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and advice from my Ph.D. Advisor Oliver Röhrle, and my Ph.D. Co-Advisor David Nord-
sletten. I would not have been able to achieve the goals set for my Ph.D. project without
their constant support, without the numerous discussions, without them challenging and
encouraging my creative potential and without them giving me the freedom to do research
visits and internships during my Ph.D., as well as to explore new, sometimes controversial,
and fun ideas.
I would further like to thank my collaborators and supervisors Robert D. Falgout,

Jacob B. Schroder and Ben S. Southworth at the Lawrence Livermore National Laboratory,
at the University of New Mexico and at CU Boulder, who have inspired and helped me
to always think one step further and who have contributed to the success of my thesis.
A shout-out goes out to everyone that I have met during my time as a Ph.D. student and

to all those who have sticked with me during exciting, frustrating, challenging, fun and
rewarding times in Stuttgart, London, Livermore, Auckland, Uppsala, Hildesheim, Tai-
wan, Maastricht, and many other places: my workmates, fellow Ph.D. students, flatmates
and dear friends. Thanks for all the fun hours spent at work, hiking, camping, climbing,
skiing, surfing, photographing, dining, watching sports and theatre plays, listening to
orchestras and poetry, nerding out about technology, science and the arts, watching our
nephews, nieces, (god)sons and (god)daughters grow up, laughing, loving and caring, and
everyone and everything else that makes life worth living!
I could not finish without expressing my sincere gratitude and appreciation to my

parents and family for their unlimited support, love and understanding. You have always
encouraged me to follow my own path that has led me to finding my happy places with
good friends all around me.

Stuttgart, September 2019 Andreas Manuel Hessenthaler





Contents

Abstract xi

Deutsche Zusammenfassung xiii

Nomenclature xv

1 Introduction 1

1.1 Fluid-structure interaction and cardiac flow problems . . . . . . . . . . . . 1
1.2 Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Direct solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Iterative solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.3 Best solver for a particular application . . . . . . . . . . . . . . . . 6

1.3 Parallelization techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.1 Spatial domain decomposition method . . . . . . . . . . . . . . . . 8
1.3.2 Time parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 List of publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 A class of analytic solutions for linear and nonlinear FSI algorithms 15

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Numerical fluid-structure interaction implementation . . . . . . . . . . . . 34

2.3.1 Finite element weak form . . . . . . . . . . . . . . . . . . . . . . . 35
2.4 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4.1 Numerical validation of analytic solutions . . . . . . . . . . . . . . 36
2.4.2 Numerical experiments: Space-time discretization . . . . . . . . . . 36
2.4.3 Numerical solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.4.4 Space-time norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.5.1 Transient fluid and transient linear solid in 2D . . . . . . . . . . . . 39
2.5.2 Transient fluid and transient nonlinear solid in 3D . . . . . . . . . . 39
2.5.3 Transient fluid and transient nonlinear solid in 3D: Physiologically

relevant parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.5.4 Numerical solution and space-time convergence . . . . . . . . . . . 46

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.6.1 Class of analytic solutions for FSI . . . . . . . . . . . . . . . . . . . 46
2.6.2 Analytic solutions utility for verification of FSI algorithms . . . . . 48
2.6.3 Analytic solutions utility for spatiotemporal convergence analysis . 49
2.6.4 Study limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

vii



viii Contents

2.6.5 Open-source implementation . . . . . . . . . . . . . . . . . . . . . . 50
2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3 Multigrid-reduction-in-time 51

3.1 Sequential time-stepping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2 Time grid hierarchy and F/C-splitting . . . . . . . . . . . . . . . . . . . . 52
3.3 MGRIT operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.5 The XBraid library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.6 Extension for time-periodic problems . . . . . . . . . . . . . . . . . . . . . 56

4 Multilevel convergence analysis of multigrid-reduction-in-time 59

4.1 Theoretical convergence of two-level MGRIT . . . . . . . . . . . . . . . . . 59
4.1.1 Why multilevel is harder . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3 Simultaneous diagonalization of {�`} . . . . . . . . . . . . . . . . . . . . . 61
4.4 Multilevel residual and error propagation . . . . . . . . . . . . . . . . . . . 62

4.4.1 Two-level MGRIT with rFCF-relaxation . . . . . . . . . . . . . . . 62
4.4.2 Multilevel V-cycles with F-relaxation . . . . . . . . . . . . . . . . . 63
4.4.3 Multilevel V-cycles with FCF-relaxation . . . . . . . . . . . . . . . 64
4.4.4 Multilevel F-cycles with rFCF-relaxation . . . . . . . . . . . . . . . 64

4.5 Bounds for MGRIT residual and error propagation . . . . . . . . . . . . . 65
4.5.1 Residual and error on level 0 and level 1 . . . . . . . . . . . . . . . 65
4.5.2 Upper bound using inequality . . . . . . . . . . . . . . . . . . . . . 67
4.5.3 Approximate convergence factor . . . . . . . . . . . . . . . . . . . . 78

4.6 Open-source implementation of analytic and numerical bounds . . . . . . . 80

5 Numerical results 81

5.1 Di↵usion equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.1.1 Isotropic di↵usion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.1.2 Anisotropic di↵usion . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2 Wave equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.3 Linear elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3.1 Model problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3.2 Discrete temporal domain . . . . . . . . . . . . . . . . . . . . . . . 95
5.3.3 Scheme I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3.4 Multigrid-reduction-in-time . . . . . . . . . . . . . . . . . . . . . . 97
5.3.5 Two-level MGRIT and Scheme I . . . . . . . . . . . . . . . . . . . . 98
5.3.6 Scheme II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.3.7 Two-level MGRIT and Scheme II . . . . . . . . . . . . . . . . . . . 100
5.3.8 Multilevel MGRIT with Scheme II . . . . . . . . . . . . . . . . . . 102
5.3.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.4 Flow through simplified stenosed valve in 2D . . . . . . . . . . . . . . . . . 112
5.4.1 Space-time discretization . . . . . . . . . . . . . . . . . . . . . . . . 113
5.4.2 Comparison of models for Stokes flow and Navier-Stokes flow . . . . 113
5.4.3 Periodic steady-state solution . . . . . . . . . . . . . . . . . . . . . 118
5.4.4 Weak form of the Stokes flow problem . . . . . . . . . . . . . . . . 118



Contents ix

5.4.5 Multilevel MGRIT for the Stokes flow problem . . . . . . . . . . . . 120
5.4.6 Multilevel MGRIT for the time-periodic Stokes flow problem . . . . 121
5.4.7 Weak form of the Navier-Stokes flow problem . . . . . . . . . . . . 130
5.4.8 Multilevel MGRIT for the Navier-Stokes flow problem . . . . . . . . 132
5.4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.5 Analytic FSI solutions: Transient fluid / transient linear solid in 2D . . . . 137
5.5.1 �-form of coupled PDEs . . . . . . . . . . . . . . . . . . . . . . . . 137
5.5.2 Simultaneously diagonalized time-stepping operators . . . . . . . . 139
5.5.3 MGRIT convergence . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.5.4 Time-periodic MGRIT . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.6 Analytic FSI solutions: Transient fluid / transient nonlinear solid in 3D . . 160

6 Application: Flow through left atrium and ventricle in a CRT patient 165

6.1 Preprocessing pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.2 Model problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.2.1 Strong form equations . . . . . . . . . . . . . . . . . . . . . . . . . 170
6.2.2 Finite element formulation using Lagrange multipliers . . . . . . . . 172

6.3 Obtaining and detecting a periodic steady-state . . . . . . . . . . . . . . . 174
6.4 Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
6.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.5.1 Fluid volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
6.5.2 Periodic steady-state: Flow rate at pulmonary veins . . . . . . . . . 176
6.5.3 Flow in left atrium and ventricle . . . . . . . . . . . . . . . . . . . 177
6.5.4 Runtimes & Speedup . . . . . . . . . . . . . . . . . . . . . . . . . . 177

6.6 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

7 Summary & Outlook 187

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
7.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

A Parallel machines 189

B Butcher tableaux of SDIRK schemes 191

Bibliography 193





Abstract

In this work, parallel-in-time integration methods are considered as means to reduce the
time-to-solution for numerical algorithms concerned with the solution of time-dependent
partial di↵erential equations (PDEs) arising in the field of fluid-structure interaction (FSI)
modeling.
Parallel-in-time integration methods introduce parallelism in the temporal domain and

complement parallelization techniques that are applied to the spatial domain, such as
domain decomposition methods. This significantly increases the potential for parallel
speedup by employing modern computer architectures, ranging from small-scale clusters
to massively parallel high-performance computing platforms.
In this work, the multigrid-reduction-in-time (MGRIT) algorithm is considered as a true

multilevel method that can exhibit optimal scaling. MGRIT is based on multigrid reduc-
tion and takes inspiration from well-established spatial multigrid methods. Convergence
of MGRIT is studied for the solution of linear and nonlinear (systems of) PDEs: from
single- to multiphysics applications relevant to FSI problems in two and three dimensions.
A multilevel convergence framework is derived that generalizes and extends previous

two-level theory for linear PDEs. The convergence framework establishes a priori upper
bounds and approximate convergence factors for a variety of cycling strategies (e.g., V-
and F-cycles), relaxation schemes and parameter settings. The derived upper bounds
range from sharp but computationally expensive numerical upper bounds to cheap ana-
lytic formulae bounding the worst-case convergence of MGRIT. Furthermore, approximate
convergence factors are proposed that capture MGRIT convergence with reasonable qual-
ity for cases, when analytic formulae are not available and the computational cost of
numerical bounds is prohibitive.
The multilevel convergence framework is applied to a number of test problems relevant

to FSI modeling: solving time-dependent linear PDEs, such as the anisotropic di↵usion
equation, the wave equation, the linear elasticity equation and the Stokes equation. Ex-
tensions of the theory to the nonlinear PDE case are explored as well.
This work further proposes an MGRIT variant that exploits the time-periodicity that is

present in many biomedical engineering applications, e.g., cyclic blood flow in the human
heart. The time-periodic MGRIT algorithm is assessed for simple flow problems, for a
novel class of analytic solutions for linear and nonlinear FSI, as well as nonlinear flow in a
patient-specific model of the left atrium and left ventricle. For the range of considered test
problems, the time-periodic MGRIT algorithm proves capable of consistently reducing the
time-to-solution of an existing simulation model with significant observed speedups.
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Deutsche Zusammenfassung

In dieser Arbeit werden parallele Zeitintegrationsmethoden zur Reduktion von
Lösungszeiten numerischer Algorithmen betrachtet. Dies gilt insbesondere für numeri-
sche Algorithmen zur Lösung von zeitabhängigen partiellen Di↵erentialgleichungen im
Bereich der Modellierung von Fluid-Struktur-Interaktionsproblemen.
Parallele Zeitintegrationsmethoden ermöglichen Parallelität in der Zeitvariablen und

ergänzen Parallelisierungstechniken, die traditionellerweise auf die räumliche Komponente
von partiellen Di↵erentialgleichungen angewandt werden, wie beispielsweise Gebietszerle-
gungsmethoden. Durch die Ausnutzung modernster Computerarchitekturen, von kleinen
Rechenclustern bis massiv parallelen Höchstleistungsrechnern, erhöht sich das Potential
zur Beschleunigung von Lösungsalgorithmen substantiell.
In dieser Arbeit wird der Zeit-Mehrgitterreduktionsalgorithmus MGRIT betrachtet,

für den für bestimmte Anwendungen bereits eine optimale parallele Skalierfähigkeit nach-
gewiesen wurde. MGRIT ist eine Mehrgitterreduktionsmethode und lehnt sich an die
etablierten und bereits vielseitig eingesetzten, räumlichen Mehrgitteralgorithmen an. Im
Rahmen dieser Dissertation wird die Konvergenz des Zeit-Mehrgitteralgorithmus für die
Lösung von linearen und nichtlinearen (Systemen von) partiellen Di↵erentialgleichungen
untersucht: von einfachen Problemstellungen hin zu gekoppelten Multiphysiksystemen im
Bereich der Fluid-Struktur-Interaktionsmodellierung, sowohl im (vereinfachten) zweidi-
mensionalen Raum, als auch für realistische dreidimensionale Geometrien.
Eine Mehrgitterkonvergenztheorie wird hergeleitet und vorgestellt, die bereits

verö↵entlichte Zweigittertheorie für lineare Di↵erentialgleichungen verallgemeinert und er-
weitert. Die postulierte Konvergenztheorie umfasst obere Schranken und Abschätzungen
von Konvergenzraten des MGRIT-Algorithmus, die bereits a priori ausgewertet werden
können und daher zur informierten Parameterwahl vor der eigentlichen Lösung der par-
tiellen Di↵erentialgleichung dienen. Die theoretischen Ergebnisse schließen verschiedene
MGRIT-Varianten mit ein: es können sowohl V-, als auch F-Zyklen und unterschied-
liche Relaxierungsstrategien beziehungsweise MGRIT-Parameter betrachtet werden. In
diesem Sinne ist die Konvergenztheorie sehr allgemein gehalten und erlaubt eine umfas-
sende Voruntersuchung und Einschätzung der zu erwartenden MGRIT-Performance. Die
theoretischen Ergebnisse umfassen sowohl scharfe obere Schranken an die Konvergenz-
rate, die numerisch und mit einigem Berechnungsaufwand ausgewertet werden, als auch
analytische obere Schranken, die einer einfachen Funktionsauswertung bedürfen. Deswei-
teren werden analytische Ausdrücke postuliert, die Konvergenzraten approximieren. Diese
approximierenden Ausdrücke können in solchen Fällen eingesetzt werden, in denen der
Berechnungsaufwand numerischer oberer Schranken zu hoch wäre, aber keine alternative
analytische obere Schranke verfügbar ist.
Die Mehrgitterkonvergenztheorie wird für eine große Anzahl von Testproblemen an-

gewandt, die für Fluid-Struktur-Interaktionsmodelle relevant sind: beispielsweise für die
Lösung zeitabhängiger partieller Di↵erentialgleichungen, wie die anisotrope Di↵usions-
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gleichung, die Wellengleichung, die lineare Elastizitätsgleichung und die Stokes-Gleichung
für lineare Strömungen. Ideen zur Erweiterungen der Theorie für den Fall nichtlinearer
partieller Di↵erentialgleichungen werden ebenfalls ergründet und evaluiert.
Desweiteren wird in der vorliegenden Dissertationsschrift eine neue MGRIT-Variante

vorgeschlagen, die die Zeitperiodizität von Systemen im Bereich der biomedizinischen
Ingenieursanwendungen gezielt ausnutzen kann, wie zum Beispiel bei der Untersu-
chung zyklischer Blutströmungen im menschlischen Herzen. Der zeitperiodische MGRIT-
Algorithmus wird dann für eine Reihe von Problemstellungen evaluiert: für einfache
Strömungsprobleme, für eine neue Klasse analytischer Lösungen im Bereich Fluid-
Struktur-Interaktion und für nichtlineare Strömungen innerhalb einer patientenspezifi-
schen Geometrie des linken Vorhofs und der linken Herzkammer. Für alle betrachte-
ten Anwendungsfälle liefert der neue zeitperiodische MGRIT-Algorithmus konstant gute
Laufzeitreduktionen existierender numerischer Modelle mit übergreifend guten Speedup-
Faktoren.
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Subscript and superscript conventions

d dimensional index

i iteration index

k spatial mode index / eigenvalue index

` level index

n time index
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Z set of integers

Z+
0 set of non-negative integers
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Q set of rational numbers
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C set of complex numbers

Symbols Description
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n` number of time grid levels

N` number of points on time grid level `

Nx number of spatial degrees-of-freedom

E error propagation operator (V-cycle)

F error propagation operator (F-cycle)

R residual propagation operator
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p
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2D two-dimensional

3D three-dimensional
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1 Introduction

1.1 Fluid-structure interaction and cardiac flow problems

“Mathematical modeling and numerical simulation have become important tools in the
investigation of complex multiphysics phenomena [86] including the interaction between
fluids and solids [4, 9, 17, 103]. In the field of biomedical engineering, fluid-structure
interaction (FSI) modeling is playing an increasingly important role due to the coupling
of fluid flow and tissue mechanics vital to many physical phenomena. Use of FSI models
for the assessment of medical devices as well as clinical evaluation [102, 104, 128] is
becoming increasingly common. In silico testing of devices using FSI models can help
to expedite and augment preproduction development as well as assist in understanding
the implications of an implant and its interaction in the human body. Moreover, in the
domain of diagnostics and therapy planning, patient-specific models of the cardiovascular
system [1, 132, 141, 143] are actively pursued, with the vision of eventually providing
clinicians with guidance on treatment.”1

A diseased heart may be a↵ected from an asynchronous contraction of the tissue. This
can be caused, for example, by scarred tissue in infarct patients that alters the propagation
of electrical waves, and thus, a↵ects the activation of the contraction of the heart, leading
to impaired cardiac output. A typical model of such a diseased heart may involve the
interaction of blood flow in the atria and ventricles of the human heart with heart valves,
the active and passive behavior of the surrounding tissue, the electophysiology (possibly
including chemical processes at the cellular level), as well as other relevant phenomena.
While many macroscopic quantities can be easily assessed through medical imaging tech-
niques, e.g., computed tomography (CT) or magnetic resonance imaging (MRI), in silico
models can fill the gaps when such data cannot be recorded, the e↵ect of therapy needs to
be predicted (e.g., for cardiac resynchronization therapy planning) or if the imaging data
lack spatiotemporal resolution simply because the patient cannot stay in an MRI scanner
long enough.
Depending on the level of complexity and detail of the in silico model, the computa-

tional cost may be enormous. Processes and phenomena need to be resolved accurately in
space and time. Oftentimes, models of phenomena in the human body show a naturally
occuring time-periodic behavior. That is, processes or states occur repeatedly with a given
period length T . In general, to reach such a periodic steady-state for an in silico model,
multiple such periods or cycles need to be simulated, which increases the computational
cost. Thus, the time-to-solution scales with the number of simulated cycles. In this work,
parallel-in-time (PinT) integration is assessed as a means to reduce the time-to-solution,
and new ways to compute a periodic steady-state more e�ciently are introduced.
In the following sections, the concepts of numerical solvers and parallelization tech-

niques are explained in more detail to develop an intuition for the multigrid-reduction-in-

1Paragraph from [64].
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2 Chapter 1: Introduction

time (MGRIT) algorithm. MGRIT, which is introduced in Chapter 3, will be the main
focus of this work to develop a framework that enables the acceleration of numerical
simulations of FSI models and cardiac flow problems.

1.2 Solvers

In many cases, numerical models (such as those described in Section 1.1) result in the
task of solving a system of linear equations,

Au = b, (1.1)

with solution u and right-hand-side b. Depending on the properties of the system matrix
A, the choice of an optimal solution strategy may vary. A broad classification of solution
methods is given as direct and iterative methods. Direct methods solve (1.1) exactly (up
to rounding errors), whereas iterative methods compute successively improved approxi-
mations ui (iteration index i) up to a given tolerance. For example, as a convergence
criterion one may require that the `2-norm of the residual at iteration i,

ri = b�Aui, (1.2)

is less than a given tolerance,

krik2 < tol for some i, (1.3)

where the `2-norm is defined as,

krik2 =
sX

k

[ri]2k, (1.4)

and [ri]k refers to the kth component of the residual at iteration i.
In the following, examples for direct and iterative solvers are discussed2 to develop an

intuition for the key di↵erences and to set the stage for the discussion of parallelization
techniques in Section 1.3, and in particular for the multigrid-reduction-in-time algorithm
as the main focus of this work. To simplify the discussion, consider:

A =

2

6664

a11 a12 · · · a1N
a21 a22 a2N
...

. . .
...

aN1 aN2 · · · aNN

3

7775
2 RN⇥N , u =

2

6664

u1

u2
...
uN

3

7775
2 RN , b =

2

6664

b1
b2
...
bN

3

7775
2 RN , (1.5)

with N 2 Z+. Further, assume that,

aij 6= 0 for i, j 2 {1, 2, . . . , N}, (1.6)

and that A has full rank, is symmetric, i.e. A = AT , and positive-definite.

2All solvers discussed in Section 1.2 were implemented in Python [151] for demonstration purposes [58].
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Definition 1 (Positive-definiteness). A real matrix A 2 RN⇥N with N 2 Z+ is called
positive-definite [81], if

zTAz > 0, (1.7)

for all nonzero z 2 RN .

We further use the notion of time complexity and computational complexity [11, 88]
interchangeably, as defined in the following.

Definition 2 (Time complexity). Consider an input of size N , fixed constants c, d > 0
and let f(N) be the time required by a given algorithm. Then, the time complexity of
the algorithm is defined as f(N) = O(g(N)), that is,

0  f(N)  cg(N) 8 N � d. (1.8)

In Definition 2, g(N) describes the growth of the number of elementary operations in
the algorithm. For example, O(1) refers to constant complexity, O(N) refers to linear
complexity, O(N2) refers to quadratic complexity, etc. A similar definition can be made
for the memory complexity of an algorithm.

1.2.1 Direct solvers

Direct methods solve Equation (1.1) exactly. For example, they find the solution u as,

u = A�1b, (1.9)

where A�1 is the inverse of A. Forming the inverse explicitly and computing the matrix-
vector product A�1b, however, is computationally expensive.

1.2.1.1 Gaussian elimination

An alternative to forming A�1 explicitly is Gaussian elimination [3, pp. 508–515], which
is the textbook algorithm for computing the solution u of (1.1). Through linear combi-
nations of the rows of A and manipulation of the right-hand-side b, the following steps
are performed:

1. Compute upper-diagonal form Ã with new right-hand-side b̃

2. Compute diagonal form of Ā with new right-hand-side b̄

3. Compute solution u = b̄/ diag(Ā) (element-wise)

Gaussian elimination has a time complexity of O(N3), which is not optimal [140].

1.2.2 Iterative solvers

In general, direct solvers are computationally expensive. One typical remedy is the use
of iterative solvers, that can often be much faster at the expense of solution accuracy.
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1.2.2.1 Jacobi method

The Jacobi method [3, 79, 119] is a typical fixed-point method in the class of iterative
methods and is based on the decomposition,

A = D +R, (1.10)

where D = diag(A) is the diagonal of A, and R is the remainder. Thus, rewriting
Equation (1.1) yields,

Au = (D +R)u = b. (1.11)

The Jacobi method now selects an initial guess u0 of the solution and defines a fixed-
point iteration by the following recurrence,

ui = �D�1Rui�1 +D�1b, for i 2 Z+, (1.12)

with iteration matrix,

G = �D�1R. (1.13)

A more general fixed-point iteration is given by,

ui =
⇥
(1� !)I � !D�1R

⇤
ui�1 + !D�1b, for i 2 Z+, (1.14)

and referred to as weighted Jacobi method, with the identity operator I and the iteration
matrix,

G(!) =
⇥
(1� !)I � !D�1R

⇤
, (1.15)

with a weigthing factor ! that can improve convergence if selected carefully.
An important question is if the iteration (1.14) converges (that is, ui ! u for i!1)

and how quickly it yields an approximation with su�cient accuracy. To this end, consider
the error at iteration i,

ei = u� ui. (1.16)

If the iteration converges, then the solution u satisfies the fixed-point iteration [119],

u = G(!)u+ !D�1b, (1.17)

and we can write,

ei = u� ui = G(!) (u� ui�1) = . . . = Gi (u� u0) = Gie0 (1.18)

As shown in [119], the iteration (1.14) converges for any initial guess u0 and right-hand-
side b (and thus, ei ! 0 for i ! 1) if the spectral radius of G(!) is less than unity,
i.e. ⇢ (G(!)) < 1. In fact, this basic observation provides key ingredients for developing
convergence theory in later parts of this work (see Chapter 4).
Since it is typically di�cult or impossible to precicely measure the error in practical

applications, other measures of convergence have to be defined. It is, for example, possible
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to measure the residual, and stopping criteria for iterative methods are often based on a
residual tolerance, see Equation (1.3). For the approximation of the solution of the linear
system of equations in (1.1) at iteration i, the relationship between error ei and residual
ri is surprisingly simple,

Au = A (ui + ei) = b , Aei = b�Aui = ri. (1.19)

To illustrate the notion of convergence further, consider the symmetric positive-
definite (SPD) matrix A and right-hand-side b with dimension N = 500 and coe�cients
aij, bi 2 (0, 1) for all i, j. Further, consider the weighted Jacobi method with weights
! = 1 and ! = 0.807, and corresponding spectral radii ⇢(G(! = 1)) = 0.498 and
⇢(G(! = 0.807)) = 0.209. Using (1.18) and (1.19), the residual reduction of the weighted
Jacobi method can be predicted,

krik2 = kAGiA�1r0k2  kGki2kr0k2 = ⇢ (G)i kr0k2
, krik2/kr0k2  ⇢ (G)i , (1.20)

and similarly for the error reduction,

keik2 = kGie0k2  kGki2ke0k2 = ⇢ (G)i ke0k2
, keik2/ke0k2  ⇢ (G)i . (1.21)

Equation (1.20) and Equation (1.21) give upper bounds on the residual and error reduc-
tion of the weighted Jacobi method. Figure 1.1 highlights that the bound (1.20) is indeed
sharp, i.e. observed residual reduction does not noticeably di↵er from the predicted upper
bound. As such, the development of convergence theory for numerical algorithms is desir-
able, and has the potential to help understand an algorithm’s strengths and weaknesses.
Lastly, it is noted that the complexity of the (weighted) Jacobi method is O(N2).

1 10 20 30 40 50

10�12

10�6

100

Iteration i

kr
ik

2

Jacobi method, ! = 1.0
Jacobi method, ! = 0.807
Conjugate gradient method
tol = 10�12

Figure 1.1: Observed convergence for the Jacobi (solid, red), weighted Jacobi (solid, blue) and
conjugate gradient (solid, green) method for an SPD matrix A. The predicted
residual reduction for each method is shown in dashed lines.
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1.2.2.2 Conjugate gradient method

In the previous section, it was observed that the convergence speed of the weighted Jacobi
method depends on the weight !. The conjugate gradient (CG) method is a particularly
fast method for solving (1.1) when A is real and SPD. It is motivated from minimizing,

1

2
xTAx� bTx for x 2 RN , (1.22)

which is equivalent to solving (1.1), see [3, Section 8.9]. The CG method follows a similar
idea as the method of steepest descent, however, instead of finding the minimum along the
direction of steepest descent (i.e. in the direction of the gradient of (1.22)) it selects search
directions that are A-orthogonal to each other. This yields a method that is guaranteed
to converge in N iterations. Pseudo-code is provided in Algorithm 1.

Algorithm 1 Conjugate gradient method [3]

1: procedure CG
2: Set initial guess: u0 = 0
3: Set initial residual: r0 = b�Au0

4: Set initial search direction: p0 = r0

5: Set i = 0
6: while i < N do
7: Compute coe�cient ↵i = rT

i r/(p
T
i Api)

8: Compute approximation ui+1 = ui + ↵ipi

9: Compute residual ri+1 = ri � ↵iApi

10: if kri+1k < tol then break

11: Compute coe�cient �i = (rT
i+1ri+1)/(rT

i ri)
12: Compute search direction pi+1 = ri+1 + �ipi

13: Set i i+ 1

Residual reduction of the CG method can be bounded (see [82–84]) by,

krik2/kr0k2 
�
(A)1/i � 1

�i/2
, (1.23)

where (A) = kA�1k2kAk2 is the condition number of A.
Applying the CG method to the system from Section 1.2.2.1 yields a much faster con-

verging method, see Figure 1.1. For example, the CG method converges in 7 iterations
compared to 44 and 20 for the weighted Jacobi method with weights ! = 1 and ! = 0.807,
respectively. On the other hand, the upper bound on residual reduction for the CG
method is less sharp than for the weighted Jacobi method. This emphasizes that conver-
gence theory can help understand the worst-case performance of an algorithm, however,
performance for practical applications may be (significantly) better. While one generally
wants to design a method that converges in less iterations, it is important to consider
that one also wants to minimize the per-iteration cost, and thus the wall clock time of the
algorithm.

1.2.3 Best solver for a particular application

The best solver for a particular application may not be a good or even applicable solver
for other applications. For example, the CG method (see Section 1.2.2.2) is a fast solver
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for systems of linear equations, when the matrix is real and SPD; however, if the matrix
is not symmetric or not positive-definite, the CG method does not converge. Important
considerations in the selection of a suitable solver are matrix properties, such as symmetry,
definiteness, condition number, sparsity, etc. These aspects may depend on the underlying
PDE, the discretization strategy, the parallelization technique, and others.

1.3 Parallelization techniques

For many applications, the solution of a given problem is found by solving a PDE that
is formulated over a given domain ⌦. This domain is discretized, e.g., using finite ele-
ments [160], to create a discrete representation ⌦h of the domain (see Figure 1.2) and to
solve the PDE at a finite number of (mesh) points. To find the solution of a given prob-
lem often requires the solution of a system of linear equations similar to Equation (1.1),
where the dimension of A corresponds to the number of degrees-of-freedom (DOFs), i.e.
the number of mesh points.

Domain ⌦ Mesh ⌦h Decomposition ⌅

Figure 1.2: Parallelization using mesh partitioning: A given domain ⌦ is triangulated to create
a discrete representation of the domain (or mesh) ⌦h, which is further decomposed
into discrete subdomains. Each of the subdomains of the decomposition ⌅ can be
handled on a (separate) processor and communication (red arrows) between points
at the interface (circles) is employed to enforce contraints, e.g., continuity of the
solution. Schematic inspired from [15, Figure 2.14].

The wall clock time of an algorithm to solve (1.1) scales with the number of DOFs, see
Section 1.2. There are a number of ways to reduce the wall clock time. For example:

1. Hardware: Reducing the wall clock time can be achieved by employing faster
hardware to execute more operations per second. While this was a viable path until
the mid-2000’s, clock rates have become stagnant (see Figure 1.3) in recent years.

2. Algorithm: As discussed in Section 1.2, selecting a di↵erent solution strategy can
yield better performance and shorter time-to-solution.

3. Parallelism: Around the time when clock rates stagnated, processing units with
multiple logical cores have become available (see Figure 1.3). Two major categories
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of solution strategies to exploit parallelism for time-dependent PDEs were estab-
lished:

a) Spatial component: One of the most common parallelization techniques is the
spatial domain decomposition (DD) method. The key idea is to divide the spa-
tial domain into subdomains, distribute tasks for each subdomain over paral-
lel processors and communicate information between neighboring subdomains.
See Figure 1.2 and Section 1.3.1.

b) Temporal component: The classical approach for solving time-dependent PDEs
is to solve a spatial problem at a number of discrete time steps sequentially,
based on an initial state. This approach is referred to as time-stepping. In
general, the solution at each time step is dependent on the solution at the
previous step. Methods that explore parallelism in the temporal component
are, e.g., Parareal [97], multigrid-reduction-in-time [35], parallel implicit time-
integrator [22, 33], and others [39]. In the context of Section 1.2, sequential
time-stepping can be interpreted as a direct solver, whereas time-parallel meth-
ods usually fall into the category of iterative solvers. See Section 1.3.2.

100
101
102
103
104
105
106
107

1970 1980 1990 2000 2010 2020

Number of logical cores

Typical power in Watt

Frequency in MHz

Single-thread performance
(SpecINT x 103)

Transistors in thousands

Year

Figure 1.3: 42 years of microprocessor trend data: The single-thread performance and processor
frequency have plateaued, while the growth of the number of transistors still follows
Moore’s law. In contrast, the availability of multiple logical cores per processing unit
has caused a paradigm shift in computing towards more parallelism in recent years.
Data for years 1970� 2010 collected by M. Horowitz, F. Labonte, O. Shacham, K.
Olukotun, L. Hammond, and C. Batten. Data for years 2010 � 2017 collected by
K. Rupp. See [118].

1.3.1 Spatial domain decomposition method

A natural way to reduce the wall clock time is to find a decomposition ⌅ of the discrete do-
main ⌦h (see Figure 1.2), and thus, to distribute the computational cost of solving (1.1)
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over a large number of parallel processors. In general, the solution over each subdo-
main depends on the solution of its neighbors and communication at the interface (see
Figure 1.2) is required to enforce constraints, such as continuity of the solution at the
interface.
In the context of solving (1.1), the decomposition in Figure 1.2 can be illustrated as

follows:
2

66664

Arr Arb Arg Aro Ark

Abr Abb Abg Abo Abk

Agr Agb Agg Ago Agk

Aor Aob Aog Aoo Ark

Akr Akb Akg Ako Akk

3

77775

2

66664

ur

ub

ug

uo

uk

3

77775
=

2

66664

br
bb
bg
bo
bk

3

77775
. (1.24)

The diagonal blocks in Equation (1.24) correspond to DOFs in each of the subdomains
of the decomposition in Figure 1.2 and the o↵diagonal blocks are coupling blocks that
correspond to shared DOFs at the interface. Note, for example, that the gray subdo-
main in Figure 1.2 is decoupled from the red subdomain and vice-versa, i.e. Akr = 0
and Ark = 0. This is an important observation because this means that there will be no
communication between processors that compute the solution on the gray and red subdo-
mains. In practical cases, the surface-to-volume ratio for each subdomain is an intuitive
measure for the relative dominance of tasks that correspond to communication (surface)
and computation (volume), and the amount of parallelism that can be exploited. For
example, less communication means that the o↵diagonal blocks in (1.24) are sparse.
In practical applications, finding a good decomposition of the spatial domain is often

formulated as finding a partitioning of a nodal and / or dual graph, see Figure 1.4. The
goal is to distribute the computational cost of each subproblem equally over the number
of available processors (intuitively: same dimension of diagonal blocks in Equation (1.24))
while reducing the amount of communication required (intuitively: increasing the sparsity
of the o↵diagonal blocks in Equation (1.24)). The partitioning of the nodal or dual graph
can be finetuned by introducing nodal, edge or element weights. A popular library to
solve graph partitioning problems is, e.g., ParMETIS [85].
Depending on the dimension of A, the amount of parallelism that can be exploited

through mesh partitioning may be limited. Typically, there is an optimum number of
processors at which the wall clock time is minimized and the achieved speedup is maxi-
mized. The speedup is defined as,

Speedup =
Wall clock time with 1 processor

Wall clock time with p processors
. (1.25)

If more than the optimum number of processors is used, however, the time-to-solution
may be constant (or even grow) due to aspects like an increase in communication.
For example, consider solving a transient isotropic di↵usion equation for 10 time steps

(using backward Euler) on the unit square with a uniform finite element discretization (lin-
ear quadrilateral elements). Figure 1.5 illustrates how the use of more parallel processors
initially yields a larger speedup. But, eventually, the observed speedup reaches a plateau.
While more parallelism can be used for larger spatial problems (e.g., in Figure 1.5, the
observed speedup is larger for larger numbers of DOFs), it may still be significantly less
parallelism than the available hardware would enable. For example, as of June 14, 2019
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Mesh ⌦h Nodal graph Dual graph

Figure 1.4: To partition a mesh, nodal or dual graphs are constructed. The vertices of a nodal
graph are comprised of the nodes of the mesh and the edges correspond to edges
of the mesh. The vertices of a dual graph represent mesh elements and its edges
represent the connection between neighboring elements.

the Cray XC40 (Hazel Hen) system at the University of Stuttgart had a total number
of 185088 processors. In most practical applications, time-dependent PDEs need to be
solved at hundreds to thousands (or more) time steps, and thus, parallelization techniques
to exploit parallelism in the temporal domain need to be employed to enable a further
reduction of the time-to-solution.
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Ideal speedup

Figure 1.5: Observed speedup for solving a 2D isotropic di↵usion equation using spatial paral-
lelism, depending on the number of spatial DOFs.
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1.3.2 Time parallelism

To solve a time-dependent ODE or PDE over N0 time-steps, sequential time-stepping
takes exactly N0 steps and is, thus, considered optimal. Time-stepping, however, is an in-
herently sequential process since the solution at each time step depends on the solution at
the previous step. Intuitively, with this dependency between time steps, time integration
may seem impossible to parallelize.
On the other hand, spatial DOFs that arise from the discretization of time-dependent

PDEs depend on their (spatial) neighbors as well, e.g., through spatial gradient operators.
While this dependency is generally present with respect to all spatial directions, time-
stepping has a one-sided dependency.3 With this analogy, however, one may appreciate
that such dependencies do not necessarily prohibit parallel computations.
In fact, parallelization techniques that are applied to the temporal component of time-

dependent ODEs were first introduced more than a half century ago [108]. The advent
of massively parallel computing hardware has sparked a large number of new develop-
ments and applications over the last decade, see Figure 1.6. Nowadays, many di↵erent
approaches exist and can be categorized according to the review article by Gander [39]:

• Shooting-type time-parallel methods

• Domain decomposition methods in space-time

• Multigrid methods in space-time

• Direct solvers in space-time

Each of these categories is composed of many di↵erent methods and variants of these
methods; for example, “waveform relaxation [99, 152], space-time multigrid [74], par-
allel implicit time-integrator [22, 33, 34], revisionist integral deferred correction [21],
spectral deferred correction [28, 56, 136], Parareal [97] and multigrid-reduction-in-
time [30, 35]” [68], to name a few.4 These methods have been developed for various
application areas and with varying degree of intrusiveness, ease of implementation, level
of parallelism, and potential for speedup.
In this work, the multigrid-reduction-in-time algorithm is considered for the following

reasons:

• Reuse of application codes:

MGRIT is a nonintrusive PinT method that wraps existing simulation codes.
Application code developers can maintain a single code base for legacy behavior
and MGRIT-enabled time-parallelism.

• Introduction of parallel-in-time integration:

Additional parallelism in time is introduced through MGRIT wrappers to fur-
ther reduce the time-to-solution. In particular, the user may switch between
space-parallelism, time-parallelism and space-time parallelism at runtime. This
o↵ers great flexibility depending on the given application and the available /
employed hardware.

3Note, that forward and backward dependencies may also exist, e.g., when solving adjoint problems [51].
4Note, that this list is not exhaustive and more references can be found in [39].
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Figure 1.6: Number of publications in the field of parallel-in-time integration methods and al-
gorithms since 1964. Data from the community website parallel-in-time. org

(accessed: September 4, 2019).

• Optimal parallel scaling property:

Multigrid has the desirable property of “optimal algorithmic scaling for both
parallel communication and number of operations” [111].

• Availability of open-source implementation:

The availability of XBraid [158] as an open-source implementation of the
MGRIT algorithm simplifies the task of introducing time-parallelism in ap-
plication codes, such as OpenCMISS [13, 112] and CHeart [18, 94]. It further
provides a platform for developing extensions or variants of MGRIT and mak-
ing these available to the community.

1.4 Thesis outline

This Ph.D. Thesis is organized as follows: In Chapter 2, a novel class of analytic solutions
is introduced that aims to address the core need for method verification and spatiotem-
poral convergence analysis in the field of linear and nonlinear FSI research. A subset of
these analytic solutions (transient linear FSI in two dimensions, transient nonlinear FSI in
three dimensions) is later employed to assess the convergence and performance of MGRIT
and a novel time-periodic MGRIT variant.
In Chapter 3, the MGRIT algorithm is introduced and an extension for time-periodic

problems is presented. Chapter 4 reviews an existing two-level convergence analysis frame-
work and discusses its strenghts and limitations. This motivates an extension to the true
multilevel case, which is subsequently derived.

parallel-in-time.org
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Chapter 5 assesses MGRIT performance for PDEs that are typically part of coupled FSI
models in the cardiac field: first as single-physics problems (di↵usion equation, wave equa-
tion, solid mechanics, fluid dynamics) and then as multiphysics problems (fluid-structure
interaction with di↵usion model to capture fluid domain motion). In Chapter 6, the novel
time-periodic MGRIT algorithm is applied to a coupled left ventricle / left atrium flow
model based on a patient-specific geometry from computed tomography (CT) data.
A summary of this Ph.D. Thesis is given in Chapter 7 along with a discussion of possible

future extensions.

1.5 List of publications

Accepted manuscripts:

• Experiment for validation of fluid-structure interaction models and algorithms [64]

• Validation of a non-conforming monolithic fluid-structure interaction method using
phase-contrast MRI [67]

• 3D Fluid-Structure Interaction Experiment and Benchmark Results [63]

• Enabling Detailed, Biophysics-Based Skeletal Muscle Models on HPC Systems [14]

• Convergence of the multigrid reduction in time algorithm for the linear elasticity
equations [66]

• Multilevel convergence analysis of multigrid-reduction-in-time [68]

• A Class of Analytic Solutions for Verification and Convergence Analysis of Linear
and Nonlinear Fluid-Structure Interaction Algorithms [59]

In preparation:

• Non-invasive estimation of relative pressure for intracardiac flows using virtual
work-energy [101]

• Tight two-level convergence of Linear Parareal and MGRIT: Extensions and Impli-
cations in Practice [134]

• Multigrid-reduction-in-time: Estimating F-cycle convergence analytically [60]

• Time-periodic multigrid-reduction-in-time for a stenosed valve problem [61]

• Time-periodic steady-state solution of fluid-structure interaction and cardiac flow
problems through multigrid-reduction-in-time [62]

• Solving the multidomain equations with multigrid-reduction-in-time [65]





2 A Class of Analytic Solutions for

Verification and Convergence

Analysis of Linear and Nonlinear

Fluid-Structure Interaction

Algorithms
1

2.1 Introduction

Within computational engineering, examples of fluid-structure interaction (FSI) are per-
vasive and represent an increasingly important set of problems. Addressing the disparate
requirements of di↵erent FSI applications, the scientific community has responded by
generating a broad range of numerical methods. From now classic arbitrary Lagrangian-
Eulerian (ALE) boundary fitted approaches [26, 70, 77], to space-time ALE variational
multiscale [142, 144, 145], unified continuum methods [72, 80], immersed boundary meth-
ods [105, 113, 114], fictitious domain methods [46, 47], immersed structural potential
methods [44, 45], and overlapping domain methods [5, 20, 75, 137, 138, 154] Trailing
this methodological development enabling complex simulations was a boom in applica-
tions, further pushing the numerical envelope to accommodate bigger problems with more
physical models that emulate the complex fluid-structure dynamics of real-world systems.
Part and parcel to the development of FSI techniques, which often involve bespoke or

in-house codes, comes the consistent need for verification and validation. Extending the
tradition of documented numerical results established in fluid mechanics (e.g., lid-driven
cavity [87, 123, 124]), FSI verification problems have been developed in both two and three
dimensions [6, 43, 107, 147, 153] (a more exhaustive list can be found in [64], Table 1),
often involving elastic structures immersed in a steady or periodic flow. These methods
have been extensively used to compare results [57, 148] across codes and provide a measure
of numerical consistency. Similarly, experiments have been proposed [10, 23, 48, 49, 67, 78]
that provide experimental data for validation.
While these approaches provide important mechanisms for observing numerical per-

formance and fidelity, the above benchmark problems and experiments typically present
challenges for assessing the accuracy and convergence of FSI methods and implementa-
tions. Given the complexity of FSI solutions, spatiotemporal convergence analysis presents
a critical, yet di�cult, aspect of FSI method verification. The method of manufactured
solutions [117, 120, 139], whereby a compatible solution is selected and appropriate forcing
terms are prescribed, provides a potential avenue for addressing these needs. However, im-

1 This chapter was submitted as [59]
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plementation of forcing terms can be complex, code specific, and prone to spatiotemporal
errors introduced through their numerical inclusion. An alternative is to provide analytic
solutions, as are used in other fields, for spatiotemporal convergence analysis [29]. In this
case, the fluid and solid state variables are known to satisfy the FSI problem, enabling
comprehensive numerical assessment extending to the limits of machine precision. While
promising, in theory, the availability of analytic solutions for FSI remain severely limited
due, in part, to the complexity of the system.
In this work, we aim to address this core need for method verification and spatiotempo-

ral convergence analysis by introducing a novel class of analytic solutions for FSI. Building
from Womersley’s solution for pulsatile fluid flow [155], we introduce analytic solutions
that characterize fluid flow and solid motion in shear. To enable incremental testing, solu-
tions are derived for two (channel) and three dimensions (tube) for transient and steady
fluids and solids. Additionally, we introduce analytic solutions for both linear elastic
and nonlinear hyperelastic (neo-Hookean) solid models. In total, 16 analytic solutions
are presented, exhibiting a range of solution complexity in both space and time. Code
implementing these solutions is provided (see Section 2.6.5), enabling comparisons with
numerical results and evaluation of FSI solutions for di↵erent parameter combinations.
Derived solutions are subsequently used to examine spatiotemporal convergence and accu-
racy of our previously published FSI method and implementation [94, 110], demonstrating
the e�cacy of these analytic solutions for providing meaningful analysis.
In what follows, we begin by outlining the general FSI boundary value problem in both

two and three dimensions and deriving their analytic solutions (Section 2.2). Details of
the previously published FSI method [110] are briefly reviewed (Section 2.3) along with
details of the spatiotemporal convergence analysis protocol (Section 2.4). In Section 2.5,
results illustrating the behavior of the analytic solutions for two specific cases (transient
two-dimensional fluid / linear solid, transient three-dimensional fluid / nonlinear solid) are
demonstrated, accompanied by convergence results showing expected numerical behavior
with spatiotemporal refinement. These results are discussed in-depth in Section 2.6,
followed by concluding remarks in Section 2.7.

2.2 Methodology

2.2.1 Derivations

In the interest of condensing the material presented in this chapter, we first derive the lin-
ear case in two dimensions before extending it to the nonlinear case. In three dimensions,
we take the opposite approach and start from the nonlinear form before we simplify it
to derive the analytic solution for the linear case. Each category is divided to include all
possible permutations of quasi-static and transient behaviors. In the following, we derive
a general solution for the fluid and solid problems separately. Subsequently, depending
on the combination of temporal behaviors, we derive a unique FSI solution which satisfies
the kinematic and traction coupling conditions.
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Physical and numerical parameters

Material properties

⇢f Fluid density

µf Fluid viscosity

⇢s Solid density

µs Solid sti↵ness

Discretization

�t Time step size

�x, �y, �z Spatial step size

Domain dimensions and forces

Hi Fluid domain height

Ho Fluid-solid domain height

L Domain length

T Temporal cycle length

P Pressure over domain length

Derived constants

kf
p
⇢f i!/µf

ks !
p

⇢s/µs

↵ ekfHi + e�kfHi

� µfkf
�
ekfHi � e�kfHi

�

� Jr
0,s/Y

r
0,s

Jr
0,s J0(�ksHo)

Y r
0,s Y0(�ksHo)

J⇤
0,f J0(ikfHi)

J⇤
1,f kfJ1(ikfHi)

J⇤
0,s J0(�ksHi)

J⇤
1,s iksJ1(�ksHi)

Y ⇤
0,s Y0(�ksHi)

Y ⇤
1,s iksY1(�ksHi)

�0 J⇤
0,s � �Y ⇤

0,s

�1 J⇤
1,s � �Y ⇤

1,s

⌫0 Y ⇤
0,s/Y

r
0,s

⌫1 Y ⇤
1,s/Y

r
0,s

⇠1 sin(ksHi) + cot(ksHo) cos(ksHi)

⇠2 cot(ksHo) sin(ksHi)� cos(ksHi)

⇣1 csc(ksHo) cos(ksHi)

⇣2 1� sin(ksHi) csc(ksHo)

Table 2.1: Material parameters and constants.
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2.2.1.1 Two space dimensions - linear case

We begin the series of derivations with the simplest case presented in this work: the
interaction between a pulsatile-flowing liquid in a two dimensional channel and a linear
elastic solid, on the top and bottom, which undergoes shear deformation, see Figure 2.1.
One of the aims of this section is to help the reader get familiarized with the notation,
main assumptions and steps taken throughout the derivation, all of which are reused
and adapted in the more complex cases. For simplicity, we assume that the physics are
symmetrical with respect to the axis running along the middle of the channel, allowing
us to limit the problem domain to one of the halves. In the reference space, the solid and
fluid domains are represented by two quadrilaterals, ⌦0

f and ⌦0
s, which are separated by

an interface ��. Their length, the width of the channel and the width of the domain are
denoted by L, Hi and Ho. The top boundary represents the outer wall of the solid and is
denoted by �W

s , while the bottom one corresponds to the axis of symmetry of the channel
and we refer to it as �W

f . The left and right boundaries are the inlet (�I
f and �I

s) and the
outlet (�O

f and �O
s ).

The FSI problem takes the following general form:

⇢f@tvf �r · �f = 0 in ⌦f , (2.1)

r · vf = 0 in ⌦f , (2.2)

[vf ]y = 0 on �I
f [ �O

f [ �W
f , (2.3)

(�f · nf ) · ex = [tf ]x on �I
f [ �O

f , (2.4)

@vf/@y = 0 on �W
f , (2.5)

vf (·, 0) = v0
f in ⌦f (0), (2.6)

⇢s@ttus �r · �s = 0 in ⌦s, (2.7)

r · @tus = 0 in ⌦s, (2.8)

us(·, t) = 0 on �W
s , (2.9)

[us]y = 0 on �I
s [ �O

s , (2.10)

(�s · ns) · ex = [ts]x on �I
s [ �O

s , (2.11)

us(·, 0) = u0
s in ⌦s(0), (2.12)

vs(·, 0) = v0
s in ⌦s(0), (2.13)

�f · nf + �s · ns = 0 on ��, (2.14)

vf � vs = 0 on ��, (2.15)

with the Cauchy stress tensor for the fluid and solid defined as:

�f = µf [rvf +rTvf ]� pfI and �s = µs[rus +rTus]� psI,

respectively. Naturally, individual transient and quasi-static cases may be obtained by
nullifying or assigning strictly positive values to the two density parameters, ⇢f and ⇢s.
The solid sti↵ness and fluid viscosity are denoted by µs and µf . For now we will assume
that the initial value fields (i.e. v0

f , u
0
s and v0

s), and the inlet and outlet surface tractions,
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(i.e. tf and ts) are given. As we shall see, knowing what these fields are is not prerequisite
to the derivation of the analytical solutions. Here, they are presented in anticipation of
the weak form of the problem used in the numerical results section. Also, note that the
domains at time zero do not necessarily coincide with reference ones (e.g., when u0

s 6= 0,
⌦s(0) 6= ⌦0

s).

�W
f

�I
f �O

f

��

�W
s

�I
s �O

s⌦
0
s

⌦
0
f

x

y

L

Ho

Hi

Figure 2.1: Fluid and solid reference domains, ⌦0
f and ⌦0

s, in two dimensions with respective

boundaries at the inlet (�I
f and �I

s), the outlet (�O
f and �O

s ) and the wall (�W
f

and �W
s ). The common interface boundary is denoted as ��. Further, the domain

length is given as L, the fluid domain height as Hi and the fluid / solid domain
height as Ho.

In a similar fashion to the classical pulsatile channel flow problem, our strategy is
based on the assumptions that the fluid velocity and solid displacement are constant in
the x-direction. Hence, the solid displacement and fluid velocity take the form:

vf = vf (y, t)ex and us = us(y, t)ex.

To obtain a general form of the fluid solution, we first rewrite the momentum balance
equation in (2.1) in component form and apply our knowledge of the flow behavior:

⇢f@tvf =� @pf
@x

+ µf
@2vf
@y2

, (2.16)

0 =� @pf
@y

. (2.17)

From (2.17), we see that pf is constant in y. Furthermore, applying @(·)/@x to (2.16)
yields:

� @2

@x2
pf (x, t) = 0.
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Thus, pf is a constant or linear function in x. We then suppose the velocity and pressure
are periodic and separable, where the pulsatile behavior is defined by a single harmonic
frequency, !, i.e.:

vf (y, t) = <{vf (y)ei!t} and pf (x, t) = <{Pf (L� x)ei!t}, (2.18)

where Pf 2 C and vf : [0, Hi] ! C denote the fluid pressure over the domain length L
and velocity amplitudes, respectively. The first momentum balance equation reduces to:

i!⇢fvf = Pf + µfv
00
f . (2.19)

In this case, the general solution takes the form:

vf (y) = �
Pf

2µf
y2 + c2y + c1, (⇢f = 0),

vf (y) = �
iPf

⇢f!
+ c1e

kfy + c2e
�kfy, (⇢f > 0).

(2.20)

where kf =
p

i⇢f!/µf (see Table 2.1 for a list of short-form constants). Note that the
integration constants are reused here to simplify notation and they are not related to
each other. Furthermore, based on the smoothness condition in Equation (2.6), which
is equivalent to v0f = 0, we can also conclude that c2 = 0 (quasi-static case) or c2 = c1
(transient case).
Moving on to the solid component of the problem, the corresponding momentum bal-

ance equation can be rewritten to incorporate our assumptions:

⇢s@ttus =�
@ps
@x

+ µs
@2us

@y2
, (2.21)

0 =� @ps
@y

. (2.22)

Assuming periodicity, separability and the same period length for both fluid and solid,
we write:

us(y, t) = <{us(y)e
i!t} and ps(x, t) = <{Ps(L� x)ei!t}, (2.23)

where Ps 2 C and us : [Ri, R0] ! C are the amplitudes of the solid solution. Here, we
skipped the derivation of ps as it is analogous to that of pf . Consequently, Equation (2.21)
reduces to:

�⇢!2us = Ps + µsu
00
s .

resulting in the general solution for solid displacement:

us(y) = �
Ps

2µs
y2 + c3y + c4, (⇢s = 0),

us(y) = �
Ps

⇢s!2
+ c3 sin(ksy) + c4 cos(ksy), (⇢s > 0),

(2.24)
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where ks =
p
⇢s!2/µs. The last unknown integration constants (i.e. c1, c3 and c4) can

only be identified by ensuring that the coupling conditions are satisfied. In the following
we identify their closed form depending on the di↵erent temporal behavior combinations.
Quasi-static fluid and quasi-static solid (⇢f = ⇢s = 0)

We begin the coupling process by expanding the traction balance boundary condition
in (2.14):

µf
@vf
@y

����
y=Hi

� µs
@us

@y

����
y=Hi

=0, (2.25)

� pf |y=Hi
+ ps|y=Hi

=0. (2.26)

Based on Equation ((2.26)) it can easily be shown that Pf = Ps = P . Note that, as we
will see, this result is independent of the quasi-static/transient property of the FSI prob-
lem. Furthermore, substituting Equation (2.20) and Equation (2.24) into Equation (2.25),
we can see that:

�PHi � µs

✓
�PHi

µs
+ c3

◆
= 0 ) c3 = 0. (2.27)

Considering the fixed wall constraint on the solid (i.e. us(Ho) = 0), we can use Equa-
tion (2.24) to show that:

c4 =
PH2

o

2µs
. (2.28)

Finally, by expanding the kinematic constraint in (2.15), we obtain the final unknown
constant:

c1 =
PH2

i

2µf
+ i!

P

2µs
(H2

o �H2
i ). (2.29)

Quasi-static fluid and transient solid (⇢f = 0, ⇢s > 0)
Based on our general formulations for the fluid velocity and solid displacement in (2.18),
(2.20), (2.23) and (2.24), the kinematic interface condition (2.15) reduces to:

c1 � c3i! sin(ksHi)� c4i! cos(ksHi) =
PH2

i

2µf
� iP

⇢s!
. (2.30)

A second equation relating the integration constants can be obtained from the condi-
tion (2.9) for fixed outer walls:

c3 sin(ksHo) + c4 cos(ksHo) =
P

⇢s!2
. (2.31)

The third and final equation can be obtained through the expansion of the shear com-
ponent of the traction balance equation (2.14), e.g.,

c3µsks cos(ksHi)� c4µsks sin(ksHi) = �PHi. (2.32)
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Finally, c1, c3 and c4 can be determined by solving the system of equations formed
by (2.30), (2.31) and (2.32). Provided there is a unique solution, the three constants can
be written as the following closed-form expressions:

c1 =
PH2

i

2µf
� iP

⇢s!
+ PHi

i!

µsks
tan[ks(Ho �Hi)] +

iP

⇢s!
sec[ks(Ho �Hi)], (2.33)

c3 =


1

⇢s!2
sin(ksHi)�

Hi

µsks
cos(ksHo)

�
P sec[ks(Ho �Hi)], (2.34)

c4 =


Hi

µsks
sin(ksHo) +

1

⇢s!2
cos(ksHi)

�
P sec[ks(Ho �Hi)]. (2.35)

This approach of finding the closed form of the constants by solving a system of equa-
tions is repeated throughout the paper. Consequently, it should be noted that the exis-
tence of unique solutions is conditioned by the non-singularity of the system matrix. As
we will see, identifying the appropriate set of parameters which lead to a singular matrix
is not a trivial problem and, as a consequence, we will only perform this analysis for this
specific case, which is more tractable. Here, it can be shown that for a set of problem
parameters with finite values, the determinant of the system is null when:

cos [ks(Ho �Hi)] = 0.

Rearranging this, we find a series of resonance frequencies for which this is true:

!n =
(2n+ 1)⇡

2(Ro �Ri)

r
µs

⇢s
, for n 2 Z. (2.36)

Transient fluid and quasi-static solid (⇢f > 0, ⇢s = 0)
As in the previous problem permutation, the constants (i.e. c1, c3 and c4) can be identified
by solving the system of equations derived from (2.14), (2.9) and (2.15):

�
ekfHi + e�kfHi

�
c1 � i!Hic3 � i!c4 =

i!P

⇢f!
� i!PH2

i

2µs
, (2.37)

Hoc3 + c4 =
PH2

o

2µs
, (2.38)

µfkf
�
ekfHi � e�kfHi

�
c1 � µsc3 = �PHi. (2.39)

The resulting closed-form expressions for the three constants are:

c1 =

iµsP
⇢f!

+ i!P
2 (H2

o �H2
i )� i!P (Ho �Hi)Hi

↵µs + i!(Ho �Hi)�
(2.40)

c3 =

h
iP
⇢f!

+ i!P
2µs

(H2
o �H2

i )
i
� + PHi↵

↵µs + i!(Ho �Hi)�
(2.41)

c4 =
PH2

o

2µs
�Ho

h
iP
⇢f!

+ i!P
2µs

(H2
o �H2

i )
i
� + PHi↵

↵µs + i!(Ho �Hi)�
(2.42)

where ↵ = ekfHi + e�kfHi and � = µfkf
�
ekfHi � e�kfHi

�
.
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Transient fluid and transient solid (⇢f , ⇢s > 0)
In the transient fluid / transient solid case, the three equations obtained from the expan-
sion of (2.14), (2.9) and (2.15) are:

�
ekfHi + e�kfHi

�
c1 � i! sin(ksHi)c3 � i! cos(ksHi)c4

✓
P

i⇢f!
+

iP

⇢s!

◆
= 0, (2.43)

µfkf
�
ekfHi � e�kfHi

�
c1 � µsks cos(ksHi)c3 + µsks sin(ksHi)c4 = 0, (2.44)

sin(ksHo)c3 + cos(ksHo)c4 �
P

⇢s!2
= 0. (2.45)

The resulting closed-form expressions are:

c1 =
µsks cos [ks(Hi �Ho)]

⇣
P

i⇢f!
+ iP

⇢s!

⌘
� i!µsks

P
⇢s!2

�µsks↵ cos [ks(Hi �Ho)] + i!� sin [ks(Hi �Ho)]
, (2.46)

c3 =
� cos(ksHo)

⇣
P

i⇢f!
+ iP

⇢s!

⌘
� [i!� cos(ksHi) + ↵µsks sin(ksHi)]

P
⇢s!2

�µsks↵ cos [ks(Hi �Ho)] + i!� sin [ks(Hi �Ho)]
, (2.47)

c4 =
P

⇢s!2
sec(ksHo)� tan(ksHo)c3. (2.48)

zy

x ⌦
0
f

⌦
0
s

�
�

�
I
f

�
O
f

�
I
s

�
O
s

�
W
s

2Hi2Ho

L

Figure 2.2: Fluid and solid reference domains in three dimensions: The fluid reference domain
⌦0
f is shown in red for x, y > 0, the solid reference domain ⌦0

s is shown in blue
for y > 0, and the the common interface boundary is indicated in opaque gray.
The respective boundaries are denoted as �I

f and �I
s at the inlet, �O

f and �O
s at the

outlet, and �W
f and �W

s at the wall. Furthermore, the domain length is given as
L, the fluid domain radius as Hi and the fluid / solid domain radius as Ho.

2.2.1.2 Three space dimensions - nonlinear case

In the three-dimensional setting, the channel is replaced with a tube. Similar to the
previous case, we now consider the interaction between the pulsatile flow and the hypere-
lastic wall which undergoes a shearing deformation along the flow direction. The domains
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of the two media in the reference configuration are shown in Figure 2.2, where we used
an analogous notation for domains, boundaries and interfaces as in the case of the two-
dimensional FSI problem. Similarly, Hi and Ho now denote the inner and outer radii of
the tube. For ease, we use a cylindrical coordinate system defined by radial (r), angular
(✓) and axial (z) positions.
The FSI problem takes the following general form:

⇢f@tvf + ⇢fvf ·rxvf +rx · �f = 0 in ⌦f , (2.49)

rx · vf = 0 in ⌦f , (2.50)

[vf ]k = 0 on �I
f [ �O

f , for k 2 {r, ✓}, (2.51)

(�f · nf ) · ez = [tf ]z on �I
f [ �O

f , (2.52)

vf (·, 0) = v0
f in ⌦f (0), (2.53)

⇢s@ttus �rX · P s = 0 in ⌦s(0)⇥ [0, T ], (2.54)

J � 1 = 0 in ⌦s(0)⇥ [0, T ], (2.55)

us(·, t) = 0 on �W
s , (2.56)

[us]k = 0 on �I
s [ �O

s , for k 2 {r, ✓} (2.57)

(P s ·N s) · ez = ts on �I
s [ �O

s , (2.58)

us(·, 0) = u0
s in ⌦s(0), (2.59)

vs(·, 0) = v0
s in ⌦s(0), (2.60)

�f · nf + P s ·N s = 0 on ��, (2.61)

vf � vs = 0 on ��, (2.62)

where the fluid Cauchy stress tensor is the same as in the linear case. For the solid, the
first Piola-Kirchho↵ stress tensor is defined as:

P s =
µs

J2/3


F � F : F

3
F�T

�
� psF

�T .

The domains at time zero, ⌦s(0) and ⌦f (0), do not necessarily coincide with the reference
domains, ⌦0

s and ⌦0
f , e.g., when u0

s 6= 0. For now, we will consider u0
s, v

0
s, tf and ts to

be known, since their definitions are not used to arrive to the analytical solutions.
Similar to the 2D problem in Section 2.2.1.1, our derivation is based on the assumption

that the flow and deformation field are axisymmetric and axially invariant, i.e. vf =
vf (r, t)ez and us = us(r, t)ez. A first consequence of these is that the advective term
in Equation (2.49) is always null. Secondly, we can keep using ⇢f as a switch between
the quasi-static and transient modes. Thirdly, we can use the same coordinate vectors
(i.e. er, e✓ and ez), to refer to both the reference and current configurations. The same
notation simplification is also valid for r and ✓. Conversely, we use Z and z to distinguish
the axial coordinates in the reference and deformed configuration.
In order to derive the general analytical solution for the fluid, we first observe that:

rxvf =
@vf (r, t)

@r
er ⌦ ez.
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Based on this, we can expand the fluid momentum equation (2.49) into its three vector
components:

@pf
@r

er +
1

r

@pf
@✓

e✓ +


⇢f@tvf �

µf

r

@

@r

✓
r
@vf
@r

◆
+

@pf
@z

�
ez = 0. (2.63)

From the radial and circumferential directions of the equation, we can conclude that pf
is constant in the plane perpendicular to the flow direction. Taking the partial derivative
in the axial direction, we obtain that @2pf/@z2 = 0. Thus, pf is either a constant or
a linear function in z, as observed in the 2D linear case. If we assume the velocity and
pressure fields are periodic (with a single harmonic frequency) and that they are separable,
we arrive at the following forms:

vf = <{vf (r)ei!t},
pf = <{P (L� z)ei!t},

(2.64)

where vf : [0, Hi] ! C and Pf 2 C are the velocity and pressure over domain length
amplitudes.
Returning to the axial component of (2.63) and simplifying the complex exponential

term, we obtain the following ODE:

1

r

@

@r

✓
r
@vf
@r

◆
� k2

fvf +
P

µf
= 0,

which, depending on the value of ⇢s, is satisfied by the following general solutions:

vf = �Pr2

4µf
+ c1 + c2 ln(r), (⇢s = 0),

vf =
P

µfk2
f

+ c1J0(ikfr) + c2Y0(ikfr), (⇢s > 0).
(2.65)

Here, J0 and Y0 denote the first and second kind Bessel functions of order 0. Finally,
we can remark that c2 = 0 in order to prevent a singularity at r = 0.
Moving on to the solid, we begin by defining the deformation tensor as F = I+ @us

@r er⌦
ez. Thus, we can write the first Piola-Kirchho↵ into its vector components:

P = µs

"
2
@us

@r
sym(er ⌦ ez)�

 
1

3


@us

@r

�2
+

ps
µs

!✓
I � @us

@r
ez ⌦ er

◆#
. (2.66)

Substituting this into (2.54), we can expand the momentum balance equation as:
"
� @

@r

 
µs

3


@us

@r

�2
+ ps

!
+

@us

@r

@ps
@z

#
er �

1

r

@ps
@✓

e✓

+


µs

r

@

@r

✓
r
@us

@r

◆
� @ps

@z
� ⇢s@ttus

�
ez = 0. (2.67)

Applying the axial partial derivative to the ez-component, we obtain that @2ps/@z2 = 0.
From this we conclude that ps is either a constant or linear with respect to z. Furthermore,
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by applying the axial derivative to the er-component, we find that @2ps/@r@z = 0, i.e.
@ps/@z is radially constant. Based on these results, we can integrate the radial component
to obtain the following formula for the pressure:

ps = cI(t) + (Z + us)cII(t)�
µs

3


@us

@r

�2
. (2.68)

Similar to the 2D linear case, we assume that the solid displacement and the cII constant
are separable periodic (with a single harmonic frequency):

us = <{use
i!t} and cII = <{c3ei!t}

with us : [Hi, Ho]! C and c3 2 C. Consequently, we can simplify the temporal complex
exponentials in Equation (2.67), which yields:

1

r

d

dr

✓
r
dus

dr

◆
+ k2

sus �
c3
µs

= 0. (2.69)

For the transient case, i.e. ⇢s > 0 and ks 6= 0, we can recognize this as a nonhomogeneous
Bessel’s ODE, with the order of the Bessel function equal to 0. Hence, the general solid
displacement solutions are:

us =
c3r2

4µs
+ c4 ln(r) + c5, (⇢s = 0)

us =
c3

µsk2
s

+ c4J0(�ksr) + c5Y0(�ksr), (⇢s > 0).

Furthermore, by including the fixed wall boundary condition, i.e. us(Ho) = 0, we arrive
at the following simplified forms:

us =
c3
4µs

(r2 �H2
o ) + c4 ln

✓
r

Ho

◆
, (⇢s = 0)

us =
c3

µsk2
s


1� Y0(�ksr)

Y r
0,s

�
+ c4 [J0(�ksr)� �Y0(�ksr)] , (⇢s > 0).

(2.70)

The remaining unknown constants (i.e. c1, c3, c4 and cI) can only be identified by
verifying that the kinematic and traction balance boundary conditions are satisfied. In
the following, we look at the di↵erent transient / quasi-static permutations and derive for
each of them the appropriate closed formulations for the set of constants.
Quasi-static fluid and quasi-static solid (⇢f = ⇢s = 0)

For the fluid and solid problems to be coupled, the traction balance and kinematic condi-
tions in Equation (2.61) and Equation (2.62), respectively, need to hold. The former can
now be expanded as follows:
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����
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� µs
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����
r=Hi

#
ez = 0, (2.71)
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for all z 2 [0, L] and t 2 [0, T ]. Based on the solid and pressure formulations in (2.64)
and (2.68), the radial component can be further reduced to:

cI(t) + [Z + us(Hi, t)]c3e
i!t � P (L� Z)ei!t = 0. (2.72)

From this, we can deduce that c3 = �P and cI(t) = [L+us(Hi, t)]<{Pei!t}, two results
which are valid for all transient / quasi-static permutation. Consequently, (2.68) can be
expanded using (2.70) in quasi-static form to yield the following pressure formula:

ps(r, Z, t) = [L� Z + us(Hi, t)� us(r, t)]<{Pei!t}� µs

3
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��
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� µs
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⇢
c4ei!t

r
� Prei!t

2µs

��2
. (2.73)

In the case of the shear component of the traction balance coupling condition, we obtain:

�µs
PHi

2µs
+ µs

PHi

2µs
+

c4
Hi

= 0,

which is equivalent to c4 = 0. Using the kinematic coupling condition, we identify the
last integration constant:

c1 =
PH2

i

4µf
+ i!

P (H2
o �H2

i )

4µs
. (2.74)

Transient fluid and quasi-static solid (⇢f > 0, ⇢s = 0)
Similar to the previous example, the two integration constants can be found by solving
the system of two equations formed by the shear components of the traction balance and
the kinematic coupling conditions:


iµfJ⇤

1,f µs/Hi

J⇤
0,f i! ln (Ho/Hi)

� 
c1
c4

�
=


PHi/2

i!P (H2
o �H2

i )/(4µs)� P/(µfk2
f )

�
, (2.75)

where J⇤
0,f = J0(ikfHi) and J⇤

1,f = kfJ1(ikfHi). The resulting closed-formulation of the
two constants are:

c1 = �iP
!H2

i ln(Hi/Ho)/2 + !(H2
o �H2

i )/4 + iµs/(µfk2
f )

µf!Hi ln(Hi/Ho)J⇤
1,f � µsJ⇤

0,f

, (2.76)

c4 = �P
µsJ⇤

0,fHi/2 + µf!J⇤
1,f (R

2
o �R2

i )/4 + iµsJ⇤
1,f/k

2
f

µfµs! ln(Hi/Ho)J⇤
1,f � µ2

sJ
⇤
0,f/Hi

. (2.77)

The general pressure solution in Equation (2.73) continues to apply in this case as well
(with c3 = �P ), provided one uses the definition of c4 found in (2.77) rather than c4 = 0.
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Quasi-static fluid and transient solid (⇢f = 0, ⇢s > 0)
The closed-formulation for the c4 constant is obtained by rearranging the kinematic con-
dition in (2.62):

c4 = �P
2Y ⇤

1,s + iHik2
sY

r
0,s

2µsk2
sY

r
0,s�1

, (2.78)

where J⇤
0,s = J0(�ksHi), J⇤

1,s = iksJ1(�ksHi), Y ⇤
0,s = Y0(�ksHi), Y ⇤

1,s = iksY1(�ksHi),
�0 = J⇤

0,s � �Y ⇤
0,s and �1 = J⇤

1,s � �Y ⇤
1,s. Using this result and expanding the axial

component of the traction balance coupling condition in (2.54), we can also derive the
closed-formulation of the last constant:
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, (2.79)

where ⌫k = Y ⇤
k,s/Y

r
0,s and k 2 {0, 1}.

To find the solution for the solid pressure, we expand the more general result in
Equation (2.68) using the results of Equation (2.72) and the corollaries, c3 = �P and
c0(t) = [L+us(Hi, t)]<{Pei!t}, plus the transient version of the solid displacement formula
in Equation 2.70:

ps(r, Z, t) = [L� Z + us(Hi, t)� us(r, t)]<{Pei!t}� µs
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. (2.80)

Transient fluid and transient solid (⇢f , ⇢s > 0)
In this case, the system of equations resulting from the axial components of the traction
and kinematic coupling conditions can be written as:


�µfJ⇤

1,f µs�1

�J⇤
0,f �i!�0

� 
c1
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�
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Solving the system gives the following closed forms:
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P
k2s

+ µs�1

h
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i!P
µsk2s

+ P
µfk2f

i
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, (2.82)

c4 = �
J⇤
0,f⌫1

P
k2s

+ µfJ⇤
1,f

h
(1� ⌫0)

i!P
µsk2s

+ P
µfk2f

i

µsJ⇤
0,f�1 � i!µfJ⇤

1,f�0
. (2.83)

The analytical solution for the solid pressure retains the form presented in (2.80) with
c3 = �P , but using the version of c4 in (2.83).
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2.2.1.3 Two space dimensions - nonlinear case

Again, we consider the nonlinear FSI problem discussed in Section 2.2.1.2 and defined by
Equations (2.49) -(2.62)), with the mention that the definition of the first Piola-Kirchho↵
stress tensor is now adjusted for the 2D problem:

P s =
µs

Js


F � F : F

2
F�T

�
� JspsF

�T . (2.84)

In line to Section 2.2.1.1, we adapt the boundary conditions to the 2D setting and
use the same general assumption with regards to the behaviour of the solution. Based
on these considerations, it can be shown that the advective term, vf ·rxvf is null and
that, in e↵ect, the fluid problem is identical to the one in the linear case. Thus, the
general solutions for the fluid pressure is given by Equations (2.18). Similarly, the general
quasi-static and transient fluid velocity solutions are given by Equations (2.18) and (2.20).
To find a general solution for the solid problem, we first observe that the deformation

gradient takes the form F = I + @Y us(eY ⌦ eX), where us is the x-component of the
deformation field. Thus, we can express the first Piola-Kirchho↵ tensor in terms of us

and ps as follows:
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. (2.85)

Using this result, we expand the momentum balance equation in (2.54) to obtain:
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◆2
#
eY = 0. (2.86)

By applying @X to this vector, we find that @2ps/@X2 = 0 and @2ps/(@X@Y ) = 0.
Based on these results, we can integrate the ey component of (2.86) with respect to Y to
obtain the general solution for the pressure field:

ps = cI(t) + cII(t)(X + us)�
µs

2

✓
@us

@Y

◆2

. (2.87)

Furthermore, assuming that us = <{us(Y )ei!t}, us : [Hi, Ho] ! C and cII(t) =
<{c3ei!t}, the X-component of (2.86) can be simplified:

µs
@2us

@Y 2
+ ⇢s!

2us � c3 = 0. (2.88)

Given the fixed wall boundary condition us(Ho) = 0, the general solutions of this ODE
take the form:

us =
c3
2µs

(Y 2 �H2
o ) + c4(Y �Ho), (⇢s = 0),

us =
c3

⇢s!2
[1� sin(ksY ) csc(ksHo)]

+ c4 [cos(ksY )� cot(ksHo) sin(ksY )] , (⇢s > 0).

(2.89)
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The last four integration constants, namely c1, c3 c4 and cI , can only be identified
by verifying that the coupling conditions are satisfied. In the following, we consider the
di↵erent permutations of quasi-static / transient behaviors and the resulting sets of closed
formulations for the constants.
Quasi-static fluid and quasi-static solid (⇢f = 0, ⇢s = 0)

Let us first consider the expansion of the traction balance coupling condition in Equa-
tion (2.61):
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#
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2
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#
ey = 0.

Taking the axial component and replacing the pressure fields with the results in Equa-
tion (2.18) and Equation (2.87), we obtain:

cI(t) + <{c3ei!t} [x+ us(Hi, t)]�<{P (L� x)ei!t} = 0. (2.90)

From this, it can be shown that c3 = �P and cI(t) = <{P [L+ us(Hi, t)]ei!t}. Similar
to the 3D nonlinear case, these results are valid for all quasi-static and transient permu-
tations due to the fact that the general structure of the pressure solutions is independent
from these factors. Thus, we can expand the general nonlinear solid pressure solution in
Equation (2.68) to obtain a quasi-static specific version:

ps(X, Y, t) = [L�X + us(Hi, t)� us]<{Pei!t}� µs
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. (2.91)

Furthermore, we can expand the axial component of the traction balance coupling
condition using Equation (2.20) and Equation (2.89), resulting in:
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2µf
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◆
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✓
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2µs
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◆
= 0 ) c4 = 0. (2.92)

Finally, using the kinematic coupling condition, it can be shown that:

c1 =
PH2

i

2µf
+

i!P

2µs
(H2

o �H2
i ). (2.93)

Transient fluid and quasi-static solid (⇢f > 0, ⇢s = 0)
Similar to the preceding case, the x components of the traction and kinematic interface
conditions form a system of equations with two unknowns, c1 and c4, which can written
as follows:

�c1 � µsc4 = �PHi,

↵c1 + i!(Ho �Hi)c4 =
iP

⇢f!
+

i!P

2µs
(H2

o �H2
i ),
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where ↵ and � retain the definitions from Table 2.1. The resulting solutions are:

c1 =
�i!(Ho �Hi)HiP + µs

h
iP
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+ i!P
2µs

(H2
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i )
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+ i!P
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i

i!�(Ho �Hi) + µs↵
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The general solution for the quasi-static solid pressure (with c3 = �P ) given by Equa-
tion (2.91) applies in this case as well.
Quasi-static fluid and transient solid (⇢f = 0, ⇢s > 0)

Analogous to the transient fluid and quasi-static solid case, the system of equations takes
the form:

µsks⇠1c4 =
µsks⇣1P

⇢s!2
+ PHi,

c1 + i!⇠2c4 =
PH2

i

2µf
� i⇣2P

⇢s!
,

where for convenience we introduced a new set of parameters:

⇠1 = sin(ksHi) + cot(ksHo) cos(ksHi), (2.96)

⇠2 = cot(ksHo) sin(ksHi)� cos(ksHi), (2.97)

⇣1 = csc(ksHo) cos(ksHi), (2.98)

⇣2 = 1� sin(ksHi) csc(ksHo). (2.99)

Solving this system of equations gives the following closed forms for the integration
constants:
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µsks⇣1P + ⇢s!2PHi
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, (2.100)

c4 =
µsks⇣1P + ⇢s!2PHi

µsks⇢s!2⇠1
. (2.101)

The general solution for the transient solid pressure is obtained by expanding the more
general form in Equation (2.87) using c3 = �P and cI(t) = <{P [L + us(Hi, t)]ei!t} and
the general transient solid displacement formula in Equation (2.89):
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This formula also applies to the transient fluid and transient solid case provided the
appropriate c4 formulation is used.
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Transient fluid and transient solid (⇢f , ⇢s > 0)
The equivalent system of equations corresponding to this case can be written as follows:

�c1 + µsks⇠1c4 =
⇣1P

ks
,

↵c1 + i!⇠2c4 =
iP

⇢f!
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,

and the resulting closed form solutions are:
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. (2.103)

2.2.1.4 Three space dimensions - linear case

In this section, we approach the derivation of the FSI problem described in Equations (2.1)
- (2.15), but in 3D and using the assumptions about the solution behaviour which were
described in Section 2.2.1.2, the 3D nonlinear case. In terms of deriving the general
analytical solutions, it should be noted that in the 3D nonlinear case, we showed that
advection term is constantly zero as a consequence of our assumptions. Consequently, the
solutions described in Equations (2.64) and (2.65) which define the general solution for
the pressure, quasi-static velocity and transient velocity, respectively, are still applicable
in this context.
We begin the derivation of the solid solution, by observing that the the displacement

gradient takes the form rus =
@us

@r er⌦ez . Thus, the Cauchy stress tensor can be written
as:

�s = µsus (er ⌦ ez + ez ⌦ er)� pI.

This can now be used to expand the solid momentum balance equation in (2.7) into
the the three cylindrical coordinates:
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The radial and angular components show that the pressure field is invariant in these
directions. Furthermore, by taking the axial derivative of the ez component, it can be
shown that @2ps/@z2 = 0. Based on these three observations and also taking note of
our previous assumptions (i.e. spatial and temporal components are separable, the field is
temporally periodic and described by a single harmonic), we can write the general solid
pressure solution as:

ps = <{Ps(L� z)ei!t}, (2.105)

where Ps 2 C is the reference pressure over the length of the domain. Substituting
this into the axial component of the momentum balance and also using the fact that
us = <{usei!t}, we find the following nonhomogeneous PDE for the displacement:
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2us = �Ps, (2.106)
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which is identical to Equation (2.69), with the only di↵erence that in that equation the
nonhomogenous term, i.e. �Ps, was unknown. Consequently, the two versions of the
displacement function, quasi-static and transient, that resulted in the previous section,
also apply in this case:
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(2.107)

The last two integration constants (i.e. c1 and c3) are found by verifying that the
coupling conditions are satisfied. In the following, we derive the closed form of these
constants, while taking into account all four quasi-static / transient permutations.
Quasi-static fluid and quasi-static solid (⇢f = ⇢s = 0)

First, let us expand the traction balance interface condition into its three components:
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Using the radial component, it is trivial to show that P = Pf = Ps; a result which
applies to all quasi-static and transient permutations. In the case of the axial component,
incorporating the results of Equations (2.65) and 2.107 yields:
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Finally, we expand the kinematic condition to obtain:
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which can be rearranged into the closed form of the last integration constant:
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Transient fluid and quasi-static solid (⇢f > 0, ⇢s = 0)
Similar to the previous case, the last two constants, c1 and c3, can be identified by

solving the system formed by the axial components of the traction balance and kinematic
interface conditions:
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The resulting closed forms are:
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Quasi-static fluid and transient solid (⇢f = 0, ⇢s > 0)
Rewriting the ez component of the traction balance coupling condition using the general
solutions for fluid velocity (2.65) and solid displacement (2.107), yields:

�PHi
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�
= 0. (2.114)

When rearranged, we obtain the closed form of the c3 constant:
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Finally, we expand the kinematic condition, which can be written as:
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Based on this, we find the closed form of the last unknown integration constant:
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Transient fluid and transient solid (⇢f , ⇢s > 0)
Finally, we treat the case where both solid and fluid have transient behaviours. As in
the transient fluid / quasi-static solid case, c1 and c3 can be found by solving the system
given by the ez-components of the traction and kinematic interface conditions:
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The resulting closed form solutions are:
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2.3 Numerical fluid-structure interaction implementation

As a first use of the benchmark and as guide to future applications and results reporting,
we also carried out a validation test of our finite element implementation [67, 94]. This
section presents a brief review of the structure of the weak form and discretization scheme
employed to solve di↵erent model permutations (presented later in Section 2.4).
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2.3.1 Finite element weak form

The fluid-structure coupling strategy used in this work is based on the technique described
in [63, 67, 110]. In this approach, a Lagrange multiplier variable, � = tf = �ts, is
introduced such that it weakly enforces both the kinematic and dynamic constraints,
resulting in an FSI system which is solved monolithically. This strategy allows us to
choose the domain discretization and polynomial interpolation schemes which are more
appropriate for the representation of either fluid and solid solutions. In the following, we
outline how this applies to our case.
The general discrete weak form including the FSI coupling conditions can be written

as follows: Find sn :=
�
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f ,v

n
s ,�

n, pnf , p
n
s

�
2 Sh
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where the �nl term acts as a switch between the linear and nonlinear cases. The current
displacement is defined as un

s = un�1
s +�n

t v
n
s with the length of the current time step �n

t .
Further, tnf and tns are the discrete representations of the analytic solutions of the surface
tractions acting on the inflow and outflow surfaces of the fluid and solid, respectively.
In the nonlinear cases, where the ALE term is active, the weak form is expanded to

include the fluid displacement problem, which takes the form: Find v̂n
f 2Wh

D such that

for every z 2Wh
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The newly introduced field, v̂n
f , represents the artificial grid velocity and is used to

account for the motion of the domain in the ALE formulation. This deformation is
preferentially weighted in the axial direction by means of the di↵usion field � in order to
avoid radial variations.
The definitions of the function spaces are:

Sk(⌦0
i,h) = {f : ⌦0

i,h ! R | f 2 C0(⌦̄0
i,h), f |⌧e 2 Pk(⌧e), 8 ⌧e 2 T h

i }, (2.122)
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which represent the general continuous kth-order piecewise polynomial spaces defined
on ⌦0

i,h. Consequently, we can define:

Vh =
⇥
S2(⌦0

f,h)
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s = S1(⌦0

s,h).

In the case of solid and fluid domain velocity, further restrictions are applied on their
respective spaces in order to incorporate the Dirichlet and homogeneous boundary condi-
tions:

Vh
0 = {v 2 Vh | v? = 0 on �I,n

f,h [ �O,n
f,h }, (2.123)
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Wh
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h}, (2.125)
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h}, (2.126)

and similarly for the Lagrange multiplier,

Mh
D = {� 2Mh | �? = tnh,? on

�
��
h \ �I

f,h

�
[
�
��
h \ �O

f,h

�
}, (2.127)
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Here, we used the ? symbol to indicate more generally the components of v and �
which are perpendicular to the flow direction, such as êy in two dimensions, as well as êx

and êy in the three-dimensional case.

2.4 Numerical experiments

2.4.1 Numerical validation of analytic solutions

The 16 analytic solutions presented in Section 2.2.1 were validated numerically. In the
linear two dimensional case (Section 2.2.1.1), numerical di↵erentiation was employed to
verify that the analytic solutions satisfy the (strong form) momentum and mass balance
(i.e. Equation (2.1) / (2.2) and Equation (2.7) / (2.8)), the boundary conditions, and
the dynamic and kinematic coupling constraints (i.e. Equation (2.14) / (2.15)). All other
analytic solutions were validated similarly.

2.4.2 Numerical experiments: Space-time discretization

In Section 2.5, transient and linear fluid / solid models are considered in two dimensions,
and transient and nonlinear fluid / solid models are considered in three dimensions. In
what follows, details about the space-time discretization of the computational domains
are discussed.

2.4.2.1 Linear FSI in two dimensions

For the linear FSI case in two dimensions, the channel length and width are set to L =
Hi = 1 and the wall thickness is set to Ho�Hi = 0.2, see Figure 2.1. The temporal cycle
length is selected as T = 1.024 and the length of the time domain is set as 10T .



2.4 Numerical experiments 37

The fluid and solid domains are discretized using quadrilateral elements with quadratic
(and linear) interpolation for the velocity / displacement (and pressure) variables and the
Lagrange multiplier domain is discretized using line elements with quadratic interpolation.
Three di↵erent spatial refinement levels are considered, and referred to as coarse, medium
and fine, see Table 2.2. The temporal domain is discretized using equidistant time points
and seven di↵erent time step sizes, such that we may consider temporal refinement for a
given spatial refinement level as well as three space-time refinement levels with �t/�3x =
const.

2D 3D

Time step size �t 2 {0.064, 0.032, . . . , 0.001} �t 2 {0.04096, 0.02048, . . . , 0.00064}
Number of time steps Nt 2 {160, 320, . . . , 10240} Nt 2 {175, 350, . . . , 11200}
Spatial step size �x, �y 2 {0.1, 0.05, 0.025} �x, �y, �z 2 {0.314, 0.157, 0.079}
Number of spatial DOFs Nx 2 {1288, 4728, 18088} Nx 2 {32793, 245009, 1679243}

Table 2.2: The spatial and temporal step sizes, �x, �y, �z and �t, and numbers of spatial and
temporal degrees-of-freedom (DOFs), Nx and Nt, for the numerical experiments.
For the 3D case, the spatial step size is the approximate step size at the fluid / solid
interface.

2.4.2.2 Nonlinear FSI in three dimensions

In the nonlinear FSI case in three dimensions, the fluid domain length and radius are set
to L = 1 and Hi = 0.7 and the wall thickness is set to Ho �Hi = 0.3, see Figure 2.2. To
reduce the computational cost, we only consider one quarter of the domain in numerical
experiments (i.e. for x, y � 0) and set the length of the time domain to 7T with cycle
length T = 1.024.
The fluid domain is discretized using tetrahedral elements (quadratic-linear interpola-

tion for velocity and pressure), the solid domain using hexahedral elements (quadratic-
linear interpolation for velocity / displacement and pressure) and the Lagrange multiplier
domain using triangle elements (quadratic interpolation).
Similar to the linear FSI case in two dimensions, three di↵erent refinement levels are

considered, see Figure 2.3. Since the analytic solution for the solid pressure variable (see
Equation (2.68)) is now a function of the displacement (in contrast to the linear case),
the mesh for the solid domain is more refined in the radial direction than in the axial and
circumferential directions.
The coarse solid mesh has 5 elements in the circumferential direction, 8 elements in the

radial direction and 8 elements in the axial direction. The coarse fluid mesh is selected,
such that four tetrahedral element faces conform with one hexahedral element face at the
interface boundary. Tetrahedral element sizes are approximately constant throughout the
fluid domain. The corresponding triangular mesh for the interface domain is embedded
in the interface boundary of the fluid mesh and each triangle element conforms with a
tetrahedral mesh face of the fluid mesh.
The medium and fine refinement levels are achieved by using a uniform refinement of

the solid domain and an approximately uniform refinement of the fluid domain. For all
refinement levels, we note that all solid, interface and fluid interface nodes (including
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Figure 2.3: Coarse, medium and fine mesh refinement levels for simulating the nonlinear tran-
sient FSI case in three dimensions.

midpoint nodes for quadratic elements) lay exactly on circles with radius Hi around the
z-axis. We select time step sizes (see Table 2.2), such that we may consider temporal
refinement for a given spatial mesh, as well as three space-time refinement levels with
�t/�3x = const.

2.4.3 Numerical solution

The linear and nonlinear transient FSI cases are used to validate the CHeart [94] imple-
mentation of the FSI method detailed in Section 2.3.1. CHeart is based on the matrix
solver MUMPS [2]. A Newton-Raphson-Shimanskii solver [129] is employed to reduce
the computational cost by reusing the Jacobian matrix (and its inverse) as long as the
residual norm could be reduced by a factor of 3/4 [67].
Complex expression evaluators were implemented to set initial and boundary conditions,

according to the settings in Equation (2.1) - (2.15) and Equation 2.49 - (2.62), respectively.
We further evaluated the analytic FSI solutions in CHeart after each time step to compute
the space-time error on-the-fly.

2.4.4 Space-time norm

To measure the space-time error for a particular discrete variable f 2 Rncnd with nc

components and nd dimensions, we compute the error over one cycle,

kfk⌦O

i
⇥⌦t,2 =

sZ

⌦t

Z

⌦O

i

f : f d⌦O
i dt, (2.129)

where ⌦O
i (for i 2 {f, s,�}) denotes the discrete spatial domain that the variable f is

integrated over and ⌦t denotes the respective discrete time domain. In particular, ⌦t =
[Tfinal � T, Tfinal] corresponds to the final simulated cycle. Here, we choose Tfinal = 10T
and Tfinal = 7T for the linear and nonlinear FSI cases, respectively. Further, the time
integral in Equation 2.129 is approximated as piecewise constant, whereas the spatial
integration is approximated using the corresponding test functions of f .
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2.5 Results

This section considers the transient fluid and transient linear solid model in two spatial
dimensions and the transient fluid and transient nonlinear solid model in three spatial
dimensions. In the following sections, we present the velocity, displacement and pres-
sure solutions for a parameter set that is suitable for space-time convergence analysis
(Section 2.5.1 and 2.5.2) and for a physiologically relevant parameter set (Section 2.5.3).
In Section 2.5.4, we demonstrate the use of the analytic solutions for validating a non-
conforming monolithic FSI method (see Section 2.3.1) that exhibits first-order convergence
in time.

2.5.1 Transient fluid and transient linear solid in 2D

To illustrate the linear FSI case in two spatial dimensions, we consider the following
material parameters: the fluid density and viscosity are selected as ⇢f = 1 and µf = 0.01,
and the solid density and sti↵ness are chosen as ⇢s = 1 and µs = 0.1. We further set the
pressure amplitude as P = 1. Here, the Womersley number is,

W = Hi

q
!⇢f/µf =

p
2⇡/(1.024 · 0.01) ⇡ 24.77, (2.130)

and the Reynolds number is,

Re = 2⇢fVfHi/µf ⇡
0.44 · 2
0.01

⇡ 88.32, (2.131)

with Vf = maxy,t |vf (y, t)| ⇡ 0.4416.
Figure 2.4 illustrates the temporal variation of the velocity, displacement and pressure

solution profiles along the y-axis. It further highlights the temporal variation of the
fluid and solid pressure solutions at the inlet (x = 0), the midway point in the x-direction
(x = L/2) and the outlet (x = L). In the linear case, the fluid and solid pressure solution is
linear along the x-axis, continuous at the coupling boundary and constant along the y-axis.
Figure 2.4 further highlights that pf (x, t) = ps(x, t) = <{P (L�x)ei!t} = P (L�x)cos(!t).
The velocity and displacement solutions are constant along the x-axis, but varying in

y. The fluid velocity solution resembles a typical Womersley profile over time and the
maximum fluid velocity occurs at the interface, where it matches the deformation rate of
the solid due to the kinematic coupling condition. The solid deformation rate at the wall
(i.e. at y = Ho) is zero, similar to the displacement, as enforced by the Dirichlet boundary
condition. The maximum absolute displacement Us is related to the maximum absolute
deformation rate Vs by approximately Us ⇡ Vs/(2⇡).

2.5.2 Transient fluid and transient nonlinear solid in 3D

To illustrate the transient nonlinear FSI solution in three dimensions, the fluid density
and viscosity were selected as ⇢f = 2.1 and µf = 0.03, and the solid density and sti↵ness
were chosen as ⇢s = 1 and µs = 0.1. We further set the pressure amplitude as P = 1.
Compared to Section 2.5.1, the Womersley number,W ⇡ 14.51, and the Reynolds number,
Re ⇡ 8.036 (with Vf = maxr,t |vf (r, t)| ⇡ 0.082) are smaller.
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Figure 2.4: The analytic solution for the transient linear FSI case in two dimensions with
density ⇢f = ⇢s = 1, fluid viscosity µf = 0.01, solid sti↵ness µs = 0.1 and cycle
length T = 1.024: Fluid and solid velocity, vf (left) and vs (top left), and solid
displacement, us (top right), along the y-axis, and fluid / solid pressure, pf and ps
(bottom), over time t at three positions along the x-axis.
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Figure 2.5: The analytic solution for the transient nonlinear FSI case in three dimensions with
fluid and solid density ⇢f = 2.1 and ⇢s = 1, fluid viscosity µf = 0.03, solid sti↵ness
µs = 0.1 and cycle length T = 1.024: Fluid and solid velocity, vf (left) and vs (top
left), and solid displacement, us (top right), along the y-axis. Further, fluid and
solid pressure, pf and ps (bottom) over time t at three positions along the z-axis.
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Figure 2.5 illustrates the temporal variation of the velocity, displacement and pressure
profiles along the y-axis. Compared to the transient linear FSI case in the previous section,
the peak solid deformation rate is of similar magnitude, however, the peak fluid velocity
is smaller. Furthermore, the peak values are now present in the interior of the fluid and
solid domains. While the fluid velocity gradient near the wall is smaller compared to the
linear FSI case, the solid deformation rate and displacement is varying along the y-axis
in a similar fashion.
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Figure 2.6: The analytic solution for the transient nonlinear FSI case in three dimensions with
fluid and solid density ⇢f = 2.1 and ⇢s = 1, fluid viscosity µf = 0.03, solid sti↵ness
µs = 0.1 and cycle length T = 1.024: The fluid and solid pressure, pf and ps, over
time t at three positions along the z-axis: At the inlet for z = 0, the midway point
at z = L/2, and at the outlet z = L (top to bottom).

Figure 2.6 further highlights the temporal variation of the fluid and solid pressure
solutions at the inlet (x = 0), the midway point in the x-direction (x = L/2) and the
outlet (x = L). The fluid and solid pressure solutions are no longer continuous at the
interface, which becomes more clear towards the outlet, see Figure 2.6 (bottom) and
Figure 2.5 (bottom-right). The fact that the solid pressure solution is now a function of
[@us/@r]

2 (see Equation (2.68)) results in a higher temporal frequency toward the outlet
at z = L as compared to the inlet at z = 0, and in large pressure gradients in the radial
direction, see Figure 2.6.
Lastly, we emphasize that the response of the fluid and / or solid can be changed

significantly by modifying even just one parameter. As an exemplifying case, we modify
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the solid density and set ⇢s = 5. This does not significantly a↵ect the flow (fluid velocity
and pressure), however, changes the solid response, see Figure 2.7. Similar to the mode
shapes of an Euler-Bernoulli beam [7], the (transient) nonlinear solid model exhibits
deformation modes corresponding to the natural frequencies of the solid material.
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y
0.000 s
0.156 s
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0.469 s
0.625 s
0.781 s
0.938 s

Figure 2.7: The solid displacement for the transient nonlinear FSI case in three dimensions
with fluid and solid density ⇢f = 2.1 and ⇢s = 5, fluid viscosity µf = 0.03, solid
sti↵ness µs = 0.1 and cycle length T = 1.024: By increasing the solid density
compared to Figure 2.5, the solid model exhibits higher-order deformation modes,
similar to the mode shapes of an Euler-Bernoulli beam.

2.5.3 Transient fluid and transient nonlinear solid in 3D:

Physiologically relevant parameters

While the parameter choices in Section 2.5.1 and Section 2.5.2 were motivated from the
viewpoint of space-time convergence analysis (see Section 2.5.4), one may select a more
physiologically relevant parameter set. For example, consider parameters that are similar
to those found in models of the ascending aorta (parameters taken from [5, 96, 116]), with
a fluid density and viscosity of ⇢f = 1.03 g/cm3 and µf = 0.03 g/(cm · s2), and a solid
density and sti↵ness of ⇢s = 1.03 g/cm3 and µs = 2·105 g/(cm·s2). The pressure amplitude
is selected as P = 583 to yield a maximum inflow velocity of Vf ⇡ 100 cm/s. We further
modify the dimensions of the fluid and solid domains: the fluid domain radius is Hi =
0.7 cm, the solid wall thickness is 0.223 cm and the fluid domain length is 5.53 cm. Here,
the Womersley number is typical for aortic blood flow, W ⇡ 10.16, resulting in the typical
Womersley flow profile (see Figure 2.8), while the Reynolds number is Re ⇡ 4813.40.
Due to the significantly increased sti↵ness, the deformation of the solid is small (see

Figure 2.8) and the deformation rate is several orders of magnitudes smaller than the
peak velocity of the fluid. This is in line with observations that the shear deformations
in the ascending aorta are much smaller compared to the radial deformations (which is
constrained here).
Although the deformation of the solid is small, it cannot be neglected because it a↵ects

the pressure solution. For example, similar to the previous nonlinear FSI case in this
section, the fluid and solid pressure solution is discontinuous at the interface, see Figure 2.8
and Figure 2.9. This indicates that the presented analytic FSI solutions are suited for
benchmarking methods that are able to capture sucht discontinuities as well as methods
that assume continuity at the interface.
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Figure 2.8: The analytic solution for the transient nonlinear FSI case in three dimensions with
fluid and solid density ⇢f = ⇢s = 1.03 g/cm3, fluid viscosity µf = 0.03 g/(cm · s2),
solid sti↵ness µs = 2 · 105 g/(cm · s2), pressure amplitude P = 583 and cycle
length T = 1.024 s: Fluid and solid velocity, vf (left) and vs (top left), and solid
displacement, us (top right), along the y-axis. Further, fluid and solid pressure, pf
and ps (bottom) over time t at three positions along the z-axis.
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Figure 2.9: The analytic solution for the transient nonlinear FSI case in three dimensions with
fluid and solid density ⇢f = ⇢s = 1.03 g/cm3, fluid viscosity µf = 0.03 g/(cm · s2),
solid sti↵ness µs = 2 ·105 g/(cm · s2), pressure amplitude P = 583 and cycle length
T = 1.024 s: The fluid and solid pressure, pf and ps, over time t at three positions
along the z-axis: At the inlet, at the midway point and at the outlet (top to bottom).
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2.5.4 Numerical solution and space-time convergence

In this section, results for convergence tests for the FSI method detailed in Section 2.3.1
are presented. Figure 2.10 illustrates observed temporal convergence of the algorithm
applied to the linear FSI case for the fluid velocity, solid displacement and Lagrange
multiplier for three di↵erent spatial resolutions. For the coarse refinement level, error
reduction under temporal refinement is of first-order initially, then degrades as the limit
of spatial discretization accuracy is approached. Such a degradation is not observed for
the medium and fine spatial resolutions for all considered time step sizes. Furthermore,
temporal convergence under space-time refinement (with �t/�3x = const) is of (optimal)
rate, with O(�t) and O(�3x) in the L2(⌦) norm.
Space-time convergence of the FSI algorithm for the nonlinear FSI case in three di-

mensions is illustrated in Figure 2.11. Here, observed temporal convergence for the fluid
velocity, solid displacement and solid pressure are presented for three di↵erent spatial
resolutions. Similar to error reduction for the linear FSI case, temporal convergence of
the non-conforming FSI algorithm is initially first-order for the coarse refinement level,
then degrades as discretization accuracy is approached. For the medium refinement level,
the error can be reduced further under temporal refinement. Error reduction in the fluid
velocity and solid pressure solution, however, still degrades, whereas the error in the solid
displacement can still be decreased. For the fine spatial resolution, the error in the fluid
velocity, solid displacement and solid pressure variable can be reduced with optimal first-
order rate for all considered time step sizes.2 Similar to the case of two spatial dimensions,
temporal convergence under space-time refinement (with �t/�3x = const) is of (optimal)
rate, with O(�t) and O(�3x) in the L2(⌦) norm.
We have further performed space-time convergence studies for all other cases (2D non-

linear, 3D linear) and permutations of transient / quasi-static behavior. Similar to the
cases presented here, optimal convergence rates were obtained under space-time refine-
ment (with constant �t/�dx in d dimensions). Deteriorating convergence under temporal
refinement was only observed when discretization accuracy was reached.

2.6 Discussion

2.6.1 Class of analytic solutions for FSI

The class of analytic FSI solutions presented in Section 2.2 provides a rich and comprehen-
sive test bed for the validation of FSI implementations. It is comprised of permutations
of linear or nonlinear, and quasi-static or transient behavior in two and three dimensions.
Depending on the considered case, the velocity / displacement (pressure) solutions may
exhibit simplistic quadratic (linear) dependence in one spatial dimension or more com-
plex dependence on Bessel functions, with the pressure solution varying in multiple spatial
dimensions.
The analytic solutions are functions of the material and geometric parameters and as

such, the behavior and properties of the solutions can vary widely (even for the same

2The number of Newton iterations taken in the nonlinear solve of the combination largest time step size
/ finest spatial mesh increased significantly. To avoid excessive runtimes, this case was omitted in the
convergence study.
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Figure 2.10: Spatiotemporal convergence for the transient linear FSI case in two dimensions:
Temporal convergence of error for cycle 10 (i.e., ⌦t = [9T, 10T ]) for fluid velocity
vf , solid displacement us and Lagrange multiplier � (and corrsponding numerical
approximations vh

f , u
h
s and �h) for coarse (red), medium (blue) and fine (green)

spatial resolutions. Square markers highlight optimal convergence of error for
�t/�3x = const (see Table). Dashed line illustrates optimal rate.

FSI solution; see Section 2.5.2 and 2.5.3). For example, the flow profile can be close to a
parabolic profile or resemble a typical Womersley profile; similarly, the Reynolds number
can be small or (by changing, e.g., material parameters) high. On the other hand, the solid
can exhibit small (e.g., as demonstrated in Section 2.5.3) or large nonlinear deformations.
It is even possible to select parameters to observe higher-order deformation modes (similar
to the Euler-Bernoulli mode shapes; see Figure 2.7) or to construct cases without unique
solution (resonance-frequency-type solutions; e.g., see Equation (2.36)). This property
of the analytic solutions accentuates one of the avenues to make the numerical solution
process more challenging.
A commonly used benchmark problem is that of flow in an elastic tube (e.g., [156]);

however, it is restricted to validating pulse wave propagation but not spatiotemporal
behavior of the solutions in the entire domain, which is possible with the class of analytic
FSI solutions. While the flow in the nonlinear FSI case is still Stokes-like (the advective
term in the Navier-Stokes equations drops out because of the assumption of no radial
motion), the stress response of the neo-Hooke solid material is nonlinear and does not
simplify. In fact, to my best knowledge, the possibility to validate a nonlinear solid model
in a fluid-structure interaction framework using an analytic solution is the first of its kind
and an important contribution. Furthermore, the pressure solution varies along the axial
direction and, in the nonlinear case, also in the radial direction. Thus, the analytic FSI
solution cannot be reduced to (or solved in) a lower-dimensional manifold in space.
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Figure 2.11: Spatiotemporal convergence for the transient nonlinear FSI case in three dimen-
sions: Temporal convergence of error for cycle 7 (i.e., ⌦t = [6T, 7T ]) for fluid
velocity vf , solid displacement us and solid pressure ps (and corrsponding nu-
merical approximations vh

f , u
h
s , and phs ) for coarse (red), medium (blue) and fine

(green) spatial resolutions. Square markers highlight optimal convergence of error
for �t/�3x = const (see Table). Dashed line illustrates optimal rate.

2.6.2 Analytic solutions utility for verification of FSI algorithms

The class of analytic FSI solutions presented here enable the testing of FSI implemen-
tations at various stages: Starting from the quasi-static linear case in two dimensions,
complexity can be added and the respective implementation validated step-by-step. For
example, transient behavior can be added in the fluid and / or solid models, respectively,
or the FSI domain changed from two dimensions to three dimensions. While the FSI
geometry is relatively simple compared to other benchmarks (e.g., [64, 147]), it does not
pose any challenges in setting up the computational model. In particular, the analytic
solutions are smooth and discretization errors stemming from discretizing the spatial do-
mains can be avoided (e.g., by selecting appropriate shape functions in finite element
discretizations).
Another key aspect is the possibility to change Neumann-type to Dirichlet-type bound-

ary conditions or vice-versa, complementing the validation of the implementation at the
equation level to a more infrastractural aspect. The validation of the coupling constraints
can further be isolated by first validating the fluid- and solid-only cases (e.g., by setting
Dirichlet boundary conditions at the coupling boundary) and then adding the coupling
constraint. Coupling approaches can vary widely [80, 91, 110] and a↵ect numerical perfor-
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mance of an FSI implementation. Furthermore, some FSI methods assume continuity of
the pressure across the fluid / solid interface (e.g., the unified continuum method [72, 80]),
whereas other methods do not make such an assumption (e.g., the non-conforming mono-
lithic FSI method assessed in Section 2.5.4). It is an open research question how such
assumptions influence the numerical solution.
A further (maybe not immediately obvious) benefit of analytic solutions is their useful-

ness for assessing numerical tricks such as implicit-explicit splits [91] and novel methods
or time integration algorithms, such as multigrid-reduction-in-time [30, 35] (MGRIT).
For example, combined with convergence theory [25, 68, 133], the class of analytic FSI
solutions can be an invaluable tool for understanding the performance of MGRIT for FSI
problems (see Section 5.5 and Section 5.6) and help to identify reasons of potentially
slow(er) convergence, as well as support the development of remedies thereof.

2.6.3 Analytic solutions utility for spatiotemporal convergence

analysis

The availability of analytic solutions further simplifies assessing the accuracy and conver-
gence of FSI methods and implementations. Even if neglecting the complex and code-
specific task of implementing forcing terms for the validation through manufactured FSI
solutions, spatiotemporal errors of such forcing terms (due to their numerical inclusion)
may a↵ect the validation process. Analytic solutions make it easier to isolate potential
implementation errors (as described in Section 2.6.2), conduct stability analyses under
refinement (e.g., stability of an explicit method and identifying time step size limits) and
perform space-time convergence studies (which is di�cult with numerical benchmarks,
such as [147]) as demonstrated in Section 2.5.4. For example, by conducting a thorough
convergence study, it can be shown that a given FSI method was not only implemented
correctly but that the theoretical best-case convergence rate can be achieved; for example,
the backward Euler time-discretization with quadratic / linear finite elements in space
(see Section 2.3.1), was shown to converge at the optimal first-order rate in time under
space-time refinement with �t/�3x = const.

2.6.4 Study limitations

Although the derivation of the nonlinear FSI solutions was based on the incompressible
Navier-Stokes equations as a fluid model, the advective (nonlinear) term vanishes. Thus,
any potential nonlinearities in the behavior of the fluid in numerical experiments stem from
sources like approximating the spatial domains, entirely. In the linear case, the velocity
and displacement solutions are further constant in the axial component. While more
complicated and radially varying analytic solutions would be desirable, the assumption
of no radial motion (and thus, the restriction to shear deformations) was an essential
ingredient to enable the derivation of the class of analytic solutions presented in this
work.
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2.6.5 Open-source implementation

All analytic solutions were implemented3 in the Matlab R2018a scripting language, to
avoid the need for implementing complex functions in existing simulation frameworks and
to assist with the validation process. For example, the code can be used to evaluate and
export the analytic solutions for a given FSI case to set appropriate initial and boundary
conditions in a computational model, as well as for the comparison with the numerical
solution. The material, temporal and geometric parameters can be user-defined and a
user-mesh can be imported to evaluate the analytic solutions at relevant coordinates.
We have further implemented functionality to visualize the analytic solutions similar to
Figure 2.5 and included movies of the animated solutions for all linear / nonlinear, 2D / 3D
and quasi-static / transient cases in the Supplementary Materials of [59] (for parameters
in Section 2.5.1 and Section 2.5.2).

2.7 Conclusion

In this chapter, a class of analytic FSI solutions was presented that provides a rich and
comprehensive test bed for the validation and convergence testing of linear and nonlinear
FSI implementations. It enables a step-by-step validation process (two to three dimen-
sions, linear to nonlinear, etc.) and further allows to isolate the testing of certain parts
of an FSI implementation, such as the coupling conditions. It is the first analytic FSI
solution that includes a nonlinear solid model. Along with a description and derivation of
the class of analytic FSI solutions, their usefulness for validating numerical FSI methods
was demonstrated and their value in spatiotemporal convergence testing was highlighted.
A subset of the analytic FSI solutions is further used in Section 5.5 and Section 5.6 to
measure error reduction of the multigrid-reduction-in-time algorithm.

3The code is available in the Supplementary Materials of [59] and as an open-source implementation. Bit-
bucket repository: https://bitbucket.org/hessenthaler/fsi-analytical-solutions-matlab.

https://bitbucket.org/hessenthaler/fsi-analytical-solutions-matlab


3 Multigrid-reduction-in-time
1

The multigrid-reduction-in-time (MGRIT) algorithm was first introduced in the works
of Friedho↵ et al. and Falgout et al. [30, 35] and can be interpreted as an extension or
generalization of the two-grid Parareal algorithm [97].
It has been explored for various application areas, such as the numerical solution of

parabolic and hyperbolic partial di↵erential equations (PDEs) [32, 35, 66, 76], investiga-
tions of power systems [93, 127], solving adjoint and optimization problems [51, 52], and
neural network training [125].

3.1 Sequential time-stepping

First, consider the general form of a time-dependent PDE in one spatial dimension:

f(x, t; u, @u/@x, @u/@t, @2u/@x2, . . .) = 0 for (x, t) 2 ⌦⇥ [0, T ]. (3.1)

Discretizing Equation (3.1) in space and time, sequential time-stepping can be written
as,

un = � (un,un�1) + gn for n = 1, . . . , N0 � 1, (3.2)

with solution un = u(tn) and forcing function gn for N0 time points 0 = t0 < t1 < . . . <
tN0�1 = T . Here, un, gn 2 RNx with Nx spatial degrees-of-freedom. Further, � is referred
to as the time-stepping operator.
For linear problems, Equation (3.2) can be written as,

un = �nun�1 + gn for n = 1, . . . , N0 � 1. (3.3)

In this chapter, we assume a constant spatial discretization (e.g., no remeshing) and
equidistant time points tn = n·�0 for n = 0, . . . , N0�1 with time step size �0 = T/(N0�1),
such that �n = �0. Then, Equation (3.3) can be written in matrix form,

A0u =

2

666664

I
��0 I

��0 I
. . . . . .
��0 I

3

777775

2

666664

u0

u1

u2
...

uN0�1

3

777775
= g, (3.4)

with space-time matrix A0 2 RNxN0⇥NxN0 and space-time solution vector u 2 RNxN0 .
Sequential time-stepping can be identified as a block-forward solve of (3.4).

1Parts of this chapter were submitted as [68].
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3.2 Time grid hierarchy and F/C-splitting

MGRIT solves (3.4) iteratively and, similar to sequential time-stepping, is an O(N0)
method; that is, the total number of (block) operations to solution is linear or near-linear
with the number of time steps (assuming MGRIT is applicable / convergent).
MGRIT introduces a multilevel hierarchy of n` time grids to achieve parallelism in the

temporal domain, employing a coarse-grid correction scheme based on multigrid reduction.
The fine grid (referred to as level ` = 0) is composed of all time points tn (for n =
0, . . . , N0 � 1) and the coarser grids (referred to as levels ` = 1, . . . , n` � 1) are derived
from a uniform coarsening of the fine grid, see Figure 3.1. The temporal coarsening factors
are denoted as m` 2 N (for ` = 0, . . . , n` � 2),2 such that the number of time points on
each grid level is given by,

N` =
N`�1 � 1

m`�1
+ 1, for ` = 1, . . . , n` � 1, (3.5)

with corresponding time step size �`. On each grid level `, time points are partitioned
into F-points and C-points, and the C-points on level ` compose all points on the next
coarser grid level `+ 1. Further, let �` denote the time-stepping operator on level `.

level 0

level 1

t0 t1 tN0�1. . .

t0 tN1�1. . . �0

�1 = m0 · �0

�0

�1

Figure 3.1: Two-grid hierarchy: time points tn, fine- / coarse-grid step sizes �0 and �1, temporal
coarsening factor m0 = 4. On level 0, F-points are denoted in black and C-points
are denoted in red.

3.3 MGRIT operators

MGRIT approximates the exact coarse-grid time-stepping operator3 on level ` by intro-
ducing,

�` ⇡ �m`�1

`�1 , for ` = 1, . . . , n` � 1, (3.6)

and we write the space-time matrix on level `,

A` =

2

6664

I
��` I

��` I
. . . . . .

3

7775
2 RNxN`⇥NxN` , for ` = 1, . . . , n` � 1. (3.7)

2Note that m` = 1 for some or all ` is a valid choice, e.g., for a p-multigrid-like approach.
3Time-stepping on the coarse-grid is referred to as exact, if it yields the same solution as sequential
time-stepping on the fine-grid.
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MGRIT constructs coarse-grids from a Schur complement decomposition of (3.7), rela-
tive to the F/C-splitting from Figure 3.1 [25]. The Schur complement arises from certain
so-called ideal multigrid restriction and interpolation operators. Define ideal restriction
from level ` to `+ 1 (for ` = 0, . . . , n` � 2) as,

R` =

2

6664

I
�m`�1

` �m`�2
` · · · �` I

. . .

�m`�1
` �m`�2

` · · · �` I

3

7775
, (3.8)

with R` 2 RNxN`+1⇥NxN` . Define ideal interpolation from level `+1 to ` (for ` = 0, . . . , n`�
2) as,

P` =

2

66666666666666664

I
�`
...

�m`�1
`

I
�`
...

�m`�1
`

. . .
I

3

77777777777777775

, (3.9)

with P` 2 RNxN`⇥NxN`+1 . Note that the interpolation operator is not defined as the
transpose of the restriction operator, since in general �` 6= �T

` (for example, see [66,
Equation (28)]), and thus, P` 6= RT

` .
Further, define an auxillary operator,

S` =

2

6666666666666664

0
I

I
. . .

I
0
0 I

. . .
I
0

3

7777777777777775

, (3.10)

with S` 2 RNxN`⇥Nx(N`�N`+1) for ` = 1, . . . , n` � 2. The number of block columns in S`

corresponds to the total number of F-points on level `. If the operator S` is applied to
the right of A`, the result A`S` is composed of all block rows in A`, and all block columns
in A` that correspond to F-points on level ` (zeroing out the respective C-point block
columns). Thus, ST

` A`S` is composed of all block rows and block columns in A` that
correspond to F-points.
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Using the above definitions, it is straightforward to work out that the multigrid coarse-
grid operator, R`A`P`, is then given by the Schur complement [25] of A` in Equation (3.7),

R`A`P` = RI`A`P` =

2

666664

I
��m`

` I
��m`

` I
. . . . . .
��m`

` I

3

777775
, (3.11)

where restriction by injection is given by the operator,

RI` =

2

6664

I
0 0 · · · I

. . .
0 0 · · · 0 I

3

7775
, (3.12)

for ` = 1, . . . , n` � 2. Here, RI` 2 RNxN`+1⇥NxN` has a similar block structure as R`, but
with all blocks �m

` (for m = 1, . . . ,m` � 1) set to zero. Thus, RI` restricts the C-points
from level ` to level ` + 1, omitting the respective F-points. The number of block rows
corresponds to the total number of C-points on level `, i.e. N`+1. Also note that the
inverse of A` is given analytically [25] by,

A�1
` =

2

666664

I
�` I

�2
` �`

. . .
...

... I
�N`�1

` �N`�2
` �` I

3

777775
, (3.13)

with A�1
` 2 RNxN`⇥NxN` for ` = 1, . . . , n` � 1.

In a typical multigrid fashion, MGRIT uses a complementary relaxation process to re-
duce error that is not adequately reduced on coarser grids. Because MGRIT is a reduction-
based method, coarse-grid correction (should) eliminate error e↵ectively at C-points, so
this is coupled with an F-relaxation scheme to eliminate error at F-points. F-relaxation
can be seen as a block Jacobi-like method, where in this case each block consists of a
set of contiguous F-points in the time domain (that is, F-relaxation updates all F-points
based on sequential time integration from the closest (previous) C-point). Algebraically,
this is equivalent to an application of the idempotent operator,

F` = P`RI` = I � S`(S
T
` A`S`)

�1ST
` . (3.14)

When F-relaxation alone is insu�cient, a stronger relaxation scheme can be used.
Further define,

T` = RT
I`
. (3.15)

Then, C-relaxation updates a C-point based on taking one time step from the previous
F-point (equivalent to block Jacobi applied to the C-point block rows of A`). Algebraically,
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this corresponds to an application of

C` =

2

66666664

I
. . .

I
�` 0

0 I
. . .

3

77777775

= I � T`(T
T
` A`T`)

�1T T
` A`, (3.16)

where the zero columns correspond to C-points. Using Equation (3.14) and Equation 3.16,
FCF-relaxation (subsequent F-, C- and F-relaxation steps) can be written as,

F`C`F` = P`(I �R`A`P`)RI` . (3.17)

We further use the more general notation of rFCF-relaxation, which corresponds to
F-relaxation, followed by r CF-relaxation steps.

3.4 Algorithm

Now that we have the basic ingredients for MGRIT, we can describe a standard V-cycle
in the following pseudocode:

Algorithm 2 Pseudocode for MGRIT algorithm with V-cycles, adapted from [25].

1: repeat
2: Relax on A`u = g using rFCF-relaxation with �`. . In parallel
3: Compute coarse-grid residual r� = R`(g � A`u).
4: Solve coarse grid correction problem A`+1e� = r� using �`+1. . Apply recursively
5: Correct solution at fine-grid C-points with e�. . In parallel
6: Update the solution at the F-points with �`. . In parallel
7: until norm of residual is small enough

It is clear from the pseudocode in Algorithm 2, that more work needs to be done
compared to sequential time-stepping; however, more work can be done in parallel, which
highlights MGRIT’s potential for parallel speedup.
Multilevel V-cycles are achieved by calling the algorithm recursively in Step 4. Further,

F-cycles can be achieved by performing (at least) one V-cycle as postrelaxation step at
each level [146].

3.5 The XBraid library

For the work presented in this Ph.D. Thesis, the open-source implementation XBraid [158]
was employed4 and extended, e.g., to implement the time-periodic MGRIT variant de-
scribed in Section 3.6.

4XBraid Release v2.3.0
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To successfully link an existing simulation package with XBraid, the user has to imple-
ment a number of wrapper routines. The wrapper steers and calls the simulation code to
perform a number of basic tasks (e.g., norm computation, data I/O, etc.) and to perform
time integration. Time integration routines in the simulation tool are exposed through the
so-called step function that represents the application of the time stepping operator �`,
see Equation (3.2) and Equation (3.3).
The step function can be summarized as the following pseudocode:

Algorithm 3 Pseudocode for XBraid’s step function.

1: function step function(u(·, t), t, �`)
2: Set initial condition u(·, t)
3: Set initial time t
4: Set time step size �`
5: Compute solution u(·, t+ �`) = �` (u(·, t+ �`),u(·, t); t, t+ �`) + g(·, t+ �`)
6: return u(·, t+ �`)

As a matter of course, a realistic step function may have many more steps or cus-
tomizations depending on the considered setting, however, Algorithm 3 highlights the
basic steps.
Overall, the required implementation overhead to enable parallel-in-time integration

through MGRIT is relatively low. For example, the finite element package CHeart [18, 94]
has about 98500 lines of Fortran code (includes comments), whereas the wrapper routines
only amount to about 2050 lines of Fortran code (includes comments) or 2%.5

3.6 Extension for time-periodic problems

A significant fraction of applications in biomedical engineering and other fields exhibit
time-periodic behavior similar to the time-periodic analytic solutions presented in Chap-
ter 2. A “good” initial condition at t = 0, however, may not be available in practice.
This means that multiple cycles have to be simulated to reach a periodic steady-state
solution. Figure 3.2 highlights this by comparing the space-time error (velocity) for each
cycle with the associated computational cost (i.e. wall clock time) for the 2D linear FSI
solution from Section 2.5.1.
This space-time periodicity is exactly what we want to exploit with MGRIT by making

the time grids periodic. That is, MGRIT is employed to approximate the solution over
one cycle only, with t 2 [0, T ]. Convergence to the periodic steady-state is achieved by
updating the initial condition vf (·, 0), based on the following approach:

Periodic fine-grid: The initial condition is updated on the fine grid, whenever a
new value is computed / available at t = T on the fine grid.

To describe the communication pattern, assume that pt processors are employed in the
temporal domain. Further, consider that processor 0 owns time point t = 0 and processor
pt � 1 owns time point t = T . Communication is implemented as follows:

5Note, that additional changes or additions to the CHeart source code were made, such that these figures
are not entirely accurate.
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Figure 3.2: Space-time error (velocity) for each cycle compared to wall clock time.

• If processor pt � 1 computes a new approximation at t = T :

On level 0: Processor pt � 1 uses MPI iSend to send a nonblocking message
to processor 0, labeled with a unique MPI tag.

On levels 1 to n` � 1: Do not send an update

• Iteration 1: If processor 0 computes any step on level 0 using the initial condition
at t = 0:

F-relaxation: Processor 0 waits for two messages from processor pt�1 (labeled
with the MPI tag that identifies an updated initial condition) using a blocking
call to MPI Recv.

FCF-relaxation: Processor 0 waits for one message from processor pt � 1
(labeled with the MPI tag that identifies an updated initial condition) using a
blocking call to MPI Recv.

• Subsequent iterations: If processor 0 computes any step on level 0 using the initial
condition at t = 0:

F- or FCF-relaxation: Processor 0 waits for one message from processor pt�
1 (labeled with the MPI tag that identifies an updated initial condition) using
a blocking call to MPI Recv, unless the initial condition is already converged.

In the case that no parallelism is employed, the initial condition is directly updated
from the value computed for t = T . Further, instead of sending the approximation of
MGRIT at t = T , the message contains the solution of any step (e.g., relaxation) that
passes u(·, t = T ) back to MGRIT via the step function:

https://www.mpich.org/static/docs/v3.2/www3/MPI_Isend.html
https://www.mpich.org/static/docs/v3.2/www3/MPI_Recv.html
https://www.mpich.org/static/docs/v3.2/www3/MPI_Recv.html
https://www.mpich.org/static/docs/v3.2/www3/MPI_Recv.html
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Algorithm 4 Pseudo-code for XBraid’s step function for the time-periodic case.

1: function step function(u(·, t), t, �`)
2: if time t = 0 and iteration i > 0 then
3: if initial condition at t = 0 not converged then
4: Receive update as u(·, t)
5: if iteration i = 1 and using F-relaxation then
6: Discard first update and receive second update as u(·, t)
7: Set initial condition u(·, t)
8: Set initial time t
9: Set time step size �`
10: Compute solution u(·, t+ �`) = �` (u(·, t+ �`),u(·, t); t, t+ �`) + g(·, t+ �`)
11: if time t+ �` = T then
12: if initial condition at t = 0 not converged then
13: if ku(·, T )� u(·, 0)k2 < tol then
14: Set initial condition as converged

15: Send nonblocking update of u(·, T )
16: return u(·, t+ �`)

Remark 1. The time-periodic MGRIT algorithm starts a forward-solve on the coarsest-
grid (using XBraid’s so-called skip-first-down6 option) and thus, no updates are available
for iteration 0 in Step 2 of Algorithm 4.

Remark 2. In iteration 1 processor 0 waits for two messages in the case of F-relaxation,
see Algorithm 4, Step 5. This was a requirement to achieve a robust residual reduction
with a convergence factor smaller than one.

Remark 3. In general, the initial condition for the step function in Algorithm 4 is u(·, t)
for t 2 [0, T ], but the initial condition to the time-periodic problem is u(·, t = 0).

Remark 4. Step 13 of Algorithm 4 allows for an approximate convergence to the time-
periodic steady-state with a given tolerance tol, see Section 5.4.6.1. To achieve this,
a callback function was implemented in XBraid that let’s the simulation code detect
whether XBraid may terminate (initial condition converged) or not (initial condition not
converged).

Remark 5. A similar idea to exploit time-periodicity was applied for the Parareal algo-
rithm [40, 41]. In our approach, however, we only require an approximate update of the
initial condition. Further, the time-periodic algorithm naturally generalizes to the true
multilevel case.

6The skip-first-down means that XBraid generates an initial space-time guess using sequential time-
stepping on the coarsest time grid.



4 Multilevel convergence analysis of

multigrid-reduction-in-time
1,2

In this chapter, a multilevel convergence framework for multigrid-reduction-in-time
(MGRIT) is derived as a generalization of previous two-grid theory, presented in [25,
133, 159] and summarized in Section 4.1. The framework provides a priori upper bounds
on the convergence of MGRIT V- and F-cycles with di↵erent relaxation schemes by deriv-
ing the respective residual and error propagation operators, see Section 4.4. The residual
and error operators are functions of the time stepping operator, analyzed directly and
bounded in norm, both numerically and analytically, see Section 4.5.
Various upper bounds of di↵erent computational cost and varying sharpness are pre-

sented. These upper bounds are complemented by proposing analytic formulae for the
approximate convergence factor of V-cycle algorithms that take the number of fine grid
time points, the temporal coarsening factors, and the eigenvalues of the time stepping
operator as parameters. Sharpness of the bounds and the quality of the approximate
convergence factors are assessed in Chapter 5.
The new multilevel convergence framework lays the groundwork for future in-depth

examination and understanding of MGRIT and will help guide future development and
improvement of MGRIT to explore ideas such as coarsening in integration order as op-
posed to step size (p-MGRIT), weighted relaxation schemes, and others, see Section 7.2.
A parallel MPI/C++ implementation of all derived bounds and approximate convergence
factors is provided.3

4.1 Theoretical convergence of two-level MGRIT

Two-level convergence theory for MGRIT was developed in [25], based on the assumptions
of time integration on a uniform time grid and simultaneous diagonalization of time-
stepping operators (see Section 4.3) arising from linear PDEs. The theoretical bounds were
shown to be quite accurate when compared with observed convergence. Southworth [133]
generalized this framework, deriving necessary and su�cient conditions and tight two-
level convergence bounds for general two-level MGRIT for linear PDEs on a uniform time
grid. Some extensions to the case of nonuniform time grids are also provided in [133, 159].
However, no work has been done on convergence theory for the general multilevel case.
In practice, the selection of an appropriate cycling strategy and relaxation scheme is

crucial for scalable multilevel performance and, ultimately, for achieving parallel speedup.

1Part of this work performed under the auspices of the U.S. Department of Energy by Lawrence Liver-
more National Laboratory under Contract DE-AC52-07NA27344, LLNL-JRNL-763460.

2Parts of this chapter were submitted as [68, 134].
3Implementation publicly available at: github.com/XBraid/XBraid-convergence-est
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A strong framework for multilevel convergence of MGRIT can help guide these decisions
in a rigorous, a priori manner.

4.1.1 Why multilevel is harder

For multigrid-type algorithms, it is generally the case that two-level convergence rates
provide a lower bound on attainable multilevel convergence rates; that is, a multilevel al-
gorithm will typically observe worse convergence than its two-level counterpart. Indeed,
more expensive multilevel cycling strategies such as W-cycles or F-cycles are used specif-
ically to solve the coarse-grid operator more accurately, better approximating a two-grid
method.
The non-Galerkin coarse grid used in MGRIT (see Chapter 3) makes this relationship

more complicated, and it is not clear that two-grid convergence provides a lower bound
on multilevel in all cases. However, in practice, it is consistently the case that two-level
convergence is better than multilevel. To that end, a two-level method which converges
every iteration is a heuristic necessary condition for multilevel convergence.
Despite strong heuristics on multilevel convergence, the connection between two-level

convergence factors and multilevel is not rigorous. This motivates the rest of this chapter,
where multilevel error and residual propagation operators are analytically derived, and
upper bounds on `2-convergence placed directly on these operators.

4.2 Assumptions

Similar to the two-level convergence theory by Dobrev et al. [25], the following assumptions
are made:

1. Analysis for the solution of linear PDEs4 in �-form, see Equation (3.3).

2. The time-stepping operators {�`} are time-independent.

3. The dimension of {�`} is constant, i.e. dim(�`) = Nx for all `.

4. The time-stepping operators {�`} are simultaneously diagonalizable, see Section 4.3.

5. The time-stepping operators {�`} are stable, i.e. k�`k < 1.

Here, {�`} denotes the family of time-stepping operators �` for ` = 0, . . . , n`�1.

Remark 6. Assumption 4 requires that {�`} are simultaneously diagonalizable from a
mathematical point-of-view and, in addition, that this diagonalization is computable with
reasonable computational cost.

Remark 7. Assumption 5 relates to the notion of strong stability. It is also possible to
have a stable time integration scheme with k�`k > 1, if k�i

`k < 1 for some i (see [92]
and [95, Section 9.5, Equation (9.22)]), but such schemes are not considered in this work.

4In Section 5.4.8, possible extensions to the nonlinear PDE case are explored.
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4.3 Simultaneous diagonalization of {�`}
Let �` denote the time-stepping operator on level `. Primary results in this chapter
rest on the assumption that {�`} are diagonalizable with the same set of eigenvectors,
for all levels ` = 0, ..., n` � 1. This is equivalent to saying that the set {�`} commutes,
that is, �i�j = �j�i for all i, j, and that �` is diagonalizable for all `. The concept of
simultaneous diagonalization (albeit, in the Fourier basis) was introduced in [36], and was
modified and used as the basis for the improved two-grid convergence bounds developed
in [25].
In terms of when such an assumption is valid, let L be a time-independent operator

(such as a spatial discretization) that is propagated through time by operators {�`}.
Note that all rational functions of L commute and that if L is diagonalizable, so is any
rational function of L. Indeed, nearly all standard time-integration routines, including
all single-step Runge-Kutta-type methods, consist of some rational function of L, and all
such schemes are simultaneously diagonalizable with the eigenvectors of L. To that end,
let L = UDU�1, where Dkk = ⇠k is a diagonal matrix containing the eigenvalues of L
and columns of U are the corresponding eigenvectors. Denote the Butcher tableau of a
general s-stage Runge-Kutta method as

c A

bT
.

With some algebra, one can show that �` corresponding to a given Butcher tableau is
exactly given by the Runge-Kutta stability function applied to L in block form,

�` = I + �`(b
T ⌦ I) (I � �`A⌦ L)�1 (1s ⌦ L)

= U
⇣
I + �`

�
bT ⌦ I

�
(I � �`A⌦D)�1 (1s ⌦D)

⌘
U�1

= U⇤`U
�1,

(4.1)

where (⇤`)kk = �`,k, for k = 1, . . . , Nx, are the eigenvalues of �`, given by

�`,k = 1 + �`⇠kb
T (I � �`⇠kA)

�11. (4.2)

Note that Equation (4.2) is exactly the stability function for a Runge-Kutta scheme
applied to �`⇠k, for time step �` and spatial eigenvalue {⇠k} [89, Sec. 2.1, §.4]. This
highlights the fact that solving the spatial eigenvalue problem also provides the eigenvalues
of all �` for arbitrary Runge-Kutta schemes and time-step sizes.
Now suppose A is some matrix operator, where each entry is a rational function of time-

stepping operators in {�`}. In particular, this applies to error and residual propagation
operators of MGRIT that are derived in Section 4.4. Let eU denote a block-diagonal matrix
with diagonal blocks given by U . Then, as in [133],

kA(�0, . . . ,�n`�1)k(eU eU⇤)�1 = sup
k
kA(�0,k, . . . ,�n`�1,k)k2. (4.3)

Thus, the (eU eU⇤)�1-norm of A(�0, ...,�n`�1) can be computed by maximizing the `2-
norm of A over eigenvalues of {�`}. In the case that {�`} are normal matrices, U is
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unitary and the (eU eU⇤)�1-norm reduces to the standard Euclidean 2-norm. More generally,
we have bounds on the `2-norm of A(�0, ...,�n`�1),

1

(U)

✓
sup
k
kA(�0,k, . . . ,�n`�1,k)

ik2
◆

 kA(�0, . . . ,�n`�1)
ik2  (U)

✓
sup
k
kA(�0,k, . . . ,�n`�1,k)

ik2
◆
,

(4.4)

for i = 1, 2, . . . applications of A, where (U) denotes the matrix condition number of U .5

Here, we are interested in A corresponding to the residual and error propagation oper-
ators of nl-level MGRIT, denoted as Enl and Rnl , respectively. Convergence of MGRIT
requires,

k (Enl)i k, k (Rnl)i k ! 0, (4.5)

as iteration i increases. To that end, bounding supk k (Enl(�0,k, . . . ,�n`�1,k))
i k < 1 for all k

provides necessary and su�cient conditions for k (Enl(�0, . . . ,�n`�1))
i k ! 0 with i (even-

tually), and similarly for Rnl(�0, . . . ,�n`�1). Here, we have focused on the `2-norm. It
is worth pointing out that, in some cases, people are interested in an `1-norm. However,
because k · k1  k · k2, conditions developed here apply to the `1-norm as well.

4.4 Multilevel residual and error propagation

As noted in [133], residual and error propagation are formally similar, that is,

Rn` = A0En`A�1
0 = A0(I �M�1A0)A

�1
0 = I � A0M

�1, (4.6)

whereM�1 denotes the MGRIT preconditioner for A�1
0 . Noting that there is a closed form

for A�1
` , it follows that if the error propagation operator of a particular MGRIT algorithm

is known, the residual propagation operator can be easily found by the relation in (4.6),
and vice-versa. In this section, we derive the error propagation operator for generalized
two-level MGRIT and multilevel (V-cycle) MGRIT with F- and FCF-relaxation, using
the following convention for sums and products:

Pb
i=a fi = 0 and

Qb
i=a fi = 1 for b < a.

We further write, e.g., En`=2 to refer to the two-grid error propagation operator and
distinguish the notation from a power of E , and similarly for other numbers of levels n`.

4.4.1 Two-level MGRIT with rFCF-relaxation

Here, we generalize the two-level error propagator, as given in [25], to two-level MGRIT
with rFCF-relaxation. rFCF-relaxation refers to F-relaxation followed by r CF-relaxation
steps. A similar result can be found in [42], where MGRIT was interpreted as Parareal
with overlap in time.
The error propagator for an exact iterative two-grid method with rFCF-relaxation and

r � 0 is given as,

0 = I � A�1
0 A0 = (I � P0(R0A0P0)

�1R0A0)(F0C0)
rF0

= (I � P0(R0A0P0)
�1R0A0)P0(I �R0A0P0)

rRI0 ,
(4.7)

and MGRIT approximates the coarse-grid operator as A1 ⇡ R0A0P0.

5 A similar modified norm also occurs in the case of integrating in time with a mass matrix [25].
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Lemma 1. The error propagator of two-level MGRIT with rFCF-relaxation and r � 0 is
given as,

En`=2
rFCF = (I � P0A

�1
1 R0A0)P0(I �R0A0P0)

rRI0 . (4.8)

Proof. This follows by substituting the coarse-grid operator A1 ⇡ R0A0P0 in Equa-
tion (4.7).

4.4.2 Multilevel V-cycles with F-relaxation

The error propagator of a multilevel V-cycle method with F-relaxation can be derived
from the error propagator of the exact two-level method on level `,

0 = I � A�1
` A` = (I � P`(R`A`P`)

�1R`A`)(I � S`(S
T
` A`S`)

�1ST
` A`)

= I � (P`(R`A`P`)
�1R` + S`(S

T
` A`S`)

�1ST
` )A`

and noting that,

A�1
` = P`(R`A`P`)

�1R` + S`(S
T
` A`S`)

�1ST
` . (4.9)

Lemma 2. The error propagator of a multilevel V-cycle method with F-relaxation is given
as,

En`

F = P0RI0 �
 

n`�2Y

k=0

Pk

!
A�1

n`�1

 
0Y

k=n`�2

Rk

!
A0P0RI0

�
n`�3X

i=0

 
iY

k=0

Pk

!
Si+1(S

T
i+1Ai+1Si+1)

�1ST
i+1

 
0Y

k=i

Rk

!
A0P0RI0 ,

(4.10)

for n` � 2 levels.

Proof. For n` = 2, we have,

En`=2
F = P0RI0 � P0A

�1
1 R0A0P0RI0 = (I � P0A

�1
1 R0A0)P0RI0 ,

which is equivalent with (4.8) for r = 0. Now, assume it is true for n` = n levels.
Substituting an exact two-level method on the coarse grid, that is (4.9), yields,

En`=n
F = P0RI0 �

 
n�2Y

k=0

Pk

!
Pn�1(Rn�1An�1Pn�1)

�1Rn�1

+ Sn�1(S
T
n�1An�1Sn�1)

�1ST
n�1

� 0Y

k=n�2

Rk

!
A0P0RI0

�
n�3X

i=0

 
iY

k=0

Pk

!
Si+1(S

T
i+1Ai+1Si+1)

�1ST
i+1

 
0Y

k=i

Rk

!
A0P0RI0

= P0RI0 �
 

n�1Y

k=0

Pk

!
(Rn�1An�1Pn�1)

�1

 
0Y

k=n�1

Rk

!
A0P0RI0

�
n�2X

i=0

 
iY

k=0

Pk

!
Si+1(S

T
i+1Ai+1Si+1)

�1ST
i+1

 
0Y

k=i

Rk

!
A0P0RI0 .
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Approximating the exact coarse grid operator on level n + 1 by An ⇡ Rn�1An�1Pn�1

concludes the proof.

4.4.3 Multilevel V-cycles with FCF-relaxation

The error propagator of a multilevel V-cycle method with FCF-relaxation can be derived
from the error propagator of the exact two-level method on level `,

0 =I � A�1
` A` = (I � P`(R`A`P`)

�1R`A`)F`C`F`

=I � P`(R`A`P`)
�1R`A` � S`(S

T
` A`S`)

�1ST
` A` � T`(T

T
` A`T`)

�1T T
` A`

+S`(ST
` A`S`)�1ST

` A`T`(T T
` A`T`)�1T T

` A` + P`(R`A`P`)�1R`A`T`(T T
` A`T`)�1T T

` A`,

and noting that,

A�1
` = T`(T T

` A`T`)�1T T
` +

⇥
S`(ST

` A`S`)�1ST
` + P`(R`A`P`)�1R`

⇤ ⇥
I � A`T`(T T

` A`T`)�1T T
`

⇤
.

Lemma 3. The error propagator of a multilevel V-cycle method with
FCF-relaxation is given as,

En`

FCF = P0(I � (T T
0 A0T0)

�1RI0A0P0)RI0 (4.11)

�
 

n`�2Y

k=0

Pk

!
A�1

n`�1

 
0Y

k=n`�2

Rk

⇥
I � AkTk(T

T
k AkTk)

�1T T
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⇤
!
A0P0RI0

�
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k=0

Pk

!
Si(S

T
i AiSi)

�1ST
i

⇥
I � AiTi(T

T
i AiTi)

�1T T
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⇤

+ Ti(T
T
i AiTi)

�1T T
i

� 0Y

k=i�1

Rk

⇥
I � AkTk(T

T
k AkTk)

�1T T
k

⇤
!
A0P0RI0 ,

with n` � 2 levels.

Proof. The proof is analogous to the proof of Lemma 2.

4.4.4 Multilevel F-cycles with rFCF-relaxation

Following [53, p. 53], error propagation of MGRIT for a multilevel F-cycle6 with rFCF-
relaxation can be defined recursively,

Fn`

rFCF = MF
rFCF,0, for n` � 2, (4.12)

with

MF
rFCF,`�1 = P`�1

�
I �

�
I �MV

` MF
`

�
A�1

` R`�1A`�1P`�1

�
(I �R`�1A`�1P`�1)

rRI`�1
,

MV
rFCF,`�1 = P`�1

�
I �

�
I �MV

`

�
A�1

` R`�1A`�1P`�1

�
(I �R`�1A`�1P`�1)

rRI`�1
,

6To refer to F-cycle error propagation, we use the notation Fn` instead of En` .
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for l = 1, . . . , n` � 2, and,

MF
rFCF,n`�2 = MV

rFCF,n`�2

= Pn`�2

�
I � A�1

n`�1Rn`�2An`�2Pn`�2

�
(I �Rn`�2An`�2Pn`�2)

rRIn`�2 .

It is easy to verify, that for n` = 2, the recursive formulae result in Fn`=2
rFCF = En`=2

rFCF . For
n` = 3 and r = 0, we can write,

Fn`=3
F = En`=2

F + P0P1

�
I � A�1

2 R1A1P1

�2
RI1A

�1
1 R0A0P0RI0 .

However, it is not straightforward to convert the recursive definition in (4.12) into a
summation similar to (4.10) or (4.11), for arbitrary n`. Yet, this formula is still useful for
numerically and analytically computing bounds of Fn`

rFCF , hence, we include it.

4.5 Bounds for MGRIT residual and error propagation

Following the work in [25], we assume that operators �`, ` = 0, . . . , n`�1, can be diagonal-
ized by the same set of eigenvectors (see Equation (4.1)), with eigenvalues denoted {�`,k},
for 1  k  Nx. We also assume that {�`} are strongly stable time stepping operators,
that is, k�`k < 1, which implies |�`,k| < 1 for all ` = 0, . . . , n` � 1 and k = 1, . . . , Nx, see
Section 4.2, Assumption 5. To simplify notation in the following derivations, we use �`

to denote the diagonalized time stepping operator moving forward. Results then follow
in a (eU eU⇤)�1-norm, which (as discussed in Section 4.3) is equivalent to the `2-norm if �`

is normal (and, thus, U is unitary).

4.5.1 Residual and error on level 0 and level 1

It is typically di�cult or impossible in practical applications to precisely measure the
error propagation of an iterative method or the error itself. It is, however, possible to
measure the residual, and stopping criteria for iterative methods are often based on a
residual tolerance. In the case of MGRIT, there is a nice relation between residual and
error propagation. From [133], the norm of residual and error propagation operators are
equal in the (eU eU⇤)�1-norm (recall, eU is a block diagonal matrix of eigenvectors, U).7

If {�`} are normal operators, they are diagonalizable by unitary transformation, in which
case eU eU⇤ = I, and residual and error propagation are equal in the `2-norm.
Similar to Section 4.4, let En`

rFCF be the error propagator on level 0. We further refer
to En`,�

rFCF as the error propagator on level 1, that denotes the operator that acts on the
error at C-points on level 0, i.e., all points on level 1. In the two-grid setting, we also
refer to En`,�

rFCF as the coarse-grid error propagator.
To quantify how fast MGRIT converges in the worst case, we can bound the convergence

factor of the fine grid residual [25] ri+1 at iteration i+1, i 2 N0, by the norm of the error
propagator on level 1 (in the unitary case),

kri+1k2/krik2 = kA1e
�
i+1k2/kA1e

�
i k2  kA1En`,�

rFCFA
�1
1 k2 = kE

n`,�
rFCFk2, (4.13)

7Although [133] specifically addresses two-grid bounds, equality of residual and error propagation in
the (eU eU⇤)�1-norm follows if �` is simultaneously diagonalizable for all levels `.
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where e�i+1 is the error on level 1 or equivalently, error at C-points on level 0. With,

e�i+1 = En`,�
rFCFe

�
i = En`,�

rFCFRI0ei, , P0e
�
i+1= P0En`,�

rFCFe
�
i = P0En`,�

rFCFRI0ei,

we can identify, En`,�
rFCF = RI0E

n`

rFCFP0, which is a generalization of the approach in [25],
where the operators P0 and RI0 are pulled out to the left and right of the error propagator.
Thus, in general we analyze the error propagator on level 1 to bound residual propagation
on level 0, as given in (4.13).
This raises the question of how the error develops at the F-points on the fine grid.

Considering error propagation on level 0 over i iterations,

ei+1 = En`

rFCFei = . . . = (En`

rFCF )
i+1 e0 =

⇣
P0En`,�

rFCFRI0

⌘i+1

e0 = P0

⇣
En`,�
rFCF

⌘i+1

RI0e0,

we find that error propagation at the F-points of the fine grid can be bounded by error
propagation at the respective C-points times a constant.

Lemma 4. Error propagation on level 0 for an MGRIT V-cycle method can be bounded
by error propagation on level 1,

kEn`

rFCFk2 
p
m0kEn`,�

rFCFk2,

with temporal coarsening factor m0 on level 0.

Proof. This follows from,

kEn`

rFCFk2 = kP0En`,�
rFCFRI0k2  kP0k2kEn`,�

rFCFk2kRI0k2

p
kP0k1kP0k1kEn`,�

rFCFk2
p
kRI0k1kRI0k1 

p
m0kEn`,�

rFCFk2,

where submultiplicativity and the inequality kDk2 
p
kDk1kDk1 (see [69]) were used.

Remark 8. It is clear from Lemma 4, that if the error at C-points on level 0 converges,
then the error at F-points on level 0 converges as well. This is the basis for the theory
developed in the rest of this chapter, where convergence is attained by bounding En`,�

rFCF

in norm.

Lemma 4 is intuitive in the sense that the fine grid error propagation is a direct result
of the level 1 error propagation; it is simply ideal interpolation applied to the level 1 error;
that is, the operator P0 propagates the error at the C-points on level 0 to the subsequent
F-points. A similar result was presented in [133] for two-level convergence of Parareal and
MGRIT.
Based on the formulae derived in Section 4.4, we can construct residual and error

propagators numerically and bound the worst case convergence factor of MGRIT from
above via

cf = max
i
kri+1k2/krik2  kEn`,�

rFCFk2, (4.14)

which corresponds to the maximum singular value of En`,�
rFCF . In practice, the dimension

of En`

rFCF grows with the problem size in space and time, Nx and N0. Similarly, En`,�
rFCF
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grows with Nx and N1. Depending on the available resources, numerical construction
and investigation of these operators may be limited by memory consumption and/or
compute time. To that end, it is desirable to derive further cheaper upper bounds that
enable fast assessment of MGRIT convergence for larger space-time problem sizes. In the
following, we present several bounds and approximate convergence factors for fine-grid
residual propagation and error propagation on level 1.

4.5.2 Upper bound using inequality

One straightforward way to reduce computational cost by roughly one order of magni-
tude is bounding the `2-norm of the error propagator on level 1 using the well-known
inequality [69],

kEn`,�
rFCFk22  kE

n`,�
rFCFk1kE

n`,�
rFCFk1. (4.15)

In [25], this was used to develop an upper-bound on two-grid convergence, which was
proven to be sharp in [133]. This section extends this approach to three and four grid
levels based on analytic formulae. Although the sharpness of (4.15) su↵ers as the number
of levels increases (see Chapter 5), it is shown that it is still reasonably sharp and provides
a useful tool to analyze MGRIT convergence a priori.

4.5.2.1 Two-level MGRIT with rFCF-relaxation

The coarse-grid error propagator follows from Equation (4.8) for n` = 2,

En`=2,�
rFCF = RI0E

n`=2
rFCFP0 = (I � A�1

1 R0A0P0)(I �R0A0P0)
r.

And with,
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2
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and,
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and
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the coarse-grid error propagator follows as,

En`=2,�
rFCF =
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6666666664
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, (4.19)

where the first r + 1 rows and last r + 1 columns are zero.

Theorem 1. Let {�`} be simultaneously diagonalizable by the same unitary transforma-
tion X, with eigenvalues {�`,k}, |�`,k| < 1. Then, the worst case convergence factor of
the fine-grid residual of two-level MGRIT with rFCF-relaxation is bounded by,

cf  max
1kNx

|�m0
0,k � �1,k||�0,k|rm0

1� |�1,k|N1�1�r

1� |�1,k|
.

Proof. This follows from Equation (4.19) and inequality (4.15),

kEn`=2,�
rFCF k2 

q
kEn`=2,�

rFCF k1kE
n`=2,�
rFCF k1 = kEn`=2

rFCFk1

= max
1kNx

|�m0
0,k � �1,k||�0,k|rm0

1� |�1,k|N1�1�r

1� |�1,k|
.

In the last step, the relationship
PN�1

i=0 ai = (1� aN)/(1� a) was used.
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Remark 9. The cases of F- and FCF-relaxation (i.e., r = 0 and r = 1), yield the result
in [25],

kEn`=2,�
F k2  max

1kNx

|�m0
0,k � �1,k|

1� |�1,k|N1�1

1� |�1,k|
,

kEn`=2,�
FCF k2  max

1kNx

|�m0
0,k � �1,k||�0,k|m0

1� |�1,k|N1�2

1� |�1,k|
.

Remark 10. In [133], it was shown that the bound in Theorem 1 is exact to O(1/N1) for
F- and FCF-relaxation.

An interesting observation of (4.19) is the fact that the coarse-grid error propagator is
nilpotent and that each block can be diagonalized by the same unitary transformation.
This implies that we can reorder the rows and columns of the coarse-grid error propagator,
yielding a block diagonal form with lower triangular nilpotent blocks.

Lemma 5. Let �0 and �1 be simultaneously diagonalizable by the same unitary transfor-
mation X, with eigenvalues {�`,k}, |�`,k| < 1. Then, the `2-norm of the coarse-grid error
propagator of two-level MGRIT with rFCF-relaxation can be computed as,

kEn`=2,�
rFCF k2 = sup

1kNx

kẼn`=2,�
rFCF (k)k2,

with the coarse-grid error propagator Ẽn`=2,�
rFCF (k) for a single spatial mode k with 1  k 

Nx.

Proof. This follows from the discussion above and the fact that the spectral norm of a
block diagonal operator with lower triangular blocks can be computed as the supremum
of the spectral norm of all lower triangular blocks. See also [25], Remark 3.1.

Remark 11. Lemma 5 implies that computing a bound of the form of (4.14) can be paral-
lelized over the number of spatial modes. Thus, the time complexity of evaluating (4.14)
is O(NxN3

1/p) with 1  p  Nx parallel processors.

Remark 12. Lemma 5 formalizes and generalizes the discussion for two-level MGRIT with
F- and FCF-relaxation in [36, Section 4.2].

Remark 13. The result in Lemma 5 is not limited to n` = 2 and can be applied to all
subsequent convergence results.

4.5.2.2 Three-level V-cycles with F-relaxation

Evaluating the error propagator in Equation (4.10) for a three-level V-cycle with F-
relaxation on the coarse-grid yields,

En`=3,�
F = RI0E

n`=3
F P0 = I �

⇥
P1A

�1
2 R1 + S1(S

T
1 A1S1)

�1ST
1

⇤
R0A0P0,
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where,
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With (4.16), (4.20) and (4.21) follows the nilpotent operator,
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Comparing the error propagator of a three-level V-cycle with F-relaxation on level 1
(see Equation (4.22)) with the two-level error propagator for F-relaxation in [25] highlights
a slight complication: In general, the maximum absolute column sum (and similarly, for
the maximum absolute row sum) is no longer given by the first column. Instead, the
maximum absolute column sum is given by the maximum of the first m1 absolute column
sums, corresponding to the first CF-interval (first C-point and first m1 � 1 F-points) on
level 1. This structure arises because of the recursive partitioning of time points into F-
and C-points on each level.

Theorem 2. Let {�`} be simultaneously diagonalizable by the same unitary transforma-
tion X, with eigenvalues {�`,k}, |�`,k| < 1. Then, the worst case convergence factor of
three-level V-cycles with F-relaxation is bounded by,

cf 
q
kEn`=3,�

F k1kEn`=3,�
F k1.

and kEn`=3,�
F k1 and kEn`=3,�

F k1 are given analytically as,
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(4.23)

and
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(4.24)

Proof. The proof is analogous to Theorem 1.

4.5.2.3 Four-level V-cycles with F-relaxation

Evaluating the error propagator in Equation (4.10) for a four-level V-cycle with F-
relaxation on level 1 yields,

En`=4,�
F = RI0E

n`=4
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where,
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and,
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The sum of (4.20), (4.25) and (4.26) yields,
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,

where we notice that the sparsity patterns are nonoverlapping. Then, the error propagator
is given as,
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This yields the following result.

Theorem 3. Let {�`} be simultaneously diagonalizable by the same unitary transforma-
tion X, with eigenvalues {�`,k}, |�`,k| < 1. Then, the worst case convergence factor of
four-level V-cycles with F-relaxation is bounded by,

cf 
q
kEn`=4,�

F k1kEn`=4,�
F k1, (4.28)

and kEn`=4,�
F k1 and kEn`=4,�

F k1 are given analytically as,

kEn`=4,�
F k1 = max

1kNx

0dm1m2�1

scold (k), kEn`=4,�
F k1= max

1kNx

0dm1m2�1

srowd (k),

where the column and row sums, scold and srowd (row and column subscripts d), are defined
as follows. The absolute column sums of the first CF-interval on level 1 are given as,

scol0 (k) = |�3,k|N3�2|�3,k � �m0
0,k�

m1�1
1,k �m2�1

2,k |

+ |�3,k � �m0
0,k�

m1�1
1,k �m2�1

2,k |1� |�3,k|N3�2

1� |�3,k|
1� |�2,k|m2

1� |�2,k|
1� |�1,k|m1

1� |�1,k|

+ |�2,k � �m0
0,k�

m1�1
1,k |1� |�2,k|m2�1

1� |�2,k|
1� |�1,k|m1

1� |�1,k|
+ |�1,k � �m0

0,k |
1� |�1,k|m1�1

1� |�1,k|
,

corresponding to the first C-point on level 1. Next,

scolm1(m2�j)(k) = |�2,k � �m0
0,k�

m1�1
1,k |

⇣Pj�2
p=0 |�2,k|p

⌘
1�|�1,k|m1

1�|�1,k|
+ |�1,k � �m0

0,k |
1�|�1,k|m1�1

1�|�1,k|

+|�2,k|j�1|�2,k � �m0
0,k�

m1�1
1,k |

h
|�3,k|N3�2 + 1�|�3,k|N3�2

1�|�3,k|
1�|�2,k|m2

1�|�2,k|
1�|�1,k|m1�1

1�|�1,k|

i
,

for j = 1, . . . ,m2�1, corresponding to the interior level 2 C-points of the first CF-interval
on level 1. Lastly,

scolm1(m2�j)�r�1(k) = |�1,k � �m0
0,k |

" 
m1�1X

q=0

|�1,k|q
! 

j�1X

p=0

|�2,k|p
!

+

 
r�1X

q=0

|�1,k|q
!#

+ |�2,k|j|�1,k|r|�1,k � �m0
0,k |


|�3,k|N3�2 +

1� |�3,k|N3�2

1� |�3,k|
1� |�2,k|m2

1� |�2,k|
1� |�1,k|m1

1� |�1,k|

�
,

for j = 0, . . . ,m2 � 1 and r = 0, . . . ,m1 � 2, corresponding to the level 2 F-points of the
first CF-interval on level 1.
The absolute row sums of the last FC-interval on level 1 are given as,

srowN1�1(k) =
1� |�3,k|N3�1

1� |�3,k|


|�1,k � �m0

0,k |
1� |�2,k|m2

1� |�2,k|
1� |�1,k|m1�1

1� |�1,k|

+ |�2,k � �m0
0,k�

m1�1
1,k |1� |�2,k|m2�1

1� |�2,k|
+ |�3,k � �m0

0,k�
m1�1
1,k �m2�1

2,k |
�
,
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corresponding to the last C-point on level 1. Next,

srowN1�1�m1m2+jm1
(k) =

1� |�2,k|j

1� |�2,k|


|�1,k � �m0

0,k |
1� |�1,k|m1�1

1� |�1,k|
+ |�2,k � �m0

0,k�
m1�1
1,k |

�

+ |�2,k|j
1� |�3,k|N3�2

1� |�3,k|


|�1,k � �m0

0,k |
1� |�2,k|m2

1� |�2,k|
1� |�1,k|m1�1

1� |�1,k|

+ |�2,k � �m0
0,k�

m1�1
1,k |1� |�2,k|m2�1

1� |�2,k|
+ |�3,k � �m0

0,k�
m1�1
1,k �m2�1

2,k |
�
,

for j = 1, . . . ,m2 � 1, corresponding to the interior C-points of the last FC-interval on
level 1. Lastly,

srowN1�1�m1m2+r+jm1
(k) = |�1,k|r|�2,k|j

1� |�3,k|N3�2

1� |�3,k|
|�2,k � �m0

0,k�
m1�1
1,k |1� |�2,k|m2�1

1� |�2,k|
+ |�3,k � �m0

0,k�
m1�1
1,k �m2�1

2,k |
�

+ |�1,k|r
 

j�1X

q=0

|�2,k|q
!

|�2,k � �m0
0,k�

m1�1
1,k |+ |�1,k � �m0

0,k |
1� |�1,k|m1�1

1� |�1,k|

�

+ |�1,k|r|�1,k � �m0
0,k |

1� |�3,k|N3�2

1� |�3,k|
1� |�2,k|m2

1� |�2,k|
1� |�1,k|m1�1

1� |�1,k|

+ |�1,k � �m0
0,k |

1� |�1,k|r

1� |�1,k|
,

for j = 0, . . . ,m2 � 1 and r = 1, . . . ,m1 � 1, corresponding to the F-points of the last
FC-interval on level 1.

Proof. The proof is analogous to Theorem 2.

Remark 14. We note, that evaluating the 2m1m2 analytic formulae in Theorem 3 signifi-
cantly reduce the time complexity of evaluating Equation (4.28) compared to constructing
En`=4,�
F numerically and computing kEn`=4,�

F k1 and kEn`=4,�
F k1.

4.5.2.4 Three-level V-cycles with FCF-relaxation

Following the same approach as in the previous sections, we can find the following result
for three-level V-cycles with FCF-relaxation.

Theorem 4. Let {�`} be simultaneously diagonalizable by the same unitary transforma-
tion X, with eigenvalues {�`,k}, |�`,k| < 1. Then, the worst case convergence factor of
three-level V-cycles with FCF-relaxation is bounded by,

cf 
q
kEn`=3,�

FCF k1kEn`=3,�
FCF k1,

and kEn`=3,�
F k1 and kEn`=3,�

F k1 are given analytically as,

kEn`=3,�
FCF k1 = max

1kNx

0dm1m2�1

scold (k), kEn`=3,�
FCF k1= max

1kNx

0dm1m2�1

srowd (k).
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The absolute column sums of the first CF-interval on level 1 are given as,

scol0 (k) = |�0,k|m0 |�1,k � �m0
0,k |

h
|�1,k|m1�1

⇣
|�2,k|N2�3 + 1�|�2,k|N2�3

1�|�2,k|
1�|�1,k|m1

1�|�1,k|

⌘
+ 1�|�1,k|m1�1

1�|�1,k|

i
,

corresponding to the last F-point on level 1. Next,

scolm1�2(k) = |�0,k|m0


|�1,k � �m0

0,k |
1� |�1,k|m1

1� |�1,k|

+ |�1,k||�2,k � �m0
0,k�

m1�1
1,k |

✓
|�2,k|N2�3 +

1� |�2,k|N2�3

1� |�2,k|
1� |�1,k|m1

1� |�1,k|

◆�
,

corresponding to the first C-point on level 1 if m1 = 2, or the penultimate F-point on level
1 if m1 > 2. Lastly, if m1 > 2,

scolm1�2�j(k) = |�0,k|m0 |�1,k|j|�1,k � �m0
0,k |

h
|�2,k|N2�2 + 1�|�1,k|j

1�|�1,k|
+ 1�|�2,k|N2�2

1�|�2,k|
1�|�1,k|m1

1�|�1,k|

i
,

for j = 1, . . . ,m1 � 2, corresponding to the first C-point and the following F-points on
level 1.
The absolute row sums of the last FC-interval on level 1 are given as,

srowN1�1(k) = |�0,k|m0 |�1,k||�2,k � �m0
0,k�

m1�1
1,k |1� |�2,k|N2�2

1� |�2,k|
+|�0,k|m0

h
|�1,k � �m0

0,k |
⇣
1 + |�1,k|1�|�2,k|N2�2

1�|�2,k|
1�|�1,k|m1�1

1�|�1,k|
+ |�1,k||�2,k|N2�2

⇣Pm1�3
q=0 |�1,k|q

⌘⌘i
,

corresponding to the last C-point on level 1, and,

srowN1�m1+j(k) = |�0,k|m0


|�1,k � �m0

0,k |
1� |�1,k|j+2

1� |�1,k|

+ |�1,k|j+21� |�2,k|N2�3

1� |�2,k|

✓
|�2,k � �m0

0,k�
m1�1
1,k |+ |�1,k � �m0

0,k |
1� |�1,k|m1�1

1� |�1,k|

◆�
,

for j = 0, . . . ,m1 � 2,corresponding to the preceding F-points on level 1.

Proof. The proof is analogous to Theorem 2.

4.5.2.5 Three-level F-cycles with F-relaxation

Following the same approach as in the previous sections, we can find the following result
for three-level F-cycles with F-relaxation.

Theorem 5. Let {�`} be simultaneously diagonalizable by the same unitary transforma-
tion X, with eigenvalues {�`,k}, |�`,k| < 1. Then, the worst case convergence factor of
three-level F-cycles with F-relaxation is bounded by,

cf 
q
kFn`=3,�

F k1kFn`=3,�
F k1,



78 Chapter 4: Multilevel convergence analysis of multigrid-reduction-in-time

and kFn`=3,�
F k1 and kFn`=3,�

F k1 are given analytically as,

kF�,nl=3
F k1 = max1kNx

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

|�1,k � �m0
0,k |

Pb
r=0 |�1,k|r

+
�Pm1�1

r=0 |�1,k|r
� ⇣PN2�3

q=1 |�2,k|q�1|q�m0
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for j = N1 �m1 + 1, . . . , N1 � 1.

Proof. The proof is analogous to Theorem 2.

4.5.3 Approximate convergence factor

In Section 4.5.2, we have presented analytic formulae as exact representations of the
inequality bound (4.15). These a priori convergence bounds reduce memory consumption
and computational cost significantly. It is, however, increasingly di�cult to derive such
analytic formulae for larger numbers of levels. Thus, we propose an analytic approximate
convergence factor for,

• multilevel V-cycles with F- and FCF-relaxation,

• multilevel F-cycles with F-relaxation,

that takes the eigenvalues �`,k of the time stepping operator �`, the number of time
points N`, and the temporal coarsening factors m` for each level as parameters. This
yields approximate a priori convergence factors with linear memory and time complexity.8

The proposed approximate convergence factors are based on approximating the inequality
bound (4.15), and therefore, are expected to be a conservative upper bound in a large
number of cases. More specifically, the multilevel formulae generalize the analytic formulae
in Section 4.5.2 in an approximate manner.
First, we present the approximate convergence factor for multilevel V-cycles with F-

relaxation.

8The generalization of Lemma 5 implies that time complexity is in fact O(Nx/p) with 1  p  Nx

parallel processors.
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Approximation 1. Let {�`} be simultaneously diagonalizable by the same unitary trans-
formation X, with eigenvalues {�`,k}, |�`,k| < 1. Then, the approximate convergence
factor of multilevel MGRIT V-cycles with F-relaxation is given as,

c̃f ⇡ max
1kNx

q
srow0 (k, n`) scolN1�1(k, n`) ⇡

q
kEn`,�

F k1kEn`,�
F k1, (4.29)

with approximate maximum absolute column and row sum,
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with m̃` = [m0, . . . ,mn`�2, Nn`�1 � 1]T . Furthermore, in many cases, kEn`,�
F k2  c̃f ,

because the analytic formulae approximate the right-hand-side of Equation (4.15) (compare
Equation (4.29)).

A similar result can be formulated for multilevel V-cycles with FCF-relaxation.

Approximation 2. Let {�`} be simultaneously diagonalizable by the same unitary trans-
formation X, with eigenvalues {�`,k}, |�`,k| < 1. Then, the approximate convergence
factor of multilevel MGRIT V-cycles with FCF-relaxation is given as,

c̃f ⇡ max
1kNx

q
srow0 (k, n`) scolN1�1(k, n`) ⇡

q
kEn`,�

FCFk1kE
n`,�
FCFk1, (4.30)

with approximate maximum absolute column sum,
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and approximate maximum absolute row sum,
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Furthermore, in many cases, kEn`,�
FCFk2  c̃f , because the analytic formulae approximate

the right-hand-side of Equation (4.15) (compare Equation (4.30)).
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For F-cycles, we propose taking the analytic formulae for a three-level F-cycle in The-
orem 5 and collapsing the coarse-grids into level 1.

Approximation 3. Let {�`} be simultaneously diagonalizable by the same unitary trans-
formation X, with eigenvalues {�`,k}, |�`,k| < 1. Then, the approximate convergence
factor of multilevel MGRIT F-cycles with F-relaxation is given as,

c̃f ⇡
q
kFn`=3,�

F k1kFn`=3,�
F k1, (4.31)

where the error propagation operator Fn`=3,�
F is constructed with eigenvalues

[�0,k,�1,k,�2,k]T (for k = 1, . . . , Nx), number of time points [N0, N1, Nn`�1]T and coarsen-
ing factors [m0,m1,m2m3 · · ·mn`�2]T .

Remark 15. In the three-level case, the approximate convergence factor in Approxima-
tion 3 coincides with the analytic upper bound in Theorem 5.

4.6 Open-source implementation of analytic and

numerical bounds

An MPI/C++ implementation of all derived bounds and approximate convergence factors
was written and released as open-source software.9 The code takes the (complex or real)
eigenvalues of the family of �` as input along with a definition of the desired MGRIT
algorithm (V- or F-cycles, relaxation scheme, number of levels, coarsening factors, etc.)
and computes the bound or approximate convergence factor values.
Functionality was implemented, such that the user may supply the eigenvalues of a

spatial operator to compute the respective eigenvalues of �` based on the stability function
of a given Runge-Kutta time integration scheme and its Butcher tableau.
Source code level documentation is provided using Doxygen [150].

9Github repository: github.com/XBraid/XBraid-convergence-est

github.com/XBraid/XBraid-convergence-est


5 Numerical results

In this section, we evaluate the derived bounds and approximate convergence factors for
various model problems that are important for, or components of, FSI problems:

• Section 5.1: Di↵usion equation

• Section 5.2: Wave equation

• Section 5.3: Linear elasticity equation

• Section 5.4: Stokes and Navier-Stokes equation

• Section 5.5 and Section 5.6: Fluid-structure interaction problem

In particular, we assess how sharp the various upper bounds are and how much sharp-
ness is sacrificed by employing a bound that is cheaper to compute numerically. Derived
bounds and approximate convergence factors are compared with the maximum observed
convergence factor in numerical simulations, based on the `2-norm of the residual at iter-
ation i (see Equation (4.13)):

max
i
kri+1k2/krik2.

In [25], it was noted that in the two-level setting, L-stable schemes seem to be bet-
ter suited for parallel-in-time integration than A-stable schemes. In Section 5.1 and
Section 5.2, this observation is reviewed in the multilevel setting. Furthermore, the dif-
ference between V- and F-cycle convergence is investigated, as well as the e↵ect of F- and
FCF-relaxation.
Section 5.3 and Section 5.4 investigate for linear PDEs, whether time-independent con-

straint equations (here, incompressibility constraint) are relevant to observed convergence
behavior. Section 5.4 – Section 5.6 assess the new time-periodic MGRIT algorithm from
Section 3.6 with regards to exploiting the time-periodic component of linear and nonlinear
(coupled) PDE problems and whether consistent and significant speedup can be achieved.

5.1 Di↵usion equation
1

Consider the general time-dependent di↵usion equation in two spatial dimensions x 2
⌦ = (0, 2⇡)⇥ (0, 2⇡) with time t 2 (0, 2⇡],

@tu = r · [Kru] , (5.1)

1Results in this section have previously appeared in [60, 68].
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with homogeneous boundary and discontinuous initial condition (see Figure 5.1),

u(x, ·) = 0 for x 2 @⌦,

u(·, 0) = 1�max
n
sign

⇣
(4� (x1 � ⇡ + 1)2 � 4(x2 � ⇡)2)2 + 1.2(1 + ⇡ � x1)3 � 10

⌘
, 1
o

for x 2 ⌦ [ @⌦,

for a scalar solution u(x, t) and boundary @⌦. Here, K = diag(k1, k2) = const is the
grid-aligned conductivity tensor. If k1 = k2, the problem is isotropic, while if k1 ⌧ k2 or
k2 ⌧ k1, the problem is anisotropic.

Figure 5.1: Initial condition for 2D di↵usion equation.

The spatial problem is discretized using second-order centered finite di↵erences and
singly-diagonal implicit Runge-Kutta (SDIRK) time-integration schemes [54, 55] of orders
1-4 (Butcher tableaux provided in Appendix B) are considered. Then, the time-stepping
operators {�`} are unitarily diagonalizable. In [25], it was noted that in the two-level
setting, L-stable schemes seem to be better suited for parallel-in-time integration than
A-stable schemes. Here, we review this observation in the multilevel setting.
We further investigate the di↵erence between V- and F-cycle convergence, as well as

the e↵ect of F- and FCF-relaxation. The number of time grids varies between two and six
levels. The fine grid is composed of N0 = 1025 time points and the temporal coarsening
factor is m` = 2 between all levels. The spatial domain is two-dimensional and discretized
using 11 nodes in each coordinate direction (grid spacing �x).
All test cases are implemented in C++, using the open-source libraries Armadillo [121,

122] and XBraid [158], a non-intrusive implementation of the MGRIT algorithm. The
absolute stopping tolerance for MGRIT is selected as krik2 < 10�11 and the initial global
space-time guess is random.

5.1.1 Isotropic di↵usion

First, we consider the isotropic case with k1 = k2 = 10. The CFL number on each level,

CFL` = 2⇡/(N` � 1)
�
k1/�

2
x + k2/�

2
x

�
= 4⇡k1/[�

2
x(N` � 1)],
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ranges between CFL0 ⇡ 0.376 on level 0 and CFL5 ⇡ 12.036 on level 5. Results for F-
relaxation are shown in Figure 5.2 and FCF relaxation in Figure 5.3 (note the di↵erence
in y-axis limits).
In the case of F-relaxation, there is a considerable di↵erence in convergence behavior be-

tween the A-stable and L-stable Runge-Kutta schemes. For A-stable schemes, convergence
of MGRIT deteriorates with a growing number of time grid levels, which corresponds to
a growing CFL number on the coarse grid, and eventually diverges. On the other hand,
L-stable schemes show a less dramatic increase in the convergence factor. In fact, the
estimated and observed convergence factors plateau for V-cycle algorithms with L-stable
time integration. For F-cycle algorithms with F-relaxation and L-stable schemes, observed
convergence is flat for all considered time grid hierarchies and only a slight increase can
be observed in the upper bound values and approximate convergence factor.
In the case of FCF-relaxation, all observed convergence factors for SDIRK orders 2-4

are constant with respect to number of levels, and only a slight increase in convergence
factor occurs for SDIRK1. FCF-relaxation was shown to be a critical ingredient for a
scalable multilevel solver in [30]. An important observation for F-cycle convergence is
that all upper bounds predict constant convergence factors, suggesting that an MGRIT
algorithm with F-cycles and FCF-relaxation yields a robust and scalable multilevel solver
for the isotropic di↵usion equation.
In general, all upper bounds and approximate convergence factors provide good quali-

tative a priori estimates of the observed convergence. These estimates become less sharp
for larger numbers of time grid levels, but the estimates do appear to be robust across
changes in time integration order. Furthermore, note that Approximations 1 – 3 estimate
observed convergence as well or better than more expensive upper bounds, demonstrating
their applicability and e�cacy. Overall, results in this section demonstrate that theoreti-
cal results presented in this work provide a valuable tool for designing robust and scalable
multilevel solvers. It further provides guidance to avoid less optimal parameter choices
for MGRIT, such as F-relaxation with A-stable RK schemes.
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Figure 5.2: Isotropic di↵usion: Comparison of V- and F-cycle MGRIT with F-relaxation. Con-
vergence of A-stable schemes deteriorates much quicker with a growing number
of time grid levels and V-cycle MGRIT than for L-stable schemes and V-cycle
MGRIT. The convergence factor for L-stable schemes and F-cycle MGRIT is al-
most constant.
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Figure 5.3: Isotropic di↵usion: Comparison of V- and F-cycle MGRIT with FCF-relaxation.
Convergence of A-stable and L-stable schemes deteriorates only slightly for an
MGRIT V-cycle algorithm. On the other hand, the convergence factor for an
F-cycle MGRIT algorithm is constant for all considered RK schemes and cases.
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5.1.2 Anisotropic di↵usion

In this section, we investigate the anisotropic di↵usion case for the L-stable SDIRK1
scheme, backward Euler, to assess how sensitive the estimates are with respect to conduc-
tivity parameters. Conductivity parameters are given as k1 = 0.5 and k2 = 0.001, and the
CFL number on each level, CFL` = 2⇡(k1+k2)/[�2x(N`�1)], ranges between CFL0 ⇡ 0.009
on level 0 and CFL5 ⇡ 0.302 on level 5. Results are presented in Figure 5.4.
For V-cycle algorithms with F- and FCF-relaxation, the estimated and observed con-

vergence factors grow with the number of grid levels, similar to the isotropic case. Again,
FCF-relaxation yields a quicker plateauing of the observed convergence factor. On the
other hand, for F-cycle algorithms with F- and FCF-relaxtion, observed and estimated
convergence are e↵ectively constant. This is indicative that convergence in the case of
V-cycles is limited by solving the coarse-grid problem well, but that the non-Galerkin
coarse-grid operator (that is, taking larger time steps on the coarse grid using the same
integration scheme) is indeed an e↵ective preconditioner. This behavior di↵ers compared
with using multigrid to solve anisotropic di↵usion discretizations in the spatial setting,
where stronger cycles such as F- and W-cycles often do not improve convergence [100].
The approximate bounds on convergence of F-cycles are fairly sharp for F- and FCF-

relaxation and all numbers of levels tested. In the case of V-cycles, the bounds and ap-
proximate convergence factors loose sharpness as the number of time grid levels increases
(similar to Section 5.1.1) but still provide reasonable estimates on convergence. Indeed,
for V-cycles with F-relaxation, Approximation 1 is quite sharp for all tested number of
levels.
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Figure 5.4: Anisotropic di↵usion: Comparison of V- and F-cycle MGRIT with F-relaxation
(r = 0) and FCF-relaxation (r = 1). With a growing number of time grids, the
convergence factor increases relatively quickly for V-cycle MGRIT. On the other
hand, F-cycle MGRIT yields a nearly constant convergence factor, and thus, a
more robust algorithm.
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5.2 Wave equation
2

Consider the wave equation in two spatial dimensions over domain ⌦ = (0, 2⇡)⇥ (0, 2⇡),

@ttu = c2r ·ru for x 2 ⌦, t 2 (0, 2⇡], (5.2)

with scalar solution u(x, t) and wave speed c =
p
10. We transform Equation (5.2) into

a system of PDEs that is first-order in time,

@tu = v, @tv = c2r ·ru, for x 2 ⌦, t 2 (0, 2⇡], (5.3)

with initial condition (see Figure 5.5) and boundary conditions,

u(·, 0) = sin(x) sin(y), v(·, 0) = 0, for x 2 ⌦ [ @⌦, (5.4)

u(x, ·) = v(x, ·) = 0, for x 2 @⌦. (5.5)

This problem corresponds to a 2D membrane with imposed non-zero initial displacement
u and zero initial velocity v. The membrane enters an oscillatory motion pattern due to
initial stresses in the material. Thus, it is a simplified representative of a hyperbolic model
that shares characteristic behavior with PDEs in solid dynamics research, such as linear
elasticity [66]. Similar to Section 5.1, we use second-order centered finite di↵erences
to discretize the spatial operator in Equation (5.3) and A- and L-stable Runge-Kutta
schemes for time integration. The same spatial and temporal step sizes are employed and
the initial space-time guess and convergence criteria are selected analogously. Here, the
time stepping operators {�`} are simultaneously diagonalizable and the Courant number
on each level is given by C` = 2c⇡/[�x(N` � 1)], ranging between C0 ⇡ 0.034 on level 0
and C5 ⇡ 1.087 on level 5.

Figure 5.5: Initial condition for 2D wave equation.

An MGRIT V-cycle algorithm with FCF-relaxation shows quickly increasing conver-
gence factors with a growing number of time grid levels (Figure 5.7). The worst-case
convergence factors quickly exceed 1, and thus diverge, which is correctly predicted by
all upper bounds and Approximation 2. Similarly, using an F-cycle algorithm results in a

2Results in this section have previously appeared in [60, 68].
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less dramatic, but still significant increase in observed and predicted convergence factors
with respect to the number of levels. For some schemes, particularly L-stable ones, an
F-cycle is able to retain convergence up to the six levels in time considered here, but the
bounds and approximations developed here do not predict these results.
In general, the upper bounds on convergence applied to the wave equation are signifi-

cantly less sharp compared to the di↵usion equation (see Section 5.1), but they are still
able to accurately represent correct trends. For example, convergence factors are initially
constant in most cases, then increase almost linearly with the number of levels, such as
the case of L-stable SDIRK 3 in Figure 5.9. This highlights the fact that designing robust
and convergent parallel-in-time algorithms for hyperbolic problems is generally perceived
as di�cult, and emphasizes the benefit of the presented upper bounds for F-cycle algo-
rithms. For example, the convergence factor can be estimated a priori to select a time grid
hierarchy that is likely to yield a significant speedup. In combination with performance
modeling [38], such a priori estimates can provide valuable guidance.
It is noted that in the investigated cases, a similarly strong benefit of FCF-relaxation

over F-relaxation as for the di↵usion equation cannot be observed for the wave equation,
see Figure 5.6 and Figure 5.8. However, in some cases FCF-relaxation increases the
maximum number of time grid levels for which convergence can be achieved. Thus, in
practice one would prefer F-relaxation over FCF-relaxation to reduce the computational
cost of a given algorithm. The fact that FCF-relaxation is not su�cient to design a
scalable multilevel solver for the wave equation is the major di↵erence to the observations
made for the di↵usion equation.
We further note, that the observed convergence factors and upper bound values are

smaller with higher time integration order, especially when L-stable SDIRK schemes are
employed. For example, the theory suggests to use five-level MGRIT with F-cycles and
L-stable SDIRK4 with an estimated upper bound on the convergence factor of O(10�3).
This results in a very fast algorithm for hyperbolic PDEs.
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Figure 5.6: Wave equation: Observed convergence and predicted upper bounds on convergence
of MGRIT with V-cycles and F-relaxation shows very similar trends as for MGRIT
with V-cycles and FCF-relaxation, see Figure 5.7. This shows that switching from
F-relaxation to FCF-relaxation alone is not su�cient to yield a robust MGRIT
algorithm for the wave equation (and likely, other hyperbolic PDEs).
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Figure 5.7: Wave equation: The convergence factor of MGRIT with V-cycles and FCF-
relaxation increases substantially with a growing number of time grid levels and
eventually exceeds 1. This means that in the worst case, MGRIT V-cycles yields a
divergent algorithm, which is in line with observations for hyperbolic PDEs in the
literature [33, 34, 66].
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Figure 5.8: Wave equation: Observed convergence and predicted upper bounds on convergence
of MGRIT with F-cycles and F-relaxation shows very similar trends as for MGRIT
with F-cycles and FCF-relaxation, see Figure 5.9. This shows that switching from
F-relaxation to FCF-relaxation alone is not su�cient to yield a robust MGRIT
algorithm for the wave equation (and likely, other hyperbolic PDEs).
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Figure 5.9: Wave equation: The convergence of MGRIT with F-cycles and FCF-relaxation
deteriorates with a larger number of time grid levels compared to MGRIT with
V-cycles, see Figure 5.7. Generally, convergent algorithms are given for a larger
range of time grid levels and observed convergence is better than the predictions
from the upper bounds. This shows that the choice of F-cycles over V-cycles is one
likely ingredient for future improvements of MGRIT for hyperbolic-type PDEs.
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5.3 Linear elasticity
3,4

As described in literature and in the previous sections, parallel-in-time methods, such
as Parareal and MGRIT, work well for parabolic PDEs and can achieve significant
speedups over sequential time-stepping. Even for hyperbolic PDEs, fast convergence
can be achieved, if care is taken when selecting an appropriate time-integration scheme,
see Section 5.2. In general, however, literature on successfully solving hyperbolic PDEs
with parallel-in-time integration methods is sparse and, depending on the application,
instabilities or other complications may occur. For example, the authors of [22, 33, 34]
report limitations of their parallel implicit time-integrator (PITA) for second-order solid
dynamics systems, where the accuracy of PITA can be a↵ected by the presence of nat-
ural frequencies of the structure. In the study in [33], a su�ciently small time step size
was required to avoid responses of the system that were described as the beating phe-
nomenon), which can lead to slow (and time step-dependent) convergence, and thus,
poor performance.
In this section, the theory developed in [25] and Chapter 4 is employed to further the

understanding of why poor performance is observed for solid dynamics problems. For a
linear elasticity model problem, some remedies and solutions are proposed using features
of MGRIT (e.g., slow temporal coarsening and FCF-relaxation) and more importantly, a
di↵erent formulation of the problem that is more amenable to parallel-in-time methods.
The modified scheme results in a practical algorithm that enjoys speedup benefits over
the sequential algorithm.
In the following, two di↵erent backward Euler time discretization schemes are pre-

sented and investigated within the parallel-in-time context. The model problem is the
incompressible second-order hyperbolic elasticity equation.

5.3.1 Model problem

Consider an incompressible linear-elastic beam in two spatial dimensions with domain
⌦ = ⌦(t) ⇢ R2 ⇥ [0, T ] and Dirichlet boundary �D. The initially undeformed domain is
given as ⌦(0) = [0, 8]⇥ [0, 1], see Figure 5.11. The final time is T = 1024.
Further, X 2 ⌦(0) and x 2 ⌦ denote the reference and current position of a material

point and rX and rx denote the respective Lagrangian and Eulerian gradient operators.
The deformation gradient is defined as,

F = rXx = rXu+ I, (5.6)

with the displacement of a material point with respect to its position in the reference
configuration,

u = u(x, t) = x�X. (5.7)

The partial derivative operator with respect to time is denoted as @t and @tt = @t@t.

3Results in this section have previously appeared in [66].
4The research leading to these results has received funding from the European Research Council under
the European Union’s Seventh Framework Programme (FP/2007–2013)/ERC Grant Agreement No.
306757 (LEAD) and from the Engineering and Physical Sciences Research Council (EP/N011554/1
and EP/R003866/1).
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8

1

⌦(0)

x

y

�D

Figure 5.10: Undeformed domain ⌦(0) and Dirichlet boundary �D = ⌦|x=0 for linear-elastic
beam problem in two dimensions. Zero displacement boundary conditions are
prescribed at x = 0.

The governing equations for the dynamic and linear-elastic response of an incompress-
ible solid structure with given initial data and Dirichlet boundary condition data are given
as,

⇢@ttu�rx · � = 0 in ⌦, (5.8)

rx · @tu = 0 in ⌦, (5.9)

u(·, t) = 0 on �D, (5.10)

u(·, 0) = 0, @tu(·, 0) = v(·, 0) = v̂0 in ⌦(0), (5.11)

with density ⇢, Cauchy stress tensor �(u, p) = µ(F � I)� pI, material sti↵ness param-
eter µ, the hydrostatic pressure variable p and initial velocity data v̂0. Here, the initial
velocity is given as,

v̂0 =


�x2/640

x2(8� x)/640

�
, (5.12)

see Figure 5.11. Equation (5.8) can be transformed to a system of first-order equations,

@tu = v in ⌦, (5.13)

⇢@tv = rx · � in ⌦, (5.14)

rx · v = 0 in ⌦, (5.15)

u(·, t) = 0 on �D, (5.16)

u(·, 0) = 0, v(·, 0) = v̂0 in ⌦(0), (5.17)

with velocity v. For simplicity, the material parameters are selected as µ = ⇢ = 1.

(a) Initial velocity in x-direction. (b) Initial velocity in y-direction.

Figure 5.11: Discretization using 16 x 2 quadrilateral elements and initial velocity.
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Dynamic response of the linear-elastic beam

The initial velocity distribution over the cantilever beam length (see Figure 5.11) causes
the free end to first deflect in the negative x- and positive y-directions. The elastic stresses
cause the beam to decelerate and move back downward, passing its initial position and
deflecting in negative y-direction. The beam deformation then follows an up-and-down
deflection pattern.

5.3.2 Discrete temporal domain

The temporal domain [0, T ] is decomposed into N0 equidistant time points, such that,

tn = n · �0, with n = 0, . . . , N0 � 1, (5.18)

with time step size �0 = T/(N0 � 1), initial time t0 = 0 and final time tN0�1 = T .
Then, velocity, pressure and displacement at time point tn are denoted as [vn, pn,un]T =
[v(·, tn), p(·, tn),u(·, tn)]T .
In the following, two di↵erent time discretization schemes (referred to as Scheme I and

Scheme II) are introduced and investigated. Scheme I is considered as the default scheme
in the application code CHeart [94] and is motivated by better conserving the energy in the
system for large time step sizes (see Section 5.3.6.1; for more details, see [130, 131, 157]).
On the other hand, Scheme II is proposed as an improvement for parallel-in-time methods
with the capability of predicting amplitudes of oscillation with comparable quality for
practical time step sizes.

5.3.3 Scheme I

To reduce the complexity of the computational model, Equation (5.13) is eliminated from
the system of equations in the following by including it implicitly. That is, we solve for
velocity v and hydrostatic pressure p and update the displacement variable u based on
the solution for the velocity variable. Further, we note that all quantities are computed
on the reference domain ⌦(0). That is, linear-elastic response is assumed and higher-order
e↵ects of the deforming domain are neglected.
We approximate the partial derivative operator @t in Equation (5.13) using the midpoint

rule,

un = un�1 + �0
vn + vn�1

2
in ⌦0. (5.19)

The partial derivative operator in Equation (5.14) is discretized using the backward Euler
scheme where we substitute with Equation (5.19). Thus, we search [vn, pn]T for all n =
1, . . . , N0 � 1, such that,

⇢vn �
µ�20
2
r2

Xvn + �0rXpn = ⇢vn�1 +
µ�20
2
r2

Xvn�1 + µ�0r2
Xun�1 in ⌦0, (5.20)

rX · vn = �rX · vn�1 in ⌦0, (5.21)

and compute the displacement un according to Equation (5.19) after each solve.
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The domain ⌦n is discretized using 16 x 2 quadrilateral elements, ⌦h
n, with mesh size

�x = �y = 0.5, see Figure 5.11. Finite element discretizations are constructed using inf-
sup stable Q2 � Q1 Taylor-Hood elements for velocity and pressure, vh

n and phn, and Q2

elements for displacement, uh
n. The superscript h denotes the space-discretized version of

the domain and state variables. As we do not consider spatial refinement or coarsening,
we omit the superscript h for the remainder of Section 5.3.
Equation (5.20) and Equation (5.21) are then discretized in space, which leads to the

following problem: find the space-time discrete solution vector [vn,pn]
T , such that for

each n = 1, . . . , N0 � 1,

⇢M +

µ�20
2

K

�
vn + �0B

Tpn =


⇢M � µ�20

2
K

�
vn�1 � µ�0Kun�1 in ⌦0, (5.22)

Bvn = �Bvn�1 in ⌦0, (5.23)

where M is the mass matrix and K and B refer to the discretized weak form Lapla-
cian and divergence operators r2

X() and rX · (), respectively. Note, after solving for
a given [vn,pn]

T , we can update the displacement un from Equation (5.19). Writing
Equation (5.22) and Equation (5.23) in matrix form and including the update given in
Equation (5.19) yields the following linear system,

2

4
⇢M + µ�20

2 K �0B
T 0

B 0 0
� �0

2 I 0 I

3

5

2

4
vn

pn

un

3

5 =

2

4
⇢M � µ�20

2 K 0 �µ�0K
�B 0 0
�0
2 I 0 I

3

5

2

4
vn�1

pn�1

un�1

3

5 . (5.24)

Denoting the linear operators on the left and right hand sides by,

DI :=

2

4
⇢M + µ�20

2 K �0B
T 0

B 0 0
� �0

2 I 0 I

3

5 , CI :=

2

4
⇢M � µ�20

2 K 0 �µ�0K
�B 0 0
�0
2 I 0 I

3

5 , (5.25)

with �I := [DI ]�1CI and sI0 = ŝ0 := [v̂0,0,0]T , the state variables sIn := [vn,pn,un]T

can be computed by the following equation,

sIn = �IsIn�1 for n = 1, . . . , N0 � 1. (5.26)

Note, that for the considered model (linear-elastic, incompressible) and for fixed spatial
resolution, the operator �I is only dependent on time step size �0. That is, the operator
�I only needs to be computed once per time step size.
It is further noted that �I has the sparsity pattern,

2

4
[�I ]11 [�I ]12 [�I ]13
[�I ]21 [�I ]22 [�I ]23
[�I ]31 [�I ]32 [�I ]33

3

5 =

2

4
[�I ]11 0 [�I ]13
[�I ]21 0 [�I ]23
[�I ]31 0 [�I ]33

3

5 , (5.27)

which highlights that the current state vector sIi is not dependent on the previous pressure
value (i.e. the pressure variable and its associated rows and columns in �I can be ignored
without a↵ecting u or v.) Thus, we eliminate the rows and columns related to the pressure
variable and proceed with the analysis by simultaneously diagonalizing,

U�1


[�I

` ]11 [�I
` ]13

[�I
` ]31 [�I

` ]33

�
U = diag(�`,1,�`,2, . . . ,�`,Nx

) for ` = 0, . . . , n`�1. (5.28)
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5.3.4 Multigrid-reduction-in-time (MGRIT)

In this section, the following two-level and multilevel variants of MGRIT (see Chapter 3)
are investigated for the linear-elastic beam problem:

• Two-level MGRIT with rFCF-relaxation for r 2 {0, 1, 2} and temporal coarsening
factor m` 2 {2, 4, 8, 16, 32}.

• Multilevel MGRIT FMG-cycles with nl 2 {2, 3, 4, 5, 6} levels, temporal coarsening
factor m` = 2 between all levels and {1, 2, 3, 4} V-cycles per FMG-level.

Fine grid time step sizes of �0 2 {1, 0.1, 0.01, 0.001} are considered, resulting in
N0 2 {1025, 10241, 102401, 1024001} time steps on level 0. The initial condition (see
Equation (5.11) and Equation (5.12)) is used as initial guess at all time steps for MGRIT.
The stopping criterion on the residual norm is selected as krkM  5·10�9/

p
�x�y�0, with

the maximum number of MGRIT iterations set to 60 iterations. The standard Euclidean
norm of the MGRIT residual r on level 1 is given as,

krk22,w = w0krvk22 + w1krpk22 + w2kruk22
= w0(r

v)Trv + w1(r
p)Trp + w2(r

u)Tru
(5.29)

with weights w0, w1 and w3 equal to 1, where rv, rp and ru denote components in the
residual vector corresponding to velocity, pressure and displacement contributions. Here,
the weights are modified to approximately measure residual reduction in the mass matrix
norm,

krk2M ⇡ (rv)Trv +
1

m0
(ru)Tru (5.30)

to measure residual reduction in the following numerical experiments as close to the two-
level theory (see [25]) as possible, however, without the additional expense of computing
the exact mass matrix norm. It is important to note that this approach only changes how
the solution progress (i.e. reduction of residual norm) is measured. But it does neither
a↵ect the coarse-grid update nor change the numerical solution.
For the numerical experiments, the finite element software tool CHeart [94] is employed.

In CHeart, Scheme I was available as the default scheme for linear elasticity. Wrapper
routines were written to incorporate the MGRIT algorithm into CHeart using the open-
source library XBraid [158], a nonintrusive implementation of the MGRIT algorithm.
Separate MPI groups and communicators were introduced in space and time to maintain
the capability of CHeart to parallelize in the spatial domain by using domain decompo-
sition methods while enabling independent parallelization in the temporal domain. That
is, one can parallelize in space, time or in space-time.
Here, the XBraid option to skip work on the first down-cycle is used. Note, due to

the linearity of the problem, the operator �I
` is only computed once for each time step

size (i.e. time grid level). This significantly reduces computational work compared to
recomputing the operator for each time step.
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5.3.5 Two-level MGRIT and Scheme I

If Scheme I is employed as a one-step integrator with two-level MGRIT, divergence is
observe in the numerical experiments for all considered test cases.
To qualitatively investigate what leads to the divergence of MGRIT in conjunction with

Scheme I, we track the current position of the tip of the cantilever beam (initial coordinate
[8, 0.5]T at t = 0) over time with the time horizon t 2 [0, 64]. The fine grid time step
size is �0 = 1 with coarsening factor m0 = 2. FCF-relaxation is employed. Figure 5.12
shows the current approximation of the tip’s displacement with respect to the initial
position over time for a number of algorithmic steps, for example, after FCF-relaxation,
after restriction, after the coarse-grid solve, etc. (where we extract the values on return
from applying �I

`). The data in Figure 5.12 highlight how the current approximation of
the cantilever’s tip first improves. Though, already during the first MGRIT iteration an
instability is introduced by the coarse-grid update which is then amplified in subsequent
steps. The observed phenomena are neither physical nor part of the mathematical model,
however, they are in line with observations in the literature, see [33, 34]. Previously
this has been a limiting factor for parallel-in-time integration and the dynamic elasticity
equation.
On the other hand, the divergence of the numerical algorithm is reflected by the very

large theoretical convergence bounds, i.e. cFf , c
FCF
f >> 1, confirming experimental obser-

vations.

5.3.6 Scheme II

The instability of MGRIT with Scheme I motivates developing a modified scheme that
does not su↵er from the same instability. For example, a slightly di↵erent scheme can be
obtained by approximating the partial derivative operator in Equation (5.13) as,

un = un�1 + �0vn in ⌦0. (5.31)

Thus, in Scheme II we search the time-discrete (vn, pn) for all n = 1, . . . , N0 � 1, such
that,

⇢vn � µ�20r2
Xvn + �0rXpn = ⇢vn�1 + µ�0r2

Xun�1 in ⌦0, (5.32)

rX · vn = 0 in ⌦0, (5.33)

Similar to Section 5.3.3, Scheme II can be written as: for each n = 1, . . . , N0 � 1, we
seek the space-time discrete [vn,pn]

T , such that,
⇥
⇢M + µ�20K

⇤
vn + �0B

Tpn = ⇢Mvn�1 � µ�0Kun�1 on ⌦0, (5.34)

Bvn = 0 on ⌦0, (5.35)

and update the displacement un from Equation (5.31) after each solve. In matrix notation,
we can write,

2

4
⇢M + µ�20K �0B

T 0
B 0 0
��0I 0 I

3

5

2

4
vn

pn

un

3

5 =

2

4
⇢M 0 �µ�0K
0 0 0
0 0 I

3

5

2

4
vn�1

pn�1

un�1

3

5 . (5.36)
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Figure 5.12: Current approximation of the tip displacement for two-grid MGRIT using
Scheme I with temporal coarsening factor m0 = 2, time step size �0 = 1, tem-
poral domain t 2 [0, 64] and FCF-relaxation compared with a reference solution
from sequential time stepping. Note, how the coarse grid update introduces an
instability which is amplified in subsequent steps.
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With

DII :=

2

4
⇢M + µ�20K �0B

T 0
B 0 0
��0I 0 I

3

5 and CII :=

2

4
⇢M 0 �µ�0K
0 0 0
0 0 I

3

5 , (5.37)

Equation (5.36) can be written as,

sIIn = �IIsIIn�1 for n = 1, . . . , N0 � 1, (5.38)

where �II := [DII ]�1CII and sIIn := [vn,pn,un]T with sII0 = ŝ0 := [v̂0, 0,0]T . Again, the
operator �II only depends on time step size �0. Similar to Equation (5.28), the conver-
gence analysis is performed on the reduced system without the pressure contributions.

5.3.6.1 E↵ect of time step size on amplitude of oscillation

Because selecting a di↵erent time integration scheme can a↵ect the accuracy of the numer-
ical solution, the sequential time stepping solution obtained with Scheme II is first com-
pared with the sequential time stepping solution obtained with Scheme I, before studying
Scheme II when using MGRIT.
Backward Euler time integration schemes introduce artificial numerical di↵usion. Its

e↵ect on the sum of kinematic and potential energy of the system over time depends on
the time step size, where we expect energy conservation in the asymptotic limit �0 ! 0.
The artificial damping of the system causes the amplitude of oscillation to become smaller
over time, see Figure 5.13. The backward Euler time integration scheme exhibits quick
damping for �0 = 1 irrespectively of the chosen scheme (Scheme I and Scheme II).
The e↵ect of numerical damping becomes smaller for smaller �0, where we note that
both schemes reproduce the amplitudes of the beam oscillation with comparable quality
for �0 = 0.001. Further, considering a second-order symplectic Verlet scheme (which
maintains the amplitude of oscillation) with �0 = 0.001 as reference, we observe how
both schemes tend toward the same solution with O(�0), see Figure 5.14, such that the
mismatch between both schemes becomes negligible. This is expected to be true for time
step sizes in practical applications.
It is important to note that MGRIT converges to the same solution (within the selected

solver tolerance) as sequential time stepping on the fine grid. Thus, the converged numer-
ical solution obtained with MGRIT su↵ers from the same amount of numerical damping
as the numerical solution from sequential time stepping on the fine grid.

5.3.7 Two-level MGRIT and Scheme II

Using Scheme II as the one-step integrator (that is, �II
` ) in a two-level algorithm, we

observe worst-case convergence factors5 of smaller than 1 (i.e. residual norm is decreased
for all iterations) for a range of di↵erent coarsening factors m0 and for all considered time
step sizes, see Figure 5.15.
We note that for �0 = 1, both experimental and predicted convergence factors are in

excellent agreement and that the predicted values of cFf and cFCF
f are a sharp upper bound

5Unless noted otherwise, reported experimental convergence factors are the global maximum values.
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Figure 5.13: Displacement u of the tip of the cantilever beam (initial position [8, 0.5]T ) in the
x- and y-directions for t 2 [0, 128] and [896, 1024] for Scheme I and Scheme II
and time step sizes �0 2 {1, 0.1, 0.01, 0.001}. Note that numerical damping is
reduced with �0 ! 0.
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Figure 5.14: Mean absolute error of the displacement of the beam’s tip for t 2 [0, 1024]. Here,
a second-order symplectic Verlet scheme with �0 = 0.001 was used as reference.

despite the approximation of the computed residual norm, see Section 5.3.4. Here, the
convergence factors first increase as the coarsening factor m0 increases, before decreasing
due to the small coarse-grid size Nn`�1.
On the other hand, for �0 2 {0.1, 0.01, 0.001} we observe an increase in predicted and



102 Chapter 5: Numerical results

observed convergence factors as the coarsening factor m0 increases. Again, predicted and
observed convergence factors are in excellent agreement for almost all considered cases.
Only for �0 = 0.01 is the maximum observed convergence factor larger than the predicted
upper bound. The observed rate is 1% larger for both F-relaxation with m0 = 32 and
FCF-relaxation with m0 2 {16, 32}. Again, this is likely due to the approximate residual
norm computation.
Further, we note that additional relaxation steps can be beneficial for large fine grid time

step sizes, whereas the e↵ect is negligible for �0 = 0.001, thus suggesting that relaxation
can be omitted for small fine grid time step sizes to reduce computational work without
sacrificing convergence.
Finally, we note that in all considered cases we do not observe any instability as de-

scribed in Section 5.3.5 and the previous work [33, 34]. For example, Figure 5.16 illus-
trates the position of the tip of the cantilever after the first three MGRIT iterations with
t 2 [0, 64], �0 = 0.1, and m0 = 2. Here, no artificial amplification of the amplitude of
oscillation is observed, in contrast to the case of MGRIT with Scheme I, see Figure 5.12.
The results in this section highlight the benefit of using theoretical upper bounds,

as given in [25], as a tool to estimate experimental convergence a priori and to design
convergent MGRIT algorithms with guaranteed worst-case convergence factors.

5.3.8 Multilevel MGRIT with Scheme II

Here, we generalize the convergent MGRIT algorithm with Scheme II to the multilevel
case. Multilevel hierarchies with n` 2 {3, 4, 5} levels are considered for �0 2 {1, 0.1, 0.01};
further, n` 2 {3, 4, 5, 6} levels for �0 = 0.001. Total coarsening factors of �n`�1/�0 2
{4, 8, 16, 32, 64} are studied, where only m0 is varied but m` = 2 is selected for ` =
1, . . . , n` � 2. The MGRIT algorithm is started with a forward solve on the coarsest
time grid (i.e. use of the XBraid skip-first-down option), performs an initial V-cycle and
full multigrid (FMG) cycles for all following MGRIT iterations. Scheme II is employed
as one-step integrator on all grid levels and one V-cycle is performed as post-relaxation
step at each FMG level. To provide a better indicator for overall performance of the
MGRIT algorithm, the mean experimental convergence factor over all MGRIT iterations
is reported.
Figure 5.17 reports mean experimental convergence factors over the total coarsening

factor �n`�1/�0. As illustrated, the best convergence factor for a particular combined
coarsening factor is available through the use of FMG-cycles with more levels and slower
coarsening between levels, as opposed to FMG-cycles with more aggressive coarsening
between levels. Generally, observed convergence factors are significantly smaller than in
the two-grid case. Thus, the use of FMG-cycles allows more aggressive coarsening and
yields more potential for parallelism in the temporal domain.
If the fine grid size and total coarsening factor are kept fixed, the mean convergence

factor improves with growing numbers of levels n`. For example, for �0 = 0.1 and
Qn`�2

`=0 =
64 the mean convergence factor is approximately 0.92 for n` = 5 but 1.07 for n` = 4 and
1.22 for n` = 3.6 Thus, one can obtain a moderately convergent instead of a slowly

6In particular, a measured mean convergence factor of larger than 1 indicates that the residual for
the considered problem and a given algorithm cannot satisfy its convergence criteria within the per-
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Figure 5.15: Predicted and measured convergence factor for a two-grid algorithm with various
fine grid time step sizes �N0

t
2 {1.0, 0.1, 0.01, 0.001} and coarsening factors m0 2

{2, 4, 8, 16, 32}.

divergent algorithm simply by introducing an additional intermediate time grid level but
with the same fine and coarsest grid size.

Timing results

In this section, we present speedup results for an MGRIT algorithm that employs
Scheme II and n` 2 {4, 5, 6} time grid levels with a coarsening factor of two between
all time grid levels. Here, we also investigate the e↵ect of using up to four V-cycles as
post-relaxation at each FMG-level. The time step size is selected as �0 = 0.0005 with
T = 64. The Euclidean norm with w0 = 1, w1 = 0, w2 = 1/m0 (see Equation (5.29)) is
used to measure solution progress. To investigate the dependency of the wall clock time
for MGRIT on the convergence criterion, we employ tight, medium and loose tolerances

formed 60 iterations.
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Figure 5.16: Current approximation of the tip displacement for two-grid MGRIT using
Scheme II with coarsening factor m0 = 2, fine grid time step size �0 = 0.1,
t 2 [0, 64] and FCF-relaxation compared with reference solution from sequential
time stepping. No instability is observed with Scheme II in contrast to using
Scheme I, see Figure 5.12.
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of 4.472 · 10�7, 4.472 · 10�6 and 4.472 · 10�5, respectively.
All reported timing results were obtained on TheoSim (see Table A) with

{16, 32, 48, . . . , 192} processors using 16 processors per compute node.7 Data export was
switched o↵ and status messages were restricted to a bare minimum to ensure that re-
ported wall clock times are almost entirely dominated by computation and communication
costs but not data I/O tasks. The elapsed wall clock time for the sequential time stepping
algorithm (using Scheme II) was 263 seconds, which is established as baseline.
Firstly, we note that the MGRIT solution with a loose tolerance of 4.472 · 10�5 is a

good approximation of the sequential time stepping solution. For example, Figure 5.18
illustrates the position of the cantilever’s tip (initial position [8, 0.5]T ) and its velocity
over time. Here, one can appreciate that all fine scale details in the solution are governed
by the sequential time stepping solution as well as the MGRIT solution.
As Figure 5.19 illustrates, a 4-level MGRIT solver converges to its tolerance in less

iterations than a 6-level MGRIT solver for a given number of V-cycles per FMG-level. On
the other hand, performing more V-cycles per FMG-level improves convergence factors
significantly. Thus, the required number of iterations to solve the problem to solver
tolerance decreases. With n` = 6 levels, for example, MGRIT takes 37 iterations to
satisfy the tight tolerance when using one V-cycle per FMG-level, however, it takes 25, 20
or 17 iterations when performing two, three or four V-cycles per FMG-level. We further
note, that the residual norm is always decreased in subsequent iterations.
As observed in the previous paragraph, the required number of iterations drops when

performing additional V-cycles at each FMG-level. Despite the additional per-iteration
cost; however, the measured wall clock time of the algorithm decreases due to the signif-
icantly smaller convergence factors. Figure 5.20 to Figure 5.22 highlight this behavior,
where each additional V-cycle per FMG-level yields a reduction in wall clock time for all
n` 2 {4, 5, 6}. Here, the best speedups are observed for a 4-level MGRIT solver with four
V-cycles per FMG-level. The measured speedup factor is 5.25x, 2.12x and 1.33x for the
three considered solver tolerances, see Table 5.1a - Table 5.1c. Further, the speedup is
5.25x, 4.72x or 2.91x for the loose solver tolerance and a 4-, 5- or 6-level MGRIT solver
and four V-cycles per FMG-level. Note, that the slope of the curves in Figure 5.20 and
Figure 5.22 show better scaling of a 6-level MGRIT solver compared to a 4-level MGRIT
solver due to the smaller coarse grid size and larger potential for parallelism. At processor
counts of up to 192, no crossover point can be reached when performing only one V-cycle
per FMG-level and imposing the tight tolerance. For all other combinations of tolerances
and cycling strategies considered in this section, however, a crossover point is reached.
Lastly, we compare the performance of the FMG-cycle algorithm to a V-cycle algorithm

with F- or FCF-relaxation. At the loose solver tolerance, a speedup of 1.95x is achieved
using 192 processors with n` = 4 and F-relaxation, see Table 5.1d. Additional FC-
relaxation steps, however, result in a more expensive V-cycle algorithm. No speedups
are observed for the medium and tight tolerances (not included in Table 5.1). Further,
we note the benefit of using FMG-cycles with additional V-cycles per FMG-level over
a V-cycle algorithm. For example, for n` = 4 the FMG-cycle algorithm can solve the
problem to a tighter solver tolerance compared to the V-cycle algorithm with a similar
speedup. The best measured speedups are 5.25x for a FMG-cycle algorithm and 1.95x for

7Employing one compute node, a preliminary experiment showed best performance of our implementa-
tion at 16 processors per node.
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a V-cycle algorithm.
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Figure 5.18: Comparison of velocity and displacement at the tip of the cantilever beam (initial
position [8, 0.5]T ) for sequential time stepping and MGRIT with Scheme II (n` =
4, m` = 2 for ` = 0, . . . , n`�1), time step size �0 = 0.0005 and MGRIT tolerance
tol = 4.472 · 10�5. Note, how fine time scale variations are resolved despite the
relatively loose MGRIT convergence tolerance.

5.3.9 Discussion

In the previous sections, two di↵erent backward Euler time discretization schemes were
presented and investigated. Scheme I was considered as the default scheme in the appli-
cation code CHeart [94], whereas Scheme II was proposed as an improvement for parallel-
in-time integration methods. It was shown, that MGRIT with Scheme I exhibits strong
instabilities for the linear elasticity model problem. The observations are in line with
previous work in this field [33, 34]. Although MGRIT with Scheme II uses only a slightly
di↵erent time discretization, a convergent scheme can be derived for a range of coarsen-
ing factors, both for two-grid and multilevel algorithms. Scheme II not only results in a
stable algorithm when used with MGRIT but also yields a speedup over sequential time
stepping while maintaining the accuracy of Scheme I for practical time step sizes.
In the light of observed di↵erences between A-stable and L-stable time discretization

schemes in Section 5.1 and Section 5.2, it seems likely that the stability properties of
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Figure 5.19: Decrease of MGRIT residual norm krkM (with w0 = 1, w1 = 0, w2 = 1/m0;
see Equation (5.29)) for n` 2 {4, 5, 6} levels and {1, 2, 3, 4} V-cycles per FMG-
level. Note how the additional V-cycle per FMG-level yields a faster decrease in
the residual norm. Thus, the required number of iterations to solve the problem
to solver tolerance decreases. This causes a drop in wall clock time, as seen in
Figure 5.20 - Figure 5.22, despite the higher per-cycle cost.

Scheme I and Scheme II are the key drivers of divergence and convergence, respectively.
For example, Scheme II is a standard backward Euler scheme, which is L-stable. On the
other hand, Scheme I resembles a Crank-Nicolson method, which is only A-stable.
In the case of using MGRIT with Scheme II, convergence was predicted for two-grid

algorithms with F- and FCF-relaxation and a range of coarsening factors. The predictions
matched quite closely with observations in the numerical experiments, supporting the use
of the analysis presented in [25] as a powerful tool to design convergent algorithms a
priori.
Although the analysis presented in [25] is restricted to the two-grid case, the convergent

and e�cient multilevel algorithm was a straightforward generalization of its two-grid



108 Chapter 5: Numerical results

16 32 64 128 192

102

103

Number of processors

W
al
l
cl
oc
k
ti
m
e
[s
]

One V-cycle per FMG-level

16 32 64 128 192

102

103

Number of processors

W
al
l
cl
oc
k
ti
m
e
[s
]

Two V-cycles per FMG-level

Baseline MGRIT, krkM  4.472 · 10�7

MGRIT, krkM  4.472 · 10�6 MGRIT, krkM  4.472 · 10�5

16 32 64 128 192

102

103

Number of processors

W
al
l
cl
oc
k
ti
m
e
[s
]

Three V-cycles per FMG-level

16 32 64 128 192

102

103

Number of processors

W
al
l
cl
oc
k
ti
m
e
[s
]

Four V-cycles per FMG-level

Figure 5.20: Wall clock time for MGRIT with Scheme II and FMG-cycles with n` = 4 and
m` = 2 for all `.

counterpart. Here, the use of FMG-cycles was beneficial to accelerate convergence in the
true multilevel case, enabling larger total coarsening factors �n`�1/�0 compared to the
two-grid case. It was also shown that, for a given total coarsening factor �n`�1/�0, slow
temporal coarsening (and thus, more time grids) can improve convergence over faster
temporal coarsening with less time grids. Furthermore, performing additional V-cycles
at each FMG-level makes the coarse-grid solve more powerful and improves convergence
significantly.
Further, timing results for the time-parallel algorithm were presented in Section 5.3.8.

Using 192 processors, a speedup of 5.25x was achieved for a 4-level algorithm with four
V-cycles per FMG-level. Similarly, speedups of 4.72x and 2.91x were shown for 5- and
6-level algorithms. It was also demonstrated, that the use of FMG-cycles resulted in a
better speedup than the use of V-cycles with F- and FCF-relaxation. The reported wall
clock times are almost entirely dominated by computation and communication, however,
data export, for example, is a completely serial process for sequential time-stepping while
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Figure 5.21: Wall clock time for MGRIT with Scheme II and FMG-cycles with n` = 5 and
m` = 2 for all `.

it is parallel for the MGRIT algorithm. Thus, for practical applications that include data
I/O tasks, larger speedups can be expected. Lastly, Figure 5.22 (for example, 6-level
algorithm with four V-cycles per FMG-level) shows scaling of the wall clock time at fixed
spatial problem size until 192 processors, which we expect to continue beyond the number
of processors employed in this study.
No refinement of the spatial problem or spatial parallelism was considered as the per-

formance of MGRIT and the expected speedup are mainly dictated by the temporal
dimension size. Spatial parallelism will degrade strong scaling, because communication
overhead will be relatively larger. Larger spatial problems, however, will help to improve
strong scaling because each time step will be more expensive, that is, communication
overhead will be relatively smaller.
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Figure 5.22: Wall clock time for MGRIT with Scheme II and FMG-cycles with n` = 6 and
m` = 2 for all `.
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# V-cycles n` = 4 n` = 5 n` = 6

1 0.92x 0.95x 0.82x

2 1.08x 1.13x 1.00x

3 1.25x 1.25x 1.01x

4 1.33x 1.28x 1.10x

(a) MGRIT tolerance tol = 4.472 · 10�7.

# V-cycles n` = 4 n` = 5 n` = 6

1 1.43x 1.38x 1.02x

2 1.70x 1.80x 1.33x

3 1.87x 1.80x 1.37x

4 2.12x 1.77x 1.46x

(b) MGRIT tolerance tol = 4.472 · 10�6.

# V-cycles n` = 4 n` = 5 n` = 6

1 3.20x 3.45x 2.10x

2 3.96x 3.55x 2.60x

3 3.74x 4.01x 2.70x

4 5.25x 4.72x 2.91x

(c) MGRIT tolerance tol = 4.472 · 10�5.

# FC-relaxations n` = 4 n` = 5 n` = 6

0 1.95x 1.28x 0.61x

1 1.83x 1.13x 0.54x

(d) MGRIT tolerance tol = 4.472 · 10�5.

Table 5.1: Measured speedup using 192 processors with n` 2 {4, 5, 6} levels. Table 5.1a - Ta-
ble 5.1c with FMG-cycles and {1, 2, 3, 4} V-cycles at each FMG-level; Table 5.1d
with V-cycles and F- or FCF-relaxation.
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5.4 Flow through simplified stenosed valve in 2D
8

This section considers flow in the ascending aorta (see Figure 5.23) in a simplified two-
dimensional geometry. Figure 5.24 illustrates the setting: Pulsatile blood flow is entering
the domain from the left ventricle. The blood flows past two stenosed valves (approxi-
mated as rigid tissue), the aortic sinus (anatomic dilations of the ascending aorta) and
enters the ascending aorta. The outflow is slightly extended where the aortic arch would
be located.

Figure 5.23: Schematic of the ascending aorta with coronary arteries, the aortic arch with three
branches and the descending aorta. Image9from [50].

The Navier-Stokes equations for incompressible Newtonian flow are considered as a
general model for the blood flow in the ascending aorta:

⇢f@tvf + ⇢fvf ·rvf �r ·
⇥
µf

�
rvf +rTvf � pfI

�⇤
= 0 in ⌦f , (5.39)

r · vf = 0 in ⌦f , (5.40)

with velocity vf , pressure pf , density ⇢f = 10�3 g/mm3 and viscosity 0.04 g/(mm · s).

8Results in this section have previously appeared [61]
9Public Domain image: https://commons.wikimedia.org/w/index.php?curid=1617151

https://commons.wikimedia.org/w/index.php?curid=1617151
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Pulsatile parabolic inflow with cycle length T = 1.024 s is prescribed at the inflow,

vf =


200
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�
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✓
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✓
2⇡t� ⇡ · 1 s

T

◆◆"
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#
, (5.41)

and pulsatile outflow is prescribed at the left and right coronary arteries,

vf =


0
10

�
mm

s

✓
0.5 + 0.5 · cos

✓
2⇡t� ⇡ · 1 s

T

◆◆(
1 for y > 0,

�1 for y < 0.
(5.42)

Zero Neumann conditions are prescribed at the outflow and zero Dirichlet conditions
are prescribed at all other boundaries. The initial condition is set as zero.
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Figure 5.24: Simplified stenosed valve geometry in two dimensions with maximally dilated
valves. Inflow occurs from the left ventricle on the left. Minor outflows are
observed toward the left and right coronary arteries at the top and bottom, and
main outflow toward the aortic arch on the right.

5.4.1 Space-time discretization

Space is discretized using finite elements with 1388 inf-sup stable P2 � P1 Taylor-Hood
elements and Nx = 6879 degrees-of-freedom, see Figure 5.25. The length of the temporal
domain corresponds to 10 cardiac cycles with time t 2 [0, 10T ]. A backward Euler time
discretization scheme is employed to discretize the temporal domain with equidistant time
steps and a time step size of �t = 1 ms.

5.4.2 Comparison of models for Stokes flow and Navier-Stokes flow

Because the multilevel convergence theory for MGRIT in Section 4 was developed under
the assumption of linear PDEs, let’s first consider neglecting the nonlinear term vf ·rvf

in Equation (5.55), which yields the Stokes flow model for an incompressible Newtonian
fluid. Figure 5.26 illustrates how the flow (magnitude) develops over cycle 10. The
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Figure 5.25: Mesh for the stenosed valve problem consisting of 1388 triangular finite elements.
The mesh is refined near small features and boundaries with high curvature.

parabolic inflow (see Equation (5.41)) is constricted between the valves to form a jet.
The jet quickly widens to an approximately parabolic flow profile, similar to Poiseuille
flow in a channel; for example, note the (close to) parallel streamlines at t = 9.6 s in
Figure 5.26. Further note the small reflow regions between the valves and the coronary
arteries.
In contrast, Figure 5.28 illustrates the flow (magnitude) over cycle 10, as obtained from

the Navier-Stokes flow model. Here, the jet (due to the flow constriction from the valves)
extends farther downstream of the valves. This yields more pronounced reflow regions
(e.g., compare the streamlines in Figure 5.26 and Figure 5.28 for t = 9.6 s) and creates
significantly di↵erent flow patterns. Further note that the y-component of the velocity
permits the identification of the front of the jet, see Figure 5.27.
Thus, the observed physical flow field varies significantly depending on the underly-

ing model (Stokes flow or Navier-Stokes flow). In later parts of Section 5.4, it will be
investigated whether convergence analysis for the linear PDE case can still yield reason-
able a priori estimates of the observed convergence of multilevel MGRIT applied to the
nonlinear PDE case.
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Figure 5.26: Stokes flow: Velocity magnitude at multiple time points over the 10th cycle:
t 2 {9.4, 9.6, 9.8, 10.0, 10.2} s. The parabolic inflow becomes a jet between the
valves. The jet quickly widens to an approximately parabolic flow profile, similar
to Poiseuille flow in a channel.
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Figure 5.27: Navier-Stokes flow: Velocity magnitude at multiple time points over the 10th cycle:
t 2 {9.4, 9.6, 9.8, 10.0, 10.2} s. The parabolic inflow becomes a jet between the
valves. In contrast to the Stokes flow case (see Figure 5.26), the jet is clearly
visible downstream and the y-component of the flow is nonzero, see Figure 5.28.
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Figure 5.28: Navier-Stokes flow: Nonzero y-component of the velocity at multiple time points
over the 10th cycle: t 2 {9.4, 9.6, 9.8, 10.0, 10.2} s. The traveling wave front due
to the pulsatile inflow is clearly noticeable in the y-component at the tip of the jet
(compare with Figure 5.26).
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5.4.3 Periodic steady-state solution

A common theme in many fields is the presence of temporal periodicity in the investigated
model. For the stenosed valve problem, the periodicity is boundary-driven due to the
pulsatile inflow. In practice, the boundary conditions might be known from medical
imaging data, while the flow field in the interior of the domain might not, which is why
simulations come into play. For the numerical model, however, an initial condition is
required, which is often unknown as well. In general, a zero initial condition is as good
as any other (reasonable) initial condition like in our case. The numerical model is then
driven to a periodic steady-state, which means that cycle-to-cycle variations become small
or negligible with respect to some error measure. That is, the solution becomes periodic
in time:

kvf (·, t+ qT )� vf (·, t+ (q � 1)T )k !q!1 0 8 t 2 [0, T ). (5.43)

In practice, one can anticipate reaching the periodic steady-state quicker (i.e. for smaller
q 2 Z+) if a better initial condition is employed.
Figure 5.29 illustrates convergence of the solution at the beginning of each cycle

vf (·, (q � 1)T ) to the solution at the end of cycle 10, i.e. vf (·, 10T ), for the Stokes flow
model. Here, the average error reduction is approximately one order of magnitude for each
simulated cycle. This highlights the fact that the accuracy of the periodic steady-state
solution is directly linked to the number of simulated cycles. As a matter of course, each
reduction of the cycle-to-cycle error (at t = (q � 1)T for q = 2, 3, . . .) by approximately
one order of magnitude increases the total computational cost by the computational cost
of adding one cycle length to the temporal domain. In the context of using parallel-in-time
integration with MGRIT, this motivates reducing the computational cost by simulating
only one cardiac cycle but making the time grid periodic, see Section 3.6. That is, con-
vergence to the periodic steady-state is achieved by updating the initial condition.

5.4.4 Weak form of the Stokes flow problem

Consider the Stokes problem,

⇢f@tvf �r ·
⇥
µf

�
rvf +rTvf � pfI

�⇤
= 0 in ⌦f , (5.44)

r · vf = 0 in ⌦f , (5.45)

which is discretized using finite elements in space and backward Euler in time, see Sec-
tion 5.4.1. The general discrete weak form can be written as follows:
Find sn+1 := (vn+1

f , pn+1
f ) 2 Vh

D ⇥Wh
f , such that for every d := (wf , qf ) 2 Vh

0 ⇥Wh
f :

R(sn+1, sn,d) =

Z

⌦h

f

⇢f
vn+1
f � vn

f

�t
·wf d⌦h

f

+

Z

⌦h

f

µf

⇥
rvn+1

f +rTvn+1
f � pn+1

f I
⇤
: rwf + qfr · vn+1

f d⌦h
f = 0.

(5.46)

The definition of the function spaces are:

Sp(⌦h
f ) = {f : ⌦h

f ! R | f 2 C0(⌦̄h
f ), f |⌧e 2 Pp(⌧e), 8 ⌧e 2 T h

f }, (5.47)
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Figure 5.29: Convergence of the solution at the beginning of each cycle vf (·, (q � 1)T ) to the
solution at the end of cycle 10, i.e. vf (·, 10T ), for the Stokes flow model with
cycle length T .

which represent the general continuous pth-order piecewise polynomial spaces defined on
⌦h

f . Consequently, we define:

Vh = [S2(⌦h
f )]

2 and Wf = S1(⌦h
f ), (5.48)

and incorporating the boundary conditions:

Vh
0 = {v 2 Vh | [v]y = 0 on �O

f }, (5.49)

Vh
D = {v 2 Vh | v = vf according to (5.41) and (5.42)}. (5.50)

Rewriting Equation (5.46) in operator form yields,

⇢fM + µf�tK �tB

T

�tB 0

� 
vn+1
f

pn+1
f

�
=


⇢fM 0
0 0

� 
vn
f

pnf

�
, (5.51)

where M is the mass matrix, and K and B refer to the discretized weak form Laplacian
and divergence operators r2() and r · (), respectively. Rewriting (5.51) in �-form,


vn+1
f

pn+1
f

�
=


⇢fM + µf�tK �tB

T

�tB 0

��1 
⇢fM 0
0 0

�

| {z }
�


vn
f

pnf

�
, (5.52)

highlights the sparsity:

� =


[�]11 0
[�]21 0

�
. (5.53)

The fact that vn+1
f and pn+1

f do not depend on pnf makes sense in that pf is used as a
Lagrange multiplier to enforce the incompressibility constraint (5.45) at each time point.
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Equation (5.45) is further a time-independent linear PDE, however, time-independent
PDEs can be solved in just one MGRIT iteration because the coarse-grid solve is exact.
These two observations provide arguments to restrict the convergence analysis to the
velocity block [�]11 similar to the analysis for the linear elasticity problem in Section 5.3.

5.4.5 Multilevel MGRIT for the Stokes flow problem

In this section, consider MGRIT convergence for the temporal domain [0, T ] and the
following parameter choices:

• Cycling strategy: V- and F-cycles

• Relaxation scheme: F- and FCF-relaxation

• Number of levels: n` 2 {2, 3, 4, 5, 6}

• Temporal coarsening factor: m` = 2 for all `

• Absolute tolerance: 10�8

• Zero initial space-time guess

• Skip first down-cycle

To simplify notation, let �` denote the velocity block [�]11 for all grid levels ` =
0, 1, . . . , n`�1. The analysis (see Chapter 4) proceeds by simultaneously diagonaliz-
ing {�`},

U�1�`U = diag(�`,1,�`,2, . . . ,�`,Nx
) for ` = 0, 1, . . . , n`�1, (5.54)

with eigenvalues {�`,k}.
Section 5.1 and 5.2 showed that the inequality bounds and approximate convergence

factors provide reasonably sharp estimates of observed worst-case convergence at reduced
computational cost compared to computing the `2-norm of the respective error propaga-
tion operators. Thus, the analysis in this section is restricted to these cheaper estimates.
Furthermore, the additional scaling due to the condition number of the eigenvector matrix
is ignored since Section 5.2 showed that the quality of the estimates is good even without
the scaling factor. In that sense, the estimates are no longer guaranteed upper bounds
but rather a means to estimate observed worst-case convergence a priori.
Figure 5.30 illustrates multilevel convergence of MGRIT V-cycles with F- and FCF-

relaxation for the Stokes problem. Observed worst-case convergence factors increase with
increasing numbers of levels in the MGRIT hierarchy, as is usually observed for MGRIT
V-cycles. While the sharpness of the estimates based on the inequality bound deteriorates
with larger n`, they still provide estimates of the observed worst-case convergence factor
of reasonable quality; especially, when considering that these estimates can be computed
a priori. For the wave equation, it was observed that additional relaxation steps (e.g.,
switching from F- to FCF-relaxation) cannot improve MGRIT convergence significantly,
however, for the Stokes problem there is a significant benefit.
On the other hand, Figure 5.31 illustrates multilevel convergence of MGRIT F-cycles

with F- and FCF-relaxation. While the observed worst-case convergence factor of MGRIT
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Figure 5.30: Multilevel convergence of MGRIT V-cycles with F- and FCF-relaxation for the
Stokes problem: Observed worst-case convergence factor compared with a priori
estimates (no p-contribution).

V-cycles increases with a growing number of levels, such an increase is not observed for
MGRIT F-cycles, irrespective of the choice of F- or FCF-relaxation. In most cases,
two-level convergence provides a heuristic upper bound on multilevel convergence (see
Section 4), and thus, constant or almost constant convergence factors for an increasing
number of levels can be considered ideal / optimal. The estimates based on the inequality
bound predict this desirable property of MGRIT F-cycles. Approximation 3, however,
predicts a slight increase in the convergence factor. This is plausible since the approxima-
tion is based on various additional simplifications and, overall, it is the cheapest estimate
available.
Overall, convergence of MGRIT for the Stokes problem is fairly similar to the di↵u-

sion equation, see Section 5.1. This is surprising from the point-of-view that the Stokes
equations are a simplification of the Navier-Stokes equations, which have some hyper-
bolic component. It is, however, less surprising if one considers that the Stokes problem
in (5.44) and (5.45) infact looks quite similar to the di↵usion equation with additional
constraints (i.e. incompressibility).

5.4.6 Multilevel MGRIT for the time-periodic Stokes flow problem

Here, the setting from Section 5.4.5 is considered, however, the time-grids are now made
periodic. That is, MGRIT is employed to approximate the solution over one cycle only,
with t 2 [0, T ], and convergence to the periodic steady-state is achieved by updating the
initial condition vf (·, 0), based on the approach described in Section 3.6.

5.4.6.1 Two-level MGRIT with F- and FCF-relaxation

First, consider two-level MGRIT with FCF-relaxation and a temporal coarsening factor
of 2. The two-level algorithm converges in 12 MGRIT iterations and the error in the
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Figure 5.31: Multilevel convergence of MGRIT F-cycles with F- and FCF-relaxation for the
Stokes problem: Observed worst-case convergence factor compared with a priori
estimates (no p-contribution).

initial condition converges at a similar rate, see Figure 5.32. On the other hand, consider
the residual norm at each time point on the coarse grid, see Figure 5.33. In contrast to
traditional MGRIT for the nonperiodic case, the largest residual norm is not observed
towards the end of the temporal domain, but at the beginning. This makes sense as the
largest mismatch / discontinuity in the space-time solution will occur at t = 0 due to
the continuously updated initial condition; it is this mismatch that is then propagated
in time and appears as a spike. Looking closer at Figure 5.33, it is seen that the spikes
occur at t4 for FCF-relaxation (and at t2 for F-relaxation; plot omitted), which is due to
the fact that MGRIT propagates the exact solution across two coarse-grid intervals for
FCF-relaxation (and one coarse-grid interval for F-relaxation).
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Figure 5.32: Two-level MGRIT with F- and FCF-relaxation and temporal coarsening factor 2
for the time-periodic Stokes problem: Reduction of MGRIT residual and initial
condition (IC) error.

Since the spike only occurs at a single time point on the coarse grid and right at the
beginning of the temporal domain, one can consider skipping the updates of the initial
condition once a reasonable tolerance is achieved. For example, consider a tolerance of
10�10 for the initial condition (compare Figure 5.29), which is used to skip further updates
once the `2-norm of the changes in the initial condition are smaller than said tolerance.
For FCF-relaxation, this means that the tolerance for the initial condition is reached
faster than the MGRIT tolerance. Thus, the property that MGRIT propagates the exact
solution (here, this would be the converged initial condition) means that the spike in
Figure 5.33 can be smoothed out and MGRIT can be terminated earlier, see Figure 5.34.
In preliminary experiments for MGRIT with F-relaxation, it was found that the MGRIT

tolerance was satisfied before the initial condition could be considered converged. Thus,
the time-periodic MGRIT algorithm from Section 3.6 checks convergence of the initial
condition after each MGRIT iteration. The time-periodic MGRIT algorithm is only
permitted to terminate if both convergence criteria for MGRIT and the initial condition
are satisfied. This is achieved by means of a callback function that was implemented in
XBraid. This callback function permits the simulation code (here: CHeart) to detect
convergence of the initial condition to a time-periodic steady-state. If the intial condition
is converged, it lets XBraid terminate, otherwise it requests more MGRIT iterations if
this is not the case.

Convergence estimates

Now, consider two-level MGRIT with F- and FCF-relaxation and temporal coarsening
factor m0 2 {2, 4, 8, 16, 32} for the time-periodic Stokes problem. It is then assessed how
well the inequality bounds and approximate convergence factors (i.e. Approximation 1
and Approximation 2) can capture the convergence behavior despite the fact that these
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Figure 5.33: Two-level convergence of MGRIT with FCF-relaxation and temporal coarsening
factor 2 for the time-periodic Stokes problem: MGRIT residual at C-points for
multiple iterations if no IC tolerance is used.
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Figure 5.34: Two-level convergence of MGRIT with FCF-relaxation and temporal coarsening
factor 2 for the time-periodic Stokes problem: MGRIT residual at C-points for
multiple iterations if IC tolerance 10�10 is used.

theoretical results were not derived for the time-periodic case.
Figure 5.35 highlights that the estimates (of the worst-case convergence factor) based

on the inequality bound and the approximate convergence factors are e↵ectively the same.
For two-level MGRIT with F-relaxation, the theoretical estimates predict the worst-case
convergence factor for m0 = 2 well, and almost perfectly for m0 > 2. For FCF-relaxation,
however, the theoretical estimates underestimate the worst-case convergence factor ob-
served for the time-periodic MGRIT algorithm, which is not desirable. In particular, the
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experiments show a decreasing worst-case convergence factor with an increasing tempo-
ral coarsening factor, whereas the theoretical estimates predict an increasing worst-case
convergence factor. In fact, it is quite surprising that one observes better (worst-case)
convergence for two-level MGRIT with FCF-relaxation when the temporal coarsening
increases. This is quite unusual but very beneficial, since it yields a better converging
algorithm with cheaper per-iteration cost.
One should emphasize that the benefits of FCF-relaxation only arise when the tempo-

ral coarsening factor is large, see Figure 5.35. That is, in time-parallel runs with small
temporal coarsening factors it is likely that MGRIT with F-relaxation will have a shorter
time-to-solution than MGRIT with FCF-relaxation, whereas the opposite can be antici-
pated when the temporal coarsening factor is large.
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Figure 5.35: Two-level MGRIT with F- and FCF-relaxation for the Stokes problem: Observed
worst-case convergence factor (for time-periodic problem) compared with a priori
estimates (for one period; no p-contribution).

Parallel performance on LEAD and TheoSim

Let’s now consider parallelism applied to the spatial domain, the temporal domain and
the spatiotemporal domain. Runtimes reported here were obtained using two small-scale
clusters: LEAD and TheoSim (see Section A). The reported runtime of the serial algorithm
is the best of 5 runs and of the parallel algorithms it is the best of 1 run.
If no parallelism is employed, the algorithm takes 523.05 s on LEAD and 332.16 s on

TheoSim (referred to as baseline). Employing spatial parallelism, the time-to-solution
can be reduced (see Figure 5.36 and Figure 5.37) to 55.89 s on LEAD (speedup: 9.36x)
and 42.82 s on TheoSim (speedup: 7.76x), using 16 processors.
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Figure 5.36: Runtimes on LEAD for two-level convergence of MGRIT with F-relaxation and
temporal coarsening factor m0 for the time-periodic Stokes problem: IC tol is
10�10. Speedup with time-only parallelism is 5.03 with 16 processors.
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Figure 5.37: Runtimes on TheoSim for two-level convergence of MGRIT with F-relaxation and
temporal coarsening factor m0 for the time-periodic Stokes problem: IC tol is
10�10. Speedup with time-only parallelism is 4.54 with 24 processors. Speedup
with space-time parallelism is 35.07 with 256 processors.
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Figure 5.38: Runtimes on LEAD for two-level convergence of MGRIT with FCF-relaxation
and temporal coarsening factor m0 for the time-periodic Stokes problem: IC tol
is 10�10. Speedup with time-only parallelism is 5.18 with 16 processors.
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Figure 5.39: Runtimes on TheoSim for two-level convergence of MGRIT with FCF-relaxation
and temporal coarsening factor m0 for the time-periodic Stokes problem: IC tol
is 10�10. Speedup with time-only parallelism is 6.89 with 32 processors. Speedup
with space-time parallelism is 34.21 with 256 processors.

Using two-level MGRIT without parallelism yields a more expensive algorithm, e.g. see
Figure 5.36. The benefit of MGRIT is exploited by using more processors and by coars-
ening more aggressively. For example, the wall-clock time of MGRIT with F-relaxation
and time-parallelism on LEAD is:

• 446 s; using a temporal coarsening factor of 2 and 16 processors yields a speedup
of 1.17x.
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• 169 s; using a temporal coarsening factor of 32 and 4 processors yields a speedup
of 3.09x.

• 104 s; using a temporal coarsening factor of 32 and 16 processors yields a speedup
of 5.03x.

With time-parallelism, the largest speedups achieved are:

• F-relaxation:

LEAD: 5.03x with a wall-clock time of 104 s using 16 processors.

TheoSim: 4.54x with a wall-clock time of 73.1 s using 24 processors.

• FCF-relaxation:

LEAD: 5.18x with a wall-clock time of 101 s using 16 processors.

TheoSim: 6.89x with a wall-clock time of 48.2 s using 32 processors.

Thanks to the nonintrusiveness of MGRIT, speedups from space- and time-parallelism
can be combined. Again, the best speedups are achieved when using more processors
and when coarsening more aggressively, e.g., see Figure 5.37. The best achieved speedups
using space-time parallelism on TheoSim are:

• F-relaxation: 35.07x with a wall-clock time of 9.47 s using 256 processors.

• FCF-relaxation: 34.21x with a wall-clock time of 9.71 s using 256 processors.

From the data reported here, it can be concluded that for time-only parallelism, FCF-
relaxation gives a better speedup than F-relaxation, however, F-relaxation gives a bet-
ter speedup if space-time parallelism is employed. It seems likely, though, that FCF-
relaxation should give the best possible speedup. For example, for F-relaxation the com-
bined space-only speedup (7.76x) and time-only speedup (4.54x) of approximately 35.23x
is very close to the observed speedup of 35.07x. On the other hand, for FCF-relaxation
there is some mismatch between the combined space-only speedup (7.76x) and time-only
speedup (6.89x) of approximately 53.47x and the observed speedup of 34.21x. As the
employed nodes of the TheoSim cluster share the network connection with other compute
nodes, other production runs may have slowed down MGRIT’s MPI messages.
Overall, the achieved speedups for two-level MGRIT are quite large compared to results

reported in literature. For example, for a 2D compressible fluid dynamics application Fal-
gout et al. [31] reported a speedup of 7.53x using time-only parallelism on 4096 processors,
i.e. on a considerably larger number of processors. While the setting is slightly di↵erent
(e.g., di↵erent Re number, di↵erent space-time resolution, etc.), the increased parallel
e�ciency is arguably achieved through exploiting the periodicity of the solution in time,
and thus, to the development of the new time-periodic MGRIT variant.

5.4.6.2 Multilevel MGRIT with F- and FCF-relaxation

In the previous section, the time-periodic MGRIT algorithm from Section 3.6 was explored
in the two-level setting. The largest observed speedup was 6.89x with time-parallelism and
35.07x with space-time parallelism, using 16 and 256 processors, respectively. Motivated
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from these results, it is investigated if the time-periodic two-level MGRIT algorithm
generalizes to the multilevel setting without further modifications, i.e. if it converges, how
fast it converges and if the theoretical estimates for the nonperiodic case are useful to
estimate convergence in the time-periodic case. Here, only time-parallelism is considered
with a fixed temporal coarsening factor of m` = 2 for ` = 0, . . . , n` � 2. Results reported
were obtained on the TheoSim cluster, see Section A.

Convergence estimates

First, convergence estimates for the nonperiodic case are compared with observed worst-
case convergence of time-periodic multilevel MGRIT V- and F-cycle algorithms. Fig-
ure 5.40 and Figure 5.41 illustrate that in the case of multilevel V- and F-cycle algorithms
with F-relaxation, the theoretical estimates (inequality bound and Approximation 1) cap-
ture the correct magnitude and trend of the observed worst-case convergence factors. In
the case of FCF-relaxation, however, the observed worst-case convergence factors cannot
be predicted (V-cycle) or only poorly (correct trend but incorrect magnitude for multilevel
F-cycle).
In fact, it is quite surprising that one observes better (worst-case) convergence for two-

level MGRIT with FCF-relaxation when the temporal coarsening increases. This is quite
unusual but very beneficial, since it yields a better converging algorithm with cheaper per-
iteration cost. In Section 5.4.6.1, it was observed that FCF-relaxation in combination with
a large temporal coarsening factor can indeed yield faster (worst-case) convergence than
with a small temporal coarsening factor. Figure 5.40 illustrates a similar observation for
the multilevel case: the worst-case convergence factor for multilevel V-cycles with FCF-
relaxation decreases with an increasing number of time grid levels; thus, at the same
time yielding a cheaper per-iteration cost, more potential for parallelism and a smaller
coarse-grid size (i.e. smaller sequential component).
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Figure 5.40: Multilevel convergence of MGRIT V-cycles with F- and FCF-relaxation for the
Stokes problem: Observed worst-case convergence factor (for time-periodic prob-
lem) compared with a priori estimates (for one period; no p-contribution).
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Figure 5.41: Multilevel convergence of MGRIT F-cycles with F- and FCF-relaxation for the
Stokes problem: Observed worst-case convergence factor (for time-periodic prob-
lem) compared with a priori estimates (for one period; no p-contribution).

Parallel performance on TheoSim

Starting with the two-level MGRIT algorithm, Figure 5.42 and Figure 5.43 highlight that
the degree of parallelism that can be exploited through MGRIT eventually saturates,
giving only negligible speedups (for both F- and FCF-relaxation). On the other hand,
using more time grid levels yields a more expensive algorithm than serial time stepping
if only one or few processors are used to parallelize the time component. However, the
benefit of using time-periodic multilevel MGRIT with F- or FCF-relaxation is bigger when
employing more processors. For example, the slope for n` = 6 time grid levels for MGRIT
with FCF-relaxation is much steeper than for two-level MGRIT with FCF-relaxation
(see Figure 5.42). The best speedups are achieved for multilevel MGRIT with n` = 6
time grid levels using 32 processors: the speedup is 1.90x for F-relaxation and 3.48x for
FCF-relaxation.
The fact that the wall-clock time of six-level MGRIT with FCF-relaxation is smaller

than six-level MGRIT with F-relaxation reflects and confirms the observations in Fig-
ure 5.40: the cheaper per-iteration cost and smaller coarse grid size yield a larger speedup.

5.4.7 Weak form of the Navier-Stokes flow problem

Now, let’s switch from the linear PDE to the nonlinear PDE case: Consider the Navier-
Stokes problem,

⇢f@tvf + ⇢fvf ·rvf �r ·
⇥
µf

�
rvf +rTvf � pfI

�⇤
= 0 in ⌦f , (5.55)

r · vf = 0 in ⌦f , (5.56)

which is discretized using finite elements in space and backward Euler in time, see Sec-
tion 5.4.1. The general dxiscrete weak form can be written as follows:
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Figure 5.42: Runtimes on TheoSim for nl-level convergence of MGRIT with F-relaxation and
temporal coarsening factor ml = 2 for the time-periodic Stokes problem: IC tol
is 10�10. Speedup with time-only parallelism is 1.90 with nl = 6 levels and 32
processors.
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Figure 5.43: Runtimes on TheoSim for nl-level convergence of MGRIT with FCF-relaxation
and temporal coarsening factor ml = 2 for the time-periodic Stokes problem: IC
tol is 10�10. Speedup with time-only parallelism is 3.48 with nl = 6 levels and 32
processors.
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The definition of the function spaces are:

Sp(⌦h
f ) = {f : ⌦h

f ! R | f 2 C0(⌦̄h
f ), f |⌧e 2 Pp(⌧e), 8 ⌧e 2 T h

f }, (5.58)

which represent the general continuous pth-order piecewise polynomial spaces defined on
⌦h

f . Consequently, we define:

Vh = [S2(⌦h
f )]

2 and Wf = S1(⌦h
f ), (5.59)

and incorporating the boundary conditions:

Vh
0 = {v 2 Vh | [v]y = 0 on �O

f }, (5.60)

Vh
D = {v 2 Vh | v = vf according to (5.41) and (5.42)}. (5.61)

Rewriting Equation (5.57) in operator form yields,


⇢fM + µf�tK(vn+1

f ) �tB
T

�tB 0

� 
vn+1
f

pn+1
f

�
=


⇢fM 0
0 0

� 
vn
f

pnf

�
, (5.62)

where M is the mass matrix, and K and B refer to the discretized weak form Laplacian
and divergence operators r2() and r · (), respectively. Rewriting (5.62) in �-form,


vn+1
f

pn+1
f

�
=


⇢fM + µf�tK(vn+1

f ) �tB
T

�tB 0

��1 
⇢fM 0
0 0

�

| {z }
�⇡�n+1


vn
f

pnf

�
, (5.63)

highlights the same sparsity pattern as in Equation (5.53), such that the convergence
analysis can be restricted to the velocity block, see Section 5.4.4.

5.4.8 Multilevel MGRIT for the Navier-Stokes flow problem

The convergence framework presented in Chapter 4 was developed under the assumption
of linear PDEs. In practice, an overwhelming number of applications, however, require
the solution of nonlinear PDEs. It is thus important to investigate, how and if the
estimates for the linear case are applicable to the nonlinear case. Here, two approaches
are considered:

1. Convergence estimate based on � from the Stokes equation, see Equation (5.52).

2. Convergence estimate based on a linearized e� from a Newton iteration of the Navier-
Stokes equation, see Equation (5.63).

Here, multilevel MGRIT V- and F-cycles with F- and FCF-relaxation are considered for
n` 2 {2, 3, 4, 5, 6} levels with temporal coarsening factor m` = 2 for ` = 0, . . . , n` � 2.
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5.4.8.1 Convergence estimate based on the Stokes flow problem

The first approach to estimate convergence of MGRIT for the nonlinear case is motivated
from the observation that the nonperiodic case provided reasonable estimates for time-
periodic MGRIT. Thus, convergence estimates for the Stokes equation are compared with
observed worst-case convergence factors of MGRIT for the parallel-in-time integration of
the Navier-Stokes equation.
Figure 5.44 and Figure 5.45 highlight that the observed worst-case convergence factor

for MGRIT for the Navier-Stokes equation is larger than for the Stokes equation. This
makes sense, in that the presence of the nonlinear advective term changes the character of
the PDE toward a regime that has traditionally experienced more challenges for parallel-
in-time integration: the field of hyperbolic PDEs. It is further noted, that while the trends
can still be predicted reasonably well, there is a visible mismatch between the predicted
and observed magnitude of the convergence factor, e.g., see Figure 5.44.
Thus, the estimates for the Stokes equation do not directly translate to the nonlinear

case, e.g., because the advective term is ignored. In the following section, a di↵erent
approach is taken that takes the advective term into account to provide better estimates
of the observed worst-case convergence of multilevel MGRIT.
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Figure 5.44: Multilevel convergence of MGRIT V-cycles with F- and FCF-relaxation for the
Navier-Stokes problem: Observed worst-case convergence factor compared with a
priori estimates based on Stokes flow.

5.4.8.2 Convergence estimate based on a linearization of the Navier-Stokes flow

problem

In Section 5.4.8.1, it was shown that convergence estimates for the linear PDE case do not
necessarily translate to the nonlinear PDE case directly. Here, an alternative approach is
proposed. Instead of ignoring the role of the advective term in the convergence framework,
it is taken into account by computing a linearized version of the time stepping operator
�` on each level ` during a Newton iteration of the spatial solve. Since the magnitude
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Figure 5.45: Multilevel convergence of MGRIT F-cycles with F- and FCF-relaxation for the
Navier-Stokes problem: Observed worst-case convergence factor compared with a
priori estimates based on Stokes flow.

of the advective term constantly changes throughout the temporal domain, the flow field
vf at t = 0.384 s is selected to compute the linearized �` operator on each level `. This
time point corresponds to a snapshot of the space-time solution (row 2 in Figure 5.27 and
Figure 5.28), where advection is expected to play a significant role.
The convergence analysis proceeds as before, however, the assumption of simultaneous

diagonalization is somewhat modified. For example, the linearized time stepping operator
�0 on level 0 is diagonalized by,

U�1�0U = diag(�0,1, . . . ,�0,Nx
), (5.64)

however, for all other levels ` = 1, . . . , n` � 1, let,

[�`,1, . . . ,�`,Nx
]T := diag(U�1�`U ) . (5.65)

When computingU�1�`U numerically, there are slight nonzero o↵diagonal entries. These
nonzero entries could be present due to limited precision in numerical arithmetic and /
or bad conditioning. It is, however, di�cult to exactly explain this observation without
extensive further research, e.g., by deriving the respective Fourier symbols. Deriving the
Fourier symbols is straightforward to do for simple linear PDEs and a fixed spatiotemporal
discretization scheme (e.g., see [24]). But it is not clear if it is indeed possible for the
(nonlinear) Navier-Stokes equation. Despite the potential violation of the simultaneously
diagonalizable assumption, we proceed with the eigenvalues �`,k (for ` 2 {0, . . . , n` � 1},
k 2 {1, . . . , Nx}) obtained from Equation (5.64) and Equation (5.65) for two reasons:

• The simultaneously diagonalizable assumption is potentially not violated.

• If it is violated, the approach could still hint at a possible pathway for a future
generalization of the convergence framework for nonlinear PDEs.
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Figure 5.46 and Figure 5.47 illustrate the benefit of the proposed approach. While
not mathematically rigorous, the obtained estimates of the worst-case convergence factor
are strikingly close to observed worst-case convergence of MGRIT V- and F-cycles for
the parallel-in-time integration of the Navier-Stokes equation. The estimates predict the
correct trend and the correct magnitude with surprising sharpness. Irrespective of the use
of V- or F-cycles and F- or FCF-relaxation: The observed worst-case convergence can be
predicted with good quality.
Thus, the observed slightly nonzero o↵diagonal entries of U�1�`U in Equation (5.65)

could indeed stem from the limited precision of numerical arithmetic and / or bad condi-
tioning. As a matter of course, this observation needs to be confirmed in further studies,
however, the proposed approach could possibly be the basis for future generalizations of
the theory in Chapter 4 to the nonlinear PDE case.
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Figure 5.46: Multilevel convergence of MGRIT V-cycles with F- and FCF-relaxation for the
Navier-Stokes problem at t = 0.384 s: Observed worst-case convergence factor
compared with a priori estimates based on a linearization of the � operator.
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Figure 5.47: Multilevel convergence of MGRIT F-cycles with F- and FCF-relaxation for the
Navier-Stokes problem at t = 0.384 s: Observed worst-case convergence factor
compared with a priori estimates based on a linearization of the � operator.
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5.4.9 Conclusion

In this section, flow through a simplified stenosed valve geometry was investigated both
from a theoretical perspective and in numerical experiments. Overall, theoretical esti-
mates predicted worst case convergence in numerical experiments well, both in the linear
PDE case and for a proposed extension to the nonlinear PDE case.
Significant speedups were achieved by exploiting the time-periodic property of the flow

problem by means of the new time-periodic MGRIT algorithm proposed in Section 3.6.



5.5 Analytic FSI solutions: Transient fluid / transient linear solid in 2D 137

5.5 Analytic FSI solutions: Transient fluid / transient

linear solid in 2D
10

In this section, MGRIT is applied to the transient linear two-dimensional FSI test case
from Chapter 2. The domains are given in Figure 2.1 and parameters are selected similar
to Section 2.4.2.1, see Table 5.2. Further, four space-time discretizations are considered
and referred to as refinement levels. Each space-time refinement level has an MGRIT
tolerance associated with it, see Table 5.3.
In the following, the �-form of the space-time discrete incompressible Stokes equation

is derived. Then, the multilevel convergence framework from Chapter 4 is applied and
the theoretical estimates are compared with observed convergence factors. Furthermore,
the new time-periodic MGRIT algorithm (see Section 3.6), that has proven beneficial in
Section 5.4, is assessed, where significant speedups are achieved.

Fluid density Fluid viscosity Solid density Solid sti↵ness Cycle length

⇢f = 1.000 µf = 0.010 ⇢s = 1.000 µs = 0.100 T = 1.024

Table 5.2: Parameters for the 2D transient fluid / transient linear solid case.

Refinement level Time step size # Time steps Spatial step size # DOFs MGRIT tol

1 0.128 80 0.200 378 1.398 · 10�7

2 0.032 320 0.100 1288 5.590 · 10�7

3 0.008 1280 0.050 4728 2.236 · 10�6

4 0.002 5120 0.025 18088 8.944 · 10�6

Table 5.3: Space-time refinement levels used for 2D transient fluid / transient linear solid case
with �t/�2x = 3.2 = const and scaled MGRIT tolerance 10�8/(

p
�t�x).

5.5.1 �-form of coupled PDEs

In this section, first-order backward Euler time-discretization schemes are considered for
the fluid and solid PDEs along with inf-sup stable quadratic-linear Taylor-Hood finite
elements, similar to Chapter 2, Section 5.3 and Section 5.4.
The backward Euler time-discretization of the incompressible Stokes equation is

given as,

⇢fv
n+1
f � �tµfr ·

⇥
rvn+1

f +rTvn+1
f

⇤
+ �tr · (pn+1

f I) = ⇢fv
n
f , (5.66)

��tr · vn+1
f = 0. (5.67)

On the other hand, the backward Euler time discretization of the linear elasticity equa-

10Results in this section have previously appeared [62]
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tion is given as Scheme II from Section 5.3,

un+1
s � �tv

n+1
s = un

s , (5.68)

⇢sv
n+1
s � �2t µsr ·

⇥
rvn+1

s +rTvn+1
s

⇤
. . .

. . .+ �tr · (pn+1
s I) = ⇢sv

n
s + µs�tr ·

⇥
run

s +rTun
s

⇤
, (5.69)

��2tr · vn+1
s = 0, (5.70)

where the symmetric Cauchy stress tensor11 is considered to govern the stress response of
a linear-elastic incompressible, isotropic and homogeneous solid material.
The dynamic and kinematic interface constraints,

tn+1
f + tn+1

s = 0 (5.71)

vn+1
f � vn+1

s = 0 (5.72)

are enforced at the coupling surface, with equal but opposite tractions,

tf =
⇥
rvf +rTvf

⇤
· nf , (5.73)

ts =
⇥
rus +rTus

⇤
· ns, (5.74)

where nf and ns are the outer normal directions on the fluid and solid coupling bound-
aries. The constraints are weakly enforced by introducing a Lagrange multiplier variable,
� = tf = �ts.
Here, inf-sup stable Taylor-Hood finite elements are employed to discretize the coupled

PDEs in space. Quadratic interpolation is used for the fluid velocity, the solid velocity
and displacement, and the Lagrange multiplier; linear interpolation is used for the fluid
and solid pressure. For conciseness and to avoid redundancy we skip over the weak form
of the coupled FSI problem, which is given in general form in Section 2.3.1. In matrix
form, we can write,

(⇢fMf + µf�tKf )v
n+1
f + �tB

T
f p

n+1
f + CT

f �
n+1 = ⇢fMfv

n
f ,

�tBfv
n+1
f = 0,

un+1
s � �tv

n+1
s = un

s ,�
⇢sMs + µs�

2
tKs

�
vn+1
s + �tB

T
s p

n+1
s � CT

s �
n+1
i = ⇢sMsv

n
s � µs�tKsu

n
s ,

�tBsv
n+1
s = 0,

Cfv
n+1
f � Csv

n+1
s = 0,

where Mf and Ms are the fluid and solid mass matrix, and Kf and Ks and Bf and Bs

refer to the discretized weak form Laplacian and divergence operators r2() and r · (),

11Note, that the asymmetric Cauchy stress tensor was considered in Section 5.3 and [66].
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respectively. In matrix form, we can write,

2

6666664

⇢fMf + µf�tKf �tBT
f CT

f

�tBf

I ��tI
⇢sMs + µs�2
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7777775
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vn
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7777775
. (5.75)

With [D]�1 and C referring to the matrices on the left-hand-side and right-hand-side of
the equation, we can compute the evolution matrix as,

� = DC. (5.76)

5.5.2 Simultaneously diagonalized time-stepping operators

Similar to Section 5.3 and [66], � will have zero columns corresponding to the constraint
variables, that is, pf and ps and �. Thus, the convergence analysis can be done on block
rows and columns corresponding to vf , us and vs.
Considering the operator given in Equation (5.76) in an MGRIT setting, i.e. for various

time step sizes, then the time-stepping operators {�`} are simultaneously diagonalizable,
similar to the fluid and solid subproblems in Section 5.3 and Section 5.4:

U�1�`U = diag(�`,1, . . . ,�`,Nx
), for ` = 0. . . . , n` � 1. (5.77)

Figure 5.48 shows the diagonal values �`,k for space-time refinement levels 1 � 4 (see
Table 5.3) and n` = 7 time grid levels with temporal coarsening factor 2 between all levels.
It is quite clear that the values �`,k can be distributed fairly di↵erently in the complex
plane, depending on the employed temporal and spatial step sizes.
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Figure 5.48: Diagonal values of U�1�`U in the complex plane depending on the space-time re-
finement level (see Table 5.3) and the temporal coarsening factor: {1, 2, 4, . . . , 64}
from top-to-bottom.
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5.5.3 MGRIT convergence

In literature and the previous sections, it was observed that MGRIT convergence (with
some exceptions) deteriorates:

• with more aggressive temporal coarsening,

• and when refining in space-time.

On the other hand, MGRIT V-cycle convergence was found to improve:

• when using a stronger relaxation scheme,

• when switching from V-cycles to F-cycles.

Here, these observations are reviewed for the coupled linear FSI problem; first in a
two-level setting and later in the multilevel setting.

5.5.3.1 Two-level MGRIT with rFCF-relaxation

Figure 5.49 - Figure 5.52 show observed worst-case and mean convergence of two-level
MGRIT for space-time refinement levels 1 � 4, depending on the number of relaxation
steps r and the coarsening factor m0; and in comparison with the estimated upper bound
in Theorem 1.
First, we remind the reader that each MGRIT iteration propagates the exact solution

over (r+1)m0 time steps, and thus, MGRIT is guarantueed to converge in N0/((r+1)m0)
iterations. For space-time refinement level 1, this means that MGRIT converges in “less
than” one iteration for r = 4 andm0 = 20; thus, this data point is excluded in Figure 5.49.
In most cases, the estimated worst-case convergence is bounding the observed worst-

case convergence as illustrated in Figure 5.51. For the larger space-time refinement levels,
however, observed and estimated convergence factors are a little underwhelming since this
setting prohibits the use of larger temporal coarsening factors or requires more relaxation
steps to achieve good convergence factors.
It is also noted, that the number of required MGRIT iterations to satisfy the conver-

gence tolerance increases with larger space-time meshes; a property that is not ideal and
usually contradicts with the requirements of a scalable solver (e.g., constant iterations /
cost under refinement).
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Figure 5.49: Top: Measured worst-case and mean convergence factor; Bottom: Estimated
worst-case and number of iterations. Space-time refinement 1. Note: Red ⇥
means convergence in 1 iteration.

Figure 5.50: Top: Measured worst-case and mean convergence factor; Bottom: Estimated
worst-case and number of iterations. Space-time refinement 2.
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Figure 5.51: Top: Measured worst-case and mean convergence factor; Bottom: Estimated
worst-case and number of iterations. Space-time refinement 3.

Figure 5.52: Top: Measured worst-case and mean convergence factor; Bottom: Estimated
worst-case and number of iterations. Space-time refinement 4.

5.5.3.2 Multilevel MGRIT with V- and F-cycles

Figure 5.53 and Figure 5.54 show observed worst-case and mean convergence factors of
multilevel MGRIT with V- and F-cycles, depending on the number of relaxation steps r
and the employed space-time refinement level.
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For MGRIT V-cycles, the inequality bound overestimates observed convergence factors
significantly for four and five grid levels (see Figure 5.53), whereas magnitudes and trends
are captured for two and three levels. Here, Approximation 1 and Approximation 2
are more valuable in the sense that the approximate convergence factors capture the
observed worst-case much better. It is also noted that for space-time refinement levels
1 and 2, the observed convergence factors are constant or only slightly increasing but
for refinement levels 3 and 4, the observed worst-case convergence factors are steadily
increasing. This is not ideal. For example, for five levels and F- or FCF-relaxation, the
worst-case convergence factor increases with a finer space-time mesh.
MGRIT F-cycles on the other hand (see Figure 5.54) show almost constant convergence

factors with only a slight increase for refinement levels 3 and 4 and F-relaxation and
refinement level 4 and FCF-relaxation. It is further noted that for refinement levels 1 and
2 and FCF-relaxation, the inequality bound gives quite sharp estimates of the observed
worst-case. A general trend is further, that the mean and maximum observed convergence
factors are close in the case of F-cycles but show a bigger gap for V-cycles.
Furthermore, we note the cases where the inequality bound could not be evaluated

due to memory constraints (here, a machine with 128 GB memory was used), and thus,
Approximation 1, 2 and 3 (with negligible memory consumption) are the only tools at
hand:

• V-cycles:

– FCF-relaxation: Refinement level 4 and n` > 3.

• F-cycles:

– F-relaxation: Refinement level 4 and n` > 2.

– FCF-relaxation: Refinement level 4 and n` > 2.
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Figure 5.53: Multilevel MGRIT V-cycle convergence with F-relaxation (left) and FCF-
relaxation (right). Top-to-bottom: Space-time refinement level 1 - 4. Squares
denote cases when MGRIT did not converge in 100 iterations. Missing data points
are due to out-of-memory errors.
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Figure 5.54: Multilevel MGRIT F-cycle convergence with F-relaxation (left) and FCF-
relaxation (right). Top-to-bottom: Space-time refinement level 1 - 4. Missing
data points are due to out-of-memory errors.
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5.5.3.3 Convergence factor for each spatial mode �`,k

Now, let’s look closer at the distribution of the spatial modes �`,k in the complex plane
and the correlation to the convergence factor for each spatial mode. For example, consider
two-level MGRIT with F- and FCF-relaxation. As Figure 5.55 and Figure 5.56 illustrate,
the slow converging eigenmodes are not near 0 or 1 (i.e. near the stability boundary) on
the real axis (which are sometimes suspected to be the culprit) but rather eigenmodes
with nonzero imaginary part. It is also quite clear that FCF-relaxation e↵ectively scales
down the convergence factors with the most visible e↵ect on those eigenmodes that are
farthest away from the real axis.
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Figure 5.55: Two-level MGRIT with F-relaxation for space-time refinement level 2: Conver-
gence factor for each spatial mode in the complex plane as estimated by the in-
equality bound, see Theorem 1. The dotted blue line indicates the stability bound-
ary |x| = 1 for x 2 C.
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Figure 5.56: Two-level MGRIT with FCF-relaxation for space-time refinement level 2: Con-
vergence factor for each spatial mode in the complex plane as estimated by the
inequality bound, see Theorem 1. The dotted blue line indicates the stability
boundary |x| = 1 for x 2 C.
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Now moving on to the multilevel case with four-level V-cycles with F-relaxation (see
Figure 5.57), the di↵erence is quite remarkable. Eigenmodes �0,k with nonzero imaginary
part that are closer to the stability boundary (and their coarse-grid equivalents) are
generally converging more slowly. Eigenmodes along the real axis show slower convergence
as well, in contrast to the two-level algorithm (see Figure 5.55), however, eigenmodes near
0 and 1 are still converging fast. Although, it is clear that an algorithm acting on so many
slow eigenmodes can be expected to perform poorly, which is reflected in the observed
worst-case convergence factor approaching 1 in Figure 5.53 (second row, left).
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Figure 5.57: Four-level MGRIT V-cycles with F-relaxation for space-time refinement level 2:
Convergence factor for each spatial mode in the complex plane as estimated by
the inequality bound, see Theorem 1. The dotted blue line indicates the stability
boundary |x| = 1 for x 2 C.

Figure 5.58 highlights how switching from V-cycles to F-cycles (keeping the number of
grid levels n` = 4 fixed) can significantly improve convergence. For example, all purely
real eigenmodes are converging fast. While some eigenmodes still converge more slowly
with convergence factors of approximately 0.86, they are significantly smaller in numbers.
Thus, it is less probable that slow eigenmodes are actually present in the discrete error
yielding faster observed convergence, which is true for the considered numerical exper-
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iments. For example, the observed worst-case convergence factor for four-level F-cycles
with F-relaxation is approximately 0.42, see Figure 5.54.
While FCF-relaxation can have a similar beneficial e↵ect on the convergence of each

eigenmodes (see Figure 5.59), it is not as pronounced. Eigenmodes on the real axis are
still converging slower for a four-level V-cycle with FCF-relaxation than for a four-level
F-cycle with F-relaxation. Further, the e↵ect is di↵erent depending on the location of the
eigenmode in the complex plane, e.g., eigenmodes �0,k near 0.5+0.5ı (and their coarse-grid
equivalents) are actually converging slower for F-cycles with F-relaxation.
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Figure 5.58: Four-level MGRIT F-cycles with F-relaxation for space-time refinement level 2:
Convergence factor for each spatial mode in the complex plane as estimated by
the inequality bound, see Theorem 1. The dotted blue line indicates the stability
boundary |x| = 1 for x 2 C.

The largest improvement, compared to V-cycles with F-relaxation, can be achieved by
switching to F-cycles and FCF-relaxation. In this case, only few eigenmodes are estimated
to converge at a rate of approximately 0.46, whereas the observed worst-case convergence
factor is approximately 0.36. This highlights that if the objective is to minimize the
convergence factor while maximizing the number of grid levels (and thus, the potential
for parallelism) for this particular application, it is required to choose a fairly expensive
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algorithm, i.e. F-cycles with FCF-relaxation. Thus, the potential for speedup may be
limited and it is worthwhile to explore how temporal periodicity can be exploited in the
following.

0 0.5 1
�0.5

0

0.5

R{�0,k}

I
{�

0,
k
}

0 0.5 1
�0.5

0

0.5

R{�1,k}

I
{�

1,
k
}

0

0.5

1

0 0.5 1
�0.5

0

0.5

R{�2,k}

I
{�

2,
k
}

0 0.5 1
�0.5

0

0.5

R{�3,k}

I
{�

3,
k
}

0

0.5

1

Figure 5.59: Four-level MGRIT V-cycles with FCF-relaxation for space-time refinement level
2: Convergence factor for each spatial mode in the complex plane as estimated by
the inequality bound, see Theorem 1. The dotted blue line indicates the stability
boundary |x| = 1 for x 2 C.
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Figure 5.60: Four-level MGRIT F-cycles with FCF-relaxation for space-time refinement level
2: Convergence factor for each spatial mode in the complex plane as estimated by
the inequality bound, see Theorem 1. The dotted blue line indicates the stability
boundary |x| = 1 for x 2 C.

5.5.4 Time-periodic MGRIT

There are three main arguments for exploring how the time-periodic MGRIT algorithm
can be applied to the considered FSI problem:

1. The convergence factor for the nonperiodic MGRIT algorithm is underwhelming;
and in most cases, the convergence factor is smaller for smaller fine grid sizes.

2. Exploiting the time-periodic property yielded a large benefit for the flow problem
in Section 5.4.

3. Here, there is an analytic solution that can help to study what an appropriate
convergence criterion is for updating the initial condition when using the time-
periodic MGRIT algorithm.

Thus, we consider the application of the time-periodic MGRIT algorithm (with skip-
first-down option) from Section 5.4.6 with FCF-relaxation and measure how the error can
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be reduced. The goal is to achieve a comparable order of error as sequential time-stepping
over 10 cycles. For example, the spatial error at each time point during cycles 1, 2, . . . , 10
for the fluid velocity, solid displacement and solid velocity is shown in Figure 5.61, Fig-
ure 5.63 and Figure 5.65. While the cycle-to-cycle error reduction is initially quite fast,
e.g., from cycle 1 to 5, it then decreases and almost becomes negligible from cycle 9
to 10. Thus, after 10 cycles, the system can be considered to have reached a periodic
steady-state, i.e. cycle-to-cycle fluctuations become negligible.
After 10 cycles, sequential time-stepping yields a spatial error of order O(10�6) in the

fluid and solid velocity variables. Now, let’s consider a two-level MGRIT algorithm with
FCF-relaxation and temporal coarsening factor m0 = 8 for space-time refinement level 4,
see Table 5.3, to study how quickly the time-periodic MGRIT algorithm can yield a
comparable error.
Figure 5.62, Figure 5.64 and Figure 5.66 illustrate the respective spatial errors over

t 2 [0, T ] for each time-periodic MGRIT iteration. Comparing the fluid velocity error from
sequential time-stepping and time-periodic MGRIT (i.e. Figure 5.61 and Figure 5.62), it
becomes clear that using the skip-first-down option for MGRIT yields a smaller error
after iteration 0 than after cycle 1 with sequential time-stepping. This makes sense, since
iteration 0 e↵ectively generates a cheaper initial space-time guess using a larger time step
size �1 = m0�0.
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Figure 5.61: Fluid velocity error reduction for sequential time-stepping over 10 cycles.
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Figure 5.62: Fluid velocity error reduction of two-level MGRIT with FCF-relaxation and tem-
poral coarsening factor m0 = 8. It takes 8 iterations to achieve a comparable
error as sequential time-stepping over 10 cycles, see Figure 5.61.
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Figure 5.63: Displacement error reduction for sequential time-stepping over 10 cycles.
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Figure 5.64: Displacement error reduction of two-level MGRIT with FCF-relaxation and tem-
poral coarsening factor m0 = 8. It takes 8 iterations to achieve a comparable
error as sequential time-stepping over 10 cycles, see Figure 5.63.
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Figure 5.65: Solid velocity error reduction for sequential time-stepping over 10 cycles.
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Figure 5.66: Solid velocity error reduction of two-level MGRIT with FCF-relaxation and tem-
poral coarsening factor m0 = 8. It takes 8 iterations to achieve a comparable
error as sequential time-stepping over 10 cycles, see Figure 5.65.

Another typical property of MGRIT is that errors and residuals are generally larger
towards the end of the temporal domain and can be reduced much quicker at the beginning
of the temporal domain. This shows after the initial coarse-grid solve in iteration 0, see
Figure 5.62. The error then quickly equilibrates and has a similar order throughout the
temporal domain; with oscillations reflecting oscillations in the magnitudes of the solution
itself. The error can further be quickly reduced within just 8 time-periodic MGRIT
iterations. The errors for iteration 6 and iteration 8 are of the same order as for the
sequential time-stepping solution during cycles 9 and 10.
Similar observations can be made for the error in the solid displacement (see Figure 5.64



156 Chapter 5: Numerical results

and Figure 5.64) and solid velocity (see Figure 5.66 and Figure 5.66) with the only di↵er-
ence that the error in the solid displacement is of smaller order due to the relation (5.68)
between the solid displacement and velocity, and due to the one-to-one coupling (5.72)
between the fluid and solid velocity.
Thus, the time-periodic MGRIT algorithm (recall : two-level, FCF-relaxation, coarsen-

ing m0 = 8) only needs 8 iterations to converge to the same order of error as sequential
time-stepping over 10 cycles. This is despite the fact that the MGRIT residual is only
reduced by roughly two orders of magnitude (see Figure 5.67), which again highlights the
fact that the initial error after iteration 0 is already much smaller than with sequential
time-stepping after cycle 1.
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Figure 5.67: Residual reduction of two-level MGRIT with FCF-relaxation and temporal coars-
ening factor m0 = 8 depending on choice of initial condition.

We can then compare the wall clock times (using ORCA, see Section A) for sequential
time-stepping over 1, 3, 5, 10 cycles and for the time-periodic MGRIT algorithm over 8
iterations (see Figure 5.68 and Table 5.4) with no data export (i.e. only measuring elapsed
times for computation and communication). The wall clock time of the sequential time-
stepping algorithm varies between 45 seconds for 1 cycle and 454 seconds for 10 cycles.
On the other hand, the time-periodic MGRIT algorithm takes 174 seconds when no
parallelism is employed and only 20 seconds when using 32 processors in the temporal
domain (i.e. no spatial parallelism), yielding a maximum speedup of 22.57x, see Table 5.4.
Figure 5.69 further highlights the achieved space-time error for each simulated cy-

cle of sequential time-stepping or each iteration of time-periodic MGRIT. Time-periodic
MGRIT can achieve the same order of accuracy at a lower cost, which results in the best
observed speedup of 22.57x using 32 processors.
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Figure 5.68: Wall clock time of sequential time-stepping and time-periodic MGRIT to achieve
a comparable space-time error.

Number of Number of Number of Wall clock Speedup

Algorithm cycles iterations processors time vs. 10 cycles

Time-stepping 10 - 1 453.6 s -

MGRIT 1 8 1 174.0 s 2.61x

MGRIT 1 8 2 92.3 s 4.91x

MGRIT 1 8 4 56.7 s 8.00x

MGRIT 1 8 8 34.5 s 13.15x

MGRIT 1 8 16 24.9 s 18.22x

MGRIT 1 8 24 21.5 s 21.10x

MGRIT 1 8 32 20.1 s 22.57x

Table 5.4: Wall clock time and speedups for two-level MGRIT with FCF-relaxation and tem-
poral coarsening factor m0 = 8.
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Figure 5.69: Space-time error (velocity) compared to wall clock time of sequential time step-
ping and time-periodic MGRIT. Better accuracy can be achieved by simulating
additional cycles or performing more MGRIT iterations.

The question that arises is why the time-periodic MGRIT algorithm without parallelism
can outperform sequential time-stepping over 5 cycles. There are multiple explanations
that all work together:

1. Size of temporal domain:

Parallel-in-time integration through time-periodic MGRIT is applied to a tem-
poral domain that is much smaller, compared to simulating a given number of
cycles for sequential time-stepping.

2. Updating the initial condition:

The time-periodic MGRIT algorithm only requires an approximate update of
the initial condition, and thus, already works with an improved initial condition
after the very first iteration. This can be seen in Figure 5.69, where the first
iteration of MGRIT can achieve a better accuracy than simulating three cycles
with sequential time-stepping.

3. Multigrid reduction:

MGRIT is an iterative solver that achieves a speedup over sequential time-
stepping, which can be seen as a direct solver. The sequential component (i.e.
the coarse-grid) is reduced by the temporal coarsening factor m0.

4. Jump-starting MGRIT:

Using the skip-first-down option for MGRIT yields a cheap initial guess over
the entire space-time domain. In particular, it yields an already improved
initial condition, see Bullet 2.
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Previously, the initial condition (for sequential time stepping and the first iteration of
time-periodic MGRIT) was selected as the analytic solution at t = 0 (compare Chapter 2).
In typical applications, however, there is usually no good initial condition available, such
that oftentimes the initial condition is selected as zero. Thus, now a zero initial condi-
tion is selected and studied how such a choice a↵ects the solution process. Figure 5.70
illustrates the wall clock time depending on the required accuracy. It is noted, that now
12 time-periodic MGRIT iterations are required to achieve the same space-time error
as sequential time-stepping over 10 cycles because the initial error is larger. Thus, the
observed speedup is smaller with 1.77x using 1 processor, 5.56x using 4 processors and
14.98x using 32 processors. Considering the MGRIT residual for each iteration (see Fig-
ure 5.67), one can see that the residual norm is still reduced by roughly two orders of
magnitude, however, the reduction is a bit slower compared to using the analytic solution
as initial condition. This is not necessarily a problem because a slow-down in residual
reduction could simply be caused by a redistribution or equilibration of the error over the
temporal domain that still reduces the global space-time error.
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Figure 5.70: Space-time error (velocity) compared to wall clock time of sequential time step-
ping and time-periodic MGRIT when using a zero initial condition. There is
still a significant benefit of using time-periodic MGRIT, e.g., the maximum ob-
served speedup is 14.98x using 32 processors. But using a better initial condition
can accelerate time-periodic MGRIT relative to sequential time-stepping, see Fig-
ure 5.69.
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5.6 Analytic FSI solutions: Transient fluid / transient

nonlinear solid in 3D
12

In this section, complexity is added to assess the new time-periodic MGRIT algorithm
in a more challenging setting. More specifically, the time-periodic MGRIT algorithm is
applied to the three-dimensional FSI (transient fluid, transient nonlinear solid) test case
from Chapter 2 (see Section 2.2.1.2). The domains are given in Figure 2.2 and parameters
are selected similar to Section 2.4.2.2, see Table 5.5.

Fluid density Fluid viscosity Solid density Solid sti↵ness Cycle length

⇢f = 2.100 µf = 0.030 ⇢s = 1.000 µs = 0.100 T = 1.024

Table 5.5: Parameters for the 3D transient fluid / transient nonlinear solid case.

The coarse and medium refinement levels from Table 2.2 are considered for the spatial
mesh (i.e. step size �x, �y, �z 2 {0.314, 0.157}, number of DOFs Nx 2 {32793, 245009})
and the temporal domain is discretized using 512 and 2048 time steps (i.e. step size
�t 2 {0.002, 0.0005}) with constant �t/�2x ⇡ 0.02.13

Here, the initial condition is considered to be the analytic solution for all variables
except for the fluid velocity, which is initially zero everywhere. This is to achieve a good
initial condition and initial guess with a pertubation to simulate a practical case where
some (experimental) data are available but convergence to a periodic steady-state is still
required.
While the linear PDE convergence framework from Chapter 4 has shown promising

pathways for extensions to the nonlinear PDE case (see Section 5.4.8.2), no theoretical
convergence analysis is performed here. Instead, the knowledge from the linear PDE
convergence analysis from previous sections is applied in combination with the time-
periodic MGRIT algorithm to investigate if similarly large speedups can be obtained
for the nonlinear FSI test case. Thus, a two-level time-periodic MGRIT algorithm with
FCF-relaxation and temporal coarsening factor m0 = 8 is employed.
First, consider the convergence of the fluid velocity solution to its time-periodic steady-

state for the coarse mesh. Figure 5.71 illustrates how the error in the fluid velocity is
reduced over 7 consecutive cycles using sequential time-stepping. On the other hand,
Figure 5.72 illustrates error reduction over the cycle length when using time-periodic
MGRIT. Initially, the error in the MGRIT approximation is less equally distributed over
the cycle length. The error over the cycle length is also larger than during the first cycle
of the sequential time-stepping solution, see Figure 5.74. It seems likely that this is the
nonlinearity in the PDEs manifesting itself since a change in time step size (i.e. fine grid to
coarse grid time step size) can be expected to have a bigger impact on solution accuracy
compared to the linear PDE setting.
The error, however, can be reduced equally rapidly and a comparable order of error

can be achieved after 6 time-periodic MGRIT iterations. Thus, compared to the linear
FSI case (see Section 5.5) error reduction takes a similar number of time-periodic MGRIT
iterations. There is further a slight di↵erence in how the residual and error are reduced.

12Results in this section have previously appeared [62]
13Reported runtimes for ORCA (coarse mesh) and TOM (medium mesh), see Appendix A.
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For example, the MGRIT residual increases in iteration 4 (see Figure 5.73), and similarly,
the error plateaus, before both the residual and the error are further reduced. This
is in contrast to the linear FSI case, where both the residual and error were reduced
monotonously (e.g., see Figure 5.67 and Figure 5.70).
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Figure 5.71: Coarse mesh: Fluid velocity error reduction for sequential time-stepping over 7
cycles.
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Figure 5.72: Coarse mesh: Fluid velocity error reduction of two-level MGRIT with FCF-
relaxation and temporal coarsening factor m0 = 8. It takes 6 iterations to achieve
a comparable error as sequential time-stepping over 7 cycles, see Figure 5.71.
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Figure 5.73: Residual reduction of two-level MGRIT with FCF-relaxation and temporal coars-
ening factor m0 = 8.

Comparing wall clock times (see Figure 5.74) of sequential time-stepping and MGRIT
for the coarse mesh, it can be seen that achieved speedups are not as large as for the linear
FSI case. However, significant speedups over sequential time-stepping are achieved when
using 16 processors to parallelize in the temporal domain. Depending on the required
accuracy (see Figure 5.74 and Table 5.6), the speedup ranges between 2.96x and 6.20x
using 16 processors. The largest achieved speedup is 6.64x using 32 processors. Thus, the
benefit of adding more parallelism beyond 16 processors is negligible, while in the linear
FSI case, a larger additional speedup can be achieved. This is likely due to the nonlinear
solver taking more iterations toward the end of the temporal domain, and thus, causing
less optimal load balancing. To achieve an even larger speedup at a higher number of
processors, a di↵erent decomposition of the temporal domain could be considered that
takes the cost of each time step (with respect to its position along the temporal domain)
into account.
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Figure 5.74: Coarse mesh: Space-time error (velocity) compared to wall clock time of sequential
time stepping and time-periodic MGRIT when using a zero initial condition for the
fluid velocity and the analytic solution for all other variables. The largest achieved
speedup is 6.20x using 16 processors and 6.64x using 32 processors. See Table 5.6.

Sequential time-stepping MGRIT Speedup

#cycles Error #iterations Error 1 proc 4 procs 16 procs 32 procs

2 1.78 · 10�3 3 1.82 · 10�3 0.22x 1.10x 2.96x 3.08x

4 1.11 · 10�3 4 1.08 · 10�3 0.34x 1.72x 4.90x 5.08x

7 8.15 · 10�4 6 8.18 · 10�4 0.41x 2.03x 6.20x 6.64x

9 7.24 · 10�4 0.28x 1.40x 4.49x 4.91x

Table 5.6: Coarse mesh: Speedup depending on required accuracy and number of processors for
two-level MGRIT with FCF-relaxation and temporal coarsening factor m0 = 8. For
a graphical presentation, see Figure 5.74.

Now considering space-time refinement, it is possible to consider larger numbers of
processors. Figure 5.75 illustrates accuracy (for the velocity approximation) vs. associated
cost for sequential time-stepping, and time-periodic MGRIT with 16, 32 and 64 processors
in time. Again, it is possible to rapidly reduce the space-time error with time-periodic
MGRIT, giving the new algorithm a significant edge over sequential time-stepping in terms
of wall clock time. Considering a comparable space-time error after 6 cycles (sequential
time-stepping) and 6 iterations (time-periodic MGRIT), observed speedups are range from
6.40x using 16 processors to 9.05x using 64 processors, see Table 5.7. It is further noted,
that a small rebound e↵ect is observed between cycle 5 and 6 for sequential time-stepping,
which similarly occurs for the time-periodic MGRIT algorithm between iteration 4 and
5. After iteration 5, however, the time-periodic MGRIT algorithm can further reduce the
space-time error, while the wall clock time is still smaller than for sequential time-stepping.
As a matter of course, larger speedups might be observed when switching to a true
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multilevel MGRIT algorithm and are expected when combining time-parallelism with
space-parallelism, see Section 5.4.6.
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Figure 5.75: Medium mesh: Space-time error (velocity) compared to wall clock time of se-
quential time stepping and time-periodic MGRIT when using a zero initial con-
dition for the fluid velocity and the analytic solution for all other variables. The
largest achieved speedup is 7.73x using 32 processors and 9.60x using 64 proces-
sors. See Table 5.7.

Sequential time-stepping MGRIT Speedup

#cycles Error #iterations Error 16 procs 32 procs 64 procs

3 1.04 · 10�3 2 9.98 · 10�4 6.60x 6.52x 8.22x

5 4.65 · 10�4 4 4.17 · 10�4 7.19x 7.73x 9.60x

6 3.93 · 10�4 6 3.66 · 10�4 6.40x 7.20x 9.05x

9 2.00 · 10�4 4.60x 5.41x 6.88x

Table 5.7: Medium mesh: Speedup depending on required accuracy and number of processors
for two-level MGRIT with FCF-relaxation and temporal coarsening factor m0 = 8.



6 Application: Flow through left atrium

and ventricle in a Cardiac

Resynchronization Therapy patient
1

This chapter focuses on applying the time-periodic MGRIT algorithm introduced in Sec-
tion 3.6 to a cardiac application: dynamic flow through the left atrium (LA) and left
ventricle (LV).
In general, the cardiac cycle can be split into two phases: diastole and systole, see

Figure 6.1. During ventricular diastole, the ventricles relax and fill with blood from the
atria. During ventricular systole, the ventricles contract and eject blood to the lungs
(right ventricle) and the rest of the body (left ventricle).

Diastole Systole

Figure 6.1: The two phases of the cardiac cycle: diastole and systole. During ventricular di-
astole, the ventricles relax and fill with blood from the atria. During ventricular
systole, the ventricles contract and eject blood to the lungs (right ventricle) and the
rest of the body (left ventricle).2

1Results in this section were submitted as [62, 101]
2Image by BruceBlaus, licensed under CC BY-SA 4.0 [16]. Image adapted from https://commons.
wikimedia.org/wiki/File:Systolevs_Diastole.png.

165

https://commons.wikimedia.org/wiki/File:Systolevs_Diastole.png
https://commons.wikimedia.org/wiki/File:Systolevs_Diastole.png


166 Chapter 6: Application: Flow through left atrium and ventricle in a CRT patient

The human heart rate is fairly constant unless there are changes in physical activity
(e.g., standing up, faster gait, etc.) or in the environment (e.g., temperature change,
recognizing a risk, etc.). From experience, for example, the heart rate of a subject lying
in an MRI scanner may vary about ±5 beats per minute from the resting heart rate. Thus,
under stable conditions one can assume that the heart rate does not vary significantly. In
fact, assuming a constant heart rate is the basis for nearly all clinical imaging techniques,
including CT, MRI, and others. Such a situation is ideal to employ the time-periodic
MGRIT algorithm as a solver to obtain a periodic steady-state solution more e�ciently.
The geometry used in this study (see Figure 6.2), as well as the time-dependent de-

formation of the LA and LV were extracted from computed tomography (CT) data and
provided by Adelaide de Vecchi at King’s College London, UK. The CT data set stems
from a Cardiac Resynchronization Therapy (CRT) patient that, as we will see in Sec-
tion 6.5, su↵ers from an abnormal wall motion and a reduced ejection fraction. Due to
the exposure of the patient to ionizing radiation during a CT scan, the acquisition time
was kept as short as possible. Here, this means that no (additional) flow data (e.g., using
Doppler echocardiography [109]) could be acquired. It is thus unclear, how cardiac func-
tion and, in particular, how blood flow through the LA and LV are a↵ected. This is why
numerical models come into play.
In the following, the preprocessing pipeline to prepare the raw data for the use in a

numerical model is discussed in Section 6.1. The numerical model is presented in Sec-
tion 6.2. Section 6.3 discusses how a periodic steady-state is detected. Solver settings are
detailed in Section 6.4. Numerical results and runtime results are presented in Section 6.5,
demonstrating faster performance of time-periodic MGRIT over sequential time-stepping.
Section 6.6 gives an outlook on how the numerical model could be improved and how even
better runtimes (absolute runtimes, as well as relative to sequential time-stepping) could
be achieved by tuning parameters in the future.

6.1 Preprocessing pipeline

In this section, a detailed pipeline is described to prepare the raw image data for use in
a numerical model. The received data contained:

• Volume mesh in CHeart X/T/B format for LA and LV

• Deformation of LA and LV: 800 snapshots with 1 ms increments

• Parameters, see Table 6.1:

Density of blood: ⇢ = 1.025 g/cm3

Viscosity of blood: µ = 0.004 Pa · s
Duration of diastole: 0.370 s

The following steps were performed to preprocess the data set:

1. Python 3.5.2:

• Convert CHeart X/T/B format to Paraview VTU format [19]

2. Paraview 5.4.1:
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Figure 6.2: Left atrium and left ventricle: Initial mesh and di↵erent inflow / outflow bound-
aries. Red line indicates coupling surface between atrium (top) and ventricle (bot-
tom).

• Import VTU mesh

• Clip pulmonary veins to achieve plane boundary, see Figure 6.2

• Identify coupling boundary between LA and LV

• Extract surface including coupling surface

• Export facet file in STL format

3. Simmetrix SimModeler 6.0:

• Import STL file

• Create triangular surface mesh

• Create unique labels for veins, aorta, coupling surface and endocardial wall

• Create tetrahedral volume mesh

• Export mesh in UGRID format

4. Python 3.5.2:

• Convert UGRID format to CHeart X/T/B format [149]

• Convert X/T/B format to Paraview VTU format
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5. Paraview 5.4.1:

• Import VTU mesh

• Inspect mesh

• Extract nodes on coupling surface and export to TXT file

6. Python 3.5.2:

• Import X/T/B mesh and TXT file

• Find mesh elements that contain nodes in TXT file

• Duplicate nodes on coupling surface and renumber nodes on ventricle side to
split mesh into two parts (LA and LV)

• Export X/T/B mesh for LA and LV to separate files

• Export surface mesh on coupling boundary for Lagrange multiplier (LM) defi-
nition, see Section 6.2

• Convert X/T/B format to Paraview VTU format

7. Paraview 5.4.1:

• Import VTU mesh

• Inspect mesh for LA and LV

8. CHeart (Git commit SHA 85e19268):

• Compute mapping between nodes on LA coupling boundary and LM domain

• Compute mapping between nodes on LV coupling boundary and LM domain

9. Python 3.5.2:

• Map boundary motion data to LA and LV meshes for all 800 time steps

• LA: Compute distance of interior nodes to wall to define di↵usion coe�cient
for ALE mesh motion problem

• Convert mapped boundary domain motion to VTU format

10. Paraview 5.4.1:

• Import VTU boundary data

• Inspect boundary domain motion for LA and LV

11. CHeart (Git commit SHA 85e19268):

• Run ALE di↵usion problem for LA domain to get interior domain motion for
steps 1� 799, while maintaining mesh quality

• Run ALE mesh dependent sti↵ness problem for LV domain to get interior
domain motion for steps 1� 799, while maintaining mesh quality

• Compute mesh velocity at step 800, such that space coincides with initial
undeformed configuration at step 0; set mesh velocity at step 0 to mesh velocity
at 800
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• Convert mesh motion data to VTU format

12. Paraview 5.4.1:

• Import VTU mesh motion data

• Inspect domain motion for LA and LV

• Doublecheck mesh quality

13. Setup model in CHeart (Git commit SHA 85e19268), see Section 6.2

Parameter Symbol Value

Density ⇢ 1.025 g/cm3

Viscosity µ 0.004 Pa · s
Cycle length T 0.800 s

Duration of diastole 0.370 s

Duration of systole 0.430 s

Bounding box (extents) lx 13.680 cm

ly 12.044 cm

lz 9.111 cm

Time step size �0 0.001 s

Spatial step size (LA) �x 0.163� 0.290 cm

Spatial step size (LV) �x 0.194� 0.287 cm

Number of time steps N0 800

Number of elements (LA) 66484

Number of elements (LV) 69716

Number of DOFs (LA+LV) Nx 54822

Stabilization parameters [71] vmax
f 100 cm/s

⇣1 ⇢�max
x /vmax

f

⇣2 ⇢�max
x vmax

f

⇣3 �max
x /vmax

f

Outflow stabilization parameter [106] 0.2 · ⇢

Table 6.1: Material and other parameters for left atrium / left ventricle flow simulation. Here,
�max
x refers to the maximum per-element edge length.
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6.2 Model problem

The mitral valve (MV) geometry and deformation were not available from the data set
provided, and thus, the MV opening at t = 0 s is approximated as an ellipse with minor
and major axes of lmin

MV ⇡ 2.66 cm and lmax
MV ⇡ 4.64 cm. The MV is open for t 2 (0, 0.37] s

(diastole) and closed for t 2 (0.37, 0.8] s (systole).
The domains and domain boundaries (see Figure 6.2) are denoted as follows:

⌦A : LA domain

�V 1 : Vein 1 boundary

�V 2 : Vein 2 boundary

�V 3 : Vein 3 boundary

�V 4 : Vein 4 boundary

�V n : �V 1 [ �V 2 [ �V 3 [ �V 4

�CA : Common surface with LV

�CAo : Part of coupling surface of LA domain that is open during diastole

�WA : Endocardial wall of LA domain

⌦V : LV domain

�AV : Aortic valve boundary

�CV : Common surface with LA

�CV o : Part of coupling surface of LV domain that is open during diastole

�WV : Endocardial wall of LV domain

Furthermore, the coupling surface ⌦A \ ⌦V is denoted as:

⌦LM : Lagrange multiplier (LM) domain

�LM : LM boundary

6.2.1 Strong form equations

Blood is modeled as an incompressible Newtonian fluid with density ⇢ = 1.025 g/cm3 and
viscosity µ = 0.004 Pa · s, see Table 6.1. Flow in the atrium and ventricle is governed
by the nonconservative ALE Navier-Stokes equations for a Newtonian fluid. The strong
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form equations, coupling, boundary and initial conditions are given as,

⇢@tvA + ⇢ (vA �wA) ·rxvA �rx · �A = 0 in ⌦A, (6.1)

rx · vA = 0 in ⌦A, (6.2)

vA = wA on �WA, (6.3)

�A · nA = tA on �V n, (6.4)

vA(·, 0) = wA on ⌦A(0), (6.5)

⇢@tvV + ⇢ (vV �wV ) ·rxvV �rx · �V = 0 in ⌦V , (6.6)

rx · vV = 0 in ⌦V , (6.7)

vV = wV on �WV , (6.8)

vV = wV on �AV

for t 2 (0, 0.37], (6.9)

�V · nV = tV on �AV

for t 2 (0.37, 0.8], (6.10)

vV = wV on �CV \ �CV o

for t 2 (0, 0.37], (6.11)

vV (·, 0) = wV on ⌦V (0), (6.12)

vA � ↵1wA � ↵2vV = 0 on ⌦LM , (6.13)

↵1 (vV �wV ) + ↵2 (�V · nV + �A · nA) = 0 on ⌦LM , (6.14)

with velocity vA (atrium) and vV (ventricle), domain velocity wA (atrium) and wV (ven-
tricle) obtained from CT data (see Section 6.1), outward boundary normal nA (atrium)
and nV (ventricle), and Cauchy stress tensor,

�A = µ
⇥
rxvA +rT

xvA

⇤
� pAI, (6.15)

�V = µ
⇥
rxvV +rT

xvV

⇤
� pV I, (6.16)

with pressure pA (atrium) and pV (ventricle). Further, the scalar functions in Equa-
tion (6.13) and Equation (6.14) are defined as,

↵1 =

(
0 for t 2 (0, 0.37],

1 for t 2 (0.37, 0.8],
(6.17)

↵2 =

(
1 for t 2 (0, 0.37],

0 for t 2 (0.37, 0.8],
(6.18)

and enable switching the coupling constraints between diastole and systole:

• Diastole: Continuity of velocity and traction across coupling boundary.

• Systole: No-slip condition on coupling boundary.
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Further, outflow stabilization is employed at the veins (see Equation 6.4) to deal with
potential reflow on �V n, and at the aortic valve boundary during systole (see Equa-
tion (6.10)),

tA =
⇢�

2

(vA · nA)
2

(vA · nA)
2 + 0.01

min {vA · nA, 0}vA, (6.19)

tV =
⇢�

2

(vV · nV )
2

(vV · nV )
2 + 0.01

min {vV · nV , 0}vV . (6.20)

Note, that Equation (6.19) and Equation (6.20) provide a modified version of the outflow
stabilization proposed in [8] with a scaling of � = 0.2, as suggested in [106].

6.2.2 Finite element formulation using Lagrange multipliers

“The normal mitral valve peak diastolic velocity is less than 1.3 m/s” [109]. Thus, the
peak Reynolds number at the MV opening can be estimated as:

Re =
⇢vmax

f lmin
MV

µ
⇡ 1.025 g/cm3 · 130.0 cm/s · 2.66 cm

0.04 g/(cm · s) ⇡ 8861. (6.21)

Due to the expected peak Reynolds number of 8861, the flow is modeled by a stabi-
lized general Galerkin scheme (instead of using, e.g., an inf-sup stable Taylor-Hood finite
element discretization scheme) for the incompressible Navier-Stokes equations; namely
the cG(1)cG(1) scheme as given in the study of Ho↵man et al. [71]. The scheme was
implemented in CHeart [18, 94], and validated in a previous work [67].
On the coupling domain, Lagrange mulitplier variables are defined as �A = �A ·nA and

�V = ��V · nV to enforce the coupling constraints, see Section 6.2.1, such that during
dyastole: �A � �V = 0.

6.2.2.1 Spatiotemporal discretization

The temporal domain is discretized using 800 equidistant time steps 0 s = t0 < t1 < . . . <
tN0�1 = 0.8 s with constant time step size �0 = tn+1 � tn = 0.001 s for n = 0, . . . , N0 � 2.
Similar to Scheme I in Section 5.3.3, the time discretization had originally been im-
plemented in CHeart using an average between the current and previous velocity. In
preliminary tests, this resulted in unphysical oscillations at inflow and outflow boundaries
(similar to those observed for the linear elasticity problem in Section 5.3) when MGRIT
was used for parallel-in-time integration. Thus, a pure backward Euler time discretization
scheme (similar to Scheme II in Section 5.3.6) was implemented that results in a stable
PinT algorithm.
The atrial and ventricular domains, ⌦A and ⌦V , are discretized using 66484 and

69716 tetrahedral elements. The coupling domain ⌦LM is discretized using 945 trian-
gular elements that conform with the tetrahedral elements at the coupling boundary
of the atrium and ventricle. In the following, we use ⌦0

A and ⌦0
V to refer to the ini-

tial meshes discretizing atrium and ventricle; further, ⌦n
A and ⌦n

V refer to the respective
current meshes. In particular, due to the construction of the domain deformation (see
Section 6.1): ⌦0

A = ⌦N0�1
A and ⌦0

V = ⌦N0�1
V .
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6.2.2.2 Weak formulation

Finite element discretizations were constructed using P1�P1 elements for fluid velocity and
pressure and P1 elements for the Lagrange multipliers on the coupling domain, resulting
in 55842 degrees-of-freedom (DOFs). The discrete solution at each time step n can then
be written as follows:
Find sn := (vn

A,v
n
V ,�

n
A,�

n
V , p

n
A, p

n
V ) 2 Sh

D := Vh
D ⇥Uh

D ⇥Mh
0 ⇥N h

0 ⇥Wh
A ⇥Wh

V , such
that for every d := (yA,yV ,'A,'V , qA, qV ) 2 Sh

0 := Vh
0 ⇥ Uh

0 ⇥Mh
0 ⇥N h

0 ⇥Wh
A ⇥Wh

V :

R
�
sn, sn�1,wn

A,w
n
V ;d

�

:=

Z

⌦n

A


vn
A � vn

A

�0
+ (vn

A �wn
A) ·rxv

n
A

�
· yA dx

+

Z

⌦n

A

�n
A : rxyA +'Arx · vn

A dx

�
Z

�n

V n

tnA · yA dx

+

Z

⌦n

V


vn
V � vn

V

�0
+ (vn

V �wn
V ) ·rxv

n
V

�
· yV dx

+

Z

⌦n

V

�n
V : rxyV +'Vrx · vn

A dx

� ↵1

Z

�n

AV

tnV · yV dx

+

Z

⌦0
LM

'A · (vn
A � ↵1w

n
A � ↵2v

n
V ) dx

+

Z

⌦0
LM

↵1'V (vn
A � vn

V ) dx

+

Z

⌦0
LM

↵2 (�A · yA � �V · yV ) dx

+ ⇣1

Z

⌦n

A

[(vn
A �wn

A) ·rxv
n
A] · [vn

A ·rxyA +rxqA] dx

+ ⇣2

Z

⌦n

A

(rx · vA) · (rx · yA) dx

+ ⇣3

Z

⌦n

A

(rxp
n
A) · (vn

A ·rxyA +rxqA) dx

+ ⇣1

Z

⌦n

V

[(vn
V �wn

V ) ·rxv
n
V ] · [vn

V ·rxyV +rxqV ] dx

+ ⇣2

Z

⌦n

V

(rx · vV ) · (rx · yV ) dx

+ ⇣3

Z

⌦n

V

(rxp
n
V ) · (vn

V ·rxyV +rxqV ) dx (6.22)

where the stabilization terms with parameters ⇣1, ⇣2 and ⇣3 (see Table 6.1) are added
according to the cG(1)cG(1) scheme [71].
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Note, that the domain velocity wn
A and wn

V is provided from the CT data, see Sec-
tion 6.1.
The definitions of the function spaces are:

S1
�
⌦0

i

�
= {f : ⌦0

i ! R | f 2 C0(⌦̄0
i ), f |⌧e 2 P1(⌧e), 8 ⌧e 2 T h

i }, (6.23)

which represent the first-order piecewise continuous polynomial spaces defined on ⌦0
i .

Consequently, we can define:

Vh =
⇥
S1(⌦0

A)
⇤3
, Uh =

⇥
S1(⌦0

V )
⇤3
,

Mh =
⇥
S1(�CA)

⇤3
, N h =

⇥
S1(�V A)

⇤3
,

Wh
A = S1(⌦0

A), Wh
V = S1(⌦0

V ).

Further restrictions are applied on the respective spaces for the atrium and ventricle in
order to incorporate the Dirichlet and homogeneous boundary conditions:

Vh
D = {v 2 Vh | v = wA on �h

WA}, (6.24)

Vh
0 = {v 2 Vh | v = 0 on �h

WA}, (6.25)

Uh
D = {v 2 Uh | v = wV on �h

WV ,

v = wV on �h
AV for t 2 (0, 0.37],

v = wV on �h
CV \ �h

CV o for t 2 (0.37, 0.8]}, (6.26)

Uh
0 = {v 2 Uh | v = 0 on �h

WV ,

v = 0 on �h
AV for t 2 (0, 0.37],

v = 0 on �h
CV \ �h

CV o for t 2 (0.37, 0.8]}, (6.27)

and similarly for the coupling domains,

Mh
0 = {� 2 ��CA

Vh
0}, (6.28)

N h
0 = {� 2 ��CV

Uh
0}, (6.29)

where ��CA
and ��CV

are the trace operators on �CA and �CV , respectively.

6.3 Obtaining and detecting a periodic steady-state

Similar to problems described in previous chapters (e.g., see Section 3.6, Section 5.4,
etc.), the system has to be driven to a periodic steady-state because no data is available
to prescribe a meaningful initial flow condition. Thus, zero initial flow is assumed and
the system is driven to a time-periodic steady-state.
To detect such a periodic steady-state, the rate of inflow / outflow at the pulmonary

veins3 is measured over the entire cycle length at 10 ms increments.

3Note, that the flow rates at the MV and AV surfaces can be captured with machine precision since the
fluxes reflect the prescribed volume change in the ventricle during diastole (flow between LA and LV)
and systole (flow across AV surface).
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6.4 Solver

CHeart (Git commit SHA 85e19268) [18, 94] and the matrix solver MUMPS (version
5.0.0) [2] were used to solve the considered problem using sequential time-stepping. A
Shamanskii-Newton-Raphson (SNR) method [129] was employed to solve the nonlinear
system (absolute tolerance 10�8) and to enable reuse of the Jacobian matrix and its
inverse, which reduces the computational cost of the algorithm. To obtain a periodic
steady-state, 10 cycles are simulated.
The XBraid (version 2.3.0) [158] library was employed to enable parallel-in-time in-

tegration. XBraid wrappers and extensions were written to use CHeart in conjuction
with the time-periodic MGRIT algorithm described in Section 3.6. When using MGRIT,
separate Jacobian matrix objects were stored for the Jacobian on each time-grid level;
that is, the appropriate Jacobian matrix object for a given grid level (i.e. time step size)
was selected to enable using the more e�cient SNR method, similar to sequential time-
stepping. The skip-first-down option was used to generate a cheap initial space-time guess
and XBraid was forced to perform 10 time-periodic MGRIT iterations to obtain a periodic
steady-state. Further XBraid settings are given in Table 6.2.
In both cases, data are exported at 10 ms increments.

Parameter Value

Number of time grids nl = 2

Temporal coarsening factor m0 = 8

Number of FC-relaxation steps r = 1

Skip-first-down option Enabled

Forced number of iterations 10

Table 6.2: XBraid settings for the LA / LV flow problem.

6.5 Results

6.5.1 Fluid volume

First, consider the volume of the LV over time, see Figure 6.3. For example, the end-
diastolic volume (EDV) [73] at t = 0.37 s is approximately,

EDV ⇡ 192.50 cm3, (6.30)

and the end-systolic volume (ESV) at t = 0.8 s is approximately,

ESV ⇡ 152.46 cm3.

Thus, the stroke volume (SV) is,

SV = EDV � ESV ⇡ 40.04 cm3,

and the left ventricular ejection fraction (LVEF) is,

LV EF = 100 SV/EDV ⇡ 20.80 %.
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Figure 6.3: Fluid volume in left atrium and left ventricle over one cardiac cycle.

Thus, according to the LVEF categories defined in the European Society of Cardiology
Guidelines 2016 [115, Section 3.2.1], the LVEF is significantly reduced:

� 50% : normal

40� 49% : midrange

< 40% : reduced

Further, the SV is reduced and the EDV and ESV are high compared to the normal
ranges [98, Table 1] in healthy individuals:

Quantity Subjects CAFU method [98] QGS method [98]

ESV Women 28 ml 25 ml

Men 46 ml 47 ml

EDV Women 99 ml 75 ml

Men 132 ml 112 ml

SV Women 71 ml 50 ml

Men 86 ml 65 ml

LVEF Women 72 ml 68 ml

Men 65 ml 59 ml

6.5.2 Periodic steady-state: Flow rate at pulmonary veins

Figure 6.4 illustrates the flow rate at all pulmonary veins over the duration of one cy-
cle for all even numbered cycles, as obtained with sequential time-stepping. Figure 6.4
highlights that it is necessary to run multiple cycles to minimize cycle-to-cycle variations.
Furthermore, the flow rate at vein 1 converges to a periodic steady-state quicker than the
flow rate at vein 4, however, a periodic steady-state is obtained at each vein.
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On the other hand, Figure 6.5 highlights a similar convergence behavior when the
time-periodic MGRIT algorithm is employed to obtain a periodic steady-state solution.
In contrast to the sequential time-stepping solution (see Figure 6.4), however, the initial
error in the flow rates can be reduced slightly more quickly. It seems reasonable to assume
that this is achieved by providing a better initial guess of the initial condition by means
of XBraid’s skip-first-down option (see Section 6.4) and by updating the initial condition
multiple times during each time-periodic MGRIT iteration (see Section 3.6).
Selecting the space-time solution for cycle 10 or iteration 10 as the periodic steady-state

solution, the error for each cycle and each iteration can be quantified. Figure 6.6 high-
lights that a periodic steady-state can be achieved by running sequential time-stepping
for 7 cycles or time-periodic MGRIT for 6 iterations (note, that this does not include the
first coarse-grid solve according to XBraid’s skip-first-down option). Thus, in terms of
convergence to a periodic steady-state, one time-periodic MGRIT iteration corresponds
to running one cycle using sequential time-stepping. This is ideal in the sense that each
MGRIT iteration can update the initial condition at relatively cheaper cost (compared
to running one cycle using sequential time-stepping), whereas the underlying multigrid
algorithm achieves convergence in the interior of the temporal domain; thus, the signif-
icant potential benefit in reducing the wall clock time of the algorithm, see Section 6.3.

6.5.3 Flow in left atrium and ventricle

Figure 6.7 and Figure 6.8 illustrate the flow in the left atrium and ventricle over cycle 10.
During diastole, flow through the pulmonary veins causes a slight spiraling of flow in the
left atrium and a filling of the left ventricle through the mitral valve. Peak velocities
occurs at the pulmonary vein boundaries and the mitral valve section, see Figure 6.7.
The peak flow through the MV was estimated as 46.18 cm/s, such that the corresponding
Reynolds number is given as,

Re =
⇢vmax

f lc
µ

=
1.025g/cm3 · 46.18cm/s · 2.66cm

0.04g/(cm · s) ⇡ 3147.74. (6.31)

Further, the strong jet-like flow through the mitral valve causes a circular flow structure
to develop around the jet with reflow regions between the jet and the endocardial wall
(see Figure 6.8, top-left), which moves downward after the MV closes (see Figure 6.8,
top-right and row 2).
During systole, the vortices near the MV decelerate and blood is ejected through the

aortic valve boundary, e.g., see t = 0.6 s and t = 0.7 s in Figure 6.8.

6.5.4 Runtimes & Speedup

Here, runtimes and errors for sequential time-stepping and time-periodic MGRIT are com-
pared. Timing results were obtained on TheoSim (see Appendix A) with 8 or 16 processors
per node. Errors are those reported in Figure 6.6b and Figure 6.6c.
As can be seen in Figure 6.9, spatial parallelism can reduce the wall clock time for

sequential time-stepping. For example, the speedup of switching from 8 processors to
16 processors in space is 1.58x, see Table 6.3. Spatial parallelism, however, saturates with



178 Chapter 6: Application: Flow through left atrium and ventricle in a CRT patient

Algorithm px pt pxpt Wall clock time [s] Speedup E�ciency

Sequential time-stepping 8 � 8 15814

16 � 16 10017 1.58x 0.79

32 � 32 12199 1.30x 0.33

Time-periodic MGRIT 16 5 80 4940 3.20x 0.32

8 10 80 4310 3.67x 0.37

8 20 160 3470 4.56x 0.23

Table 6.3: Runtimes and respective speedups for sequential time-stepping (7 cycles) and time-
periodic MGRIT (6 iterations) with px processors in space and pt processors in time.

a subsequent increase of the time-to-solution for 32 processors compared to 16 processors
in space.
For any required space-time error, time-periodic MGRIT is faster than sequential time-

stepping. The results in Figure 6.9 – Figure 6.12 further highlight that it is better to
employ more processors for parallelizing in the temporal domain intead of the spatial
domain. For example, when using a total number of 80 processors, the wall clock time for
time-periodic MGRIT can be reduced when more processors are assigned to the temporal
component than the spatial component.

6.6 Future work

In the future, spatial mesh refinement should be investigated as the considered mesh
was fairly coarse for the employed cG(1)cG(1) scheme. It should be assessed, how spatial
mesh refinement changes the flow rates at the pulmonary veins. For example, in this study
mostly outflow occured at vein 1, which is not necessarily physical. This could, however,
be related to employing outflow stabilization (see Section 6.2.1), which can a↵ect the
solution and has to be studied.
Furthermore, it needs to be assessed whether the time step size of 1 ms is su�ciently

small. If not, this could increase the potential speedup when using time-periodic MGRIT
by employing a larger temporal coarsening factor or more processors to parallelize in the
time component. Additionally, switching to a true multilevel scheme (i.e. more then two
time grid levels) could prove beneficial and reduce the overall runtime of the algorithm.
Switching from diastole to systole (at t = 0.37) at a fine-grid C-point might further reduce
the wall clock time.
Including a model for the mitral valve to capture the dynamics and deformation of

the valve and its e↵ect on the surrounding flow could be a potential improvement of the
overall model of the system; for example, by employing a PUFEM approach as proposed
in [5].
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Figure 6.4: Flow rates at pulmonary veins 1 � 4 (top to bottom): A periodic steady-state can
be achieved by running multiple cycles using sequential time stepping. Note: A
negative flow rate corresponds to inflow.
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Figure 6.5: Flow rates at pulmonary veins 1 � 4 (top to bottom): A periodic steady-state can
be achieved by running multiple iterations using time-periodic MGRIT. Note: A
negative flow rate corresponds to inflow.
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(c) Per-cycle error compared to itera-
tion 10.
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(d) Per-iteration error compared to cy-
cle 10.

Figure 6.6: Convergence of flow rates at veins 1� 4 boundaries with reference data selected as
cycle 10 from sequential time-stepping or iteration 10 from time-periodic MGRIT.
Space-time error using norm defined in Equation (2.129).
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t = 0.00 s t = 0.05 s

t = 0.10 s t = 0.15 s

t = 0.20 s t = 0.25 s

0 0.1 0.2 0.3 0.4

Velocity magnitude

Figure 6.7: Flow at midsections in the left atrium and ventricle during diastole for two di↵erent
perspectives, similar to those in Figure 6.2.
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t = 0.30 s t = 0.40 s

t = 0.50 s t = 0.60 s

t = 0.70 s t = 0.80 s
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Figure 6.8: Flow at midsections in the left atrium and ventricle at the end of diastole and
during systole for two di↵erent perspectives, similar to those in Figure 6.2.
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Figure 6.9: Vein 1: Space-time error (flow rate) compared to wall clock time for sequential
time stepping and time-periodic MGRIT. MGRIT is consistenly faster than se-
quential time-stepping and using a larger number of processors in time (denoted
as pt) instead of space (denoted as px) reduces the wall clock time of time-periodic
MGRIT.
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Figure 6.10: Vein 2: Space-time error (flow rate) compared to wall clock time for sequential
time stepping and time-periodic MGRIT. MGRIT is consistenly faster than se-
quential time-stepping and using a larger number of processors in time (denoted
as pt) instead of space (denoted as px) reduces the wall clock time of time-periodic
MGRIT.
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Figure 6.11: Vein 3: Space-time error (flow rate) compared to wall clock time for sequential
time stepping and time-periodic MGRIT. MGRIT is consistenly faster than se-
quential time-stepping and using a larger number of processors in time (denoted
as pt) instead of space (denoted as px) reduces the wall clock time of time-periodic
MGRIT.
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Figure 6.12: Vein 4: Space-time error (flow rate) compared to wall clock time for sequential
time stepping and time-periodic MGRIT. MGRIT is consistenly faster than se-
quential time-stepping and using a larger number of processors in time (denoted
as pt) instead of space (denoted as px) reduces the wall clock time of time-periodic
MGRIT.





7 Summary & Outlook

7.1 Summary

In this Ph.D. Thesis, a multilevel convergence framework for multigrid-reduction-in-time
(MGRIT) was derived for various parameter settings and applied to a number of test
problems relevant to fluid-structure interaction (FSI) modeling: the anisotropic di↵usion
equation, the wave equation, the linear elasticity equation, the Stokes and Navier-Stokes
equations, and for a novel class of analytic solutions for coupled linear and nonlinear FSI.
The derived a priori upper bounds range from sharp but computationally expensive

numerical upper bounds to cheap analytic formulae bounding the worst-case convergence
of MGRIT. Furthermore, approximate convergence factors were proposed that capture
MGRIT convergence with reasonable quality for cases, when analytic formulae are not
available and the computational cost of numerical bounds is prohibitive. The convergence
framework was derived under the assumption of solving linear partial di↵erential equations
(PDEs), however, promising extensions to the nonlinear domain were explored that can
help guide future generalizations of the theory.
The benefits of the convergence framework were demonstrated, for example:

• It is capable of predicting and bounding worst-case convergence of MGRIT a priori.

• It can help to identify desirable properties of time integration schemes. For example,
L-stable time integration schemes are more amendable to parallel-in-time integration
than A-stable schemes.

• It can capture observations in numerical experiments that were reported in litera-
ture, for example:

– Slow temporal coarsening in a multilevel hierarchy can lead to faster conver-
gence than aggressive coarsening in a two-level hierarchy.

– Stronger relaxation improves convergence of MGRIT for parabolic problems
but not necessarily for purely hyperbolic problems.

– F-cycles yield better performance than V-cycles.

Furthermore, an MGRIT variant was proposed that exploits the time-periodicity, which
is present in many biomedical engineering applications, e.g., cyclic blood flow in the human
heart. The time-periodic MGRIT algorithm was assessed for simple flow problems, linear
and nonlinear coupled FSI models, as well as nonlinear flow in a patient-specific model
of the left atrium and left ventricle. For the range of considered test problems, the time-
periodic MGRIT algorithm proved capable of consistently reducing the time-to-solution
of an existing simulation model with significant observed speedups. It further highlighted
that one time-periodic MGRIT iteration corresponds to solving one cycle using sequential
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time-stepping, which helped identifying a better convergence criterion. For most cases in
literature, the tolerance imposed on the MGRIT residual was quite tight, which may often
lead to a (potentially unnecessarily) large number of MGRIT iterations. By employing
some knowledge about how the algorithm converges, one can decrease the required number
of iterations and reduce the runtime of the algorithm.

7.2 Outlook

The multilevel convergence framework proposed in this work provides the basis for an
in-depth understanding of existing MGRIT variants and developing new variants of the
MGRIT algorithm, for example:

• Design of optimal time integration scheme: For example, select a time inte-
gration scheme on the fine grid and optimize over the Butcher coe�cients for the
coarse-grid time integration scheme. Approach similar to [37, 90].

• Weighted relaxation: Weight relaxation steps to improve convergence similar to
other iterative schemes, e.g., the weighted Jacobi method.

• Coarsening in integration order: Like in spatial multigrid, complement or re-
place temporal coarsening with coarsening in integration order. Similar to coarsen-
ing in collocation order, see [135].

• Dissipative spatial operators: Use artificial dissipation to improve convergence,
see [126].

• Periodic coarse time grids: Following the success of the time-periodic MGRIT
algorithm proposed in Section 3.6, one could make all coarse time grids periodic in
addition to the fine grid. Approach similiar to [40, 41].

• Optimal speedup: Combine the convergence framework with performance mod-
eling [38] to find the best scheme with the shortest runtime and the largest speedup
a priori.

• Applications: Apply MGRIT and its variants to further application areas, such
as skeletal muscle models, porous media problems, etc.

Using the new class of analytic solutions for linear and nonlinear FSI from Chapter 2
helps to explore these new variants and develop robust solvers by exactly measuring and
tracking the space-time error across the whole temporal domain, e.g., see Section 2.4.2.2.



A Parallel machines

Name LEAD

Operating System Scientific Linux 6.4 (Carbon)

Compute Nodes 1x AMD Opteron 6373 G34

2.3 GHz, 4x 16 cores, Abu Dhabi

7x AMD Opteron 6328 G34

3.2 GHz, 4x 8 cores, Abu Dhabi

Memory per Node 256 GB

Disks per Node 4 x 128 GB Samsung SSD

Network 2 x 10 GBit Intel 82599ES Ethernet Dual SFP+

1 x Melanox MCX353A-QCBT,

Infiniband single-port QSFP, IB 40 GB/s

2 x 1 GBit

Total Number of Processors 288

Table A.1: Hardware and software specifications for LEAD cluster.

Name TheoSim

Operating System Scientific Linux 6.10 (Carbon)

Compute Nodes 52x Intel(R) Xeon(R) E5-2650 v2

2.8 GHz, 2x 10 cores, Ivy Bridge

Available for project: 18 nodes

Memory per Node 256 GB

Disks per Node 4 x 500 GB Samsung SSD

Network 1 x QDR-Infiniband Interconnect (40 GBit)

1 x 1 GBit Ethernet

Total Number of Processors 1040

Available for project: 360

Table A.2: Hardware and software specifications for TheoSim cluster.
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Name ORCA

Operating System Ubuntu 16.04

Compute Nodes 1x AMD Ryzen Threadripper 2990WX

3.0 GHz, 32 cores

Memory per Node 128 GB

Disks per Node 3 x 1 TB Samsung NVME SSD

Total Number of Processors 32

Table A.3: Hardware and software specifications for ORCA cluster.

Name TOM

Operating System Suse SLES 11 SP1

Compute Nodes 76x Intel(R) Xeon(R) E7-8837

2.66GHz, 8 cores, Westmere EX

Memory per Node 64 GB

Network NUMAlink 5 Interconnect

Total Number of Processors 608

Table A.4: Hardware and software specifications for TOM cluster.



B Butcher tableaux of SDIRK schemes

1 1

1

1� � 1� � 0

� 2� � 1 1� �

1/2 1/2

q q 0 0

s s� q q 0

1 r 1� q � r q

r 1� q � r q

Table B.1: Butcher tableau for L-stable SDIRK scheme of orders 1 - 3 with � = 1/
p
2, q =

0.4358665215 . . ., r = 1.2084966491 . . . and s = 0.7179332607 . . .; See [25].

1/4 1/4 0 0 0 0

3/4 1/2 1/4 0 0 0

11/20 17/50 �1/25 1/4 0 0

1/2 371/1360 �137/2720 15/544 1/4 0

1 25/24 �49/48 125/16 �85/12 1/4

25/24 �49/48 125/16 �85/12 1/4

Table B.2: Butcher tableau for L-stable SDIRK scheme of orders 4; See [27], Appendix C.

1/4 1/4 0

3/4 1/2 1/4

1/2 1/2

� � 0

1� � 1� 2� �

1/2 1/2

q q 0 0

1/2 1/2� q q 0

1� q 2q 1� 4q q

r 1� 2r r

Table B.3: Butcher tableau for A-stable SDIRK scheme of orders 2 - 4 with � = (3 +
p
3)/6,

q = cos (⇡/18)/
p
3 + 1/2 and r = 1/(6(2q � 1)2); See [12].
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Multilevel Convergence Analysis:

Parallel-in-Time Integration

for Fluid-Structure Interaction

Problems with Applications

in Cardiac Flow Modeling

Andreas Hessenthaler

vorgelegt an der

In this Ph.D. Thesis, multigrid-reduction-in-time (MGRIT) is considered
as means to reduce the time-to-solution for numerical algorithms con-
cerned with the solution of time-dependent partial di↵erential equations
(PDEs) arising in the field of fluid-structure interaction (FSI) modeling.
As a parallel-in-time integration method, the MGRIT algorithm signifi-
cantly increases the potential for parallel speedup by employing modern
computer architectures, ranging from small-scale clusters to massively
parallel high-performance computing platforms.
In this work, the MGRIT algorithm is considered as a true multilevel
method that can exhibit optimal scaling. Convergence of MGRIT is
studied for the solution of linear and nonlinear (systems of) PDEs: from
single- to multiphysics applications relevant to FSI problems in two and
three dimensions.
A multilevel convergence framework for MGRIT is derived that estab-
lishes a priori upper bounds and approximate convergence factors for a
variety of cycling strategies (e.g., V- and F-cycles), relaxation schemes
and parameter settings. The convergence framework is applied to a num-
ber of test problems relevant to FSI modeling, both linear and nonlinear
as well as parabolic and hyperbolic in nature.
An MGRIT variant is further proposed that exploits the time-periodicity
that is present in many biomedical engineering applications, e.g., cyclic
blood flow in the human heart. The time-periodic MGRIT algorithm
proves capable of consistently reducing the time-to-solution of an existing
simulation model with significant observed speedups.
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