtsZ1-2 and FtsZ2-1 networks. a) Rep-
resentative sample of a segmented network of FtsZ1-2. b) The outer surface
(wrapped hull) of the segmented network in (a). c) A representative sample of a
segmented network of FtsZ2-1. d) The outer surface created based on the wrapped
hull of the segmented network in (c). e-j) Quantitative analysis of network shape
with. n=20 images per isoform. FtsZ1-2 is shown in blue and FtsZ2-1 is shown in
green colour. Data is shown as mean ± standard deviation. * indicates signific-
ant difference between isoforms. e) Enclosed volume of the network. f) Network
volume. g) Network volume density. h) Greatest and smallest diameters of the
network. i) Stretch of the network. j) Oblateness of the network.
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Network nodes

To analyse morphological details of the structural components of the protein network,
the segmented images were transformed into a spatial graph consisting of points, nodes,
segments and connections (Fig. 4.13a, b). Points were placed at filaments where a local
change in segment characteristic such as orientation or thickness occurs. Elements are
the structural unit connection points. Nodes are defined as points that are connected to
more than two other points. Nodes are meeting points of the filaments in the network.
Segments are the filaments connecting one node to another. For a quantitative charac-
terization of these elements, structural features were computed. FtsZ1-2 networks consist
of significantly more nodes than FtsZ2-1 networks (197 ± 142 vs. 126 ± 32; p = 0.04,
Fig. 4.13c). The number of nodes shows a great distribution within the class of FtsZ1-2
networks. Despite the difference in the number of nodes in the networks, compactness
and node densities, which are directly related to the number of the nodes, are not stat-
istically different for the two isoforms (FtsZ1-2: 0.71± 0.09 and 3.15± 1.20, respectively
and FtsZ2-1: 0.72 ± 0.07 and 3.43 ± 1.00, respectively, Fig. 4.13d, e). This is due to
the similarities in network volume being the dominant parameter in the evaluation of
these two shape descriptors. The mean size of nodes and node thickness are similar for
the FtsZ1-2 and FtsZ2-1 isoforms (mean value per network: FtsZ1-2: 24.6± 10.7nm and
FtsZ2-1: 22.9± 7.19nm, respectively; Figure 4.13f). However, the analysis of the normal-
ized distributions of all node thicknesses in the networks reveals noteworthy results (Fig.
4.13g). For nodes with thickness up to 100 nm the distributions for the two isoforms
are almost identical. However, in FtsZ2-1 a small portion of nodes (approximately 1%)
have thickness values between 100 − 140nm whereas in FtsZ1-2 networks no nodes of
these sizes exist. This small fraction of nodes in FtsZ2-1 comprises the meganodes. The
analysis of relative distances revealed that in both types of networks individual nodes are
located closely to the surface and other nodes, but further away from the center of the
network. In FtsZ1-2 networks there is a trend of this distance to the center and being
even greater than in FtsZ2-1 (p = 0.06). 78% of all nodes of the FtsZ2-1 networks lie
in a distance of less than 2.5µm from the center of gravity of the network, whereas in
FtsZ1-2 networks only 59% are within the same distance (Fig. 4.13i). On the other hand,
more nodes in FtsZ2-1 networks are located closely to the network surface (90% vs. 80%
within 1µm; Fig. 4.13k). Besides this difference, local node distributions in the networks
are similar (Fig. 4.13j,l). Mean node-to-center distances (FtsZ1-2: 2.07 ± 0.60µm and
FtsZ2-1: 1.76± 0.360µm), node-to-node distances (FtsZ1-2: 0.58± 0.080µm and FtsZ2-
1: 0.59 ± 0.080µm), node-to-surface distances (FtsZ1-2: 0.57 ± 0.160µm and FtsZ2-1:
0.48±0.230µm) and node-to-surface to node-to-center distance ratio (FtsZ1-2: 0.29±0.09
and FtsZ2-1: 0.27± 0.070µm) (Fig. 4.13h) are not statistically different between the two
isoforms.

Network segments

The number of the segments in FtsZ1-2 (237±206) shows a great variation and is slightly,
but not significantly greater than in FtsZ2-1 (183 ± 49; p = 0.07; Fig. 4.14a). In con-
trast, segment length (mean length: FtsZ1-2: 0.81 ± 0.11µm; FtsZ2-1: 0.84 ± 0.12µm,
Fig. 4.14b) and its normalized distribution (Fig. 4.14c) are remarkably similar in both
networks. The segments in FtsZ1-2 networks are significantly less curved than in FtsZ2-1
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(0.50 ± 0.20µm−1 and 0.65 ± 0.14µm−1 respectively, Fig. 4.14d) resulting in another
distinctive element descriptor (p = 0.01). Besides the higher mean, the distributions of
curvatures are similar for the two isoforms. Analogously, the segments in FtZ2-1 networks
are on average thicker the ones in FtsZ1-2 networks (34.4 ± 6.82nm and 28.9 ± 6.41nm,
respectively, Fig. 4.14f; p = 0.02). Although the normalized distributions of segment
thickness (Fig. 4.14g) for both isoforms below a thickness of 80nm are very similar, al-
most 5% of the segments in FtsZ2-1 networks have a thickness between 80 and 120nm
while almost no segments in FtsZ1-2 network are so thick. These thick segments in
FtsZ2-1 are the ones meeting at the meganodes. The mean and normalized distribu-
tions of segment inhomogeneity (Fig. 4.14h and i) are almost identical in both isoforms,
(FtsZ1-2: 18.5± 4.56 and FtsZ2-1: 18.8± 3.97). The same pattern is observed for point-
to-point distances (FtsZ1-2: 62.7± 13.3nm and FtsZ2-1: 58.7± 11.4nm, Fig. 4.14j) and
its normalized distribution (Fig. 4.14k).
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Figure 4.13: Spatial graphs and evaluated nodal parameters. a) A sample spatial graph of a
FtsZ1-2 network. b) A sample spatial graph of a FtsZ2-1 network. Nodes in both
networks of (a) and (b) are shown in green spheres. The segments are colour
coded based on their thickness with red (thinner segments) yellow (thicker seg-
ments). c) Number of nodes. d) Compactness of the network. e) Node density.
f) Mean values of node thickness per network. g) Normalized distribution of node
thickness. Enlarged part in right top corners highlights the sizes of meganodes.
h) Mean values of node-to-center distance per network, node-to-node distance,
node-to-surface distance and node-to-surface to node-to-center distance ratio. i)
Normalized cumulative distribution of node-to-center distance. j) Normalized
cumulative distribution of node-to-node distance. k) Normalized cumulative dis-
tribution of node-to-surface distance. l) Normalized cumulative distribution of
node-to-surface to node-to-center distance ratio.
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Network connections

The number of connections in the two isoforms are very similar (FtsZ1-2: 3.14± 0.06 and
FtsZ2-1: 3.12 ± 0.05, Fig. 4.15a). This similarity is due to the fact that both networks
contain nodes with mostly three connections. On the contrary, the percentage of open
nodes is significantly higher in FtsZ1-2 networks (FtsZ1-2: 6.14 ± 3.10% and FtsZ2-1:
3.50± 2.06%, p < 0.01; Fig. 4.15b). Considering an open node as a filament that leaves
the network, i.e. connects to other networks, then the increase in open-nodes demonstrates
the tendency of the filaments to leave the chloroplast. The low p-value in this analysis
is also consistent with the fact that extraplastidic filaments are much more frequently
observed in FtsZ1-2 networks than in FtsZ2-1 networks. Assessment of the mean values
and distribution of angles between segments in the most observed connections (three and
four connections, Fig. 4.15c-g, respectively) reveals similar connectivity inside FtsZ1-2
and FtsZ2-1 networks. Both networks have angles around 80° in nodes with three and four
connections (FtsZ1-2: 78.9±4.78 and 77.2±17.4 and FtsZ2-1: 80.1±4.60 and 78.7±13.9,
respectively). It is worth noting that in both network types, the standard deviation of
angles in nodes with four connections is higher than in nodes with three connections (Fig.
4.15g).

The results presented here show that the set of designed structural features allow ex-
tracting distinguishing structural characteristics of FtsZ1-2 and FtsZ2-1 isoforms by show-
ing 7 out of 25 statistically significant features. Therefore, in the next step, the capability
of the designed machine learning algorithm to automatically classify isoforms is put to
test. Furthermore, the feature importance is compared to the previously identified dis-
tinguishing features.

4.3.4 Protein Network Classification: a Machine Learning Approach
To perform an end-to-end classification of the FtsZ isoforms, a random forest model is
designed and trained. This allows further to find the distinguishing characteristics of
two FtsZ isoforms. To do so, the ML model is trained on the 25 calculated structural
features of the protein networks (n = 37) for 1) performing an end-to-end classification
of the networks and 2) determining the importance of the structural features in this
classification task.

I employed a Random Forest Model to perform the classification task based on the
extracted features, which is the state of the art method for classification based on a set of
unstructured features [42, 256]. The random forest model (RF) is designed to carry out
the task of mapping the structural feature set (F) to a class of FtsZ1-2 or FtsZ2-1:

RF (F) = isoform, (4.20)

with F defined as:

F = [VEN , VPN , ρPN , d
max
PN , dmin

PN , StPN , ObPN ,

Nn, thn, ρn, dnn, dns, dnc, dns/dnc, CPN ,

Nop, Ns, Ls, κs, ths, Is, dpp, nc, noe, θ3, θ4].

(4.21)

The dataset containing the 26 structural features was eight times randomly divided into
training (n=30) and testing (n=7) sets. As shown in 3.2.3, employing a random forest
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Figure 4.14: Evaluation of element morphology. a) Number of the segments. b) Mean val-
ues of segment length. c) Normalized distribution of segment length. d) Mean
values of segment curvature per network. e) Normalized distribution of segment
curvature in FtsZ1-2 and FtsZ2-1 isoforms. f) Mean values of segment thickness.
g) Normalized distribution of segment thickness. Enlarged part in right top shows
segments above 80nm thickness. h) Segment inhomogeneity. i) Normalized dis-
tribution of segment inhomogeneity. j) Mean values of point-to-point distance per
network.
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Figure 4.15: Evaluation of element morphology. a: Number of the segments. b: Mean values of
segment length. c: Normalized distribution of segment length. d: Mean values of
segment curvature per network. e: Normalized distribution of segment curvature
in FtsZ1-2 and FtsZ2-1 isoforms. f: Mean values of segment thickness. g:
Normalized distribution of segment thickness. Enlarged part in right top shows
segments above 80 nm thickness. h: Segment inhomogeneity. i: Normalized
distribution of segment inhomogeneity. j: Mean values of point-to-point distance
per network. Normalized distribution of point-to-point distance.
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model guaranties the absence of overfitting [98]. Therefore, no validation set is needed.
Each testing sets consisted of at least three samples of each isoform. For each data division,
a random forest classification model was built upon the extracted structural features with
the isoform (FtsZ 1-2 vs. FtsZ 2-1) as output class. This allows refuting dependency
of the classification results on train/test dataset division. The Gini index was used as
attribute selection measure [43, 256]:

GCi
=

∑∑
j ̸=i

(f(Ci, T )/|T |)(f(Cj, T )/|T |), (4.22)

with T denoting the whole feature set, (f(Ci, T )/|T |) determining the probability of se-
lected case belonging to the class Ci (FtsZ1-2 or FtsZ2-1). All random forest algorithms
were implemented using the machine learning library Scikit-learn in Python [262].

The importance of each structural feature on the model predictions for an individual
instance for both the classification model and surrogate mechanical model are analyzed
by noising up each feature and comparing the plurality of out-of-bag vote and the reality
to measure a wrong prediction rate [42]. In the surrogate models, the extracted structural
characteristics with high importance for the model are considered responsible for inducing
the observed mechanical behaviour.

The 8 trained models reached 6 out of 7 correct predictions (Fig. 4.16a; Table 4.1). A
correctly classified FtsZ2-1 isoform and a correctly classified FtsZ1-2 isoform, as well as
the wrongly classified isoform (FtsZ1-2) are depicted in Fig. 4.16b-d, respectively. In the
classification task, an average F1 score of 0.83± 0.11 and an area under the ROC curve
of 0.86± 0.08 (Fig. 4.16e) was reached. The classification task took in average 5.1 sec.

Analyzing the importance of each of the structural features in the classification models
reveals which features contribute most and which least to the isoform structural classi-
fication. The five most important structural features are the percentage of open ends
(19 ± 5%, p < 0.01), segment curvature (12 ± 9%, p = 0.05), network volume density
(8 ± 4%, p = 0.03), compactness (6 ± 3%, p = 0.24), and the mean segment thickness
(5±7%, p = 0.01). These have in total 50% of the overall importance in the classification
models (Fig. 4.16f). Interestingly, the number of open ends and the smallest diameter of
the network were significantly different between the two isoforms, but of less importance
for classification.

Table 4.1: Performance metrics of the trained classification model.
Metric Accuracy F1-score area under ROC

Value 6/7 0.83± 011 0.86± 0.08

4.3.5 Discussion
So far in this chapter, a newly developed quantitative imaging and machine learning
method specifically designed to extract structural features of protein network structures
from 3D microscopy images and to automatically classify them is presented. The details
of the method as well as the thorough validation process to test its robustness is presented.



64 Chapter 4: Analyzing Structure-function Relationship at the Nano Scale

Figure 4.16: End-to-end classification of isoforms. a) Confusion matrix of prediction per-
formance with 3 out of 3 correct predictions for FtsZ1-2 and 3 out of 4 correct
predictions for FtsZ2-1. b) A sample spatial graph of correctly classified FtsZ2-1.
c) A sample spatial graph of correctly classified FtsZ1-2. d) A sample spatial
graph of wrongly classified FtsZ1-2. e) ROC curve of model prediction. f) Mean
classification importance for the structural features as well as normalized feature
values (normalized to maximum of each feature). Data shown as mean ± stand-
ard deviation. * indicates a significant difference between isoform (un-paired
students’ t-test).

The method were then used as a first application to analyze the assembly of FtsZ protein
network and relating its structure to its functionality. Moreover, as a second application,
the method was used to investigate distinguishing structural features of two FtsZ isoforms
naming FtsZ1-2 and FtsZ2-1. These two isoforms are believed to be the major forces in
organizing the morphology of the chloroplast [228]. However, due to different evolutionary
paths in their design, they participate in different manners in the mechanical functionality
of the plastoskeleton.

Describing FtsZ Structure

To date, analysis of protein network structures as basis for cytoskeletal behaviour as-
sessment is mainly qualitative. However, with current advanced microscopy and labeling
techniques, localized cytoskeletal behavior can be imaged with great detail, allowing for
a quantitative network analysis. Here, the possibilities to quantitatively describe the
structure of protein networks are analyzed and a tool set, which contributes to such a
quantitative network analysis is provided. To show the capabilities of this tool set, it was
validated using 3D sets of confocal microscopy images of FtsZ.

The observed variations in calculated shape descriptors (Fig. 4.9 e-g) of FtsZ show
that although there exist great variations between the sizes of the analyzed networks, the
network volume density shows lower deviation from the mean value. This conveys that in
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networks from small to big, the network volume density does not change remarkably. In
cases of ellipsoidal-like network shapes, like for FtsZ [122], morphological characteristics
such as diameters of the network and relationships between these calculated descriptors
can be analyzed (Fig. 4.9g). Therefore, stretch and oblateness of the network are identified
(Fig. 4.9h). The stretch values indicate a deviation of the shape of the networks from
a sphere to a more stretched geometry while the oblateness measurements convey the
tendency toward more rod-shaped networks. However, the greater variation in oblateness
shows that stretch is, for the analyzed data sets, a better measure of the shape for the
network.

Analysis of the element components of protein network allows detailed quantification
of the subunits of the network. This analysis enables to quantitatively describe the char-
acteristics of structural units of the network: nodes, connections and segments. Node-to-
surface distances are relatively similar for all analyzed FtsZ networks, the distance of the
nodes from the center of mass shows a great variation between networks. Quantifying
relative positions of the nodes is in future applications useful in terms of studying dy-
namic settings of networks and to identify changes that occur in the network as a result
of external stimuli on the structure of the network or internally motivated changes.

The shape measures allow to relate changes of the protein network size and shape to
alterations of the plastid, or cells in the case of other protein networks, morphology,
which will allow in future applications to relate protein network alterations to cellular
processes. For example, during cell division the cell, and accordingly the cytoskeleton,
elongates from its initial form to a more stretched shape [334]. Furthermore, in cancer-
ous cells, cytoskeleton protein transformations lead to changes in mechanical properties
of the cancer cells in contraction, stretchability and deformability [190]. For example,
epithelial-to-mesenchymal transition in colorectal cancer cells results in transformation of
the cytoskeleton into a spindle-like shape losing their polarity [372]. Moreover, propaga-
tion of tau filaments from cell to cell in Tauopathic diseases have been shown to result in
protein network changes [72, 204]. All these process could be investigated quantitatively
with the herein introduced shape descriptors in future studies.

Analysis of segments have been previously shown by Smith et al. [311] and Alioscha et
al. [5] to link actin filaments fragments in segmented images and by Stein et al. [314] for
extracting network geometry of collagen gels. Moreover, Xu et al. [370] analyzed different
filamentous protein networks. To obtain a complete protein network analysis method,
these entities are included in the shape and element analysis and adapted the calculation
of these to the structural quantification method. Analyzing the segments of the network
does not only shed light on the local attributes of the filaments, but also allows to draw
further conclusions on the mechanical properties of the networks, as e.g. the curvature
of the segments allows to quantify mechanical forces on the filament [272] or effects of
shear stress [5]. Segment length can be used to track changes that will transform the
architecture of the network in a more fundamental way. The angles between the segments
meeting in one connection give insight into the shape of individual sub-compartments of
the network. Also, it might be applicable to track the effects of external stimuli on the
network such as shear forces, which elongate the filaments and change the angles between
them in the network [5]. In the here analyzed networks a great variation of angles between
connections was observed, which might be caused by such external stimuli. Therefore,
tracking structural descriptors might enhance the understanding of the dynamic setup
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of network structures, by allowing to monitor and quantify changes occurring in various
processes that alter the shape of the network.

Linking shape and element descriptors gives insights into how the shape of protein net-
works changes during different processes without being transformed into a more stretched
or plate-like shape. More nodes resulted in nodes being located further away from the
center of mass. This shows that FtsZ networks might grow in size by adding nodes in
radial direction form the center of gravity close to the surface, consequently resulting in
networks with higher volume. Moreover, the relation between the size of the network
and number of nodes in the network conveys the possibility of a preferred approach of
the network to grow. The network seems to grow in volume by adding more nodes to
the existing network instead of preserving the nodes and adding more connections to the
existing nodes. Finally, it was found, that there exists a direct correlation between the
length of the segments and the inhomogeneity of the segments.

The presented method has several limitations. It is the study of protein networks in
living cells. Therefore, assembly and disassembly is a dynamic process that generates
inhomogeneities. Furthermore, the spatial resolution, especially in z-resolution, does not
allow to resolve all small structures in the images and therefore, impacts the results as well.
However, the fast advancing field of microscopy technology will allow to overcome this
limitation in future applications. A main limitation of the method is the segmentation,
as it is in most imaging studies. Global threshold algorithms such as the Otsu-Algorithm
[254] are commonly used to extract the geometry of filaments [381]. However, the pres-
ence of imaging-specific artifacts, like filament discontinuities, high signal-to-noise ratio
resulting from presence of overexposed pixels and dynamics of the network, decrease the
efficiency of global algorithms. As long as this is not overcome, an adaptive thresholding
algorithm, which accounts for intensity variations, suffices. However, variations in the
input image quality effects the segmentation outcomes, therefore a manual correction is
applied, which introduces user bias. An enhanced segmentation in future studies could
include linkage of filament fragments, as previously presented for microtubule network
architecture phenotypes in fibroblasts [381]. Therefore, care must be taken in the ana-
lysis to avoid systematic errors. One also should keep in mind that the approach used
here might not be directly applicable to other network shapes, as an ellipsoidal shape was
assumed, approximated by 2 vectors and 3 scalar quantities. For other (more complex)
shapes, different shape models have to be used.

The regulations of individual proteins and their functions have been investigated in
detail in the past [79]. Here, a method to quantify the structure of protein networks
was presented. Proteins forming networks in biological environments are many copies of
a few key pieces, which can be assembled into a wide range of structures depending on
how the pieces are assembled. The method presented here provides a quantitative tool
to investigate this meso-scale of the assembly. This analysis can potentially be used to
study temporal evolution of the network by batch processing consecutive frames of a time
lapsed life image sequence. Analyzing the structure of the network in each frame and
tracking changes of structural features might allow relating internal and external stimuli
to the modifications of the structure by utilizing a network-based simulation model and
might contribute to determining functionality of the network. Here, the FtsZ protein
network structure was analyzed and aspects of this internal organization was revealed.
In the future, the developed method can be applied to compare networks for identify-
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ing relationships of structural and functional differences. Furthermore, more complex
networks, such as cytoskeletons [362, 380] can be analyzed. This is possible since these
are built of the same basic structural units. This analysis would facilitate understand-
ing the links between the interactions of the individual units of the network and the
large-scale cellular behaviors depending on them [100]. Linking network structure and
functionality by tracking dynamic structural changes over time and comparing different
states or types of networks, may allow to more precisely identify (mal)functions or design
protein-engineered biomaterials for applications in regenerative medicine.

Quantitative Structural Comparison of FtsZ1-2 and FtsZ2-1

Among the five different single-gene knockout lines in moss, the FtsZ1-2 and the FtsZ2-1
are particularly interesting. Although these two genes show similar levels of expression
in chloronema cells, the chloroplast morphology in the same tissue is drastically different
between the respective knockout lines. This implies that the morphological differences
between the chloroplasts of the two mutant lines are likely to be due to the differences in
sequence, structure and function of the two isoforms. These differences between FtsZ1-
2 and FtsZ2-1 could influence the 3D network architectures formed by these isoforms.
Therefore, a comprehensive analysis of the network morphology and connectivity for each
FtsZ isoform and identification of the distinctive network features between the different
isoforms could provide hints at the specific functions of these proteins. In particular,
the mechanobiological study of the relationships between the FtsZ networks and the
chloroplast shape and integrity would benefit from such a comparative morphological
characterisation.

A visual inspection of the 3D-reconstructed images of FtsZ1-2 and FtsZ2-1 networks
reveals only few distinctive features between the two isoforms. These include the extra-
plastidic filaments of FtsZ1-2 networks and the meganodes of FtsZ2-1 networks. Both of
these observations, which are based on visual inspection, are confirmed by the quantitat-
ive analysis which reveals that i) the proportion of the open nodes in FtsZ1-2 networks
is significantly higher than that in FtsZ2-1 networks and that ii) the meganodes occur
only in the FtsZ2-1 networks where they constitute about 1% of all nodes. Therefore,
the developed method of quantitative analysis proves to be useful in testing the validity
of visually detected structural phenomena, and also quantifies the extent, to which these
phenomena are represented in the respective network classes. Besides testing the validity
of already detected distinctions, the quantitative analysis also identifies further distinct-
ive features, which avoid detection via visual inspection of images. These include shape
descriptors such as enclosed volume, network volume density and small diameter of the
network as well as elemental descriptors such as total number of nodes, segment curvature
and segment thickness. In addition to these structural features that are significantly dif-
ferent between the two isoforms, the quantitative analysis also provides information about
the general behaviour and trends that the two network classes. For instance, nodes of the
networks are not evenly distributed within the enclosed network volume. Rather, they
are located relatively closely to the surface of the networks and far away from the network
center. This proximity to the surface could be due to a possible function that the nodes
may have at the chloroplast surface. This result is also consistent with the findings of the
visual analysis that meganodes of FtsZ2-1 are located at the chloroplast surface and often
associated with surface indentations. I also show that certain isoform-specific network
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features occur at the sites of specific types of structural deformations at the chloroplast
surface. These altered chloroplast morphologies detected in the transfected cells deviate
from the typical lens shape of the chloroplasts normally observed in the non-transfected
cells, and could thus be attributed to the elevated levels of FtsZ. Thus, the manner of
these shape variations can provide clues concerning the tensile or compressive forces that
the FtsZ filaments could bear and exert on the chloroplast surface. Further, the pat-
terns of the morphological deformations of chloroplasts varies with the specific isoform,
indicating that the FtsZ isoforms act differently in their ability to modify the chloroplast
structure. These findings are consistent with the findings of the knockout experiments
in which inactivation of FtsZ1-2 and FtsZ2-1 resulted in distinctively different degrees of
chloroplast deformation.

In order to gain further insights into the influence of the FtsZ protein family on
chloroplast morphogenesis, the early-to-late progression of network formation and rel-
evant changes in chloroplast morphology can be monitored via time-lapse fluorescent
imaging. The presented image analysis method can be adapted for the characterisation
of the temporal changes in the network organisation and turnover of FtsZ filaments. To
learn about the mechanical properties of FtsZ networks, laser ablation microscopy could
be implemented.

Automatic Classification of Isoforms based on Structural Features

The ML-based classification model trained on the extracted structural features achieved
high accuracy (6 out of 7 correct prediction, F1 score of 0.83). Moreover, by 8 random
test/train dataset divisions the dependency of classification results on dataset division was
eradicated. Analyzing the feature importance in the classification task reveals the most
distinguishing structural features: the number of the open end filaments, the curvature of
the filaments, the volumetric density of the protein networks, compactness of the network
and the filament thickness. These features also showing significantly different values for
the FtsZ isoforms (besides compactness) [255] and confirms that the model automatically
extracts the distinguishing features. The classification model achieved on par accuracy
with deep learning based protein networks classification methods [186, 260], while adding
the ability of extracting specific structural features enabling the classification model to
perform predictions.

4.4 Simulating the Mechanical Behaviour of Protein
Networks

From the micro-scale of cytoskeleton to the macro-scale of connective tissues, bio-polymer
networks are pervasive in biology as key promoters of strength, support and integrity. And
even beyond these pure mechanical functions, cellular mechanics has been proven to be
crucial for a wide range of biological functions and dysfunctions, as cells sense external
physical signals and translate them into a cellular response. In cytoskeletal protein net-
works, a strong relationship exists between structure and the functionality of the network,
such as the role of microtubule during mitosis [165], cell movement with the help of actin
assembly/disassembly [257] and utilizing intermediate filament network for stabilizing
mechanical stresses [101]. Therefore, investigating the structure of the protein networks
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helps to better understand their functionality/dysfunctionality. In the recent decades,
the application of physics to biological systems has made substantial steps in elucidating
mechanical phenomena as a key to other biological function of individual cells and tis-
sues. It has been shown that mechanical processes convey biochemical signals, and are
therefore crucial for cell functions including proliferation, polarity, migration and differen-
tiation. Connections between the mechanical properties of cells and the initiation as well
as progress of pathologies such as cancer [124, 324] highlights the link between molecular
changes within the cytoskeleton and structural and functional changes of the entire cell.
For instance, Suresh showed that the elasticity of red blood cells infected by malaria ex-
hibit higher stiffness than healthy cells [323]. Further, cancer cells are typically found to
be softer than normal cells, however, due to mechanosensitivity their stiffness changes by
altering cytoskeletal structures when they come in contact with different environments.
This allows them to adhere to a certain substrate that affects their rheological properties.
For example, a decrease in the level of actin in the cytoskeleton of cancerous cells was
shown to be associated with changes in mechanical properties of the cell [175]. There-
fore, in-depth knowledge of cellular and sub-cellular mechanics might allow recognizing
and classifying cells at different physiological and patho-physiological stages. However,
this would require combining structural as well as mechanical analysis at the sub-cellular
scale.

Mechanical stability and shaping on the molecular scale, is today not completely un-
derstood. It is further not clear, if mechanical processes, besides conveying biochemical
signals, also convey purely mechanical signals to invoke structural change. The concept of
the cytoskeleton as a shape-determining scaffold for the cell is well established, however,
the tight coupling of actin, microtubule and neurofilament networks impedes a separate
analysis. To date, computer models of cytoskeletal biopolymer networks are based on
tensegrity models simplifying geometry [156] or unconcerned with the realistic geometry
of such structures such as the ones using viscoelastic modeling of cytoskeleton [235]. How-
ever, in depth analysis of structure-function relationship requires a model investigating
geometrical as well as mechanical characteristics. FtsZ protein family in the chloroplasts
of the moss Physcomitrella patens, generate complex polymer networks, showing striking
similarity to the cytoskeleton. In bacteria, FtsZ is a part of the bacterial cytoskeleton
providing a scaffold for cell division [2, 251, 331]. Moreover, as chloroplasts in loss-of-
function mutants show distinct shape defects, these FtsZ networks might provide scaffolds
that ensure the stability and structural integrity of the chloroplasts [250]. Additionally,
gene knock-out experiments has shown that the FtsZ network is capable of undergo-
ing large deformations upholding its structural integrity [228]. This adaptive stability is
presumably linked to the developed structural characteristics of FtsZ networks; making
the cytoskeletal FtsZ network an ideal first application for introducing and testing an
approach that links structural features of a cytoskeletal network to mechanical function.

In this section, the mechanical behaviour of the FtsZ protein networks is investigated
through a series of FE simulations designed to describe the mechanical responses of the
networks in a generic way. Again, FtsZ protein are utilized as a play-ground for testing
and validating the proposed methodologies due to the relative simplicity of their struc-
tures and the fundamental similarities to cytoskeletal protein networks in functionality
(plastoskeleton vs cytoskeleton) and molecular structure.
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4.4.1 Mechanical Nano FE Modeling

RNA Isolation, molecular cloning, isolation and transfection and CLSM imaging were
carried out according the procedures described in 4.2. This resulted in a dataset of n =
37 (21 FtsZ2-1 and 16 FtsZ1-2 isoforms).

To investigate the mechanical response of the protein networks to external load a generic
in-silico experiment reflecting a compression against a slide, as commonly applied in whole
cell tests was designed [248]. To capture the overall mechanical behaviour of each network
in a comparative manner, compression tests along the three principal axis of each system
were modeled employing a geometry preserving nano-FE approach. It is important to
note that, the goal of this setup is to depict the mechanical behaviour of the protein
network morphology rather than replicating the real physical condition and dynamics of
the biopolymers in their biological roles. Such tasks would need to consider the highly
complicated interactions of the network with its surrounding. Something that is not
completely understood to date.

3D Protein Network Model Generation

Protein network surface meshes were defined from the segmented images using a triangular
approximation algorithm coupled with a best isotropic vertex placement algorithm [383]
to achieve high triangulation quality. The surface area of the resulting surface mesh was
calculated and further remeshed using nt = ρtAt, with nt as the number of triangles in
the remeshed surface, ρt = 900 [triangle/µm2] as the constant density of surface mesh
and At as the surface area. Furthermore, the remeshed surface was smoothed by shifting
the vertices towards the average position of its neighbours. The enclosed surfaces were
filled with volumetric tetrahedral elements, resulting in an adaptive multi-resolution grid
using FEI Amira 6.3.0 (Thermo Fisher Scientific, USA).

The principal directions of the network were determined by calculating the convex
hull of network and its shape matrix. The eigenvectors (EV 1, EV 2 and EV 3) of this
shape matrix represent the principal directions of the network, Vi ∀ i ∈ {1, 2, 3}. Based
on the calculated eigenvectors, an orthogonal unit vector coordinate system was created
and the tetrahedral grid was transformed to it. Furthermore, the difference between
the primary directions and x, y and z unit vectors is calculated by means of cos θ =
(EVi · ei)/|EVi||ei|, where θ denotes the angle between the primary direction and the
corresponding unit vector. Afterwards, for each eigenvector, the pair of mesh/grid points
in the direction of the eigenvector exhibiting the largest distance was determined. This
resulted in three node couples, Ni1 and Ni2 ∀ i ∈ {1, 2, 3}.

The geometry of the protein network was imported to the finite element (FE) simula-
tion software Abaqus 6.14 (Dassault Systèmes, France). For each protein network three
compression simulations (one per principal direction) were created by placing two rigid
plates at each pair of nodes (direction 1 : N11 and N12, direction 2: N21 and N22 and
direction 3: N31 and N32) perpendicular to the eigenvector direction. The protein net-
work and the rigid plates were set to have rough contact, when any two points coming in
contact will stick together with a relative penetration tolerance of 0.001.
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Boundary Conditions

The generic boundary conditions for each simulation setup (one simulation for each
primary direction: EV 1, EV 2 and EV 3, respectively) consist of: 1) fixing the rigid
plate attached to Ni1 for all six degrees of freedom (3 displacement and 3 rotations) and
2) applying a displacement (Ui equal to a fraction, α, of the initial distance of the two
plates (di) that corresponding to the primary compression direction (towards Ni1) of the
rigid plate and Ni2: Ui = αdi. The other five degrees of freedom (2 displacement and
3 rotations) are fixed (Fig. 4.17). To investigate mechanical response of the network in
case of small deformations, we chose α = 0.02. Compression tests along all three primary
directions were performed and compared to identify spatial dependencies. Furthermore,
for analyzing changes in the structural behaviour with increasing deformation grade, we
increased the displacement of the plate gradually by steps of δα = 0.02 in 10 steps. Due
to the computational complexity, in this part, the focus is only on one direction, which
was selected based on comparing the simulation results of three directions under small
deformations. The results are gathered at each step. As the rigid plate moves, due to
compression of the network, more points of the network (nodes) come into contact with
the moving plate and start moving with it. As the network is compressed between the
rigid plates alongside its primary directions, without applying force/displacement on a
selective set of nodes a deterministic mechanical behaviour of the network is simulated.

Figure 4.17: Simulation setups. a-c) Initial conditions for pressing a sample protein network in
primary directions EV1, EV2, and EV3, respectively. d-f) Stress distribution after
applying the Ui displacement to the top plate in EV1, EV2, and EV3 directions,
consecutively. Scaling factor: 5.
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Constitutive Law and Material Parameters

To perform the mechanical simulations, apart from the geometry and the boundary con-
ditions, one requires a constitutive law and a set of material parameters. These represent
the general mechanical behaviour of the material at hand in any given situation by relat-
ing the stresses of the system to strain values at each material point. To my knowledge,
to date no constitutive law has been developed for describing mechanical behaviour of the
FtsZ network. Although FtsZ is a tubulin-like cytoskeletal GTPase, it has been reported
to be flexible and a similar force transmission to actin has been suggested [51]. FtsZ
appears to polymerize with multifilament bundles [90, 294], their rigidities are assumed
to be comparable to or larger than those of actin [8], which is a two-filament bundle [146].
Although more complicated constitutive laws for the mechanical behaviour of single actin
filaments has been proposed [35, 147, 341], linear elasticity is the prevailing choice for
cytoskeletal networks in whole-cell models [21, 73, 172, 377]. Since the focus is on the
effects of structural features of the network on its mechanical behaviour, an isotropic,
homogeneous and linearly elastic mechanical response similar to actin is modeled:

σ = λ tr(ϵ) I+ 2µϵ, (4.23)

where σ and ϵ are the stress and strain tensors and λ and µ are Lamé and shear constants
representing the material parameters. λ and µ are functions of elasticity module E and
Poisson’s ration ν as follow:

λ =
Eν

(1 + ν)(1− 2ν)
; µ =

E

2(1 + ν)
. (4.24)

With the constitutive law at hand, the next step is to determine the constant para-
meters present in the constitutive law i.e. material parameters (Eq. 4.24). The material
property commonly used to described the mechanical behaviour of filamentous biopoly-
mers is flexural rigidity, κ [96, 97, 112], which is the force couple required for one unit of
curvature [194]. κ is defined as κ = EI, where I is the second moment of inertia. In the
context of mechanics of filamentous protein filaments, the flexural rigidity is calculated
as κ = kBT lp, with kB = 1.38 · 10−23 J/K being the Boltzmann constant, T is the tem-
perature and lp as the corresponding thermal persistence length. Multiple experimentally
determined values for the persistence length of FtsZ filaments using atomic force micro-
scopy have been reported [148, 149, 218, 242]. Recently, persistence length and flexural
rigidity of FtsZ filaments reported by Turner et al. as κ = 4.7 ± 1.0 × 10−27 Nm2 and
lp = 1.15± 0.25µm [340] is commonly employed [88]. As it was previously reported, the
average thickness of the filamentous elements of the FtsZ network is 117 ± 28 nm [255].
Considering a circular cross section [90] results in I = 1.81 × 10−29 m4. Therefore, the
elasticity modulus used here is determined as E = 2.6 × 102 Pa and the Poisson’s ratio
ν = 0.5 [88, 184, 275].

Calculated Mechanical Parameters

I performed 111 3D nano FE simulations (3 simulations per image/network) on a CPU
cluster with 32 cores, a simulation took in average 19 ± 7 hours (20% compression). To
quantitatively assess the mechanical behaviour of the protein networks, we determine
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mean stress and strain of the networks, σmean and ϵmean, as the average of Von Misses
stresses and principal strains calculated by the L1 norm of their vectors.

Cytoskeletal structures are reported to fail by buckling or rupture [189]. Therefore, we
further analyzed the structural stability of the network by calculating a buckling failure
factor based on critical stresses σcrit and a rupture failure factor based on critical strains
ϵcrit. Buckling of a single filament is assumed to occur if stresses local above the critical
stress occur. A filament is assumed to rupture, if strains above a critical strain value occur
locally. In terms of classical engineering mechanisms, these thresholds represents a yield
point at which the structures incur a permanent deformation [109]. Since a local failure
might not lead to a collapse of the whole network structure, we define failure factors based
on the assumption that if a certain portion m of all elements (m ·nelem

all ) exhibit stresses or
strains above the critical stress or strain value, the whole structure will fail by buckling or
rupture of an individual or several segments, as introduced for other biological materials
[248, 266]. Furthermore, nonlocal elasticity [62, 303] has been used to model buckling
of single filaments of cytoskeleton biopolymers. As to date, these threshold values have
not been experimentally investigated for protein networks. Therefore, we report only the
portion of elements above the critical stress or strain as a failure factor, where higher values
represent higher failure probability. I define buckling failure factor as FB = nelem

σcrit
/nelem

all ,
and rupture failure factor as FR = nelem

ϵcrit
/nelem

all . nelem
all is the total number of elements,

nelem
σcrit

and nelem
ϵcrit

are the number of elements with stress and strain above the failure criteria
for buckling and rupture, respectively. To my knowledge, σcrit and ϵcrit of FtsZ are yet to
be studied. Despite fundamental structural differences, F-actin and FtsZ show a similar
mechanical behaviour (F-actin rigidity: κ = 7.5 · 10−26 [112, 159]). Therefore, the values
reported for F-actin (σcrit = 3.2Pa and ϵcrit = 0.2 we used [159, 275]).

Statistical Analysis

For further distinguishing the mechanical of behaviour of FtsZ1-2 and FtsZ2-1 isoforms,
statistical analysis between σmean, ϵmean, FB and FR was performed using repeated
measures ANOVA and paired or unpaired student’s t-tests, as appropriate, followed by
Bonferroni corrections for multiple comparisons. All values are presented as mean ±
standard deviation and statistical significance was set at p < 0.05.

4.4.2 Continuum Mechanical Analysis of FtsZ1-2 and FtsZ2-1
isoforms

A total of 3D images of N = 16 FtsZ1-2 and n = 21 FtsZ2-1 isoforms (see examples in
Figure 4.18a, e) were processed and resulted in visually distinct different spatial graphs
(Fig. 4.18b, f), convex hulls (Fig. 4.18c, g) and FE meshes for each protein network (Fig.
4.18d, h). The average distributions of stress and strain (percentile of maximum stress
and strain values in each network), in case of small deformations (2% compression), show
similar overall mechanical responses to compression in the different primary directions
within one isoform (p ≥ 0.03 (student’s test, Bonferroni correction for three comparisons;
Fig. 4.19a-d). Therefore, we consider mean stresses σmean and strains ϵmean as represent-
atives for the mechanical responses of the network. Following, mean values are analyzed
for comparing load directions, magnitudes and effects of isoform on mechanical response.
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Figure 4.18: Image pre-processing of FtsZ1-2 (a-d) and FtsZ2-1 (e-h) isoforms. a) Sample 3D
CLSM image of FtsZ1-2 isoform, b) resulting spatial graph, c) resulting convex
hull and d) resulting volume mesh. e) Sample 3D CLSM image of FtsZ2-1 isoform,
f) resulting spatial graph, g) resulting convex hull and h) resulting volume mesh.

All (mean) mechanical parameters were affected by load direction as well as isoform
(ANOVA, p < 0.01). Detailed analysis of load directions revealed, that mean stresses
were in FtsZ1-2 significantly lower when loading in EV2 direction compared to the other
two directions (p = 0.01, Fig. 4.19e). For FtsZ2-1 buckling failure was significantly lower
for loading direction EV1 compared to EV3 (p < 0.01, Fig 4.19h). Comparing isoforms
revealed, that in EV2 direction all mechanical parameters (σmean, ϵmean, FR, FB) were
in FtsZ2-1 significantly higher than in FtsZ1-2 (p ≤ 0.04; Fig. 4.19e-h). Additionally,
FtsZ2-1 responded to compression in EV3 direction with a significant higher strain than
FtsZ1-2 (p = 0.049; Fig. 4.19f).

4.4.3 From Small to Large Deformations
Because of the overall similarity in mechanical response at 2% displacement between
the directions and since the variations of the two significant different parameters in the
three principal directions (FtsZ1-2: σmean = 55% and FtsZ2-1: FB = 35%) can be
explained by differences in stretch (FtsZ1-2 St = 0.76 ± 0.11, FtsZ1-2 St = 0.67 ± 0.20,
p = 0.05) calculated according to [13], it was decided to evaluate the mechanical response
in large deformation setup only for one principal direction. EV3 was selected due to
the overall highest (combining FtsZ2-1 and FtsZ1-2) mean values 2% displacement in
all four parameters (σmean = 1.7 ± 1.3Pa; ϵmean = 0.7 ± 0.6 e−3; FR = 1.6 ± 3 e−3;
FB = 4.2± 1.9 e−1).

In comparing the mechanical behaviour of isoforms, analyzing the (quasi-static) com-
pression process (2%→ 20%) revealed similarity in mechanical responses with increasing
deformation (Fig. 4.20). For all four calculated parameters at all displacement steps, no
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Figure 4.19: Mechanical responses to small deformations (2% compression). a, b) Stress distri-
butions in FtsZ1-2 and FtsZ2-1 networks, respectively, in response to compression
in EV1 (blue), EV2 (orange) and EV3 (gray) directions. c, d) Strain distributions
in FtsZ1-2 and FtsZ2-1 networks, respectively. Dashed line indicates mean val-
ues. e-h) Calculated mechanical parameters from small deformation simulations
of FtsZ1-2 and FtsZ2-1 isoforms in EV1 (blue), EV2 (orange) and EV3 (gray)
directions. e) σmean. f) ϵmean. g) FR h). FB. Data is shown as mean±standard
deviation. * denotes a significant difference between load directions (student’s t-
test, Bonferroni correction), X denotes a significant difference between isoforms.
Data is shown as mean±standard deviation.
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significant differences between the isoforms were observed (Fig. 4.20c-f).
For mean stress, mean strain and rupture failure factor (Fig. 4.20c-e), a gradual non-

linear increase in both network types was detected with increasing displacements; in
contrast, FB converges for both isoforms toward a constant failure factor of 1% from
10% displacement (Fig. 4.20f). Lastly, the stress-strain relationship stays linear for both
isoforms during the simulation steps which point towards an overall linear behaviour of
the network as a whole, as was expected by utilizing a linear material law (Fig. 4.20g).

Figure 4.20: Changes in mechanical response with increasing compression. a, b) Stress distribu-
tions at 20% displacement in sample networks of FtsZ1-2 an FtsZ2-1, respectively.
c) Mean stresses in EV3 direction σmeanEV 3. d) Mean strains in EV3 direction
ϵmeanEV 3. e) Rupture failure factor in EV3 direction FRmeanEV 3. f) Buckling fail-
ure factor in EV3 direction FBmeanEV 3. g) Mean stress vs mean strain in EV3
direction. h) Calculated mechanical parameters (σmeanEV 3, ϵmeanEV 3, FRmeanEV 3

and FBmeanEV 3 respectively) at the 20% displacement step. Results are presented
as mean±standard deviations. * denotes a significant difference based on student’s
t-test (p < 0.05) between FtsZ1-2 (gray) and FtsZ2-1 (green). Displacement step
size 2%, minimum displacement 2%, maximum displacement 20%.

Comparing the mechanical responses at 20% displacement, shows no significant differ-
ence between the two FtsZ isoforms (Fig. 4.20h). At 20% displacement, buckling failure
factor (FtsZ1-2: 1.0% and FtsZ2-1: 1.0 ± 0.1%) is significantly higher than the rapture
failure factor (FtsZ1-2: 0.4 ± 0.2% and FtsZ2-1: 0.5 ± 0.2%, p ≤ 0.01). However the
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first derivative of the failure factors with respect to the displacement (FR: FtsZ1-2: 0.02,
FtsZ2-1: 0.03 and FB: FtsZ1: 0, FtsZ2-1: 0) shows that with increasing displacement,
FR would become the dominating failure factor.

4.4.4 Discussion
The simulations clearly show that the mechanical protein networks respond to external
loads, depending on their orientation and the load direction. Moreover, the respond
is different between FtsZ1-2 and FtsZ2-1 isoforms. This is to author’s best knowledge
the first detailed in silico investigation applied on detailed spatial cellular mechanics of
cytoskeletal protein structures. This allows the virtual assessment of sample-specific re-
sponses to applied loads. Assessing the isoform-specific mechanical responses supports
the assumption that the two main isoforms have different structural roles [228]. Further,
this is in accordance with the differences in functionality and morphology of the two iso-
forms observed in yeast cells [331, 332]. Dependency on load direction might be related
to the previously reported plate like shapes of these isoforms (negative oblateness as re-
ported in Özdemir et al. [255]). Previous studies employing simplified geometries, such
as tensegrity models [156], allowed to theoretically study cellular mechanism such as cell
reorientation [367]. More detailed FE models have been developed to investigate mech-
anical role of cytoskeletal components [21] and cell mechanosensitivity [377]. However,
the generic simplified geometries considered for cells, e.g ellipsoids [114, 268], even with
embedded cytoskeleton filament directions, potentially prevents comprehending the influ-
ence of structural features in the mechanical behaviour of cytoskeletal protein networks.
The developed approach of performing µFE simulations for close-to-realistic geometry
of the network allows investigating the subcellular components separately by decoupling
them from the surrounding to the ongoing research. To date, contribution of cytoskeletal
structures to whole cellular mechanics is only indirectly inferred by utilizing AFM [206].
However, since the mechanical behavior of a cellular structure is determined by many com-
ponents, such as of the structure of the cortical, intra-cellular (non-cortical) cytoskeletal,
and nuclear networks, as well as their distribution in space, decoupling the individual
components or investigating remains challenging [21, 68, 343]. It has been suggested
that measurements using AFM sharp tips tend to emphasize biomechanical properties
of the cell cortex, whereas measurements using AFM round-tips tend to emphasize the
mechanical behaviour of the intra-cellular network [343]. Combing such measurements
differentiating cellular component effects with a structural detailed models, as shown here,
would possibly further advance the

The vanishing differences in mechanical behaviour of the two isoforms (Fig 4.20c-f)
points towards a similar (or combined) contribution of the isoforms to the plastid mechan-
ics in response to large chloroplast deformation. Moreover, FtsZ isoforms show a nonlinear
increase in stress and strain with increase in network deformation. This has previously
been shown for microtubule [208, 378] and actin filaments [110]. Hence, one can expect
a similar load bearing functionality of the FtsZ (as plastoskeleton). Furthermore, up to
a compression rate of 20%, buckling remains the prevailing failure factor. However, the
convergence of FB to 1% after 10% displacement, shows the tendency of the network
to minimizing the probability of buckling. This indicates an adaptive stability of FtsZ
networks, as previously suggested [10, 228]. In contrast, although, the rapture failure
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increases up to 20% compression rate, it remains significant lower than the bulking failure
factor which makes it a less defining parameter for network failure. This might be due
to FtsZ filaments experiencing high strain values leading to rapture after bucking at the
location of bucking similar to fragmentation of buckled actin filaments [86].

The designed FE simulation setup has limitations. First, the imaging resolution might
affect the simulation results as well as the mapping of surrogate models. However, we
have previously shown that my quantitative imaging method is capable of resolving the
micro-structure of FtsZ networks [255]. Second, the commonly used linear elastic material
model in FE simulations of cytoskeletons [21, 73, 172, 377] might not completely depict
the behaviour of the network. However, by utilizing a linear elastic model, besides being
comparable to previous studies, we focused on the influences of structural features on
the observed mechanical characteristics e.g. adaptive stability. Future studies may focus
on combining the approach of precisely modeling the micro structure with experimental
techniques, such as atomic force microscopy, to further investigate material properties of
FtsZ. Third, the loading conditions of the simulations do not exactly duplicate reality
where a combination of active dynamic forces [340] as well as osmotic pressure [116] drive
the morphological changes of the network. Moreover, the FtsZ isoform is surrounded by
other proteins as well as other materials such as inter-organelle fluids. The designed simu-
lation setup provides a generic platform to investigate the structure-function relationship
in FtsZ protein network rather than a one-to-one simulation of dynamics of plastids. Fi-
nally, the failure criteria used in this study are experimentally derived from actin filaments
[275, 351], since no failure criteria has been experimentally derived for FtsZ to date. How-
ever, due to the assumed similarity in structural functionality between the FtsZ network
and actin networks and the similarity of rigidity in FtsZ and actin filaments, actin failure
criteria might represent FtsZ behaviour to a certain extent.

4.5 Combining Machine Learning and Simulations to
Investigate Protein Network Functionality

State of the art imaging techniques permit resolving micro-structural details of protein
networks. Computational analysis of acquired images facilitates quantifying compon-
ents and assembly of these networks [13], and may allow tracking structural changes of
the network assembly triggered by internal or external stimuli, connecting the structure
to functionality or distinguishing between network types [255]. Machine learning (ML)
algorithms have proven to be remarkably capable for automating such complex image
analysis [167] and have been shown to be able to correlate image content to biological
structural functionality [14, 17, 231]. Recently the concept of ML-based surrogate mod-
els have shown great success in accelerating the performance of numerical simulations of
complex mechanical environments [106] as well as predicting material properties [93]. A
ML-based approach could link structural features to mechanical characteristics allowing
answering abstract questions such as ”How are FtsZ biopolymers capable of exhibiting
adaptive stability?” or ”Interplay of which structural changes in the cytoskeleton of a
cancerous cell leads to changes in stiffness?”.

Here, an automated ML approach applied to 3D life confocal microscopy images as
a tool to link structural features defining cytoskeletal network type to its mechanical
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behaviour enabling an online evaluation of structure-function relations at the sub-cellular
scale is presented. This is carried out by combining a mechanical characterization of
protein networks through 3D nano finite element modeling and an automatic mapping of
structural features to the mechanical responses of networks (Fig. 4.21). The introduced
method creates a surrogate model to predict the sub-cellular mechanical responses of the
network. Analyzing the prediction process of the surrogate model based on the structural
feature allows us to deduct the presumed structure-function relationship.

The method is tested and applied to elucidate isoform-specific structure-function rela-
tionships of FtsZ networks. Future applications to more complex networks may allow to
investigate sub-cellular mechanotransduction as well as cytoskeletal restructuring induced
stiffness changes.

4.5.1 Machine Learning Surrogate Mechanical Model
To investigate the mechanical functionality of the protein networks based on their struc-
ture, we utilize a ML approach. This allows to extract structural features correlated to
the mechanical behaviour of the networks. Analyzing the extracted features, enables us
to identify design approaches developed by nature for carrying out mechanical function-
ality. To do so, we trained a set of ML models on the 26 calculated structural features
of the protein networks for mapping the structure of the network to its mechanical beha-
viour employing a regression model. This further allows to identify the structural features
contributing most to the surrogate mechanical predictions.

To investigate the structural approach employed by nature in the networks for devel-
oping the mechanical functionality i.e. adaptive stability, a set of surrogate models as a
tool to map the structural features of the protein networks to their mechanical behaviour
is designed. First, four multi output regression random forest models were trained [42] by
forming trees mapping the 26 structural feature on the calculated mechanical parameters
(σmean, ϵmean, FB and FR) for all three primary directions (EV 1, EV 2 and EV 3) in a
combined manner. Second, based on the simulation results of the large deformation in
the EV3 direction, a set of single output regression random forest models we trained for
each of the calculated mechanical parameters (σmean, ϵmean, FB and FR; four models per
mechanical parameter). For each ML model, a random dataset division with 32 and 5
networks for each training and test including at least 2 networks from each isoforms was
carried out. All random forest algorithms were implemented using the machine learning
library Scikit-learn in Python [262].

The performance of each surrogate model is assessed by calculating R2 values between
predictions and simulation results. Furthermore, a linear fit for scattered data of sim-
ulation vs. prediction was calculated from all four surrogate models per mechanical
parameter; where, R2

E of the linear fit and the difference of its first derivative to one
(Ea = |1− aSM |) are determined.

The importance of each structural feature on the model predictions for an individual
instance for the surrogate mechanical model are analyzed by noising up each feature and
comparing the plurality of out-of-bag vote and the reality to measure a wrong prediction
rate [42]. In the surrogate models, we consider the extracted structural characteristics
with high importance for the model responsible for inducing the observed mechanical
behaviour.
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Figure 4.21: End-to-end prediction of FtsZ mechanical behaviour from CLSM images. a)
Sample 3D CLSM images of FtsZ isoforms. b) Sample 3D segmented image and
its spatial graph, mesh and convex hull. c) 25 shape and element descriptors
are extracted and used as input features for training a random forest model to
classify FtsZ1-2 and FtsZ2-1 isoforms. d) A second random forest model (multi-
output regression) is trained on the structural features to predict the results of the
mechanical simulation of compressing the network in its principal directions (3
Eigenvectors).
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4.5.2 Mechanical Behaviour Prediction
The trained surrogate model can predict the mechanical response in small (2%) and
large (20%) deformations purely based on structural features with a high correlation
between simulated and predicted mechanical parameters. In case of small deformation,
the predictive models show high performance for predicting σmean (R2 = 0.90, Ea = 0.03
and R2

E = 0.83; Fig. 4.22a) and the ϵmean (R2 = 0.81, Ea = 0.04 and R2
E = 0.45; Fig.

4.22b). However, for FR (R2 = 0.69, Ea = 0.04 and R2
E = 0.69; Fig. 4.22c) and FB

(R2 = 0.72, Ea = 0.06 and R2
E = 0.60; Fig. 4.22d) the prediction abilities of models

are lower. In case of large deformations, however, all four mechanical parameters are
predicted with high accuracy. The best performing of the 4 trained models shows great
prediction metrics for σmean (R2 = 0.99, Ea = 0.03 and R2

E = 0.98; Fig. 4.22e), ϵmean

(R2 = 0.98, Ea = 0.01 and R2
E = 0.98; Fig. 4.22f), FR (R2 = 0.97, Ea = 0.01 and

R2
E = 0.95; Fig. 4.22g) and FB (R2 = 0.99, Ea = 0 and R2

E = 0.98; Fig. 4.22h).
The analyzed structural features have different importance in predicting the mechanical

response in case of large deformations. This importance distribution is different for the
different mechanical parameters. For the mean stresses, the most important features (50%
of total importance) are segment inhomogeneity (IS: 17 ± 5%), network density (ρPN :
16 ± 9%), segment thickness (thS: 9 ± 3%) and number of open nodes (Nop: 8 ± 2%;
Fig. 4.22i). In case of mean strains, segment inhomogeneity (IS: 37 ± 18%), number
of open nodes (Nop: 12 ± 17%), network density (ρPN : 8 ± 12%) and oblateness of the
network (ObPN : 6 ± 10%) were the most important structural feature (Fig. 4.22j). The
defining structural features for rapture failure factor are network density (ρPN : 18± 8%),
segment inhomogeneity (IS: 13± 9%), node density (ρN : 9± 3%) and segment thickness
(thS: 8± 12%; Fig. 4.22k). As far as the buckling failure factor is considered, node-node
distance (dnn: 34 ± 20%), segment inhomogeneity (IS: 22 ± 12%), point-point distance
(dpp: 8± 8%) and number of segments (NS: 5± 7%) are the most important features for
the surrogate models (Fig. 4.22l).

4.5.3 Discussion
The random forest-based surrogate model is capable of predicting the mechanical beha-
viour of protein networks in response to external loading, as the model reaches during 2%
as well as 20% compression a high performance: 0.69 ≤ R2 ≤ 0.90 and 0.97 ≤ R2 ≤ 0.99,
respectively. However, the relatively higher accuracy for large deformations points toward
higher correspondence of the extracted structural features to the mechanical behaviour of
the network in response to large deformations. This specifically coheres to the hypothesis
that these networks are able to undergo large deformations without losing their structural
integrity, as previously postulated [228]; hence, possessing structural features conforming
to response in case of large deformations. The high accuracy in mapping the structural
features to the mechanical behaviour of the networks further demonstrates the potential
load bearing functionality of FtsZ protein in chloroplasts. Furthermore, this shows that
the capability of the network to keep its stability by undergoing deformations relies not
only on material properties of the biopolymer but probably more prominently on the
structural features of the network. This is in accordance with the effects of the network
architecture on the overall mechanical behaviour reported in actin protein network [85].
In summary, to author’s best knowledge, this is the first detailed investigation of these
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Figure 4.22: Surrogate mechanical model. a-d) Surrogate model prediction vs. simulation
results for the test set networks for small deformation in each primary direction
(EV1: blue, EV2: orange and EV3: gray. a) σmean. b) ϵmean. c) FR. d) FB.
Networks of FtsZ1-2 in the test set are shown as solid circles and FtsZ2-1 as
circles with an out ring. Black line represents a liner fit to the data points. e-h)
Surrogate model prediction vs. simulation of best performing model results for the
test set networks for large deformation in EV3 direction. e) σmean. f) ϵmean. g)
FR. h) FB. Gray and green represent FtsZ1-2 and 2-1 respectively. Black line
represents a liner fit to the data points. i-l) Mean importance of structural features
for the set of surrogate model predicting each mechanical parameter, i) σmean. j)
ϵmean. k) FR. l) FB. The orange line represents cumulative importance.
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sample-specific structure-mechanical performance correlations. This empowers us with
a image-based virtual mechanical testing method to investigate the manifestation of the
mechanical characteristics in the structural features of the network.

By analyzing the importance of the features of the surrogate models in predicting
stresses and strains of the network, it could be shown that the structural characteristics
of the filaments (local changes of direction and thickness (IS), average thickness (thS)
and open end filaments(Nop)) as well as network overall morphology (network density
(ρPN) and oblateness (ObPN)) are the structural features mostly contributing to the large
deformation mechanical response of the networks. This can be interpreted as the FtsZ
network being capable of preventing the increase in failure possibility due to buckling of
filaments by developing specific distances between their nodes (average dnn in FtsZ1-2 and
FtsZ2-1: 5.9µm), local changes of direction and thickness of filaments (IS = 18.8), the
distance between the local changes of filaments (dpp = 60nn) and number of filaments in
the network (NS = 207). This could potentially be used to design adaptively stable struc-
tures capable of undergoing large deformations or bio-engineering mechanically optimized
responsive biomaterials [207, 213].

Here it was shown, that combing confocal imaging with µFE analysis employing a
machine learning framework allows for an image-based surrogate cellular mechanics pre-
diction. Additionally, by providing an identification of structural features determining
this mechanical response to a given stimuli, we could for the first time, directly investig-
ate the structure-function relationship of individual protein networks in a sample-specific
manner. The ML surrogate model trained on in-silico data generates accurate and fast
predictions of sub-cellular mechanics (R2 > 69% and R2 > 97% for small and large de-
formation respectively). The method provides a framework for further investigations of
structural functionality of protein networks in plants as well as in humans, as it would
allow to monitor the structure-mechanical response of cytoskeletal structures during mor-
phological changes over time, such as cell shaping by actin [136]. Further, cytoskeletal
changes, which have been shown to occur in certain diseases, such as cancer [371] and
Alzheimer’s disease [23] could be more precisely quantified and may be a target for future
drug development. Advanced structural characterization can help to improve monitoring
and understanding the structural state of protein networks due to internal or external
stimuli such as cellular processes and disease and may help to optimize treatments for
cytoskeletal affecting disease such as cancer and Alzheimer’s disease.

4.6 Summary
In this chapter, the manifestations of specific mechanical functionalities in distinct struc-
tural features of a biological subcellular network structure was investigated. The novel
method combines machine learning, µFE analysis and quantitative confocal microscopy
imaging to analyze the mechanical behaviour of FtsZ protein networks and to identify
the evolutionary developed structural features involved in the mechanical load bearing
functionality of these networks, by combining a descriptive, a predictive and a prescript-
ive task. In the descriptive task, FtsZ isoforms are classified based on their structural
features. Moreover, the predictive task of the surrogate models, maps the structural fea-
tures to the mechanical behaviour derived from µFE simulations and, further allows to
perform the prescriptive tasks of identifying the features optimized by nature for obtain-



84 Chapter 4: Analyzing Structure-function Relationship at the Nano Scale

ing a certain mechanical response to external stimuli. The model further provides a fast
and computationally inexpensive solution for the demanding detailed biomechanics µFE
simulations of a protein network via surrogate modeling.



5 Analyzing Structure-function
Relationship at the Micro/Macro
Scale: Bone

At the micro/macro scale, many research has been devoted to establishing the structure-
function relationship. Specially, bone as a load bearing tissue, has been investigated
extensively. The load bearing functionality provided by the bone’s structure is effected
by certain physiological and patho-physiological processes. Therefore, a set of perturba-
tions are utilized in this thesis to study the structure-function relationship in bone. To
do so, machine learning models enabling to link the structure of bone encoded in images
to the effects these perturbations on the bone structure were developed. The chosen per-
turbations are: 1) maturation-related changes in bone structure, 2) mechanical loading
aiming at reversing the aging-related changes and 3) alterations in bone structure due
to diseases. In order to do this, as a part of a preclinical study that allows inducing
controlled structural adaptations, a deep neural network (DNN) was designed to predict
the ”skeletal age” of a subject based on X-ray images. In addition, a tool was developed
to analyze the learned structural features corresponding to the maturation stages. Fur-
thermore, this DNN is applied on images of bone treated with in vivo loading to study
the rejuvenation effects of this mechanical treatment. In a clinical study, the DNN was
modified to investigate manifestation of bone-structure-altering Osteogenesis Imperfecta
in patients. The goal was to automatically identify specific disease types. This overall
approach allowed an unbiased automatic investigation bone structural changes induced
by the aforementioned mechanical function-altering perturbations.

The structure-function relationship is more mechanically driven in comparison to pro-
tein networks. However, alongside mechanical functionality, many biological stimuli such
as maturation, aging and diseases drive the architecture of the bone structure. Another
fundamental difference between the bone and protein network structures is the availabil-
ity of large amount of high-resolution imaging data in the field of bone-structure-analysis
which is intuitively due to presence of less physical small-scale-imaging restrictions. Hence,
deep learning models, which are specifically designed to analyze structured rich-content
data such as high resolution 3D images has been employed. Therefore, the in 4.2 de-
veloped quantitative image preprocessing method is not needed for this purpose. Hence,
for the remaining of this dissertation the focus moves from training on specifically extrac-
ted structural features to automatic extraction of structural features which correlate to
the functionality of interest.

In this chapter, a series of ML-based methods developed to investigate structural
changes in bone due to aging, in vivo loading treatment and osteogenesis imperfecta
disease are presented. This is done by designing purpose-oriented deep neural networks
for assessment of state of the bone. As a part of a preclinical study, we investigate the

85
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morphometric and densitometric changes that bone experiences in the process of aging
(see 5.2). This is done by creating a DNN that is capable of an end-to-end short-term bone
age assessment. The robustness of the model is further validated in a three-fold manner.
This novel age assessment DNN is utilized in 5.3 to investigate the potential rejuvenation
effects due to in vivo loading. In 5.4, the DNN is extended to detect the state of the bone
in different types of osteogenesis imperfecta disease. Moreover, by analyzing the learning
process of the networks through saliency maps and designed attention values, localized
manifestation of bone state into the bone structure is investigated.

The developed methodologies presented in this chapter, their validation and applica-
tions are previously published in [14, 15].

5.1 General Background on Bone
5.1.1 Bone Biology
Bone is considered a connective tissue whose main functionality is to provide support and
protection. This means that bone not only provides the mechanical load baring framework
of the body, but it also, protects organs from external impacts and forces. Moreover, bone
enables force generating and managing parts of the body, such as muscles and tendons,
to transmit these forces into movement.

Bone Morphology

Humans usually have 213 bones [75]. They can be categorized into 3 groups: 1) long bones
e.g. femur, 2) flat bones e.g. skull bone components and 3) irregular bones e.g. vertebrae.
In this research, the developed models for analysing the structure and functionality of
tibiae and fibulae in 5.2 and 5.3 and radius in 5.4 are presented. Therefore, for the rest
of overview information, the focus will be on long bones.

Longs bongs, can be divided into three compartments: 1) epiphysis at both ends, 2)
diaphysis in the form of a hollow tube in the middle and 3) the connection between these
two which is called metaphysis [66]. Often, the growth plate separates metaphysis and
epiphysis during growth. This results in longitudinal growth of the bone. The growth
plate calcifies when puberty is finished [259]. This work focuses on metaphyseal bone.

From a morphological point of view, bone has two main compartments, i.e. the cortical
and trabecular bone. The former covers almost 80% of the bone mass and the latter,
the rest 20%. The diaphysis and the thin shell of the metaphysis, the cortical bone
is very dense. It is constructed of many cylindrical modular elements with a canal in
their center that contains the blood and lymph vessels as well as nerves and Volkmann’s
canals. The nutrients required in bone are transported in these canals [66] as well as in
the interconnecting canaliculi. Trabecular bone exists in epiphyseal and metaphyseal in
medullary cavities (Fig. 5.1). This bone compartment is a interconnected 3D network
of trabeculae. Due to the greatly manifested structure-function relationship in bone, the
structure and hence its porosity vary heavily depending on the bone location and age.
Porosity, is mostly considered the distinguishing factor between trabecular and cortical
bone. The bone porosity in cortical compartment ranges between 0.05 and 0.20; whereas,
in trabecular bone porosity of 0.4 up to 0.95 has been measured. The higher part of
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the spectrum exists in bones of elderly [237]. Further, the transitional part between the
trabecular and the cortical bone is considered the third compartment of the bone, as the
transition between the densities in the two main compartments takes place in a continuous
manner [152].

Figure 5.1: Multi scale bone structure. a, b) Sample tibia and radius of an adult male human,
respectively.

At the microscopic level, the same modularity of the structure is observed in both
cortical and trabecular bone. They both contain an organic and an inorganic phase.
Collagen fibers create the bone matrix and organize the structure of the organic phase
of the bone and provide its elasticity. These fibres, similar to other proteins, create a
network structure. The inorganic phase is responsible for the high mechanical stiffness of
the bone and consists of mainly calcium phosphate.

The micro-structure of bone is highly dynamic and adapts to internal and external
stimuli. This dynamic behaviour is manifested into the processes of modeling and remod-
eling.

Modeling and Remodeling in Bone

Despite the appearance of bone as a static biological structure, there exist a great dy-
namism in the biological processes taking place at the microscopic level in bone. Two
of the processes that simultaneously take place in bone are damage repair and adaptive
restructuring as a response to mechanical load. This leads to an increase in efficiency
with respect to load carrying and preventing structural failure. As a result of these two
processes main structural characteristics of bone, bone mass and material properties,
are constantly changing. This dynamic adaptation of structure takes place by a bal-
ance between bone formation and bone resorption which leads to adaption of the bone
mechanical behaviour (stiffness and flexibility). This follows the evolutionary process of
optimizing material use and reaching required performance. Therefore, bone modeling as
a combination of bone formation and resorption, takes place in both bone compartments
through life.

Osteoblasts, osteoclasts and osteocytes are the cells in bone contributing to bone mod-
eling and remodeling [66]. Removing bone matrix is performed by osteoclast. Whereas,
osteoblasts are responsible for formation of bone. The bone formation is performed when
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a group of osteoblasts experience a differentiation, which leads to being surrounded by
unmineralized osteoid [66]. Up to 95% of bone cells are osteocytes, which are placed in
fluid-filled lacunae and create a highly interconnected network [27]. It is commonly ac-
cepted that osteocytes are mechanosensitive and capable of detecting strain and damage
in bone. Therefore, the osteocyte network is believed to be orchestrating the modeling
and remodeling process of osteoclasts and osteoblasts.

Bone (re)modeling takes place on the surface of the bone, specifically, on the surface
of the cortical bone: on outer periosteal and inner endocortical and on trabecular. It is
believed that up to 50% yearly bone turnover can be observed in cortical compartment in
the first two years of a human’s life. This rate drops to 2% to 5% in elderly. Trabecular
bone exhibits up to ten times higher turnover rate than cortical bone [66, 258]. As the
term turnover describes the bone volume replacement, it is dependent on the surface-to-
volume ratio of bone. This ratio is reported to be up to five times higher in trabecular
bone than in the cortical bone compartment [258]. This means that despite a lower
(re)modeling rate, the trabecular compartment could have higher turnover.

Adaptive Structural Behaviour of Bone

Genetics is the main force behind the skeleton morphology. However, the macro/micro-
architecture of bones is formed through the adaptation process to resist mechanical forces
being applied on it. Carl Culman, a German engineer, was the first person to notice that
the architecture of trabecular bone correlates to trajectories of the principal stresses in
1867. Afterwards, the renowned Julius Wolff created a mathematical model by analysing
the drawings of Hermann von Meyer, a Swiss anatomist, asserting that the mechanical
forces are the main players in determination of the trabecular structure. hence, Wolff’s law
of bone transformation [364]. Wolff’s main focus was on the design of the bone structure
rather than the (re)modeling. By then, it was already established that bone adaptation
is a product of self regulation taking place in bone. Roux, in 1881 [286], asserted that the
adaption of bone is towards functional optimization; hence, an evolutionary functional
design.

Up to now, many thorough studies, specifically experimental studies, have investigated
and supported this notion. For instance, it has been shown that in extreme scenarios
such as astronauts being deprived of gravitational force or patients lying on bed for long
periods of time, the bone morphology changes drastically [78, 197]. On the contrary, the
bone mass in professional athletes such as soccer players and gymnasts have significantly
higher than non-athletes [52, 94].

Most experimental studies investigating the effects of exercise on the structure of lon-
gitudinal bones have focused specifically on bone density. They succeeded in showing that
an increase in physical activity in all three phases of skeletal life, naming young growing,
adult and elderly, leads to positive effect on bone density [174, 353]. However, it is clear
that the type of exercise has a clear effect on the outcome. For example, contrary to
the public belief, strength training such as weight lifting has no positive effect on bone
structure in both adults and elderly [134]. The stimulus has to be dynamic based, c.f. the
many vibration studies [126]. However, up to this point, it has been nearly impossible to
pick the local effective/relative mechanical stimuli on the bone in human exercise studies.
This is due to the fact that the influence of different factors such as the duration or fre-
quency of mechanical signals are difficult to distinguish. Moreover, it is very challenging
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to measure the load that is applied on the bone during exercise directly.
If it is considered that the goal of exercise treatment is to reduce fracture risk, one

has to investigate the mechanical signal that would maximize the adaptive bone struc-
ture changes. To do so, many animal models with controlled in vivo loading settings
have been developed to investigate adaptive behaviour of cortical and trabecular bone.
This includes loading rabbit femur [234] and rat tibia [4]. The recent research focus has
been shifted to mouse models such as loading of mouse tibia [105, 123]. These stud-
ies in animals showed that dynamic mechanical signals and changes in strains applied
to bone affect the bone structure [288]. Moreover, factors such as amplitude of loading
cycles, strain frequency and duration of resting between loading affect the bone adaptive
response [63, 247]. Furthermore, animal models have been used to study the effects of
non-mechanical parameters e.g. age, sex, estrogen level and osteoporosis medication such
as bisphosphonate on bone adaption [202, 223, 319].

There are still many gaps in our knowledge about adaptive responses of the bone with
aging and diseases. Although it is clear that exercise and the resulting mechanical signals
can reduce aging-induced bone loss, the specific mechanical effect on the bone at the
osteocyte level as well as the signaling leading to the cellular coordinated response of
the bone is yet to be fully understood. Finding a treatment which is less reliable on
medication and more on physical exercise is desirable. This request, however, a better
understanding of the aging-, as well as, loading-induced structural changes in bone.

5.1.2 Aging and Bone Loss
A combination of bone mass, architecture and the mechanical characteristics of the bone
material dictates the capability of the bone to resist fractures [102]. It is commonly
believed that the bone mass increases for the first two decades of life and reaches its
peak in the 20s. Afterwards, throughout life, the bone mass decreases constantly [22].
The resulting changes in the bone architecture lead to a decrease in bone strength with
aging. As the bone strength decreases, the possibility of mechanical scenarios in which
impacts more than the bone’s critical failure values occurring increases. This often results
in fractures in elderly.

Osteoporosis

Osteoporosis is a skeletal disease in which an increase in bone fragility and possibility
of fracture as a result of deterioration of bone mass and strength takes place [67]. It
is reported that 50% and 20% of the above 50-years-old Caucasian male and females,
respectively, will experience a fracture in the rest of their lives [170]. This makes osteo-
porosis a very important public health issue. Osteoporotic fractures are mostly seen in
vertebrae, proximal femur and distal forearm. However, this disease could be manifested
as low bone density fractures in all bones. Moreover, patients who have had a fracture
are more likely to experience more fractures in their lifetime.

Treating Bone Loss

Currently, medications utilize two different approaches to deal with osteoporotic bone
loss: 1) by increasing bone formation by using anabolic agents and 2) by decreasing



90 Chapter 5: Analyzing Structure-function Relationship at the Micro/Macro Scale

bone resorption with the help of anti-resorptive agents. The later approach is mostly
used in currently prescribed drugs such as estrogen and bisphosphonates [209, 210]. The
increase in bone formation at the moment is only possible by the use of teriparatide which
is the amino-terminal fragment of parathyroid hormone [243]. However, this requires
daily injections, which makes it very difficult for the patients. Recently, more advanced
osteo-anabolic drugs e.g. Sclerostin neutralizing antibodies, have been developed and are
currently used in clinical trials [335].

It is yet a challenge to resolve the anabolism process in bone and its triggering para-
meters. If one would be able to determine the structural response to mechanical stimuli,
it might be possible to prescribe exercise-based and drug-free treatments for osteoporosis
and similar diseases. Such treatment should produce a signal which only targets the de-
sired anabolic process without causing any harmful side effect. This results in a positive
bone adaption in both mass and structure without the disadvantages of using drugs.

5.1.3 Models of Age-related Bone Loss and Osteoporosis

Due to the ethically-risen problems of performing experiences on humans, in many re-
search field, animal models with replicated physiology and patho-physiology of human
are used. In the field of bone research, mouse models are the go-to animals. In 2002
the DNA of mouse was sequenced [64], which makes mouse the second mammal after
humans with completely sequenced DNA. This, also made it possible to create transgenic
mice. Furthermore, due to similarities of genetics and patho-physiology between humans
and rodents, it is possible to carry out translational research. Moreover, as a result of
breeding between genetically related parents, the mice used in experiments are almost
completely genetically identical. Therefore, the mice with identical genotype have organs
have the same characteristics such as morphology and development process (phenotype).
As a result, experimental studies with inbred mice exhibit greater reproducibility.

The use of inbreed mice for bone research makes it possible to investigate the influence of
specific genes in bone diseases. This is possible through overexpression or knock-out genes
where a control group is compared to the group with the modified genes. Furthermore,
By modifying genetics of the mice, one is able to remove the expressions of targeted
proteins. This enables shutting down signalling pathways of to the cells. Afterwards,
it is possible to compare the bone structure and mechanical responses in the wild-type
mice with the transgenic mice. Combining this approach with replicating the mechanical
stimuli occurring in humans can potentially lead to the presence of the pathology in the
mouse model.

Due to the similarity of skeletons of humans and mice, hind limb bones of mice are
usually used to investigate long bone pathologies [44]. Despite all the possibilities of
translational studies from animals to humans, it is important to note that minuscule
genetic differences between the species might cause great phenotype differences. For
example, the murine skeleton steady grows due to lack of osteonal (re)modeling of cortical
bone. Moreover, the inflammatory responses of humans and mice are also greatly different
[299].
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5.1.4 Osteogenesis Imperfecta
Osteogenesis imperfecta also known as ”brittle” bone disease refers to a group of rare
heritable bone dysplasia disorders. OI occurs in 1 in every 15000-20000 births [244]. In
85% of cases, OI is caused by mutations in genes encoding type I collagen (COL1A1
and COL1A2), leading to increased bone fragility attributed to reduced bone mass and
quality. Historically COL1-related OI has been classified based on clinical severity using
Silence type I (mild), type II (perinatally lethal), type III (severe) and type IV (moderate)
[305]. The collagenous matrix and mineralized components create more than 90% of the
bone tissue. The mineralization begins by osteoblasts producing alkaline phosphatase
which brings about creation of mineral crystals at the locations of phosphate nucleation
[195, 196]. The formation of these crystals around collagen is the process of bone matrix
mineralization. All OI patients have an excessively highly mineralized bone matrix [244].
Fratzl-Zelman et al. have shown similarity in crystal sizes in OI type I patients and
healthy control group [103]. However, the OI patients experience an approximately 12%
increase of relative bone volume fraction. This is a result of higher amount of crystals in
their bone matrix. Moreover, the gene mutations in OI patients result in thinner collagen
fibers and further apart collagen molecules [246]. This results in more spaces available
between collagens in the bone matrix; hence, more crystals in between the collagen fibers.

The basic multi-cellular unit (BMU) which consist of osteoblast, osteocytes and osteo-
clasts determines the bone turnover. Collagen type I is one of the proteins produced in
osteoblasts, which is the most prominent component of the bone matrix. In patients with
OI type III and IV, a mutation in collagen protein takes place which hinders the folding
of the triple helix [274]. This might result in the substitution of Gly of sequence Gly-X-Y
with another amino acid in COL1A1 or COL1A2 chain, which leads to a deviance of form
in the triple helix [376]. The disturbance in folding process of changes of the conversion
process of Lys carried out by post-translational modifying enzymes [244]. Patients with
OI type I experience no mutation in collagen I and the folding process. However, more
than half of their collagen is created in an environment with higher enzymes-to-collagen
ratio.

5.2 A Deep Learning Approach for Bone Age Assessment
from µCT Images

Human and animal studies show that skeletal maturation and aging affect both, bone
micro-architecture [282, 326, 361] and tissue material properties [183, 285]. Formation
and resorption dynamics in trabecular [29] and cortical bone [30] are altered with aging
in a site-specific manner [28, 31]. As a result, with increasing age a net bone loss occurs
[3, 326], often resulting in osteoporosis and a subsequent increase in fragility fracture risk
[171]. The rules governing age-related alterations in bone composition, organization, and
elasticity across structural hierarchies are, however, to date not completely understood.
Disease, like osteoporosis, or age change the dynamical processes of material decompos-
ition in bones that lead to changes in the micro- and macro-structure, in bone strength
and, subsequently to an increase in the likelihood of fracture [74].

Given the fact that osteoporosis causes worldwide more than 8.9 million fractures per
year [139], it is essential to develop a precise and comprehensive analysis of phenotypic
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changes and abnormalities at all relevant length scales. Assessing the onset of osteoporosis
and disease progression is therefore challenging. Within clinical practice, dual energy X-
ray absorptiometry (DXA) and biochemical markers remain the standard methods of
monitoring osteoporotic patients receiving pharmacological treatments. The T-score is
derived from measurements of the areal bone mineral density (aBMD), which is obtained
by DXA [168]. DXA is a useful clinical tool, but has several limitations including restric-
tion to a two-dimensional image, lack of distinction between trabecular and cortical bone,
lack of information on bone microarchitecture, difficulties in edge detection and projec-
tion artefacts. Additionally, the predictive ability of this method is low [36, 281] with
less than half of all nonvertebral fractures occurring in postmenopausal women having
an osteoporotic T-score [298]. Biochemical markers are indirect indicators of the rates
of formation and resorption of bone and give no insight into its quality or mechanical
properties. Furthermore, like all biochemical markers they are subject to pre-analytical,
analytical and post-analytical sources of variability and the results may be affected by a
range of non-skeletal conditions. High-resolution peripheral quantitative computed tomo-
graphy (HR-pQCT) is emerging as a powerful non-invasive bone imaging modality cap-
able of assessing volumetric BMD, microarchitecture and strength, and distinguishing
cancellous and cortical bone. Additionally, micro-finite element and homogenized finite
element models based on HR-pQCT imaging are increasingly used to predict bone stiffness
and strength [69, 384]. The Bone Microarchitecture International Consortium (BoMIC),
which combined individual-level prospective data from eight cohorts (7254 individuals,
mean age: 69± 9 years), recently reported that HR-pQCT parameters improved fracture
prediction beyond femoral neck aBMD or fracture risk assessment tool (FRAX) scores
alone [292].

To employ quantitative methods that determine the time-dependent changes in bone
structure and, hence, the underlying dynamic process, without knowing its entire mech-
anical loading history. This knowledge, however, must be the basis for studies aiming to
monitor bone health and bone fracture predictions. From a macrostructural point of view,
bone consists of porous cortical and trabecular bone. The remaining space hosts different
biological cells as well as blood vessels. In cortical bone, this porosity is organized in a
tree-type branching structure of canals. In trabecular bone, these canals are penetrating
each other, yielding a micro-structure made up of single plates and struts [127]. The
vascular pore channels are connected via canaliculi to cave-like single pores called lacunae
[296]. The entire extracellular space outside the pores appears as a nanocomposite of
collagen-rich and collagen-free domains. The hierarchical and dynamic nature of bone
make an assessment of the ”state” of bone challenging. The rules governing age-related
alterations in bone composition, organization, and elasticity across structural hierarchies
are, however, to date not completely understood. Additionally, human and animal studies
showed, that maturation and aging affect both, bone micro-architecture [282, 326, 361]
and tissue material properties [183, 285], as formation and resorption dynamics in trabec-
ular [29] and cortical bone [30] are altered with aging in a site-specific manner [28, 31].
As a result, with increasing age a net bone loss occurs [3, 326], often resulting in osteo-
porosis and subsequent increased fragility fracture risk [171]. While osteoporosis-related
fractures occur primarily at corticocancellous sites (e.g. metaphysis or vertebrae), stress
fractures often occur in cortical sites [48, 270]. Consequently, a precise and comprehensive
analysis of phenotypic changes and abnormalities at all the relevant scales is crucial to
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identify osteoporosis onset and progression. For osteoporosis, for example, there is no
standard practice to monitor patients receiving treatment. Assessing onset and progres-
sion as well as assessing the effects of novel and existing treatments for age-related bone
loss and osteoporosis is therefore challenging. The r Although there exist pre-clinical
studies aiming to assess bone maturation and (re)modeling, they all focus on selectively
extracted mechanical or morphological features such as mineralization [99, 219] or bone
volume [129, 181, 239] and their alterations. Preclinical studies using micro-computed
tomography (µCT) aiming to assess bone maturation and (re)modeling have focused on
selectively extracting mechanical or morphological features such as mineralization [99] or
bone volume [129, 181, 239] and their alterations [28, 219]. Although these approaches
decode certain aspects of structural changes in bone, they neglect the underlying interplay
and concurrency of (re)modeling and (de)mineralization. The measures extracted from
these properties are selective and therefore not sufficient to predict fracture in diseases
such as osteoporosis. To provide more precise descriptions of the disease phenotype, the
diverse manifestations must be captured allowing one to distinguish healthy bones from
diseased ones and young bones from aged ones to define disease onset and progression
into sub-classes. This would permit a much more precise understanding of bone quality,
as well as a better prediction of fracture risk and treatment outcome.

A major challenge in disease diagnosis is interpreting information-rich (imaging) data.
This challenge is at the same time a great opportunity, as there exits nowadays artificial
intelligence-based methods that have the capabilities and power to analyze relationships
within rich datasets, e.g., relationships of particular dynamic biological phenomena. Ar-
tificial intelligence, for example, has been used to diagnose Alzheimer disease based on
Magnetic Resonance Imaging (MRI) [321] or to analyze skin lesion for diagnosing malig-
nancy [92]. Similar to the previous two examples, one can also use artificial intelligence
to analyze (re)modeling of bone using X-ray images (eg. µCT, HR-pQCT). As scatter
and attenuation information of µCT images contain information about material compos-
ition, distribution and amount, they potentially contain all structural information that
is needed to asses bone maturation [238]. Despite the fact that recent studies can ex-
tract from 2D and 3D X-ray image data more features describing bone quality through
assessment of vBMD and microstructure [32, 39, 49, 224, 226, 289], information on bone
(re)modelling rates are only obtained through invasive histomophometry analysis of iliac
crest bone biopsies. Fortunately, recent advances in artificial intelligence towards deep
learning now enable further data analysis by utilizing high-throughput image data. Com-
pared to traditional machine learning methods [211, 302], deep learning methods do not
only exhibit an improved prediction accuracy, but also provide the ability to visualize
learned features, to link discovered features with clinical relevance. The first applications
for bone age assessment in pediatrics using deep neural networks (DNN) showed already
some success in classifying/predicting bone age from 2D X-ray images [200, 313, 337].
Further, they provide confidence that DNN-based methods can also provide insights into
the underlying processes of skeletal maturation and bone (re)modeling.

In this section, a deep learning approach applied to 2D projection X-ray images of
bones as an end-to-end tool for site-specific, spatio-temporal assessment of bone tissue
maturation and intervention effects is presented. By simultaneous evaluating several
relevant hierarchies, the method allows us to reconstruct continuous biological processes
such as aging or adaptation of bone. This method was developed and evaluated on pre-
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clinical µCT data of mouse bones and investigated bone adaptation in response to in vivo
tibial compressive loading. First the method is evaluated to identify short-term, skeletal
maturation-related changes in the proximal tibiae and fibulae based on µCT images. To
do so, short-term (15 days) dynamic skeletal maturation processes in adult female mice
bones are analyzed.

5.2.1 In vivo Monitoring of Tissue Maturation and Adaptation
In total, 79 µCT image sets of both proximal tibiae and fibulae were collected during
two weeks of tissue maturation (right limb) and adaptation (left limb) during a bone ad-
aptation study performed in 2013-2014 at Charité Universitätsmedizin Berlin (Fig. 5.2a).
Both limbs, including the tibia and fibula, were scanned and combined within one ima-
ging procedure (cf. Fig. 5.2b). In vivo µCT was performed at an isotropic voxel size of
10.5µm (vivaCT40, Scanco Medical, Switzerland; 55 kVp, 145 mA, 600ms integration
time, no frame averaging). The mice were scanned starting from the growth plate and
was extended for 432 slices (4536µm) in the distal direction. To prevent motion artifacts
and obtain reproducible scan regions and bone orientations, mice were anesthetized and
kept during the scans in a fixed position using a custom-made mouse bed. In time inter-
vals of 5 days between imaging sessions, 4 sets of images were acquired. Two weeks of
aging in mice are approximately equal to one year of aging in humans [80]. Datasets were
previously morphometrically analyzed using formation and resorption dynamics analysis
software [29, 30, 32]. Furthermore, previous analysis showed that repeated radiation (4
scans) did not effect bone microstructure [361]. The scanner was calibrated weekly against
a hydroxyapative (HA) mineral phantom; and monthly for determining in-plane spatial
resolution. Animal experiments were carried out according to the policies and procedures
approved by the local legal representative (LAGeSo Berlin, G0333/09).

Image Preprocessing Pipeline

Raw data were reconstructed using standard filtered backprojection implemented in the
software of the scanner. Resulting images were cropped to contain the tibia and fibula in
independent image sets (Fig. 5.2c). These images varied considerably in size, location and
orientation of the bone. Therefore, a preprocessing pipeline that standardizes the images
is essential for training a deep learning model. The first step of this pipeline normalizes the
sizes of the input images, in which, the algorithm determines the maximum extension in
lateral-medial and anterior-posterior direction as well as the most distal bone part inside
the image. Second, preserving their aspect ratios, a padding of the images in lateral-
medial and anterior-posterior direction is performed (Fig. 5.2d). Therefore, a stripe of
additional voxels with the same gray values is placed at the border of the image on the
padded plane perpendicular to the padding direction. Next, images are cropped to the
minimum z-stack number (of all the images) from distal direction. The 3D images are
projected in medial-lateral direction onto the anterior-posterior / distal-proximal plane
ensuing a 2D image, which, due to the medial-lateral symmetry, nullifies the symmetry-
related skeletal difference between the left and right tibia and fibula. After pre-processing,
all 2D images are 733 (y) by 161 (z) pixels in size (Fig. 5.2e).
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Figure 5.2: Overall work flow and network architecture. a) Experimental setup of applying
load to the bone. b) Imaged ROI and 3D raw data containing both right (control)
and left (loaded) tibiae and fibulae. c) Cropped 3D image containing only one tibia
and fibula. Blue plane indicates an exemplary slice on which the padding step is
applied. d) Each slice (inside the colored stripes) is padded with border stripes of
pixels (colored stripes: padding) in each direction: yellow and orange → posterior-
anterior, red and green → lateral-medial directions. e) Sum intensity projection
of the 3D image in C after padding. f) BAAM network architecture including
convolutional layers (Con.), pooling layers (Pool), flattened layer (Flat), softmax
layer and the four output classes.
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Assigning Datasets

Datasets were separated into three groups: 1) A training and validation set, 2) a test set to
further eliminate the possibility of overfitting of the trained model, and 3) an application
set. The training and validation sets consists of 71 images from 18 mice at all time points
of the right control tibia. The test set contains 8 images of two randomly selected mice
separated from the training and validation set (2 image per time point). The application
set contains 78 images of the left loaded tibia and fibula.

Data Augmentation

DNNs require a large amount of training data for stable convergence and high classification
accuracy. Therefore, data augmentation was performed. This was done by systematically
increasing the size of the training set with geometric transformations. As suggested by
[187, 307], images of the training and validation sets are augmented by applying rotations
(−15◦ to +15◦; 1◦ steps) and translations (−22% to +22%; 2% steps in both directions)
to increase training accuracy and further prevent overfitting. Maximum augmentation
values were chosen to cover potential occurring deviations between images due to the
imaging setup. This resulted in a total of 23430 images. Last, images are randomly
separated into training and validation sets containing 80% and 20% of the augmented
images, respectively.

5.2.2 Deep Bone Age Assessment Model (BAAM)
A customized DNN consisting of 7 layers with four convolutional, two pooling and one
fully connected layer (Fig. 5.2f) was designed. The output layer consists of four classes:
day 0, day 5, day 10, day 15. Its performance compared to other possible architectures
was evaluated (cf. 5.2.4).

By passing an image through the convolutional layers, feature-maps of the image are
produced at which the position of the encrypted patterns in kernels are accentuated. This
leads to extraction of hidden features of the structure. The deeper the image goes through
the network, the more complicated patterns are recognized by the network to perform a
classification. At each convolutional layer, the feature map extraction is performed by
activating the neurons with the rectified linear function and adding a set of bias terms.
These weights and bias values are optimized at each training iteration to provide a higher
accuracy.

Feature-maps are down-sampled after the 2nd and 4th convolutional layer with a window
size and stride equal to 2. The kernels in all convolutional layers are 3 ∗ 3 with a stride
of 1. In the consecutive convolutional layers, 4, 8, 16 and 32 feature maps are computed,
respectively. The activation of the last convolutional layer is flattened into a vector and
passed it to an ending fully connected layer with 32 and 4 features from which the last
one represents the 4 age classes. At last, a softmax function is applied on the flattened
layer to calculate the probability distribution for each age class.

Training Algorithm

The model is trained with the Adam optimization algorithm [179]. The network is initial-
ized with a truncated normal distribution function (standard deviation: 0.1). Training is
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carried out for 7000 iterations with a batch size of 100 images. At every 500 th step the
model is applied on a batch of 200 images of the validation set. The initial learning rate is
set to 0.1, then an exponential decay at every 25th step with a 0.96 rate is performed. Im-
plementation, training, validation and testing of the network was performed using Google
TensorFlow [1] on a computer with a single Nvidia Geforce GTX 1070 GPU.

Network Performance Evaluation and Validation

Architecture and hyper parameters of the BAAM network are chosen based on its ability
of age prediction in for the validation and test sets. Based on a sensitivity analysis (5.2.4),
the best performing DNN was chosen and its age prediction performance was validated
by determining the accuracy of the network for three groups to i) verify the capability
of BAAM to perform an end-to-end age prediction based on 3D µCT image data, ii)
eradicate the possibility of overfitting during prediction, iii) demonstrate the capability
of transferring the age prediction capability from right to left tibia and fibula, and iv)
demonstrate the robustness of the model to predict the age of mice that it has not been
trained with. These are: 1) 100 randomly selected images of the validation set, 2) the 8
images of the test set, which contains only images of mice it has not seen before, 3) all
(n=20) images of day 0 of the loaded left tibia and fibula of the application set. These
samples represent physiologically loaded tibia and fibula, as at day 0 of the experiment
the left limb has not been subjected to loading treatment yet. Confusion matrices (CM)
are determined for all three evaluations, further sensitivity was calculated for all time
points.

5.2.3 Analysis of Key Skeletal Maturation Regions and Features

The trained BAAM network (after the last training and validation step) applied to the
only physiological loaded right tibia (each time point) is further evaluated to identify key
regions and features describing the age of the bones. To determine the regions in the
images that the network is focusing on for age prediction, saliency maps are calculated.
Respectively, a backpropagation is calculated for computing the vanilla gradients [87, 308].
The loss gradient is additionally backpropagated to the input data layer. By taking the L1-
norm of the loss gradient of the input layer, the resulting heat map intuitively represents
the importance of each pixel for age prediction. These maps convey the locations in the
image at which the network focuses to predict the age of the bone. At last, saliency maps
are normalized to a [0− 1] range to enable comparability between different images.

To determine the spatial localization of attention of the network in the process of age
assessment, six subregions were defined within the proximal tibia and fibula. Therefore,
first the tibia and fibula were manually segmented. Next, these two labels were further
divided into 3 regions with the same heights (0.56 mm), o.e., proximal (T1, F1), middle
(T2, F2), and distal (T3,F3), cf., Fig. 5.3. The summation of intensity values of the
saliency map in each region normalized to the summation of intensity values of the sali-
ency map in the bone region (tibia and fibula) are defined as a measure to indicate the
importance of each region for the age estimation (Attention, [0− 1]).
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5.2.4 Results: Bone Age Assessment
Performance Evaluation and Bone Age Prediction

After 1000 training iterations, the accuracy of age prediction (training and validation sets)
reached 92% and 93% with a loss of 0.21 and 0.20, respectively. After 7000 iterations, the
accuracy and loss values for training and validation sets were 100%, 99%, 0.02 and 0.03,
respectively (Fig. 5.4a, b). Therefore, the network was considered as trained after 7000
iterations.

For 100 randomly selected images of the validation set (21, 29, 26 and 24 images of
days 0, 5, 10 and 15, respectively), the network correctly predicted all classes except for
day 10, where 96% were assigned correctly to day 10 and 4% were assigned to day 15.
The resulting confusion matrix for comparison of predicted and true age of the images is
almost completely diagonal (Fig. 5.4c). In the test set, 7 out of 8 images were correctly
predicted (Fig. 5.4d). Only one image of day 15 was wrongly classified as day 0. In the
group of images of the left tibia acquired at day 0, 19 out of 20 images were predicted
correctly, only one image was wrongly classified as day 5, resulting in 95% accuracy (Fig.
5.4e). With these accuracy values above 95% in all evaluations, the network is considered
performing sufficient for age-prediction.

Sensitivity Analysis of Network Architecture and Hyper Parameters

Accuracy in age prediction for the validation and test sets of five similar, evaluated network
architectures compared to BAAM have been determined to find the best performing
network.

Various networks with different architectures and hyper parameters have been trained
on the training set and applied to the validation and test sets. The best performing
network based on the accuracy of age prediction on validation and test sets has been
selected to analyze the application set. Although, there exist unlimited variations of
these elements, only a subset could provide meaningful results for decoding the aging and
rejuvenation processes. Therefore, different network architectures with various network
depth, network layout (convolutional (C), pooling (P) and fully connected (F)) and the
kernel size in each convolutional layer have been designed and tested. In this section, a
comparison of network performances for five selected designed network in which the key
parameters are tweaked to reach the highest prediction accuracy are presented. The five
networks have following details:

1. Network 1:
• Depth: 7.
• Layout: C, C, P, C, C, P, F.
• Kernel sizes: 8, 16, 16, 32, 64, 64, 64.
• Number of iterations: 7000.

2. Network 2:
• Depth: 7.
• Layout: C, C, P, C, C, P, F.
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Figure 5.3: Extracted labels for tibia (purple) and fibula (green) and the 6 regions with equal
proximal-distal height on each label. T1-T3 and F1-F3 regions belong to tibia and
fibula, accordingly.

Figure 5.4: Age prediction results and validation. a) Accuracy of age prediction on training
set (blue ◦) and validation set (black ×) vs. training step. b) Calculated loss value
of age prediction for training set (blue ◦) and validation set (black ×) vs. training
step. Accuracy and loss of age prediction on the validation set is calculated at
every 50th training step. c) Confusion matrix of applying BAAM on validation
set. d) Confusion matrix of applying BAAM on test set. e) Confusion matrix of
applying BAAM on images with age of day 0 of application set. c-e) Predicted age
of samples are compared to their actual age. Values are normalized by the number
of images per age class.
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• Kernel sizes: 16, 32, 32, 64, 128, 128, 128.
• Number of iterations: 7000.

3. Network 3:
• Depth: 10.
• Layout: C, C, P, C, C, P, C, C, P, F.
• Kernel sizes: 4, 4, 4, 8, 8, 8, 16, 32, 32, 32.
• Number of iterations: 7000.

4. Network 4:
• Depth: 8.
• Layout: C, C, P, C, C, P, F, F.
• Kernel sizes: 4, 8, 8, 16, 32, 32, 32, 32.
• Number of iterations: 7000.

5. Network 5:
• Depth: 4.
• Layout: C, C, P, F.
• Kernel sizes: 4, 8, 8, 8.
• Number of iterations: 7000.

Analyzing the accuracy and loss values of age prediction during training of different
networks (Fig. 5.5) shows that despite a correlation between depth of the its accuracy,
going infinitely deeper does not necessary lead to better results. Evidently, the network
with lowest number of layers (network 5) has the weakest performance by reaching 86%
accuracy with loss value of 0.27 (Fig. 5.5a, b; gray line). While, BAAM, network 1,
network 2 and network 3 with depth of 7, 7, 7 and 10 respectively achieve similar good
performances (accuracy: Fig. 5.5a, b; black, green, red and yellow lines respectively).
Therefore, after a certain depth, no extra performance is gained. The reached accuracy
and loss values for all the networks after 7000 training iterations is shown in Table 5.1.

Next, comparing the prediction results of different networks for the validation set was
based on their confusion matrices. This further demonstrates that networks 1-4 (Fig.
5.6a-d) have similar good performance and network 5 (Fig. 5.6e) fails to predict day 5
images correctly. It can further be seen that BAAM (Fig. 5.6f) provides the most diagonal
confusion matrix, hence it is the best performing network.

At last, the age prediction performance of the networks on the test set demonstrates
the superiority of BAAM over other designed networks. While, networks 1-5 achieve 5, 5,
6, 5 and 5 correct predictions out of 8 images of test set respectively (Fig. 5.7a-e), BAAM
reaches the highest number of correct age prediction with 7 out 8 (Fig. 5.7f).

The analysis of overall achievements of presented networks as examples of variance in
characteristics of DNNs lead to designing the BAAM network. It over-performs the sample
presented networks in age prediction for training, validation and test sets. Therefore, it
is further utilized to decode the aging and rejuvenation processes.
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Figure 5.5: Network performances during training. a) Accuracy of age prediction for training
set vs training iterations for 5 sample networks and BAAM. b) Smoothed loss value
of age prediction for training set vs training iterations for 5 sample networks and
BAAM.

Network Depth Validation Accuracy Loss Test Accuracy

1 7 0.99 0.00 5/8
2 7 0.98 0.02 5/8
3 10 0.98 0.11 6/8
4 8 0.92 0.18 5/8
5 4 0.86 0.27 5/8

BAAM 7 0.99 0.05 7/8

Table 5.1: Network performances. The accuracy and loss values of the networks with different
architecture at the end of 7000 training iterations.

5.2.5 Results: Decoding Bone Tissue Maturation Process
Saliency maps were calculated for all correctly classified images. One further image was
excluded due to a different orientation of the bone. The different regions received different
amounts of attention from the network during the process of age estimation (ANOVA;
p < 0.01; Fig. 5.8 a-f). Comparing the network attention devoted to different regions
of the bone revealed, that at day 0 (42% ± 22%) and day 5 (33% ± 9%) T3 received
significantly higher attention than all other regions (p ≤ 0.01). At day 10, T2 and T3
(p ≤ 0.04) and at day 15 T1, T2 and T3 (p ≤ 0.02) received significantly higher attention
than the other regions. In general, all tibial regions received at day 0 and day 15 higher
attention than all fibular regions (p ≤ 0.03). At day 5 and day 10, only T3 received a
higher attention than all fibular regions (p ≤ 0.04).

The attention of the network to the different regions changed with time (ANOVA;
p < 0.01). In the tibia, the attention on T1 for age prediction is on day 0 (24% ± 9%)
significantly higher than on day 5 (16% ± 10%; p < 0.01) and day 10 (16% ± 12%,
p = 0.01). At day 15, only a trend could be identified (21% ± 9%; p = 0.14; Fig. 5A).
T2 receives similar attention at all time points; 21% ± 14%, 23% ± 11%, 24% ± 18%,
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Figure 5.6: Results of age prediction for the validation set. a-e) Networks 1-5 accordingly. f)
BAAM. In a-f Predicted age of samples are compared to their actual age. Values
are normalized by the number of images per age class.
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Figure 5.7: Results of age prediction for test set. a-e) Networks 1-5 accordingly. f) BAAM. In
a-f Predicted age of samples are compared to their actual age. Values are normalized
by the number of images per age class.
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Figure 5.8: Maturation process. a-f) Temporal changes in attention devoted by network to the
six regions for age classification in control group. a-c) Proximal tibia T1, T2, and
T3, d-f) Proximal fibula F1, F2, F3. Data shown as mean ± standard deviation. *
indicates a significant difference. g-j) 3D visualization of the same tibia and fibula
with a longitudinal cut exposing bone micro-architecture for day 0, day 5, day 10 and
day 15. The arrow indicates one area in which microstructural remodeling occurred
over the 15 days. k-n) Samples of projected images (gray scale image, top), saliency
map (color coded from blue to yellow indicating low to high attention, middle) and
the overlay of projected image and its saliency map (bottom). k) day 0, l) day 5,
m) day 10, n) day 15.
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and 26% ± 16%. In region T3, a continuous decrease in attention during maturation
takes place (42% ± 22% → 23% ± 13%), leading to a significant reduced attention from
day 10 onward (p ≤ 0.01). In the fibula, attention to the F1 regions remains small
throughout the 15 days (5% ± 8%, 3% ± 4%, 4% ± 4%, 5% ± 7%). The attention to
F2 significantly increases with maturation (4% ± 5% → 13% ± 11%, p ≤ 0.01). It also
significantly increases in each time step except the time step from day 10 to 15 (day
0 → 5 → 10 : 4% ± 5% → 7% ± 7% → 13% ± 10%, p ≤ 0.02). In region F3, attention
jumps from 3%±6% at day 0 to 17%±14% at day 5 (p < 0.01). Afterwards a slight drop
from 15% ± 20% (day 10) to 11% ± 12% occurs at day 15 (p = 0.08). A cross-sectional
cut through a 3D representation of one bone at each time-point shows similarities and
changes of the structures (Fig. 5.8g-j). Representative saliency maps are shown in (Fig.
5.8 k-n). Qualitative analysis of the attention devoted to tibia and fibula reveals that the
network focuses on clusters of pixels for its analysis.

5.2.6 Discussion
It is known that bone fracture resistance increases with skeletal maturation and aging, as
well as in response to certain therapy. Whole bone fracture resistance is determined by
bone quantity, which encompasses geometric, microarchitectural, and material properties
(i.e., trabecular architecture, mineralization, crosslinking, microcracks). Little is known
about the interplay between all of these properties/factors contributing to compromised
or recovered bone quality. Most previous studies have focused on individual features,
while lacking global optimization, as individual contributions of static (e.g. trabecular
bone volume or bone mineral density distribution) or dynamic (e.g. bone formation
rate) feature as well as the global interplay of localized dynamic processes of modeling,
remodeling, mineralization and demineralization to overall changes of the bone are not
known to date.

Here, a deep learning approach to tackle this challenge by creating a model that util-
izes the complete content of X-ray attenuation images is proposed. A µCT image-based
method enabling an end-to-end age prediction with high accuracy is developed. This
method allows identifying bone sub-regions relevant for this classification. The developed
method is utilized to study skeletal tissue maturation and the localized rejuvenation ef-
fects of in vivo dynamic controlled loading on mouse bone tissue age.

The results show that complex processes, such as bone tissue maturation and adapta-
tion, can be reconstructed by in vivo image-based deep learning and quantitative analysis
of learned features. Even subtle changes, as occurring during one remodeling cycle of mice
bones [32], could be identified, as the model predicts four time points between 26 and 28
week old mice based on in vivo µCT images with an accuracy of more than 95%. This
classification is presumably linked to bone mass, shape, micro-architecture and material
properties alteration through different length scales, as all these processes change in a site-
specific manner during growth, maturation and aging. These changes take place by model-
ing, remodeling, mineralization and demineralization processes [29, 47, 219, 222, 258, 312]
and are directly or indirectly encoded in the image created by interaction of photons with
matter, as the resulting attenuation is, besides bone mass in the photon beam, dependent
on the local atomic number, and therefore calcium content.

Additionally, a link between the age prediction dynamics to age-related trabecular bone
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loss occurring between the age of 26 and 28 weeks [361] is shown. This is in accordance
with other studies reporting a loss in trabecular bone volume in C57Bl/6 mice from 26
weeks onward [115]. Therefore, these mice are expected to be in a phase of starting
trabecular bone loss. However, in the proximal fibula, an increase of cortical bone volume
in the same mice between 19 to 22 weeks [239] is observed. Unfortunately, this and other
studies investigated the fibula bone volume changes only in young mice during skeletal
maturation [181, 239]. In adult humans, higher age-related deterioration of the tibia than
the fibula has been reported [233]. Here, no significant changes in the fibula bone volume
was detected, therefore also no correlations between age prediction and fibula bone volume
existed. However, it has to be taken into consideration, that the volume of interest was
centered on the proximal tibia.

Here, it is further shown, that localization of aging-related information in the bone
identified by the model can be extracted in a quantitative manner. This localization of
age-information effects, here quantified by attention distribution of the network extracted
using a saliency map as post-processing, differed between regions and was affected by time.
The age information seems to be more manifested in the tibia than in the fibula, as at all
time points more than 68% of the attention of the network is focused on the tibia. In line
with this, the highest structural changes could be identified in the trabecular region of the
tibia, with a 14% loss of bone volume. This trabecular loss has been previously quantified
in more detail [29]. In general, the most distal part of the proximal tibia (T3) received the
greatest attention, but over time there was decreasing in attention. This is in line with
previous described structural changes in the tibia, where a strong loss of trabeculae during
adulthood [99, 361] and a nearly complete disappearance of trabeculae after 78 weeks [29]
is reported. The second highest attention was received by the region located closest to
the growth plate (T1), where longitudinal growth, and therefore modeling and primary
(fast) mineralization occur. This growth persists with aging, although it slows down after
puberty [129]. Therefore, it can be assumed, that the network focuses on the regions with
the most changes in bone volume and density occurring over the monitored 15 days. In
the fibula the attention was the lowest in F1. However, it must be considered, that the
most proximal part of the fibula is located below the tibia (see Fig. 5.8g-j). Attention to
F2 and F3 varied with time, which might be linked to fibular (re)modeling. In general,
attention was located in clusters (see Fig. 5.8k-n) not individual trabeculae, which let us
conclude that mineralization (change in grey values) and (re)modeling together affect the
age estimation.

Having a robust bone age assessment deep neural network at hand allows investigating
effects of internal or external stimuli on the aging process. 5.3, focuses on, how the
trained BAAM could be utilized to study the process in which in vivo loading affects the
aging process and therefore, the macro/micro-structure of the bone towards a younger
appearance.

5.3 Analyzing Effects of in ivo Loading Treatment on
Skeletal Age

In this section, BAAM’s ability for identification of treatment results and relating these
to load-induced surface (re)modeling (”rejuvenation”)-effects is investigated (Fig. 5.9).
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Furthermore, by analyzing the learning process of the DNN through saliency maps, the
spatial localization of the network attention is quantified, permitting determination of
where in the bone the ”skeletal age” information is manifested.

Figure 5.9: First, the network is trained on physiologically loaded bones to predict age (top).
Second, the trained network is applied on images of bones treated with additional
loading to investigate the rejuvenation effects of treatment (bottom).

5.3.1 In vivo Mechanical Loading
The 20 mice (female C57Bl/6J, 26 weeks old at beginning of experiments, Jackson Labor-
atories, Sulzfeld, Germany) underwent two weeks of in vivo cyclic compressive loading
of the left tibia [29, 361]. Loading was applied 5 days/week (M-F) for 2 weeks while
mice were anesthetized (216 cycles applied daily at 4Hz, delivering −11N loads, 1200µϵ
on the medial surface of the tibial mid-shaft, determined by prior in vivo strain gauging
experiments; Fig. 5.2a). The right tibia served as physiologically loaded internal control.
The first loading session occurred on the first day of in vivo imaging.

5.3.2 Decoding Effects of in vivo Loading using BAAM
The bone age prediction model is therefore further applied to the application set (defined
in 5.2.1, containing images of the in vivo loaded tibiae and fibulae; Fig. 5.9). The predicted
age of each bone at each time point is compared to the actual bone age to investigate
rejuvenating effects of load-induced bone (re)modeling on skeletal age. Rejuvenation is
defined as the delta age predicted at day 0 and day x divided by the delta time between
day 0 and day x. Key regions and features describing the estimated rejuvenated age of
the bones are determined (saliency maps).

5.3.3 In Vivo Loading and 3D Bone Volume Changes
A separate set of 104 3D images were Gaussian filtered and binarized using a global
threshold of 273/1000 (456 mg HA/cc), which was determined based on the grey value
histogram of the whole ROI. This dataset was acquired by pooling images from two
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separate studies carried out by Birkhold et al. [32] and Willie et al. [361]. Fibula
and tibia were manually separated, automated segmentation was performed to separate
trabecular and cortical bone regions of tibiae, as described earlier [32]. Total tibia bone
volume (tibia BV, µm3), tibia trabecular bone volume (tibia tb.BV, µm3), tibia cortical
bone volume (tibia ct.BV, µm3), and fibula bone volume (fibula BV, µm3) are determined.
Correlations between bone volumes and real/predicted age are determined.

Statistical Analysis

The effect of loading (left loaded tibia, right control tibia), region (tibia: T1, T2, T3;
fibula: F1, F2, F3) and time point (day 0, 5, 10, 15) as well as interactions between
terms was assessed using repeated measures ANOVAs. Differences between actual bone
age and predicted bone age as well as between loaded and control bones were assessed by
paired Student�s t-tests. Values are presented as mean±standard deviation and statistical
significance was set at p < 0.05.

5.3.4 Results: Rejuvenation Effects of in vivo Loading
To study potential rejuvenation effects of mechanical loading on bones, 78 images (2
images were removed from the dataset due to low quality) of bones subjected to in vivo
loading are analyzed (application set). At day 0, 95% of bones were classified with their
actual age. For the loaded bones at day 5, 10, and 15, the predicted age differed noticeably
from the actual age (Fig. 5.10a). After 5 days of loading, 47% of the images were classified
as being 5 days older, 26% as being 5 days younger, and only 16% were identified with
their actual age. After 10 days of loading, 55% of the bones were classified as younger
than their actual age (30% as day 0 and 25% as day 5). A total of 35% were identified
with their actual age and 10% were classified as to be older. After 15 days of loading, 74%
of the bones were classified as younger than their actual age. For 5%, BAMM predicted
that the images belong to mice that were 15 days younger, 11% appeared to be 10 days
younger and 58% were classified as 5 days younger than their actual age. Only 26% of
the bones were classified by its actual age, i.e., day 15.

Investigating the rejuvenation effects during the course of loading (Fig. 5.10b, green
line) reveals that with increasing duration of loading (day 5 → day 10 → day 15) higher
percentage of images are classified younger than their actual age (25% → 55% → 74%).
On the other hand, 5%, 58%, and 10% of samples at day 0, 5 and 10, respectively were
classified older than their actual age. The amount of samples categorized with their actual
age increases from day 5 to day 10 but decreases as loading treatment continues (16%, 35%
and 26% for day 5, 10, and 15, respectively). Resulting mean assigned age was 7.63±5.62
at day 5, 6.58 ± 5.01 at day 10 and 10.26 ± 3.90 at day 15. This results in rejuvenation
effects of −2.37± 5.62 at day 5, 3.68± 4.96 at day 10 (p < 0.01) and 5.00± 3.73 at day
15 (p < 0.01; Fig. 5.10c).

Loading affected the attention of the DNN network (ANOVA; p < 0.01). Additionally,
the distribution of attention between regions was affected by loading (ANOVA; p < 0.01).
Comparison of attention in different regions between loaded and control limb reveals that
– with the exception of F1 (p = 0.02) – there is no significant difference in attention in
different regions between the left and right limbs at day 0 (Fig. 5.10d). After 5 days of
loading, there is no significant difference in attention in T1-T3 and F1-F3 (Fig. 5.10e).
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Figure 5.10: Rejuvenation process. a) Confusion matrix of applying the BAAM network on
application set consisting of images of bones treated with extra loading. Predicted
age of samples are compared to their actual age. Values are normalized by the
number of images per age class. b) Rejuvenation effect of extra loading treatment
vs loading duration. Normalized number of rejuvenated images vs loading period:
green. Normalized number of images classified with their actual age vs loading
period: gray. Normalized number of images classified older than their actual age
vs loading period: blue. The lines are 3rd degree polynomial fits to the scattered
data. c) Mean rejuvenation per age group with standard deviation as highlighted
area. d-g) Attention in proximal tibia (T1-T3) and fibula (F1-F3) in control and
loaded bones. d) Day 0. e) Day 5. f) Day 10. g) Day 15. Values are shown
as mean±standard deviation. * indicates a significant differences between loaded
and control bones (student’s t-test, p < 0.05).
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After 10 and 15 days of loading; however, the attention in the T3 regions is significantly
higher on the loaded side than on the control limbs (28%± 17% vs. 41%± 23%, p = 0.01
and 23% ± 13% vs. 33% ± 19%, p = 0.04 at days 10 and 15, accordingly, (Fig. 5.10f-g).
This difference might be related to presence of paw preference (called handedness) in mice
[26].

5.3.5 Results: Localized Rejuvenating Manifestation of in vivo
Loading

To analyze the importance of each region within the process of rejuvenation, images of
the day 15 loaded bones were categorized based on their predicted time points: ”day 0”,
”day 5”, ”day 10” and ”day 15”. Afterwards, saliency maps of each of these groups were
compared to their counterparts from the control group. Moreover, the distribution of
attention was compared between each pair of rejuvenated bones and control bones for
each time-point (Fig. 5.11a, b). After 15 days of loading, regions T1, T2, and T3 received
23% ± 14%, 21% ± 16%, and 33% ± 19% of the attention, respectively. F1, F2, and F3
received 4%± 5%, 10%± 9%, and 10%± 13% of the attention, respectively. In all tibial
regions, no significant difference between bones predicted younger and control bones of
these specific ages were found for any of the four time points. The single bone (imaged at
day 15) predicted as day 0 received 30% attention at T1 (control: 24%± 9%), 17% at T2
(control: 21%± 14%) and 33% at T3 (control: 42%± 22%). The bones predicted as ”day
5” received 14% ± 3% at T1 (control: 16% ± 1%; p = 0.24), 32% ± 19% at T2 (control:
23% ± 12%; p = 0.32), and 52% ± 15% at T3 (control: 33% ± 10%; p = 0.16). The
bones predicted as ”day 10” received 23% ± 18% at T1 (control: 16% ± 12%; p = 0.13),
23% ± 19% at T2 (control: 24% ± 18%; p = 0.45), and 34% ± 22% at T3 (control:
28% ± 17%; p = 0.23). The bones predicted as ”day 15” received 23% ± 10% at T1
(control: 21% ± 10%; p = 0.38) and 25% ± 10% at T3 (control: 25% ± 16%; p = 0.22).
Only for the 5 bones, which were predicted as a loaded bone ”day 15”, i.e., no effect of
the loading was observed, a significant difference with respect to the control bones being
imaged at day 15 could be identified at the T2 region (13%±8%, vs. control: 25%±16%;
p = 0.01).

The single bone predicted as ”day 0” received 6% attention at F1 (control: 6%± 9%),
12% at F2 (control: 4% ± 5%) and 1% at F3 (control: 3% ± 6%). The bones predicted
as ”day 5” received significant less attention at all fibular regions: F1 1%± 1% (control:
3%±4%; p < 0.01), F2 0%±0% (control: 7%±7% ; p < 0.01), and F3 1%±0% (control:
17%±15%; p < 0.01). The bones predicted as ”day 10” received at F1 and F3 comparable
attention as the control ones of day 10 (3%± 3% control: 3%± 4%; p = 0.22; 12%± 15%;
control: 15%± 20%; p = 0.32). F2 received less attention than the control bones of this
age (5%± 5%; control: 13%± 10%; p < 0.01). The bones predicted as ”day 15” received
at F1 and F3 attention that is comparable to the control ones of day 15 (7%±7% control:
5%±7%; p = 0.24; 10%±10%; control: 11%±12%; 0.42) and F2 received more attention
than the control bones of this age (22%± 3%; control: 13%± 10%; p < 0.01; Fig. 5.11b).
Saliency maps for selected images from each of the four time points are given in Fig.
5.11c-f.

In summary, distribution of attention was in 89% of the after 15 days analyzed loaded
left tibia comparable to the right control of the time point (day 5, 10 or 15) they were
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Figure 5.11: Rejuvenation process. a, b) Attention at bones subjected to 15 days of loading and
classified as day 0, 5, 10, or 15 compared to attention of these groups in the control
limbs. a) Attention to T1-T3 regions. b) Attention to F1-F3 regions. Data shown
as mean ± standard deviation. * indicates a significant difference (student’s t-
test, p < 0.05). c-f) Samples of projected images (gray scale image, top), saliency
map (color coded from blue to yellow indicating low to high attention, middle) and
the overlap of projected image and its saliency map (bottom) from loaded group.
c) day 0. d) day 5. e) day 10. f) day 15.
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predicted to resemble. In the fibula, 56% of comparison cases showed no significant
difference (9 comparison cases per tibia/fibula = 3 regions × 3 time points). This further
confirms that the load-induced bone (re)modeling in these mice generates similarities
between older loaded bones and younger control bones, therefore a rejuvenation effect of
loading can be concluded.

5.3.6 Results: Rejuvenation and Bone Volumetric Changes
The tibia and fibula total bone volume and cortical bone volume did not change signific-
antly within the 15 days (Table 5.2). Tibial trabecular bone volume decreases significantly
from day 0 (0.30± 0.07) to day 15 (0.24± 0.05; p < 0.01). Loading significantly affected
total tibia bone volume (all time points; p ≤ 0.01), cortical tibia bone volume (all time
points; p ≤ 0.02) and trabecular tibia bone volume (day 0 and 15; p ≤ 0.01, Table 5.3).
A significant, but weak correlation was found between Tibia BV in loaded limbs and real
age, Tibia ct.BV and real age, and Tibia ct.BV and estimated age (Table 5.4). Addi-
tionally, trabecular bone volume (Tibia tb.BV) in control limb correlated significantly,
but weak with real age. Trabecular bone volume (Tibia tb.BV) in loaded limb correlated
weak, but significantly with estimated age (Table 5.4).

Morphometry Control Bones
day 0 day 5 day 10 day 15

Fibula BV [mm3] 0.78± 0.16 0.79± 0.17 0.82± 0.19 0.78± 0.15

Tibia BV [mm3] 2.53± 0.13 2.53± 0.16 2.54± 0.14 2.50± 0.12

Tibia tb.BV [mm3] 0.30± 0.07 0.28± 0.07 0.25± 0.06 0.24± 0.05

Tibia ct.BV [mm3] 2.23± 0.13 2.25± 0.13 2.28± 0.13 2.26± 0.10

Table 5.2: Morphometry parameters of tibia and fibula determined based on in vivo µCT images
at day 0, 5, 10, 15 of right control fibula and tibia subjected only to physiological
loading. Data shown as mean ± standard deviation.

Morphometry Loaded Bones
day 0 day 5 day 10 day 15

Fibula BV [mm3] 0.83± 0.15 0.82± 0.15 0.82± 0.17 0.81± 0.12

Tibia BV [mm3] 2.69± 0.18∗ 2.74± 0.17∗ 2.84± 0.14∗ 2.86± 0.14∗

Tibia tb.BV [mm3] 0.33± 0.06 0.31± 0.06 0.31± 0.06∗ 0.33± 0.06∗

Tibia ct.BV [mm3] 2.36± 0.19∗ 2.43± 0.19∗ 2.52± 0.14∗ 2.53± 0.15∗

Table 5.3: Morphometry parameters of tibia and fibula determined based on in vivo µCT images
at day 0, 5, 10, 15 of left fibula and tibia subjected to additional axial compression
loading. Data shown as mean ± standard deviation. ∗ indicates a significant differ-
ence between loaded and control bones (student’s t-test, p < 0.05).
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Correlations Bone Volume vs. Time
Loaded Control

Real age Predicted age Real age
R2 F R2 F R2 F

Fibula BV [mm3] 0.01 0.59 0.02 0.29 0.00 0.96
Tibia BV [mm3] 0.15 0.01∗ 0.05 0.11 0.00 0.65
Tibia tb.BV [mm3] 0.00 0.98 0.10 0.03∗ 0.12 0.02∗

Tibia ct.BV [mm3] 0.14 0.01∗ 0.11 0.02∗ 0.01 0.43

Table 5.4: Regression analysis: Correlations between morphology (bone volume) and time points
(real age and predicted age). Weak correlation are shown in bold, ∗ indicates signi-
ficance of correlations (p < 0.05).

5.3.7 Discussion

Bones receiving additional loading were estimated to be younger. Already after day 5 of
loading, predicted age starts to diverge from actual age, which might suggest a restruc-
turing in response due to the new local loading conditions. From day 10 onward, the
bones appear to be significantly younger (4 and 5 days younger after 10 and 15 days of
loading, respectively). This might reflect an increase in bone strength after restructuring.
However, this needs to be investigated in detail by analyzing orientation of individual tra-
beculae or in-silico modeling of bone strength. Previous studies showed in adult C57BL/6
mice adaptive adjustments in the shape of formation and resorption sites at trabecular
[29, 193] and cortical sites [28], mineralization dynamics [219] as well as material proper-
ties on a macro- and micro-scale [25] in response to loading. These adaptations have been
shown to differ between different bone sites, such as endocortical and periosteal surface
[31] or at metaphyseal versus diaphyseal sites [25, 28], leading to bone shape adaptation,
as e.g. second moment of inertia at proximal metaphysis changes with loading in 22 week
old mice [53]. All this information is potentially analyzed in a combined manner by the
deep neural network. Here, a link to bone volume changes was established and a signific-
ant correlation between predicted age and cortical as well as trabecular bone volume was
found. Future studies will investigate further correlations, e.g., by quantifying structural
changes in sites identified as age-determining.

To investigate, if the observed restructuring leads to a younger appearance of the bones,
the distribution of attention on loaded bones after 15 days, classified younger, was com-
pared to the control bones of the classified ages. The similarities of distribution of atten-
tion, together with the comparability of correlations in 1) predicted age and trabecular
bone volume in loaded bones and 2) real age and trabecular bone volume in control limbs,
let us speculate, that loading induces tibial restructuring towards a younger appearing
bone. This rejuvenation is strongly manifested in the dynamic trabecular structure. This
is also the only bone compartment, where an age-related short-term loss of bone volume
in the control limb and a constant bone volume with time in the loaded limb is detected.
This finding is further supported by previous studies investigating trabecular bone gain
in response to loading [222, 320, 361] by comparing loaded proximal tibia of adult mice
with internal nonloaded control limbs.
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In the cortical compartment of the loaded tibia, a bone volume gain was found, which
made this bone compartment most similar to the control bones of day 0. This finding
is supported by Sugiyama et al., who found similar load-induced cortical volume gain
in the proximal tibia of adult mice [320]. A previous study, showed that adaptive bone
formation in the lateral metaphyseal region is greater than in the medial region while
medial adaptive resorption is greater than in the lateral region. A slight positive anterior
and posterior remodeling balance was reported. Further, adaptation occurs by increasing
periosteal formation [28]. This suggest a structural adaptation of cortical bone for the
sake of increasing its moment of inertia as a response to the bending force. In the fibula,
regardless of the observed rejuvenation, in 4 out of 9 comparisons, significant differences
in attention distribution between loaded bones classified younger and the control bones
of the classified age was observed. Therefore, since the fibula is generally assumed to
be mechano-sensitive [239], load-induced changes seem to trigger a fibula restructuring
that does not lead to a younger appearance of the bone. However, it must be considered,
that the imaging region was optimized for tibial analysis. Future studies might include a
greater fibula region into the analysis as fibula adaptation is in general not well studied.

To conclude, loading seems to change the appearance of bones towards a younger age.
In this study, this effect is greater in the tibiae than in the fibulae and mainly manifested
in the trabecular region, which is the compartment most affected by bone loss in early
osteoporosis [249]. Since fragility fractures in relatively young individuals are mainly
vertebral compression fractures, therefore ”trabecular fractures” [325], an adaptation to-
wards a younger trabecular bone might be in combination with an macroscopic adapted
cortical shell contributing to reducing fracture risk in early osteoporosis.

Current methods assessing bone maturation and aging mainly focus on specific dy-
namic features [32, 39, 49, 224, 226, 289]. Recently developed machine learning methods,
however, consume the complete image content while performing a classification task. Re-
cently, first applications to preclinical and clinical image data of bone showed, that a
machine learning classification into healthy and disease state is achievable [301, 309]. Go-
ing from there, in the next step, a framework allowing for a tracking of dynamic bone
changes in physiological aging/maturation conditions was developed. Additionally, by
training with physiologically loaded bones and applying the network on in vivo loaded
bones, it is demonstrated that loading causes bone (re)modeling and the dynamics of this
bone (re)modeling, without the need for transfer learning is analyzed [120, 345]. Com-
pared to the DNN developed for skeletal bone age assessment in pediatrics [200, 313, 337],
here, a further step towards a prognostic tool is taken. Saliency maps were previously
suggested to qualitatively visualize the importance of different bones in maturation of
pediatric hands [201]. Here, a quantitative analysis of the distribution of learned features
by employing saliency maps [308] is shown. This allows to identify the localization of age-
relevant information in bone. Future investigations may analyze the dynamics of aging
and treatment-induced regeneration in a site-specific manner.

The methodology presented in sections 5.2 and 5.3 has also limitations. First, the
chosen samples may not represent a larger population. However, the method is validated
in a three-fold manner and received an accuracy of above 95%. Additionally, structural
parameters derived from µCT and histomorphometric indices of bone formation, which
was measured previously in these mice, are similar to those reported in similarly aged
female C57Bl/6 mice [145, 222]. Adhering to the principles of the three Rs, specific-
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ally reduction of animal number, motivated us to re-examine these datasets, rather than
perform new studies on additional mice. Second, skeletal aging in mice differs to that
in humans [164] and thus, translation of these results to human bone behavior requires
further investigation. Since age-related bone loss in humans resembles to a certain extend
findings in mice [3, 326], it can be speculated that a future application to human bone
might resolve similar patterns.

Given the proven performance on reconstructing bone tissue maturation and adaptation
processes, it is expected that this study will be able to pave the way for future studies
to investigate a wide variety of biological processes involving continuous morphological
changes. This may include developmental and aging stages, the progression of diseases
[264, 373] or the response to treatments, and dynamic processes that have often been
reduced to binary classification problems. Automated computational analysis, as shown
here, could reveal morphological changes at much earlier stages than recognized previously.
Therefore, the effects of loading duration on overall bone adaptation might be another
future application, as recently shorter loading durations have been suggested [322, 374].
Furthermore, as features can be used to classify biological structures based on morphology
[12], a combination of the proposed deep learning and saliency maps approach can lead
to more detailed insights into the contribution of individual localized biological processes
on the overall adaptation ”state” of the bone. Moreover, translational research using
transfer learning techniques will allow transferring the here developed network to human
application based on 2D or 3D data, providing the potential of real-time assessment of
bone quality in a clinical setting. Here, a method for estimating bone age as a surrogate
for bone quality in mice imaged with µCT is described. The method can be rapidly
translated to clinical applications by examining clinical µCT (eg. HR-pQCT at a voxel
size of 61 microns), which is increasingly used in clinical trials to investigate vBMD and
microstructural changes in response to pharmacological treatments [59, 339].

In sections 5.2 and 5.3, a novel method which combined an experimental study with
longitudinal imaging and a deep learning framework is presented . This allowed for a
bone (tissue) age prediction and an identification of bone sites that primarily contribute
to age classification. Thus, it was possible to directly track short-time aging in bone in a
temporal manner. By quantitatively analyzing saliency maps of learned features, it could
be shown that the metaphyseal parts closest and most distant to the growth plate are
highly contributing to the temporal age information encoded in bone images during tissue
maturation. It could be further shown that loading triggers dynamic processes leading
to a younger appearance of the bone. More specifically these rejuvenating effects could
be temporally quantified, as the bone receiving 15 days of loading treatment was classi-
fied 5 days younger than the contra-lateral internal control. It was further demonstrated
that the here used loading regime induces structural correspondence between younger and
older tibiae, while in fibulae, despite causing (re)modeling, no rejuvenation effect could be
detected. One possible biological interpretation of these findings is that loading recovers
the age-related bone loss in the tibia - therefore it rejuvenates, whereas the fibula, which
is at the age investigated in the present study does not incur bone loss, and therefore is
adapting to the loading in a non-physiological manner (in terms of rejuvenation-related
strengthening through bone (re)modeling). These findings and the introduced method
provide an ideal framework to further improve our understanding of skeletal aging in
mice as well as in humans. It further demonstrates that machine-learning based charac-
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terization can help to better monitor and understand dynamic changes in bones due to
aging and disease and may help to optimize treatments for bone disease such as age-related
bone loss and osteoporosis.

5.4 A Deep Learning Approach for Analyzing
Osteogenesis Imperfecta (OI)

In this section, the idea of developing a deep learning-based model that performs an end-
to-end bone quality assessment from rich-content image data is continued. As described
in 5.1.4, OI is a bone disease that affects the bone micro/macro-architecture and causes
higher fracture risk. The current approach for assessing bone quality, in bone altering
diseases such as OI, is through determination of predefined skeletal features which may be
incapable of describing the complex nature of the bone altering stimuli. For example, large
heterogeneity in radial and tibial vBMD and microarchitecture measured with HR-pQCT
appears to exist between adult subjects within each OI type (I, III, or IV) [128, 182]. This
heterogeneity may be related to previous treatment regimes experienced by the patient,
but regardless of the cause, it complicates the relationship between disease phenotype and
bone fragility.

Although dual-energy X-ray absorptiometry (DXA) remains the clinical standard to
assess bone quality, specifically areal bone mineral density (BMD) in the spine and hip of
OI subjects, it has several disadvantages. HR-pQCT has emerged as a promising higher
resolution alternative imaging modality that unlike DXA is not dependent on bone size
and can distinguish between the trabecular and cortical bone compartments. HR-pQCT
allows the acquisition of 3D scans of human peripheral bones (eg. radius and tibia),
to assess volumetric BMD and micro-architecture. Thus, HR-pQCT imaging has the
potential to improve our ability to assess bone quality, since it allows for the evaluation
of skeletal features beyond BMD.

In clinical studies, OI type is determined based on phenotype analysis. However, up to
now, no comprehensive analysis of OI manifestation in the bone’s micro/macro architec-
ture has been carried out. Recently, Rovien et al. have performed a comparison between
bone quality describing parameters (cf. chapter 2) e.g. cortical bone area, trabecular
bone area, Ct.Th, CT.Pm, BV/TV, in OI patients, early-onset osteoporosis and a control
group. They have shown that in some of these calculated parameters e.g. TB.N and
BV/TV, there exists a significant difference between OI patients and the control groups
[284]. However, as discussed in sections 5.2 and 5.3, these parameters are not completely
capable of describing bone quality. Therefore, there is still much unknown about the
manifestation of OI disease in bone structure. Moreover, although it is known that dif-
ferent types of OI have distinguishing effects on bone structure, characteristics of these
effects are yet to be studied. Despite the differences in OI severity, there is considerable
overlap in traditional HR-pQCT parameters between OI types. Additionally, the large
heterogeneity in radial vBMD and microarchitecture measured with HR-pQCT may lead
to failure in OI type identification [128, 182]. This calls for a better assessment of bone
quality as ”the totality of features and characteristics that influence a bone’s ability to
resist fracture” allowing to investigate the causes of increased skeletal fragility [38].

As explained in 5.2, ML provides the capability to analyze the manifestation of a certain
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perturbation on bone captured in high resolution image data. Similar to aging and in vivo
loading, manifestation of OI disease in bone can be analyzed using rich-content images and
ML. As HR-pQCT images contain information about material composition, distribution
and amount, they potentially contain all structural information that is needed to asses
OI [244]. Despite the fact that recent studies can extract more morphometric features
from HR-pQCT image data describing bone quality through assessment of vBMD and mi-
crostructure [284], information on bone quality in OI patients are only obtained through
invasive histomophometry analysis of iliac crest bone biopsies [276]. As it is shown in the
course of this chapter, deep learning enables the analysis of high-throughput image data
acquired in a non-invasive manner. Based on the considerable success of BAAM in the
first application of resolving the complex bone aging process in a preclinical study, deep
learning was chosen as the platform to create a comprehensive human bone quality resolv-
ing method. Furthermore, BAAM supplied the confidence that the DNN-based methods
can provide insights into the underlying processes of bone perturbations through investig-
ating the learning process of the models. However, extraction of tangible comprehensive
structural features learned by the DNNs has proven to be challenging. Therefore, a ML
model where a secondary morphometric parameter classifier provides further information
into the structural features learned by the DNN is designed. Therefore, the combina-
tion of a DNN and an ensemble method-based classifier (random forest) was utilized to
investigate manifestation of OI in bone using HR-pQCT images.

Here, the developed ML approach to investigate the multi-scale structural features of
bone corresponding to OI disease types is presented. The bone quality assessment model
(BQAM) deep neural network trained on HR-pQCT images capable of automatically
detecting OI type is presented. Furthermore, by investigating the learning process of
BQAM, the localization of the bone structural features corresponding to OI types as well
as the effects of OI type on bone micro architecture is extracted. Additionally, by training
a random forest classifier on a selected set of extracted morphometric parameters from
HR-pQCT images of OI patients, the distinguishing morphometric features for detecting
OI types is investigated. This novel approach of utilizing an unstructured data classifer
model (random forest) to gain more knowledge about what is learned by the DNN, allows
a detailed investigation of manifestation of OI in bone.

5.4.1 HR-pQCT Image Acquisition
HR-pQCT can typically acquire scans of distal radius and tibia in vivo [349]. During image
acquisition, the limb of the patient is fixed in a shell to avoid motion artifacts [265]. At
first, a 2D X-ray scan depicting a scout view of the bone is obtained. Afterwards, at 4%
of the distal length, the reference point for scanning is placed (Fig 5.12a, b). Next, as
described in 3.1.2, a 3D reconstructed volume of radius using filtered backprojection is
acquired. After reconstruction, the acquired 3D image covering 10.1mm of bone distal
length (Fig 5.12c, d) has a volume of 168×1536×1536 voxels with a homogeneous size of
60.7µm. Next, 168 2D slices (1 voxel thickness) in the distal direction, perpendicular to
the plane created from dorsal-palmar and rustral-caudial directions, are extracted from
the 3D image. Consequently, each slice is a 2D image of 1536× 1536 pixels. The imaging
protocol has the following setting: X-ray tube current and potential are 95mA and 60 kV p,
respectively. The image acquisition takes approximately 3 minutes. The single-scan
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effective radiation dose is less than 5µSv [188]. Comparing this to other image acquisition
techniques e.g chest X-ray (radiation dose: 20µSv), HR-pQCT is clearly less harmful with
respect to the exposed radiation dose.

After image acquisition, the scanner software is used to extract the cortical and tra-
becular bone compartments [192, 346]. From the extracted compartments and by using a
series of image processing algorithms, the following set of parameters are determined: bone
volume, bone volume density, structure model index, trabecular thickness, trabecular sep-
aration, trabecular number and connectivity density, and cortical thickness. Moreover,
for all the scans, the segmented trabecular compartment and the cortical masks of the
bones were directly calculated by the scanner software.

HR-pQCT images of radii of adult OI patients, were acquired under the supervision of
Prof. Bettina Willie at Shriners Hospital for Children - Canada, Department of Pediatric
Surgery, McGill University in a study funded by Mereo BioPharma Group PLC.

Image Preprocessing

All the 3D images (size: 168 × 1536 × 1536) were cropped to contain only the radius
bone. The differences in bone size in patients resulted in heterogeneity in image sizes.
Only scans with motion artifact level ≤ 3 were used [261]. Due to differences in age
and severity of manifestation of OI in bone structure, great variations were observed in
the distal length of the bones. Therefore, to analyze the bone structure at roughly the
same location in different patients, the middle slice (reference line) ±5 slices above and
beyond the middle slice were chosen from each patient. This resulted for each patient in
11 2D slices covering 667µm of the bone distal length. Therefore, the structural changes
occurring in bone in the distal direction is also captured in the dataset.

Due to high heterogeneity in OI bone structure, the cropped slices had different sizes. To
homogenize the size of the 2D slices, first, the maximum size of a slice (number of pixels)
in dorsal-palmar and rustral-caudial directions of all the cropped slices were determined.
Afterwards, all images were padded with stripes of ”0” values such that all images had
the same size. The resulting 2D slice had a size of 597× 476 pixels (Fig. 5.13).

Data Assignment

Two different datasets including images of radius were used in thus study. First dataset
(dset1), which was utilized in the deep learning-based analysis, consists of HR-pQCT
scans from 40 adult patients (male and female, ages between 25 and 75) of OI type I
(n = 26), III (n = 3) and IV (n = 11) acquired using the Xtreme CT II. The second
dataset (dset2), consists morphometric parameters of 96 adult patients (male and female,
age between 25 and 75 years) of OI type I (n = 56), III (n = 14) and IV (n = 24) from
first and second scanner generations (XCT I and XCT II). The second dataset (dset2) was
used to train the random forest model. Images of dset1 were included in dset2. Patients
from dset1 and dset2 were randomly divided into a training set (dset1: 80% of patients
= 32 patients, divided into 352 2D slices; dset2: 83% of patients = 80 patients) and a
test set (dset1: 20% of patients = 8 patients, 88 2D slices; dset2: 17% of patients = 16
patients).
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Figure 5.12: HR-pQCT image acquisition. a) Patience immobilization and placement in the
scanner. b) Determining the reference line for the tibia (top) and radius (bottom)
to begin the scanning process. c) A sample slice of the 3D scan of tibia (left)
and radius (right) including bone, tissue and fixing equipment. d) A 3D cropped
sample of tibia (left) and radius (right) including only the bone (aim image).
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Figure 5.13: Image preprocessing. a) 4 views of a sample OI type I 3D scan. The green line
shows the reference line where the middle scan is placed at. b) The sample middle
slice padded to reach the maximum size observed in the dataset.

Data Augmentation

DNNs require large datasets for training to achieve stable convergence and high classific-
ation accuracy. Therefore, a data augmentation step was performed, in which the size of
the training set is synthetically increased by performing geometric transformations. As
suggested by Krizhevsky et al. [187] and Simard et al. [307], images of the training set
are augmented by applying rotations (−30◦ to +30◦; 10◦ steps using nearest neighbour
interpolation), translations (−10% to +10%; 5% steps in both directions) and horizontal
flipping. Maximum augmentation values were chosen to cover potential occurring devi-
ations between images such as asymmetry of the left and right hand or location of the
bone in the images due to the imaging setup. Augmentation techniques such as applying
noise/filter and elastic deformations were avoided since that could potentially affect OI
related bone features. This results in a total of 24640 images in dset1 training set. No
augmentation was performed on dset2 since the random forest algorithm is not prone to
overfitting.

5.4.2 Deep Bone Quality Assessment Model (BQAM)
To create an end-to-end bone quality assessment model (BQAM) for classifying OI types,
a DNN was designed and trained on 2D slices from the rich-content 3D HR-pQCT images.
To do so, the BAAM network (cf. 5.2) was modified to analyze HR-pQCT images of adult
OI patients. Moving from a DNN that was designed to analyze genetically inbred mice
bones to a DNN that investigates human bone data introduced multi-facade challenges.
On one hand, the network should become more complex in terms of bigger convolutional
layers as well as its depth to account for variations between the images of genetically
diverse human bones. On the other hand, special care should be devoted to prevention
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of overfitting potentially occurring by utilizing a complex DNN. A customized DNN con-
sisting of 15 layers with eight convolutional, three pooling, two fully connected layers and
two dropout layers was designed (Fig. 5.14). The output layer consists of three classes:
OI type I, III and IV.

Figure 5.14: BQAM network for classifying OI type.

BQAM Network Architecture

BQAM processes input images through convolutional layers where sets of kernels are
applied/trained by moving across the 2D slice. By passing an image through the con-
volutional layers, feature-maps of the image are determined at which the position of the
encrypted patterns related to each OI type are accentuated. This leads to extraction of
hidden features of the bone structure corresponding to OI types. The deeper the image
goes through the network, the more complicated bone structural patterns are recognized
by the network. At each convolutional layer, the feature map extraction was performed
by activating the neurons with the rectified linear function and adding a set of bias terms.
These weights and bias values are optimized at each training iteration to provide a higher
accuracy in OI type assessment. The fully connected layers are where the neurons of each
layer are linked to all neurons in the prior layer allowing to relate the features through the
scales of bone structure to perform the bone quality assessment task. At each dropout
layer, with a possibility of 50%, half of the neurons of the network are neglected to make
a decision. Dropout layers are helpful to decrease the possibility of overfitting. Hence,
the network will be able to detect OI in bones with large variations due to differences
in age and gender of the patients. As mentioned before, for a more thorough introduc-
tion to deep learning, the reader is referred to Goodfellow et al. [117] and LeCun et al.
[198]. Feature-maps are down-sampled after the 2nd, 5th and 8th convolutional layers with
a window size and stride equal to 2. The kernels in all convolutional layers are 3 ∗ 3
with a stride of 1. In the consecutive convolutional layers, 4, 8, 8, 16, 16, 32, 32 and 64
feature maps are computed, respectively. The activation of the last convolutional layer
was flatten into a vector and passed to the fully connected layers with 128, 128 and 3
features from which the last one represents the 3 OI classes. At last, a softmax function
is applied on the last flattened dropout layer to calculate the probability distribution for
each OI class. By training BQAM on selected 2D slices, a fraction of the 3D information
from HR-pQCT images might be neglected. However, a similar 3D deep neural network
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trained on the 3D HR-pQCT image would require exceedingly higher GPU memory and
computation power making the training process currently almost impossible for desktop
computers. Future studies might investigate possible 3D extensions of the network.

Training Algorithm

BQAM is trained with the Adam optimization algorithm [179]. The network is initialized
with a truncated normal distribution function (standard deviation: 0.1). Training is
carried out for 2000 iterations with a batch size of 50 images from training set. At every
50 th step, the model is applied on a batch of all images of the test set to check for
overfitting. The initial learning rate is set to 0.1, then an exponential decay at every 25th

step with a 0.96 rate is performed. Implementation, training, validation and testing of
the network was performed using Google TensorFlow 1.7 [1] on a GPU cluster with two
Nvidia Pascal P100 GPUs.

Analysis of Key Regions and Features for OI Manifestation

The trained BQAM network (after last training and validation step) is applied to the
all 440 slices of 40 patients and further evaluated to identify key regions and features
describing manifestation of OI within the radius bone. To determine the regions in the
images that the network focuses on to predict OI type, saliency maps are calculated by
determination of vanilla back propagated gradients [87, 308] for images passing through
the network. The loss gradient is additionally backpropagated to the input data layer.
By taking the L1-norm of the loss gradient of the input layer, a heat map demonstrating
the localization of pixel importance is calculated. Moreover, to further resolve the specific
structural features of the bone that the netwrok focuses on, the vanilla backpropogated
maps are put through a smoothing process [310]. To do so, each image is randomly noised
multiple times and the average saliency map of the noised up images as the smoothed
gradient (smoothed saliency map) is calculated. In these maps, pixel intensity denotes the
importance of this specific pixel for the given task (OI prediction). To define a localized
quantitative importance factor for the OI detection process process, first, masks for the
trabecular, cortical and the tissue present in each slice are extracted (Fig 5.15). The
attention is defined as

∑n
i=1 p

r
i/

∑m
i=1 p

all
i , where (pri , n) and (palli ,m) are the pixel values

of the normalized saliency map and the number of pixels in each subregion and the whole
radius bone respectively (Attention ∈ [0 − 1]). Therefore, attention value represents
the normalized importance of the defined subregions in trabecular compartment, cortical
compartment and the tissue (lack of bone) for the OI classification task.

OI Effects on Bone Micro-architecture

To further investigate the localized manifestation of different OI types in bone micro-
architecture, the correspondence of the saliency maps with thickness of the bone structure
is investigated. To do so, first, a distance map for three different labels of the bone naming
cortical and trabecular bone as well as the tissue labels are determined. A distance map
intuitively shows the thickness of the structure at any point of it. Each pixel value of the
distance map is the number of pixels to the closest zero pixel (background). The distance
maps are calculated using a L2 norm by a moving 5× 5 window going across the image.
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Figure 5.15: Hr-pQCT slice and the two extracted masks for cortical and trabecular bone com-
partments.

Afterwards, the normalized saliency map is multiplied by the distance map pixel-wise.
Next, the summation of the pixel values in the resulted image is considered the ”thickness
attention”, Thatt for each of the compartments in the bone. The higher the Thatt, the
higher value for importance of localized thickness in distinguishing between OI types in
that bone compartment.

The Thatt for the three bone compartments of all the images of 40 patients are calcu-
lated.

5.4.3 A Random Forest Model for Morphometric Parameters
Analysis

In order to extract the structural parameters of importance corresponding to the local-
ized structural features learned by BQAM, a random forest model is trained on selected
morphological features. The morphological features were selected based on the bone para-
meters commonly used to investigate OI [244, 245, 284]. The features are calculated from
HR-pQCT scans and are shown in Table 5.5.

The random forest model is trained to perform the classification task based on the
calculated features. The designed model is built as desribed in 4.3.4 with the three
possible output classes: OI type I, III and IV.

5.4.4 Results: BQAM Analysis of OI
BQAM Performance in OI Classification

A qualitative analysis of scans of different OI types shows that despite differences in bone
macro/micro-architecture, it is challenging to distinguish them with the naked eye (Fig
5.16).

BQAM performs this end-to-end classification to almost perfect results. First, the per-
formance of the BQAM network is evaluated. The trained network reaches 99% accuracy
(loss: 0.03) in predicting OI type in the training and validation datasets (Fig. 5.17a, b).
The confusion matrix of BQAM OI prediction performance (Fig. 5.17c, d) shows that



124 Chapter 5: Analyzing Structure-function Relationship at the Micro/Macro Scale

Figure 5.16: Sample scans of radius in three OI types. a, c, e) dorsal-palmar/rustral-caudial
view of a sample radius of OI type I, III and IV respectively. b, d, f) A cross
sectional cut of a sample radius of OI type I, III and IV consecutively.
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Variable Dimension Description

Tb.vBMD mgHA/ccm Trabecular volumetric bone mineral density
Tt.vBMD mgHA/ccm Total volumetric bone mineral density
BV/TV mm3/mm3 Bone volume fraction
Met/Inn - Peripheral to medullary trabecular bone density ratios
TTb.Th mm Trabecular thickness
Tb.Sp mm Trabecular separation
Tb.N 1/mm Trabecular number
Tb.1/N.SD mm Inhomogeneity of trabecular network
Tt.Ar mm2 Total area
Tb.Ar mm2 Trabecular area
Ct.vBMD mgHA/ccm Cortical volumetric bone mineral density
Ct.Th mm Cortical thickness
Ct.Ar mm2 Cortical area

Table 5.5: Features determined by HR-pQCT analysis describing bone quality.

apart from a small error in predicting OI type IV (4 out of 55 wrongly predicted) all
the other images were predicted correctly. With these accuracy values, the network is
considered to be performing sufficient for OI detection.

Decoding Localized Manifestation of OI

Analyzing the OI-detection results in detail shows structural similarities and subtle dif-
ference in micro-architecture of bones in different OI types. Qualitative analysis revealed
subtle structural differences in both tubercular and cortical compartments (Fig. 5.18a-
c). Overlaying classified images with their specific saliency maps shows a significantly
changing distribution of attention in different OI types.

A quantitative analysis revealed, that the different regions of the bones received different
amounts of attention, therefore contributing differently to the OI detection (ANOVA:
p < 0.01; Fig. 5.18d). Localized Attention values for all OI types together shows that
OI manifestation is at its highest in soft tissue compartments (0.44± 0.12). Afterwards,
the trabecular (0.30± 0.10) and at last the cortical (0.25± 0.10) compartments are in the
focus of BQAM. In images of OI type I, III and IV, differences in attention order for the
three compartments were observed (type I: Ct: 0.21 ± 0.08 → Tb: 0.31 ± 0.09 → Tiss:
0.48± 0.11, type III: Tiss: 0.31± 0.06 → Tb: 0.32± 0.10 → Ct: 0.37± 0.08 and type IV:
Ct: 0.31± 0.07 → Tb: 0.29± 0.08 → Tiss: 0.40± 0.11; Fig. 5.18e).

OI Effects on Bone Micro-architecture

The visual analysis of the Thatt maps and the distance maps shed light on the mani-
festation of OI in the micro-architecture of the bone (Fig 5.19a-c). Thatt amongst the
compartments had the lowest value (Overall Thatt : Ct: 9± 4.5 e3, Tb: 16.2± 7.6 e3 and
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Figure 5.17: OI classification performance. a, b) Accuracy and loss values of OI type prediction
on training set (orange line) and test set (red line) vs. training step. Accuracy
and loss of OI type prediction on the test set is calculated at every 50th training
step. c) Confusion matrix of BQAM determined for 200 images of training set.
d) Confusion matrix of BQAM determined for all images (88 slices) of test set.
Predicted OI type of patients are compared to their actual OI type. Values are
normalized by the number of images per OI class.

Tiss: 25.4± 12.7 e3, p ≤ 0.01; Fig 5.19d). Moreover, the distribution of Thatt is different
in the three OI types (type I: Ct: 9.4± 4.7 e3, Tb: 14.9± 7.1 e3 and Tiss: 27.6± 11.6 e34,
type III: Ct: 6.8 ± 2.5 e3, Tb: 18.3 ± 6.2 e3 and Tiss: 11.7 ± 4.3 e3 and type IV: Ct:
8.6 ± 4.2 e3, Tb: 18.7 ± 8.3 e3 and Tiss: 23.9 ± 14.3 e3, p ≤ 0.01; Fig 5.19e). However,
the order of Thatt values in different compartments are identical in OI type I and IV
(Tiss>Tb>Ct).
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Figure 5.18: Localized Manifestation of OI. a-c) Sample slices from the HR-pQCT scan (gray
scale,left), the saliency map of the scan (middle) and the over lap of saliency map
and the scan (right) for OI type I, III and IV respectively. Saliency map are color
as blue (low) to yellow (high) attention values. d) Attention devoted by network
to the three regions for OI detection in all subjects for cortical bone compartment
(Ct), trabecular bone compartment (Tb) and the soft tissue in trabecular bone
compartment (Tiss). Localized Attention values for all OI types together. e)
Attention values in different OI types. Data shown as mean ± standard deviation.
* indicates a significant difference in attention of different bone regions (p < 0.05).
× shows a significant difference between OI types (p < 0.05).
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Figure 5.19: OI manifestation in bone micro-architecture. a-c) Sample saliency maps of the
of a slice (left), the distance map of the bone (middle) and the multiplication
of saliency and distance maps (right) for OI type I, III and IV respectively.
Saliency map are color as blue (low) to yellow (high) attention values. Distance
maps are color coded from black (low) to red (high) thickness values. d) Thatt
determined for the three regions for OI detection in all subjects for cortical bone
compartment (Ct), trabecular bone compartment (Tb) and the tissue in trabecular
bone compartment (Tiss). e) Thatt determined in different OI types. Data shown
as mean ± standard deviation. * indicates a significant difference in Thatt of
different bone regions (p < 0.05). × shows a significant difference between OI
types (p < 0.05).
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5.4.5 Results: OI-corresponding Structural Features
Random Forest Model Performance

Based on the 13 selected morphological features, the random forest trained model pre-
dicted 15 out of 16 correctly. The lowest precision of OI types was seen in OI type IV
(75%) and the lowest F1 score was seen in OI type III (0.8). The complete metrics of the
random forest model OI classification can bee seen in Table 5.6.

OI type Precision F1-score Support

IV 0.75 0.86 4
III 1 0.80 3
I 1 1 9

Table 5.6: Random forest model metrics in OI determination.

Analyzing the importance of each of the bone parameters in the classification models
reveals the features contributing most and least to the OI detection model. The four most
important structural features are the trabecular number (TB.N: 14%), cortical thickness
(Ct.Th: 12%), inhomogeneity of trabecular network (Tb.1/N.SD: 10%) and trabecular
separation (Tb.Sp: 10%). These have in total 45% of the overall importance in the
classification models (Fig. 5.20).

5.4.6 Discussion
Here, a ML-based approach to investigate OI is presented. OI, affects the structure
of bones by influencing bone turn over as well as material characteristics of the bone
[227]. OI is commonly detected in phenotype analysis [344]. Genotyping has led to
detection of up to 18 different types of OI in patients. Similar to other bone structure
affecting diseases, e.g., osteoporosis, the onset of OI has been investigated by analyzing
morphometric measures and progression such as volumetric bone mineral density (vBMD),
trabecular thickness (Tb.Th), cortical thickness (Ct.Th) etc. [284]. However, no study
could be found that focused on differences between the impacts of OI types on bone
micro/macro structure. Moreover, as we have shown before, the usual analysis of bone
structure changing based on morphometric parameters is not sufficient to describe the
multi-scale aftermath of bone structure altering diseases [14]. Therefore, in regard to OI
disease, two main questions remain unanswered: 1) How does different OI types affect
the bone micro/macro structure? and 2) Which bone quality parameters represent the
manifestation of OI in bone? To answer these question, two ML-based models based on
HR-pQCT scans are developed: 1) A DNN that, for the first time, performs an end-
to-end classification of OI types from scans of the radius. 2) A random forest model
that predicts OI type based on morphometric features. The designed DNN and random
forest models reached 99% and 94% accuracy on the test data, respectively. Although,
the deep learning approach achieves higher accuracy, it requires much more computation
power. Moreover, by utilizing the designed random forest model and determination of the
important morphometric parameters for the OI classification task, the learned features of
BQAM are brought into light.
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Figure 5.20: Mean classification importance for the bone features in OI detection.

The developed end-to-end OI detection DNN reached 99% accuracy on the test dataset.
This is the first time that a completely automatic OI detection model with the presented
accuracy was created. Moreover, the variation of age and gender in our training and test
dataset confirms that our model is primarily detecting OI-related bone features, rather
than aging or gender dependent features.

The attention values devoted to the overall dataset containing all three OI types clearly
shows that manifestation of OI is at highest in the soft tissue in between the trabeculae
(p ≤ 0.01). Trabecular bone has the second highest importance (p ≤ 0.01) and at last
the cortical bone compartment is important for OI detection (p ≤ 0.01). The attention
values here could be considered as the inverse measurement for similarities between OI
types. Therefore, the cortical compartment of bone showed the least differences between
different OI types while the trabecular bone is more distinct. This is further confirmed by
the random forest model for OI classification since three out of the four most important
bone features for the classification model belong to the trabecular bone compartment
(TB.N (14%), Tb.1/N.SD (10%) and Tb.Sp (10%)).

The detailed analysis of attention values per OI type shed light on the interplay of
features from different bone compartments in OI classification. In OI type I, the atten-
tion ranking is: cortical bone → trabecular bone → soft tissue (p ≤ 0.01 for all three
comparisons). However this order in OI type III reads as: soft tissue and trabecular bone
→ cortical bone (p ≤ 0.01) and for type IV as: trabecular bone → cortical bone → soft
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tissue. This shows that the order of importance is different in OI types. In OI type I,
the soft tissue is the most distinguishing character (p ≤ 0.01); whereas, in type III, the
features of the cortical bone was the distinctive characteristic (p ≤ 0.01). In OI type IV,
similar to type I, the soft tissue in trabecular compartment is the most important feature
(p ≤ 0.01); however, the cortical compartment was in the second place with respect to its
importance (p ≤ 0.01) and the difference between the soft tissue and cortical importance
is less than what is seen in OI type I (p ≤ 0.01). One potential interpretation of the
local comparison of the attention values between OI types is that the manifestation of OI
disease in type I is mostly prominent in lack of trabecular bone structure; whereas, in type
III, the disease is more conspicuously present in the cortical structure of the bone. In OI
type IV however, although the disease affects the soft tissue in trabecular compartment
the most, it resides in the cortical bone more than the trabecular bone.

The micro-architectural manifestation of OI were investigated by linking the corres-
pondence of the saliency maps to the thickness of bone structure across the bone com-
partments. The manifestation of OI is certainly more complicated than just the network
focusing on thicker parts of the bone (Fig 5.19). The low Thatt value for the cortical
compartment in all three OI types points towards similarities in cortical thickness across
different types. In contrast the high Thatt in type I and IV shows the space between
trabeculae is very important for detecting the OI types. Additionally, OI type III is
mostly distinguished by focusing on the space between trabeculae and the thickness of
trabecular bone. This showed that within the trabecular bone compartment (consisting
of the trabeculae and soft tissue), despite high importance of the trabecular thickness, no
obvious lack of micro-architecture is present because of OI disease.

The developed model here has some limitations. The designed models are trained and
validated on images of the radius. Therefore, it is yet to be confirmed that the results
shown here are valid for other bones such as the tibia with a more prominent load bearing
functionality. Moreover, the number of images/patients in the datasets potentially affects
the DNN models. Although, a thorough validation step is performed; images from more
patients could potentially increase the robustness of our model. Additionally, by training
on 2D slices, the information stored in the distal direction might be neglected. For the
case of radius, this might not seriously affect our model because of lack of load bearing
functionality in its distal direction. However, when transferring the results to other bones,
one should consider applying 3D CNNs. Although, that would considerably increase the
computationional costs. At last, our study did not have a control group to analyze the
onset of OI disease. Therefore, the results presented here are focused on manifestation of
different OI types in bone rather than an absolute phenotype analysis.

The developed OI classification model can be directly improved by introducing a con-
trol healthy group to the training set. That can potentially lead to understand the effects
of OI on the bone from a pure bone structural point of view. Moreover, future studies can
further train our model on other bone structure-affecting diseases such as osteoporosis to
obtain a more general bone quality assessment model. Additionally, further development
of the designed DNN from 2D to 3D could be beneficial in using the wholesome of 3D
HR-pQCT scans without any loss of information. However, further homogenizing prepro-
cessing steps would be required to eradicate the variation in distal direction, which might
affect the integrity of the bone macro/micro-architecture.
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5.5 Summary
Here, a ML-based methodology developed to investigate structural changes in bone due
to perturbations naming maturation, loading treatment and OI disease is presented. To
do so, ML models for assessing the state of the bone are designed. In 5.2, in a preclinical
study, the morphometric and densitometric changes that bone undergoes during aging are
investigated. This is done by creating a DNN that is capable of an end-to-end short-term
bone age assessment. The accuracy of aging assessment DNN was 96%. The robustness
of the model is further validated in a three-fold manner. This novel age assessment DNN
is utilized in 5.3 to investigate the potential rejuvenation effects of in vivo loading on
bones showing that 15 days loading results in 5 days rejuvenated bone appearance in
avergae. In 5.4, the DNN is further developed to detect the state of the bone in different
types of osteogenesis imperfecta disease with 99% accuracy. Moreover, by analyzing the
learning process of the networks through saliency maps and designed attention values,
localized manifestation of bone state into the bone structure is investigated showing that
the trabecular bone is more distinguishable between different OI types than the cortical
compartment.



6 Conclusion
In this work, a data-driven approach to study the relationship between structure and func-
tion in biological networks using machine learning and continuum mechanics was designed,
applied and validated. Here, the potentials of analyzing functionality and dysfunctional-
ity of biological networks through studying their structure is shown and investigated. In
the last chapter of this thesis, a summary of what was presented in previous chapters is
provided and the potentials of further developments is discussed.

6.1 Summary and Main Contribution
This thesis focused on developing data-driven methods for analysis of structure-function
relationship in biological networks. For this purpose, models in two different scales are
designed allowing: analyzing protein networks and their mechanical functionality on the
nano scale and analyzing bone structure and its load bearing functionality under the
structural modifying elements such as aging, treatment and diseases.

Protein networks have been thoroughly studied from biochemical point of view. Recent
studies have focused on the structural effects of stimuli such as diseases on the cytoskeletal
protein networks. However, there existed a lack of a quantitative framework to describe
the geometrical state of the networks. Therefore, for the first time, a quantitative imaging
method that extracts a set of morphological and structural features from 3D microscopy
image data was developed to quantitatively describe the state of protein network structure.
The developed method allows an automatic transformation of a 3D light microscopy image
of a protein network into a mathematical representative enabling a quantitative analysis
of the effects of external stimuli on the structure of the network.

As a first application, this method is utilized to investigate the assembly of FtsZ pro-
tein networks Physcomitrella paten chloroplast. FtsZ shares structural and biochemical
characteristics with cytoskeletal protein networks and its relative simplicity enabled a
thoroughly performed validation of the robustness of the method. Furthermore, with the
help of the developed model, the similarities as well as distinguishing characteristics of
two FtsZ isoforms i.e. FtsZ1-2 and FtsZ2-1 are investigated. This allowed investigating
the two FtsZ isoforms with different evolutionary backgrounds, which for the first time,
shed light on the way each of the isoforms contribute to the integrity of the chloroplast.
Moreover, by training a designed ML model on the outcome of the image processing
framework, a tool capable of performing a protein classification with high accuracy (6
out of 7 correct predictions) is created by training on a considerably small dataset (37
images). Considering the amount of required data for the existing DNN- and SVM-based
models for reaching high accuracy in protein network classification and the noticeable
costs of data creation by means of confocal microscopy, the developed ML classification
method advanced the field of protein classification by providing a computationally and
experimentally beneficial tool. Moreover, the modest computational costs of the method
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and its ease of use enables researchers to perform a protein classification task directly
in the lab without access to a high-performance computing facilities. The drawback of
the developed methodology is its reliance on the image resolution. This limits applying
the model to images with lower resolution than CLSM resolution. However, the method
could potentially be utilized on higher resolution images such as STED providing more
accurate results.

In the next step, a µFE continuum-mechanical simulation setup was developed aiming
to investigate the mechanical characteristics of a protein network. To the author’s best
knowledge, this is the first time that a continuum-mechanical model of protein networks
with realistic geometries were created which is capable of simulating a real experimental
setup (compressing the chloroplast). This simulation setup allowed to investigate two
debated concepts regarding the FtsZ of chloroplasts. First, the load bearing functionaly
of FtsZ was investigated. From the results of this investigation the idea of plastoskeleton
of plastids became more evident. Second, the previously observed adaptive stability of
the FtsZ protein network was depicted in a quantitative manner showing that the FtsZ
protein network evolved to withstand bucking failure. Additionally, generating multiple
µFE models from each network allowed to perform a series of in silico experiments enabling
to create a dataset consisting of simulation results. This is specifically valuable when
performing in vitro experiments on protein networks are considerably costly.

At last, by having the two datasets of structural features (results of the image pro-
cessing method) and mechanical characteristics (results of the µFE simulations) of pro-
tein networks at hand, a ML model was created to map the structure to its mechanical
functionality. The designed random forest regression models reached high accuracy in
predicting the mechanical responds of the protein network (R2 ≥ 0.97). This provided
an online mechanical behaviour prediction tool, and more importantly, the ability to
extract specific structural features correlating to the investigated mechanical character-
istics. This approach shed light on how the specific evolutionary design of FtsZ filaments
(their curvature and connections) led to the aforementioned adaptive stability of the net-
work. Therefore, the designed ML-based analysis of protein network structure from 3D
microscopy images shed light on the mechanical functionality of the FtsZ protein network
through the data-driven analysis of its structure.

In comparison to the nano structures of proteins, the bone tissue has been more thor-
oughly analyzed due to a longer history of imaging. This analysis has been mostly
performed using a set of predefined bone structure parameters (cf. 3.1.2). Investigat-
ing functionality/dysfunctionality e.g. aging and fracture risk of bone tissue through
studying these parameters has shown meaningful success. However, in this approach,
the multi-scale nature of bone tissue and the interplay of different structural features
in the structure-function relationship are neglected. Moreover, structural alteration due
to aging, treatment or diseases such as OI might not be manifested in these predefined
parameters, hence the possibility of bias in this approach. These shortcomings are po-
tentially overcome in the data-driven ML-based approach of studying structure-function
relationship presented in this thesis. This is due to the fact that the designed DNNs
consume all the encoded information in images containing the multi scale structure of the
bone tissue without neglecting any relevant information. Moreover, the presence of mul-
tiple consecutive convolutional layers allows correlating pixel-level to region-level features,
hence the multi-scale essence of the bone structure is analyzed. Furthermore, automatic-
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ally extracting structural features corresponding to the investigated bone altering stimuli
provides an unbiased analysis of structural characteristics of bone being affected by the
aforementioned perturbations.

The developed DNN (BAAM) is presented as an end-to-end tool for short-term aging
prediction task using µCT images. BAAM reached 95% accuracy in predicting skeletal
aging in tibia and fibula of mice in a preclinical study. The thoroughly performed valid-
ation of BAAM showed its capability in learning the aging-induced structural alterations
in bone. Furthermore, by investigating what was learned by BAAM by means of sali-
ency maps and attention values, for the first time, the localized manifestation of aging
information in bone was decoded .

As the second bone tissue altering perturbation, in-vivo loading as a bone treatment
process was investigated. By applying the age predicting trained BAAM on images of in-
vivo loaded tibiae and fibulae, it was shown that 15 days of loading results in an average
5 days rejuvenation effect in adult female mice. To the author’s knowledge, this is the
first time that such clear rejuvenation effect of cyclic loading treatment in bone tissue
has been depicted. Moreover, specific localized alterations of the bone leading to this
rejuvenated appearance was extracted. The designed ML-based analysis showed that the
loading induced (re)modeling close to the growth plates of tibiae resulting in similarities
between the old in vivo loaded bones and the younger control group.

With the success of BAAM in resolving the aging process in the preclinical study in
mind, a more complex DNN was designed to perform an automatic bone quality assess-
ment (BQAM). BQAM was used in a clinical study to perform a classification of OI
disease type from HR-pQCT images reaching 99% accuracy. The heterogeneity of bone
tissue observed in the learning dataset of BQAM (due to sex: male/female and age: 25-75)
and the high prediction accuracy confirmed that BQAM learned the manifestation of OI
disease on bones. Unlike the common DXA-based analysis of bone quality and fracture
risk in OI patients, the developed ML-based model showed great success in correlating
bone structural features to the OI disease. Furthermore, it was shown that the effects
of OI in trabecular bone compartment is the main distinguishing factor for OI types.
This approach has led to designing a series of newly defined more complex bone structure
parameters (in comparison to BMD and other classical bone parameters) such as Att and
Thatt enabling to link structure to functionality/dysfunctionality in bone.

The designed ML models and the resulting data-driven based analysis are the main
contributions of this thesis. On the nano scale, this allowed an unprecedented look into
mechanics of protein networks and specifically how FtsZ protein network is evolutionary
designed to function as an adaptively stable plastoskeleton. On the micro/macro scale,
advancing from an analysis of predefined bone parameters to a ML-based investigation
allowed an automatic extraction of bone structural features correlating to the bone quality
and the detailed effects of aging, cyclic loading and OI disease on this quality.

6.2 Future Basic Research and Clinical Perspectives
The designed protein network analysis models could be applied on images of cytoskeletal
protein networks. With the increase in resolution in 3D microscopy, the developed method
can produce more realistic representatives. Moreover, with the increase in availability of
time-resolved 4D microscopy images, the developed method can be further used in a
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dynamic setup. This would allow a direct monitoring/validation of predicted mechanical
behaviour of protein networks.

The presented applications of the developed method concerned investigating the as-
sembly of FtsZ isoforms, distinguishing between structure and functionality of different
isoforms and investigating the structure-function relationship. This could be potentially
modified to assess different states of the same network. Specifically, the method could
be utilized to investigate the alteration of F-actin and microtubule cytoskeletal protein
networks in cancer cells. Cytoskeleton in multiple stages of transformation of a cluster of
normal cells to atypical hyperplasia and finally to a cluster of cancer (carcinoma) cells can
be studied and quantitatively described by means of the developed method. This ana-
lysis can potentially lead to a prognostic tool potentially capable of detecting the cancer
cells in the stage of atypical hyperplasia and before the cells becoming invasive leading
to metastasis. To do so, light microscopy images of a cytoskeletal protein network, such
as vimentin (from intermediate filaments family), which is known for undergoing struc-
tural and mechanical changes during the microevolution of cells from healthy to either
a benign or a malignant tumor, needs to be carried out. Five cell cultures, containing
GFP tagged vimentin protein, naming: 1) healthy, 2) mid-cancerous microevolution to a
benign tumor, 3) benign tumor, 4) mid-cancerous microevolution to a malignant tumor
and 5) malignant tumor, should be created and imaged. Afterwards, by putting these five
datasets through the developed image processing and µFE simulation analysis methods,
a dataset of structural features corresponding to each of these five states will need to be
produced. This allows training the designed ML models to perform a classification task
(prognosis) as well as investigating the structure-function relationship in vimentin protein
network of cells undergoing cancer microevolution. Moreover, the quantitative analysis
of this transformation enables extraction of the altering structural features during the
microevolution of a cancer cell. This could potentially lead to exploring reversing mech-
anisms which specifically treat the extracted altered features of the protein network as
well as smart medicine designed to target only the detected cancerous cells.

With the deep learning-based BAAM model capable of analyzing aging and loading-
induced changes within the preclinical study at hand; the next step could be to train the
BAAM on high-resolution images of human bones. This clinical study could become more
robust by modifying the model from a classification deep neural network to a regression
model. To do so, the modified regression DNN could be trained on CT images of radius
or tibia of adult healthy subjects. The collected dataset should contain enough images
representing the heterogeneity of bone in adults occurring in the process of aging (e.g. 20
subject for each nominative bone age, male and female). Moreover, for older ages, in which
higher heterogeneity in bone structure between subject is present due to aging-related
bone loss, higher number of subjects need to be included. Training the modified BAAM
on this dataset creates a comprehensive bone age assessment model. Other modifications
such as moving towards 3D convolutional neural network could be beneficial given the
fact that computation power is increasing every day. Moreover, BAAM could be trained
on GPU clusters for faster prototyping and higher robustness. We utilized BAAM to
study bone aging after maturation. Bone maturation in children and its manifestation in
macro/micro-structure is a field that BAAM could be potentially utilized.

The BQAM network has shown that deep learning can be used to investigate a genetic
disease affecting bone, which was previously detected only through phenotype analysis.
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This network can potentially be trained on datasets including control groups to assess
treatment effects by measuring the similarities to a healthy bone after receiving treatment.
Such an approach has been shown in this thesis to measure the effects of loading treatment
in bone aging. One could utilize BQAM and the mentioned approach to investigate effects
of any treatment on diseased bone structure. Moreover, BQAM could be modified to a
hourglass-shaped network which maps an image directly to another image. By doing this,
one could potentially predict the structure of the bone after receiving treatment, given
the proper training data.

BQAM could be trained on CT or X-ray images depicting healthy bones and diseased
bones before and during a pharmaceutical treatment process. Studying osteoporosis with
this approach could enable investigating treatment effects on the bone tissue. To do so,
a binary classification BQAM could be trained on healthy/diseased bone images to per-
form a disease detection task. Afterwards, similar to the approach presented in 5.3, the
trained BQAM could be applied to images created during the treatment process with dif-
ferent medication dosage and treatment duration. Analysing the probability distribution
changes in images put through the BQAM network before and after the treatment allows
investigating the effects of the treatment. This means, if treatment has led to struc-
tural changes in bone which are detected as an increased probability in healthy subject
class, the bone is transforming towards a healthier bone; hence the effects of treatment is
quantitatively described.

At last, the success of BQAM in detecting OI in bone points toward its potentials in
detecting other bone structure altering diseases such as osteoporosis. Studies have used
HR-pQCT images to study osteoporosis and fracture possibility. To this day, DXA is
the most common index to investigate fracture risk in osteoporotic patients. However,
DXA fails to predict fracture disk in many patients. The BQAM developed network could
potentially be used to automatically produce a series of newer indexes for fracture risk
with higher prediction success rates. Moreover, BQAM could be further trained (transfer
learning) on publicly available bone image datasets e.g LERA, MRNet and MURA to learn
other dysfunctionality corresponding structural features of bone. This can potentially lead
to acquiring a comprehensive bone quality assessment model.
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Image-based Analysis of Biological
Network Structures using Machine

Learning and Continuum Mechanics
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vorgelegt an der

This thesis lies at the interface of biophysics, computer science, and me-
chanical engineering. This work is devoted to development, application,
and validation of methods for an automatic analysis of the structure-
function relationship on two different scales of biological environments
naming protein networks on the nano scale and metaphyseal bone on the
micro and macro scale. The methodologies are developed in the frame-
works of machine learning and continuum mechanics to carry out an
image-based, data-driven assessment of this relationship.

C
B
M
-0
6
(2
02

0)
D
at
a-
dr
iv
en

A
na

ly
sis

of
Bi
ol
og
ic
al

N
et
wo

rk
St
ru
ct
ur
es

P.
A
sg
ha

rz
ad

eh

Pouyan Asgharzadeh ISBN 978-3-946412-05-2

1


	Deutsche Zusammenfassung
	Abstract
	Introduction
	Motivation
	Outline and the Structure of the Thesis
	Data Source
	List of Publications

	General Background on Biological Network Structure and Functionality
	Cytoskeletal Protein as an Example of a Network structure: a Brief Overview
	Cytoskeletal Structural Blocks
	State of the Art in Modelling Cytoskeletal Protein Network Structure
	Nonlinear Continuum Mechanics of Cells and Protein Networks
	Mechanical Models of Cytoskeletal Protein Networks


	Quantitative Imaging and Machine Learning
	Biomedical Imaging
	Imaging on the Nano-scale: Quantitative Imaging of Cytoskeletal Protein Networks
	Imaging on the Micro- and Macro-scale: Bone

	Machine Learning-based Image processing
	State of the Art
	ML-based Image Classification
	Decision Trees
	Support Vector Machine (SVM)
	Convolutional Neural Networks


	Analyzing Structure-function Relationship at the Nano Scale: Protein Networks
	FtsZ Protein Network Structure and Functionality
	State of the Art in Analyzing the Structure of Protein Networks

	A Method to Describe and Learn the Structure of Protein Networks
	Protein Labeling and Confocal Laser Scanning Microscopy

	Designing a Protein Network Structure Descriptor Method
	Validation of Feature Extraction Algorithm for PNs
	Structural Feature Extraction for the FtsZ1-2 Isoform
	Distinguishing FtsZ isoforms: a Statistical Approach
	Protein Network Classification: a Machine Learning Approach
	Discussion

	Simulating the Mechanical Behaviour of Protein Networks
	Mechanical Nano FE Modeling
	Continuum Mechanical Analysis of FtsZ1-2 and FtsZ2-1 isoforms
	From Small to Large Deformations
	Discussion

	Combining Machine Learning and Simulations to Investigate Protein Network Functionality
	Machine Learning Surrogate Mechanical Model
	Mechanical Behaviour Prediction
	Discussion

	Summary

	Analyzing Structure-function Relationship at the Micro/Macro Scale: Bone
	General Background on Bone
	Bone Biology
	Aging and Bone Loss
	Models of Age-related Bone Loss and Osteoporosis
	Osteogenesis Imperfecta

	A Deep Learning Approach for Bone Age Assessment from µCT Images
	In vivo Monitoring of Tissue Maturation and Adaptation
	Deep Bone Age Assessment Model (BAAM)
	Analysis of Key Skeletal Maturation Regions and Features
	Results: Bone Age Assessment
	Results: Decoding Bone Tissue Maturation Process
	Discussion

	Analyzing Effects of in ivo Loading Treatment on Skeletal Age
	In vivo Mechanical Loading
	Decoding Effects of in vivo Loading using BAAM
	In Vivo Loading and 3D Bone Volume Changes
	Results: Rejuvenation Effects of in vivo Loading
	Results: Localized Rejuvenating Manifestation of in vivo Loading
	Results: Rejuvenation and Bone Volumetric Changes
	Discussion

	A Deep Learning Approach for Analyzing Osteogenesis Imperfecta (OI)
	HR-pQCT Image Acquisition
	Deep Bone Quality Assessment Model (BQAM)
	A Random Forest Model for Morphometric Parameters Analysis
	Results: BQAM Analysis of OI
	Results: OI-corresponding Structural Features
	Discussion

	Summary

	Conclusion
	Summary and Main Contribution
	Future Basic Research and Clinical Perspectives

	Bibliography
	Curriculum Vitae



