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Abstract
This thesis presents a new framework and methodology for modelling the struc-

ture and function of skeletal muscles. It incorporates an anatomical description

of the macroscopic structure of the muscle, an extensive representation of the

physiology of skeletal muscle tissue, and comprehensive depiction of the func-

tional response of skeletal muscle to both physiological and external inputs.

The components of structure, physiology, and function are combined together

to give the most detailed skeletal muscle model currently available. The gen-

eral skeletal muscle modelling framework is demonstrated using the specific

example of the human Tibialis Anterior.

The physiology of skeletal muscle is represented using the Shorten et.al.

cellular model [105] and the Bidomain equations [55]. The structure of the

human Tibialis Anterior muscle is represented using triquadratic-Lagrange Fi-

nite Elements, and includes information on the internal muscle fibre directions.

Individual muscle fibres are explicitly represented within the muscle and are

grouped into functional units (the Motor Units) in a physiologically accurate

manner. Physiological activation, or activation as a result of an applied stim-

ulus, can be represented.

Physiological data obtained from the combination of the fibre activation

and the Bidomain simulation of muscle physiology are then linked, using a

novel muscle constitutive law, to produce whole muscle deformation. The

framework is a true multi-scale modelling framework, linking one of the most

detailed skeletal muscle physiological models available to the deformation of

the muscle as a whole. As a result of this detail, muscle force output profiles

that replicate physiologically, and numerically obtained data, can be generated.

The modelling framework has been developed to maximise versatility. It

provides for the first time a multi-scale framework where such a large number

of model input parameters are able to be modified to demonstrate the effect

of varying muscle properties. The versatility of this modelling framework is

demonstrated by building stimulation protocols, using the constraint of inverse

muscle recruitment, which represent normal, physiological, muscle recruitment.

It is hoped that, with further advances in knowledge concerning the me-

chanical behaviour of skeletal muscle, this modelling framework will be able

to provide insight into the development of Functional Electrical Simulation
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protocols, as well as provide a tool for researchers interested in the interaction

of structure and function within skeletal muscle.
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Chapter 1

Motivation

The structure and function of skeletal muscle has been the subject of investi-

gation for many years. Over the last five decades, developments in the areas

of molecular biology, physiology, and the ever increasing level of technology,

which is used to probe all facets of science, have led to a massive body of

knowledge on the structure and function of muscle. However, there are still

areas where our understanding is relatively limited.

As needs and technologies change, emphasis shifts to areas where the great-

est gain in knowledge can be made. The progress in the field that led to the

advent of technologies such as Functional Electrical Stimulation, Electromyo-

grams, and tendon relocation surgery; our improved understanding of how

genetic-based diseases occur and progress; and our ubiquitous quest for knowl-

edge, has induced a massive drive to increase our understanding of how muscle

tissue works. For example, Functional Electrical Stimulation, a rehabilitation

technique, requires improvements in the areas of electrode localisation, stimu-

lus protocol design, and activation trains to help minimise fatigue and improve

the technique’s efficacy. In order to enhance Electromyography (EMG) into

a tool that can be used for diagnosis of ailments and improve its research ca-

pabilities, greater knowledge is required as to the Electromyograph’s specific

output, and how different patients, time courses and muscle geometries can

effect the output. When performing tendon relocation surgery in order to im-

prove a patient’s quality of life, a detailed understanding on how the change

in the location of muscle attachment areas will effect the three-dimensional

interactions of the surrounding musculoskeletal system is desirable. In addi-

1



2 Chapter 1. Motivation

tion, the possible effects on performance that a muscle of different composition

and structure will haven in the modified system would also be of benefit. Ge-

netic diseases, such as muscular dystrophies and cerebral palsy, that affect the

structure and composition of muscle over time could be diagnosed earlier and

possibly treated in a more effective manner with a more inclusive concept on

the electrical and mechanical functioning of muscle in health and disease.

The work presented in this thesis has been motivated by the fact that mod-

elling of a system is integral to the process of understanding the underlying

function of a system and thus facilitating more targeted investigations into

areas of interest. A multi-scale modelling framework that is able to replicate

much of the current knowledge on skeletal muscle structure and function would

not only be of great use in further understanding the problems outlined above,

but would also be an invaluable tool in helping researchers and experimen-

talists gain insight into future problems and help guide them to likely areas

of interest, or methods of investigation. This alone would save time and ef-

fort in both experimental time and ethics requirements. Further, advances in

the areas of anatomy, physiology, molecular biology, and biomechanics have

tended to create large pools of related, but disjoint, information. A number of

studies on the function of skeletal muscle have attempted to pull information

together from different areas, e.g. the work of Fernandez et.al. [33], however

the work presented in this thesis is one of the most complete multi-scale mod-

elling frameworks to date, including sub-cellular muscle behaviour, structural

organisation, functional organisation, and whole muscle response.

With these goals in mind, the work presented creates a framework for

musculoskeletal modelling that integrates the sub-cellular function of muscle

tissue, as defined by the Shorten et.al. model [105] and is also able to predict

the large scale muscle response as a result of these sub-cellular actions using

the governing equations of finite elasticity. Further, the presented framework

is capable of replicating the gross control mechanism of normal skeletal muscle

to achieve a realistic large scale response by using elements of the Fuglevand

et.al. [36] and Enoka et.al. [30] models, which define muscle composition and

whole muscle response to activation. In addition, a large amount of flexibility is

included so that changes in sub-cellular physiology, internal muscle structure,

gross structural changes, functional grouping and control mechanisms can be
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investigated. To this end, the work detailed in this thesis is set out as follows;

• The Introduction and Background (Chapter 2) gives a short background

on skeletal muscle structure and function. The structure and function

of skeletal muscle from the sub-cellular level of membrane channels and

contractile proteins up to the full muscle anatomy and functional organ-

isation are detailed. A discussion on previous skeletal muscle modelling

work is also included.

• The theory used to develop and solve the mathematical models of the

multi-scale framework is covered in Chapter 3, The Formulation of the

Modelling Framework. The Bidomain formulation, finite elasticity, and a

brief description of the finite element method are included, as well as an

introduction to the software package, CMISS, which has been modified

and extended to carry out this work.

• The Creation of a Whole Muscle Model chapter (Chapter 4) demon-

strates the method used to develop the three-dimensional muscle struc-

ture, including the physiological modelling of a single muscle fibre, inter-

nal fibre distribution, using the Tibialis Anterior muscle as an example.

Furthermore, a novel method for spatially grouping the fibres into func-

tional units is proposed.

• Results of the full muscle simulations are then presented in the Results

of Whole Muscle Activation Simulations chapter (Chapter 5). A number

of different muscle activation simulations are presented, along with the

techniques used to replicate whole muscle activity. Normal physiological

recruitment is considered as well as the effect of inverse recruitment,

which occurs as a result of Functional Electrical Stimulation (FES). FES

is used as an example of how the presented framework can be adapted

to different skeletal muscle properties. As such the model provides an

insight into the resulting differences between inverse recruitment and

normal physiological function.

• This work concludes with a full discussion on the framework and the

results along with a summary of conclusions that can be drawn from this

work (Chapter 6).





Chapter 2

Introduction and Background

This chapter is intended to give the reader the necessary background on the

structure, function, and classification of skeletal muscle, as well as a brief

background into other methods of modelling such tissue. It introduces the

information and concepts that will be called upon in later chapters to develop

the proposed musculoskeletal modelling framework. Firstly, the function of

skeletal muscle, and its anatomical make up will be defined, followed by the

transmission of generated force through the muscle fibre network. Then the

sub-cellular organisation of muscle fibres, and the metabolic properties of skele-

tal muscle will be described. The differences between different types of skele-

tal muscle fibres as well as the internal structure of skeletal muscles are then

discussed before the functional grouping and activation of whole muscles are

outlined. The control system and the transmission of activation information

from the central nervous system to the individual muscle fibres will be de-

scribed, followed by a brief introduction into the areas of Functional Electrical

Stimulation and Electromyography. Finally, a brief background on previous

skeletal muscle modelling work and its implementation is presented.

2.1 Skeletal muscle function in the body

Muscle is one of the most abundant tissues in the human body and is subdi-

vided into skeletal, cardiac, and smooth muscle. The primary role of all muscle

is the conversion of chemical energy into physical work and in this capacity it

facilitates many of the body processes necessary for homeostasis. Our heart,

5



6 Chapter 2. Introduction and Background

the pump that keeps our entire bodies supplied with oxygen and nutrients, is

composed of cardiac muscle, a form of striated (banded) muscle that is ideally

suited to its role of pumping blood, approximately once a second, for our en-

tire lives. Smooth muscle, so named because, under the microscope, it does

not display the banding pattern of striated muscle and thus appears smooth,

controls the function of a great many important organ systems. It controls the

flow of blood around the body by altering the diameter of blood vessels, it is

responsible for the movement of food through our digestive tract plus many

other important roles in the daily life of our bodies. Skeletal muscle, by far

the most common type of muscle composes approximately 40-50% of our body

weight [111]. Unlike cardiac and smooth muscle, it is under voluntary control,

and its primary purpose is to allow us to move and explore the world around

us. In addition to voluntary control, most skeletal muscles are also involun-

tarily controlled to some extent, allowing, for example, continual maintenance

of posture and ventilation of the lungs. Skeletal muscles also play a role in

maintaining fluid flow through the body by helping to push blood through

veins from distal regions. Also, in cases of thermal stress, skeletal muscle can

be used to heat the body through the action of shivering.

Skeletal muscle is a finely tuned tissue and, although its structure must

be maintained precisely for efficient function, it is a very plastic tissue. Given

different demands it can modify its function to allow great endurance or ex-

plosive power. The diverse attributes of skeletal muscle are made possible by

its complex structure and control systems.

2.2 Skeletal Muscle Anatomy

A schematic of the structure of skeletal muscle can be seen in Figure 2.1. The

basic unit of skeletal muscle is the muscle fibre, which is synonymous with a

muscle cell. These cells can be many centimetres long and contain many pe-

ripherally located nuclei surrounding the force producing protein structures. In

humans, muscle fibres are approximately 80−100µm in diameter [70, 78, 106].

Each of these muscle fibres is surrounded by a layer of connective tissue called

the endomysium, of which the primary load bearing component is collagen,

anchoring the fibre to its neighbours and providing a path along which force
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can travel. A single muscle fascicle contains tens to thousands of muscle fi-

bres, depending on the specific muscle. Each fascicle is bound in its own

connective tissue layer call the perimysium. The perimysium is also made

up of collagen and provides a further path for force to be transferred. The

physical connections between fascicles are less tight than between fibres and

thus fascicles also allow the muscle to deform and shear. A whole muscle is

composed of a number of fascicles and is wrapped in its entirety in a final

connective tissue layer termed the epimysium. Skeletal muscles are connected

to the skeleton via tendons, which are primarily made of collagen. There is a

gradual interface between the muscle tissue and the tendon allowing for force

transduction to the skeleton. In many human muscles, the muscle fibres do

not span the full distance from tendon to tendon, instead they are connected

serially to subsequent fibres. This type of muscle structure is termed intrafas-

cicular termination. This type of muscle structure raises many questions as to

the control systems and force transduction paths of skeletal muscle, questions

that are currently unanswered [111].

2.3 Skeletal Muscle Morphology

Although the general function of all skeletal muscle is the same, individual

muscles are often required to have vastly different functional properties. As a

result different muscles have different fibre and tendon architectures which al-

low them to best perform their specific role in the body. For example, muscles

located at the extremities of the body, such as the soleus (a calf muscle) tend

to have compact, proximally located, muscle bodies with long distal tendons.

This allows for elastic energy to be stored in the long tendon (useful for energy

conservation during walking and, taken to an extreme, in the bounding of a

kangaroo) [88]. This configuration also reduces the inertia around the joint (in

this case the knee joint) by locating most of the mass of the muscle-tendon

complex centrally. Muscles can also be divided into different anatomical and

functional compartments. For example, the semitendinosus muscle of the ham-

strings is divided into a proximal and distal compartment by a collagen rich

dividing line called a tendonous inscription. The two compartments function

together as one muscle and the inscription reduces the required length of muscle
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Fig. 2.1: A depiction of the internal structure of a skeletal muscle. The muscle is
shown attached to the bone via the tendon and surrounded by the epimysium and
the deep fascia (a layer of connective tissue). A fascicle, surrounded by perimysium,
is seen extending from the skeletal muscle and, extending from the fascicle, a muscle
fibre is shown. An expanded view of the fascicle is then depicted with the structure
of the muscle fibre shown more clearly. The endomysium, cell nucleii, the striations,
the cell membrane (sarcolemma), and the myofibril containing the filaments are
shown (Figure reproduced from Tortora and Grabowski [111]).
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fibres. Muscles can also be organised into different functional compartments,

usually as a result of innervation from more than one nerve. For example the

rabbit masseter is innervated by more than one nerve [80]. As a consequence

of differential activation of the resulting muscle compartments, different force

vectors are generated to fulfil different functional requirements.

Pennation Angle

The force, which an individual muscle is able to produce, is dependant on the

muscle’s cross-section. The cross-section of a muscle perpendicular to the lon-

gitudinal axis of the muscle is referred to as the anatomical cross-sectional area

(ACSA) [82]. The force produced by a muscle is also dependant on the angle

of the fibres with respect to the longitudinal axis of the muscle, the so-called

pennation angle of the muscle. Muscles, in which the fibre direction is not

aligned with this axis are termed pennate muscles, of which there are a num-

ber of sub classifications. The simplist form of muscle occurs when the muscle

fibres lie parallel with the axis of force. These muscles are termed fusiform

muscles (i.e. a pennation angle of 0o as depicted in Figure 2.2). Unipennate

muscles have fibres with a uniform orientation to the axis of force. Bipennate

muscles have two populations of fibres with different angles with respect to the

axis of force and multipennate muscles have a number of populations of fibres

misaligned with the axis of force [111] (see Figure 2.3).

A better measure of the force output of a particular muscle is therefore

the physiological cross-sectional area (PCSA), the area of the muscle at right

angles to the longitudinal axis of the muscle fibres [82]. In muscles where large

forces are required muscle fibres can be oriented obliquely to the axis of force,

thus giving a greater PCSA without changing the ACSA. That is, the area

of fibres able to contract and generate force is greater than the cross-section

of the muscle as a result of an oblique fibre angle. However, muscle speed is

sacrificed as the primary direction of shortening is also oblique with respect to

the longitudinal axis.
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Fig. 2.2: Schematic of a fusiform muscle (e.g. the difastric muscle of the throat
[111]). Note that fibres are aligned with longitudinal axes of the muscle (reproduced
from Tortora and Grabowski [111]).

(a) (b) (c)

Fig. 2.3: The structure of a unipennate (a), bipennate (b), and multipennate (c)
muscle. The unipennate muscle only has one fibre angle with respect to the lon-
gitudinal axis on the muscle (e.g. extensor digitorum longus [111]), whereas the
bipennate muscle has two (e.g. rectus femorus [111]). There are six different fibre
directions in the multipennate muscle shown (e.g. deltoid [111]) (reproduced from
Tortora and Grabowski [111]).
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2.4 Force Transmission

Skeletal muscles have historically been modelled as a collection of parallel

muscle fibres, extending from tendon to tendon [80]. As a result it has been

assumed that the tension generated by the contractile apparatus is directly

transferred to the tendon at the myotendinous junction. A number of exper-

iments and observations have shown that the simplistic view of muscle fibres

transferring their generated force directly to the myotendinous junction is over

simplified. Street [110] designed an experiment in which the force generated

by a single fibre was measured by fixing one end a section of muscle, excising

a single muscle fibre from the muscle at the opposite end and attaching this

to a force transducer. It was shown that when the fibres surrounding the sin-

gle fibre were held instead of the fibre end itself, at the fixed end, 76 − 100%

of force was still recorded by the transducer. This result showed that force

was not necessarily transferred through the muscle fibre, and up to 100% of

the force generated by a muscle fibre could be transferred by the surrounding

connective tissue.

Goldberg et.al. also found that cutting a pie shaped wedge out of the lateral

rectus muscle of the cat, about 1/3 of the width of the muscle, had very little

impact (> 5%) on the force production of the muscle [39]. The mechanism

proposed to account for these experimental observations is termed lateral force

transmission. Lateral force transmission is the transmission of force generated

by a muscle fibre to the surrounding muscle fibres and connective tissue. Proske

et.al. [95] observed that when the tendon of the soleus muscle of the cat was

split longitudinally into two halves, muscle force was approximately equally

divided between the two halves, and this remained consistent independant of

muscle force. They concluded that the force generated by the muscle fibres

must be integrated in some way before being transferred to the tendon [95].

The transmission of muscle fibre force is achieved by specialised protein

complexes called costamers that link the cellular contractile machinery to the

extracellular matrix. These costamers are located all over the sarcolemma

but preferentially over Z and M lines (see Section 2.5) and are found to co-

localise with collagen and laminin in the extracellular matrix [81]. They are

composed of a number of intracellular and transmembrane proteins such as
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vinculin, dystrophin and intergrins, and deficiencies in these proteins can result

in muscular dystrophies. The force is tranferred from the extracellular matrix

to the tendon via the myotendinous interface.It is possible that up to 50% of

force is transferred laterally through the muscle, however in-vivo experiments

are difficult to perform [43].

There are still a number of unknowns concerning the force summation in

skeletal muscle, for example, the reason that the force of two active motor

units is not equal to the sum of each motor unit activated individually. Non-

linear force summation is possibly a result of differences in the anatomy of the

constituent muscle fibres [80]. The contractile state of surrounding fibres may

also affect the force produced by muscle fibres [30].

2.5 Sub-Cellular Anatomy

The sub-cellular structures responsible for muscle force generation are sarcom-

eres, which are repeating subdivisions of specialised protein structures called

muscle fibrils [111]. When skeletal muscle was first examined under a micro-

scope it was noticed that there was a regular banding pattern or striations.

Closer examination revealed that the regular pattern could be broken down

further into the groupings in the list below. It is now known that these regions

contain various protein structures, primarily actin and myosin (refer to Figure

2.4).

1. A-band: optically anisotropic or birefringent; i.e., the refractive index

of the material depends on the angle of incident light relative to the

material. It contains both thick and thin filaments (longitudinally over-

lapping).

2. I-band: contains thin filaments only (which have opposite polarity either

side of the Z-line). (This area appears isotropic under the microscope).

3. Z-line: an electron-dense region in the middle of the I-band where actin

filaments of different polarity in each half sarcomere attach. The inter-

Z-line distance defines the (variable) sarcomere length.
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4. H-zone: a region in the centre of the A-band which contains thick fila-

ments only (and hence is not as dark as the rest of the A-band).

5. M-line: an electron-dense region in the centre of the H-band where

myosin filaments of different polarity attach.

The primary functional constituents of the sarcomere are the thick and thin

filaments. The thick filament is primarily composed of myosin. The thin fila-

ment is made up of actin, and the control proteins, troponin and tropomyosin.

These filaments are arranged in an interdigitating pattern which allows spe-

cialised sections of the myosin protein to attach to the actin, forming structures

known as crossbridges. These crossbridges are then able to deform, releasing

the energy stored in them, thus moving the proteins relative to each other

creating force and movement (refer Figure 2.16). A vast number of proteins

are responsible for various tasks within the sarcomere such as maintaining

the structure (e.g. titin and nebulin), controlling the interaction of actin and

myosin (e.g. troponin and tropomyosin), and transferring the generated force

to the surrounding tissue (e.g collagen, laminin, dystrophin and intergrins).

2.5.1 The Thick Filament

The thick filament (made up of myosin) is approximately 1.6µm long and is

largely monomolecular. It contains approximately 300 myosin molecules ar-

ranged in a strict three-dimensional geometry. It forms spontaneously under

physiological conditions. The myosin molecules form a linear fragment with

a central bare patch and opposite ’molecular polarities’ on either side. Each

subsequent myosin molecule self-assembles with an angular displacement of

60o and a linear displacement of 14.3nm leading to a unit repeat distance of

42.9nm. Hence crossbridges project in 6 equally spaced pairs around the cir-

cumference of the thick filament. Individual myosin molecules are 470kDa1 and

are 160nm long. Each molecule consists of two heads on a single tail consisting

of a double stranded coil. Myosin can be cleaved (by trypsin or chymotrypsin)

into two moieties: light meromyosin (LMM) and heavy meromyosin (HMM).

The HMM unit can be further divided into the myosin heads (which are the

1The Dalton (Da) is a unit of molecular mass equal to 1/12 of a carbon-12 atom
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Fig. 2.4: A schematic drawing depicting a sarcomere as a whole is shown (top), and
a close up view of it’s constituent structures (bottom). The interdigitating thick and
thin filaments (myosin and actin respectively) form the basis for each sarcomere. A
sarcomere is linked to its neighbour at the Z-disk and is symmetric about the M-line,
the centre of the thick filament (reproduced from Tortora and Grabowski [111]).
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structures that form the crossbridges), Myosin Heavy Chain (MHC) and also

four Myosin Light Chains (MLCs) (see Figure 2.5). The heavy chains are able

to hydrolyse ATP, and the energy is used to change the physical structure

of the myosin head from a low energy state to a high energy state (see Fig-

ure 2.16). The light chains help to regulate the activity of the myosin head.

There are a number of different isoforms of myosin, each with slightly different

ATPase activity, giving each slightly different functional properties.

Fig. 2.5: The two heads of a myosin molecule. The atoms of the heavy chain (MHC)
are coloured red on the left hand side and the light chains (MLC) are coloured orange
and yellow (on the left).

2.5.2 The Thin Filament

The primary constituent of the thin filament is actin. Actin is composed

of the globular G-actin molecule (42kDa). Under physiological conditions

G-actin spontaneously polymerises, with an axial separation of 5.46nm into

(filamentous) double stranded F-actin with a pitch of 73nm (see Figure 2.6).

Each thin filament contains one F-actin strand of some 350 G-actin monomers,

this inserts into the Z-line where it changes polarity. Its interaction with

myosin is controlled by troponin and tropomyosin.

Tropomyosin is a rigid, insoluble molecule that polymerises end-to-end,

with a slight overlap, such that each thin filament contains 50 molecules. Each

molecule contains 7 similar regions along its length each of which inhibits the

binding of myosin to a single G-actin molecule. Tropomyosin lies asymmetri-
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cally in the groove formed by the double actin strands (i.e. closer to one strand

than the other). It sterically inhibits the actin-activated ATPase activity of

myosin as seen in Figure 2.6.

Troponin is a globular protein consisting of 3 polypeptides. Troponin-T

binds to tropomyosin in a 1:1 stoichiometry so that each thin filament contains

50 tropomyosin molecules, troponin-C binds (up to 4) Ca2+ in a co-operative

manner, and troponin-I together with tropomyosin, inhibits the activation of

actin activated myosin ATPase activity by binding to actin (refer to Figure

2.6). These interactions are very important to the control of skeletal muscle,

and play a large role in the cell modelling work outlined in Chapter 3.

Fig. 2.6: The interaction of the double stranded actin molecule (yellow/orange),
tropomyosin (brown) and troponin (grey/blue). The tropomyosin sterically inhibits
myosin from interacting with the binding sites on the actin molecules. In the pres-
ence of calcium, troponin removes the inhibition by causing a conformational change
in the location of the tropomyosin.

2.5.3 Structural Proteins

There are more than a dozen structural proteins that contribute to the precise

architecture of the myofibril. Titin (connectin) is one of the biggest proteins

found in the body at approximately 3MDa. It extends from Z-disk to M-line.

It consists of a compliant section in the I-band and a stiff section in the A-

band. It is connected to myosin via C-protein which binds to the MHC tail. It

is connected to the M-line via M-protein. It acts as a molecular ruler, dictating

the length of the thick filament.

Nebulin is another huge protein approximately 700-900kDa. It runs from

the Z-disk to the end of the thin filament. For each thin filament there are
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two nebulin molecules which are probably localised in the groves of the actin

molecules. Nebulin acts as a molecular ruler for actin.

2.5.4 The T-tubular Network

The outer membrane of skeletal muscle, or sarcolemma, is pocketed with or-

derly invaginations of plasma membrane forming the transverse tubular (or

T-tubular) network. This is a specialised network which allows Action Poten-

tials to quickly travel into the centre of the fibre to where the muscle fibrils

are located. The T-tubules can be seen running through the cell in Figure 2.7.

Located in close proximity to the T-tubules is the Sarcoplasmic Reticulum

which is the intracellular calcium store (see Figure 2.7). The specialised area

of Sarcoplasmic Reticulum that comes into close proximity to the T-tubules is

the terminal cisternae. This structure contains many calcium specific channels

called Ryanodine Receptors which are in close association with T-tubular cal-

cium channels (Dihydropyridine Receptors) and these are the primary channels

that allow calcium signalling in skeletal muscle.

2.6 Metabolism

The most basic energy currency in the body is adenosine triphosphate (ATP).

It is this molecule that is primarily used by muscle, and all electrically active

tissue, to maintain the required ionic environment, and it is also the molecule

that facilitates the contraction of all types of muscle (for example, see Figure

2.16). ATP is produced via the oxidation of high energy glucose, which can be

ingested or produced from stored glycogen or triglycerides. The energy gained

from this reaction is used to add inorganic phosphate (Pi) to ADP (adenosine

diphosphate). ATP is able to be hydrolysed by enzymes called ATPases, back

into ADP and Pi. The energy release is then able to be used to facilitate

energetic needs.

Depending on the level of oxygen available to the cell, production of ATP

can be achieved in aerobic (in the presence of oxygen) or anaerobic (in the

absence of oxygen) conditions. The process of glycolysis is able to produce 2

ATP molecules at the expense of 1 glucose molecule (Subfigure 2.8(a)), with



18 Chapter 2. Introduction and Background

Fig. 2.7: The internal components of a skeletal muscle cell. The T-tubular network
can be seen in close contact with the terminal cisternae, specialised segments of the
Sarcoplasmic Reticulum. Action Potentials, propagated by the T-tubules, cause a
release of calcium ions from the Sarcoplasmic Reticulum, and this calcium can then
diffuse to the myofibrils (reproduced from Tortora and Grabowski [111]).
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two pyruvate molecules as the by product. This is an anaerobic process, which

can be maintained in skeletal muscle for approximately 40 second before the

stores of glycogen and glucose are exhausted. In the presence of oxygen the

pyruvate molecules are able to be broken down further by the process of oxida-

tive phosphorylation into 34-36 ATP molecules, whereas in anoxic conditions

the pyruvate is converted into lactic acid (Subfigure 2.8(b)). The process of

glycolysis is very fast compared to oxidative phosphorylation and can thus be

used to service high energy requirements for a short period of time, whereas

oxidation phosphorylation is required for any activity over 40 seconds and is

the process wholly responsible for energy production in endurance activities

[111]. The build up of inorganic phosphate in the sarcoplasm of muscle cells

is believed to be a cause of fatigue, termed metabolic fatigue. The increased

levels of inorganic phosphate inhibit the cycling of crossbridges and reduce the

signalling capacity of the cell [105].

2.7 Fibre Type Classification

Differences in factors, such as metabolic properties, give rise to different mus-

cle fibre types which have vastly different performance characteristics. Muscle

composition is a dynamic equilibrium where variations in cellular environment

and force loading conditions are able to shift the molecular balance, allow-

ing the muscle as a whole to perform more efficiently. These differences are

primarily in the composition of the myosin protein, i.e. the isoform and the re-

sulting ATPase activity of the myosin head, and the composition of metabolic

enzymes, i.e. predominantly aerobic or anaerobic. As a result of these molec-

ular differences, different types of muscle fibres are able to be distinguished.

Knowledge of the overall composition of a muscle gives an indication as to its

dynamic performance, fatigue properties, and metabolic requirements.

A number of classifications have been applied to distinguish muscle fibre

types. These have been based primarily on either the metabolic properties of

the muscle, or the myosin ATPase (mATPase) composition. The relationship

between these two fibre type classifications is often confused and not neces-

sarily the same between species or even within the same species at different

stages of development [90]. An early classification scheme involved quantify-



20 Chapter 2. Introduction and Background

(a)

(b)

Fig. 2.8: Diagrams showing the steps of Glycolysis (a) and Oxidative Phosphoryla-
tion (b). Subfigure (a) shows glucose, which is obtained from the blood or derived
from muscle glycogen store, being converted to pyruvic acid and 2 ATP molecules
by the process of glycolysis. The pyruvic acid is then converted to lactic acid which
enters the blood stream. Subfigure (b) depicts the inputs needed for the mitochon-
dria (the cellular organelle specialised for ATP production) to convert the shown
sources of energy into ATP
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ing the distribution of enzymes associated with aerobic oxidative or anaerobic

glycolytic metabolism. This method was performed on fibres displaying either

low or high mATPase activity (type I and type II respectively) and was thus

used to distinguish Slow Oxidative (SO), Fast Oxidative Glycolytic (FOG),

and Fast Glycolytic (FG) [7, 89].

Depletion of glycogen in a motor unit and the subsequent analysis of the

fibres showed an association between FG fibres and fast-fatigable (FF) motor

units, FOG fibres and fast-fatigue resistant motor units (FR), and SO fibres

and slow fatigue resistant motor units (S) [17]. Further refinements to the

mATPase-based classification scheme (using activity levels at various pH levels,

or formaldehyde sensitivity) have elucidated a large number of fibre types, e.g.

I, Ia, Ib, IIa, IIb, IIc, IIx etc. However, the exact classification of a muscle

fibre depends on the method used, the classification boundaries and the species

investigated [90]. It should be noted that although in many cases there is a

correlation between slow twitch (i.e., type I) fibres and fatigue resistance, this

does not always hold true. The same applies to type II muscle fibres and

fatigability.

2.8 Electrical Activity

In addition to the structural properties outlined above, skeletal muscle is an

electrically active tissue. Each individual muscle fibre is activated by the

conduction of signals from the nerves arising from the motor cortex in the

brain. The integration of all of the signals controlling the muscle fibres, along

with the structural properties of the muscle, give rise to the complex force

output of a whole muscle.

2.8.1 The Plasma Membrane and Resting Potential

Skeletal muscle is an electrically active tissue. Its plasma membrane acts as a

barrier to charged particles. The plasma membrane consists of a phospho-lipid

bi-layer that has a hydrophobic core which inhibits the crossing of water soluble

species such as charged ions. Specialised plasma membrane proteins (ionic

channels) control the transfer of ions from the intracellular and extracellular
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spaces as well as between specialised compartments within the cell itself. The

electrochemical gradients set up by the membrane and membrane channels in

electrically active tissue allow cells to signal their neighbours, and thus pass

information around the body. At rest, skeletal muscle fibres and nerve fibres

maintain a constant potential difference across the cell membrane, termed the

Resting Membrane Potential. This potential is maintained, and functionally

disturbed, by membrane bound ionic channels.

Some of the important channels that set up and maintain the Resting

Membrane Potential include the Sodium/Potassium exchanger, the Chloride

pump, the Na/Ca exchanger, and the Calcium pump. The Sodium/Potassium

exchanger is a membrane bound protein which has ATPase activity. This

exchanger pumps sodium out of the cell and potassium into the cell with

a stoichiometry of 3/2. At rest the plasma membrane is relatively imper-

meable to sodium ions and relatively permeable to potassium ions. The

sodium-potassium exchanger creates an electro-chemical gradient that allows

the potassium ions to diffuse down (out of the cell) until a dynamic equilib-

rium is reached (see Figure 2.9). The sodium and potassium gradients are the

primary energetic sources for electrical signalling between nerve and muscle

tissue.

2.8.2 Ion Channels and the Action Potential

A number of important channels are involved in dynamically changing the

Membrane Potential of a cell to propagate a signal along it’s length. In electri-

cally active tissue, such as skeletal muscle, a propagated membrane depolari-

sation is termed an Action Potential. The channels primarily responsible for

this are the voltage-gated sodium channel, the inward rectifier (a voltage-gated

potassium channel), and the delayed rectifier (also a voltage-gated potassium

channel). Voltage-gated channels are proteins that change their permeability

to specific ions as a result of changes to the surrounding potential. Such chan-

nels often switch on at a specific voltage, termed the Threshold Potential of

the channel (see Figure 2.10). The voltage-gated sodium channel allows a very

rapid influx of sodium into the cell when the Membrane Potential of the cell is

depolarised from the Resting Membrane Potential to the Threshold Potential

of the sodium channel. This flow of sodium into the cell causes a rapid de-
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Fig. 2.9: The distribution of ions across the cell membrane are shown. The phospho-
lipid bi-layer is seen separating the extracellular space (top) and the intracellular
space (bottom). Higher concentrations of sodium and chloride ions can be seen in
the extracellular space, and higher concentrations of potassium can be seen intra-
cellularly (reproduced from Tortora and Grabowski [111]).

polarisation of the membrane. The membrane is brought back to its Resting

Membrane Potential by an outflow of potassium ions, mediated by the inward

and delayed rectifier potassium channels, and the inactivation of the sodium

channel (see Figure 2.11). This controlled fluctuation of the Membrane Poten-

tial is termed the Action Potential. Repeated activation of the cell membrane

can cause a form of fatigue, termed membrane fatigue. Membrane fatigue is

believed to be a result of a break-down in the transmembrane ion fluxes as a

result of potassium accumulation in the T-tubules [105].

The Action Potential is propagated down the length of muscle fibres. As a

segment of membrane undergoes depolarisation and forms an Action Potential,

the diffusion of ions causes down-stream sections of membrane to depolarise

to the Threshold Potential of the sodium channels, which is referred to as

continuous conduction (see Figure 2.15) [111]. Andreassen et.al. showed that

Action Potentials in muscle fibres travel at an average velocity of 3.7m/s (range

2.6− 5.3m/s) [3], while Houtman et.al. found that Action Potential velocities

ranged between 1.8 − 4m/s [59].

Membrane depolarisation, resulting from the Action Potential, induces the

opening of two calcium channels important for Excitation-Contraction Cou-
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Fig. 2.10: A voltage gated potassium channel in its closed, or inactive, state is shown
on the left. On the right, the Membrane Potential has changed (in this case from
−70mV to −50mV ). This change in Membrane Potential reaches the Threshold
Potential for the channel and it becomes active, allowing potassium ions to flow
across the membrane (right) (reproduced from Tortora and Grabowski [111]).

Fig. 2.11: A simple schematic of a nerve Action Potential. The membrane is at
Resting Membrane Potential (−70mV in this case) and becomes depolarised by a
stimulus to the Threshold Potential (−55mV in this case). The membrane then un-
dergoes the upstroke of the Action Potential (caused by the sodium channel), and is
then repolarised by the outflow of potassium ions and the inactivation of the sodium
channel during the repolarisation phase. The membrane then returns to the Rest-
ing Membrane Potential after a small hyperpolarisation. The Action Potentials in
skeletal muscle fibres only differ from nerve Action Potentials quantitatively. Rest-
ing Membrane Potential is about −90V to −80mV and the duration of the Action
Potential is 1 − 5ms [44] (reproduced from Tortora and Grabowski [111]).
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pling (see Section 2.9), the Dihydropyridine receptor (DHPR) which is voltage

gated, and the Ryanodine Receptor (RyR) which is located in the membrane of

internal cellular structures called the Sarcoplasmic Reticulum (SR). In skeletal

muscle it is thought that the RyRs are mechanically coupled to the DHPRs

whereas in other muscle types they are Calcium gated channels.

2.8.3 Neurons

All skeletal muscle are innervated by the central nervous system and receive

electrical impulses from alpha-motor neurons which are controlled by the motor

cortex. These are connected to each individual muscle fibre at the neuromus-

cular junction. The neuromuscular junction is a specialised structure where

the nerve terminates in a number of bulbous structures called synaptic end

bulbs, which lie in very close proximity to the muscle fibre (see Figure 2.12).

Fig. 2.12: A 1650 times magnification of the neuromuscular junction. The nerve
axon can be seen to be terminating in a number of individual synaptic end bulbs in
close proximity to the muscle fibres, forming neuromuscular junctions (reproduced
from Tortora and Grabowski [111]).

The function of neurons is the transfer of information around the body.

Signals, originating from other cells or transduced from external sources, are

transferred as trains of Action Potentials. The neurons that control the activa-

tion of skeletal muscle are called α-motor neurons. They consist of three main

structures, the dendrites, the cell body and the axon (refer Figure 2.13). Input

in the form of electrical signals is received by the dendrites. The axon extends
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from the cell body and at the junction between the axon and the cell body,

Action Potentials form as a result of the input from the dendrites. The axon

then propagates the Action Potential to the axon terminal and in the case of

α-motor neurons, the axon terminals form the neuromuscular junctions (refer

to Section 2.9). The population of α-motor neurons differ in size from about

5µm to 20µm [111]. All of these neurons are myelinated fibres. The myelin

sheath is a multilayered lipid and protein covering which electrically insulates

the axon of a neuron and is a result of specialised cells called Schwann cells

wrapping around the axon (see Figure 2.14) [111]. Myelination greatly in-

creases the speed at which the Action Potentials can travel [111] (see below).

Not all neurons are myelinated, for example the neurons carrying pain signal

from receptors in the skin are unmyelinated.

The gaps between the Schwann cells are called the nodes of Ranvier and

are the only locations on the axon where Action Potentials can form. As a

result the Action Potential is not continuously propagated as it is in skeletal

muscle, but rather it propagates by the method of saltatory conduction (refer

Figure 2.15). Saltatory conduction is much faster than continuous conduction

and α-motor neurons have conduction speeds of approximately 100m/s [111].

2.9 Excitation-Contraction Coupling

At rest, the myosin heads are unable to interact with the actin molecules as

they are inhibited by the Troponin-Tropomyosin complex. In order to reduce

this inhibition and allow force generation to occur a process termed excitation

contraction coupling takes place. When an electrical signal (Action Potential)

is propagated to the neuromuscular junction, a release of Calcium ions into

the nerve cytoplasm induces the release of the neurotransmitter acetylcholine

into the cleft between the nerve bulbous and the muscle fibre. Acetylcholine

membrane receptors on the muscle fibre are then activated allowing an influx

of Sodium ions, which cause a local depolarisation from the resting Membrane

Potential [111].

This change in Membrane Potential causes voltage gated Sodium channels

adjacent to the neuromuscular junction to open causing an adjacent membrane

depolarisation. At the same time the Sodium pump and the Na/K exchanger
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Fig. 2.13: A motor neuron, showing the cell body with the dendrites for receiving
input. The axon extends from the cell body to the axons terminals. The myelination
of the axon can be seen along with the nodes of Ranvier (reproduced from Tortora
and Grabowski [111]).
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Fig. 2.14: Figure showing the Schwann cells wrapping around the axon of a neuron.
The multiple layers of the Schwann cells neurolemma electrically insulate the axon
and are needed before the axon is able to efficiently propagate Action Potentials
(reproduced from Tortora and Grabowski [111]).

Fig. 2.15: A schematic showing the processes of continuous Action Potential conduc-
tion (a) as seen in skeletal muscle fibres and unmyelinated neurons, and saltatory
conduction (b) as seen in α-motor neurons. The depolarisation due to the Action
Potential in continuous conduction causes depolarisation in the adjacent membrane,
causing the sodium channels to open and thus the Action Potential propagates. In
(b), the influx of positive ions due to the Action Potential at one node of Ranvier
cause a diffusion of these ions down the axon, depolarising the down stream node,
inducing an Action Potential (reproduced from Tortora and Grabowski [111]).
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work to bring the local membrane back to resting potential. In this way a

moving wave of activation is able to travel down the length of the muscle fibre.

This is termed the muscle Action Potential.

As the Action Potential travels down the length of the fibre it also propa-

gates down the T-tubular network which carries the signal deep into the cell to

where the muscle fibrils are located. The voltage gated dihydropyridine recep-

tors (DHPR) in the T-tubule open during depolarisation and allow an influx

of Calcium into the cell. The opening of the DHPRs causes a conformational

opening of Ryanodine receptors (RyR) in the adjacent terminal cisternae. This

creates a large Calcium flux out of the Sarcoplasmic Reticulum and into the

cytosol. This calcium then diffuses through the myofibrils where it binds to

troponin-C, causing a conformational change in the troponin-tropomyosin com-

plex, removing the inhibition of myosin interacting with actin. Skeletal muscle

troponin requires two bound Calcium ions to remove the inhibition, compared

to a single ion in cardiac muscle [111].

At rest, the myosin head, having bound and hydrolysed an ATP molecule

is rotated into its high energy state. The ADP and Pi remain bound to the

head (step 1 of Figure 2.16). When the myosin head binds to actin, it forms

what is known as a crossbridge (step 2), and sequentially releases the Pi and

the ADP while undergoing the power stroke (step 3). The release causes the

myosin head to rotate back to its low energy position, moving relative to the

thin filament in a ratchet like manner, and thus building force and creating

displacement. For the myosin to release from the thin filament, ATP must

bind. The ATP is once again hydrolysed and the cycle can begin again. This

sequence of events is termed the crossbridge cycle. If the myosin head is unable

to bind an ATP molecule it is unable to detach. Such circumstances lead to a

state of rigour [111].

The force created by a single Action Potential activating a muscle fibre is

termed a twitch. The force profile produced by a sarcomere is dependant on the

time history of activation. If a second Action Potential activates the release

of calcium before the calcium released by the last Action Potential is fully

removed from the sarcoplasm, then the calcium transients, and thus the force,

will tend to add. This process of addition of subsequent calcium transients is

termed wave summation. An unfused tetanus occurs when the process of wave
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Fig. 2.16: The major steps in the crossbridge cycle. Step 1: A myosin head with
bound ATP, hydrolyses it to ADP and inorganic phosphate. The energy from the
hydrolysis is used to rotate the head into its high energy state. Step 2: The myosin
head then releases the inorganic phosphate and binds to an attachment site on the
thin filament. Step 3: The myosin head rotates from its high energy state to a low
energy state and release the ADP. The rotation of the head causes the thick and thin
filaments to move relative to each other. Step 4: The myosin head binds a molecule
of ATP and is then able to detach from the thin filament (reproduced from Tortora
and Grabowski [111]).
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summation is repeated, and a fused tetanus occurs when the Action Potentials

arrive fast enough so that individual twitches cannot be distinguished in the

force profile (see Figure 2.17).

Fig. 2.17: The force output (in red above) of a skeletal muscle fibre as a result of the
Action Potential train (in blue below) applied to a muscle. A single muscle twitch is
evident in (a) as only a single Action Potential is activating the muscle. The result
of wave summation can be seen in (b) as a second stimulus activates the muscle
before the effect of the first twitch have dissipated. Further Action Potentials result
in an unfused tetanus in (c) and as the frequency of activation increases, the forces
as a result of individual Action Potentials cannot be distinguished, giving a fused
tetanus (d) (reproduced from Tortora and Grabowski [111]).

2.10 Functional Organisation

The primary functional unit of skeletal muscle is the motor unit. This consists

of an α-motor neuron and the population of muscle fibres that the neuron

innervates [28, 80, 51]. A motor unit is the finest level of control the central

nervous system has over skeletal muscle (Figure 2.18). The α-motor neurons

are the terminal extensions of nerves arising from the motor cortex of the brain

and are responsible for the transduction of signals from the brain to the muscle.

The nerve innervates a number of muscle fibres and on each of them terminates

centrally at the motor end plate [4]. As a result the activity of each fibre within

a motor unit is the same. The number of fibres within a motor unit is not

consistent throughout an individual muscle [80], and instead an exponential
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Fig. 2.18: The functional organisation of motor units. Axons of motor units 1 and
2 are seen exciting the spinal cord and then branching to innervate a number of
skeletal muscle fibres. Each muscle fibre is only innervated by one motor unit.

distribution of fibres is observed over the motor pool [30]. All muscle fibres

within a motor unit tend to be of the same type [3, 28, 51, 80, 116] and the

smaller motor units tend to be composed of fibres with slow mATPase activity

and oxidative (fatigue resistant) metabolism [53, 116] and are innervated by

α-motor neurons of smaller diameter [51]. The force output of a motor unit is

highly dependant on the number of fibres contained in it (innervation ratio)

[80]. The fibres of a motor unit are, in general, not adjacent but instead

distributed throughout an area of the muscle, this is termed the motor unit

territory (MUT) [17, 35, 80, 101]. This territory can extend up to the entire

cross-section of the muscle but is dependant on the number of fibres (size)

of the motor unit [80]. The average density of fibres within a motor unit

territory is reasonably consistent [80, 101], and is thought to be around 10 −
30fibres/mm2 [36, 101, 117]. The distribution of motor unit fibres within the

motor unit territory is still disputed, with reports of random [13] and clustered

distributions [80].

Motor units are recruited to produce force in an order determined by the

size principle [53, 51, 80, 116], although there is evidence that this is not al-

ways the case [46]. The size principle states that motor neurons of a smaller

diameter are recruited before larger diameter neurons and was first proposed

by Henneman et. al. in 1965 [53, 52]. This ordering occurs because the

pre-synaptic drive (the input from higher levels of the nervous system) has a

greater effect on the smaller diameter neurons at lower input levels. This is



2.10. Functional Organisation 33

because, from Ohm’s law, the change in Membrane Potential is proportional to

the input resistance of the motor neuron. Small diameter motor neurons have

a higher input resistance than larger motor neurons and are thus activated at a

lower pre-synaptic drive [28]. As a result, the smaller, fatigue resistant motor

units tend to be recruited earlier than the larger and more fatigable motor

units. This orderly recruitment scheme results in a smooth gradation of force

and increased fatigue resistance compared to a random recruitment scheme or

an inverse recruitment scheme (where larger motor units are recruited pref-

erentially) [19, 28]. This recruitment order, although slightly variable due to

changes in the activation order of motor neurons of similar thresholds, is con-

served through isometric (no change in muscle length), eccentric (lengthening)

and concentric (shortening) contractions [28].

The force that a muscle produces is dependant on the number of motor

units that are active (i.e. the number of units that have been recruited), and

the activity levels (i.e. firing rates) of those motor units [15, 22, 28, 30, 36].

Rate coding is the term used to describe the change in the level of activation of

a motor unit, i.e., the frequency of Action Potentials activating the motor unit.

Due to the exponential distribution of fibres within motor units, there are a

much larger number of small motor units with relatively similar recruitment

thresholds. This results in gradation of small forces being mainly achieved

by increasing the number of active motor units. Most muscles have an upper

limit of motor unit recruitment at approximately 85% of maximum muscle

force. That is, all motor units are recruited at, or below, 85% of maximum

muscle force, and all further force increase occurs as a result of rate coding

[28]. This upper limit of recruitment varies between muscles (e.g. some hand

muscles have an upper limit of 60%) but it is also dependant on the movement

being performed and the length of the muscle. In dynamic contractions (length

changing) and also at reduced muscle lengths, recruitment thresholds are re-

duced if compared to isometric contractions [87]. Recruitment thresholds are

also dependant on the rate of force production. In the case of the Tibialis Ante-

rior muscle, the recruitment threshold of motor units decrease with an increase

in the rate of force development. This reduction in recruitment threshold is

more pronounced in slower contracting muscles, which likely facilitates those

performing faster contractions [28]. The reduction in recruitment threshold
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with increasing speed of contraction is seen in all other muscles [62]. Another

factor that is thought to influence the recruitment of motor units is the type

of motion being performed. The three-dimensional geometry of muscles means

that contractions of different areas of the muscle create different joint forces,

which has led to the observation of muscle compartmentalisation (activation of

distinct fibre pools within the same muscle for different movements) [28, 30].

Firing Rates

It should be noted that there are a number of unresolved issues relating to

the time dependant activation of skeletal muscle. Although the mechanism of

motor neuron activation is known, the summation of excitatory post synaptic

potentials depolarising the cell body to threshold, the in-vivo details are diffi-

cult to elucidate. The distribution of excitatory drive over the motor neuron

population is not known. There is evidence that the input to the pool is homo-

geneous [22, 117], as well as non-homogenous [48, 47]. It is also unclear why

motor neurons in-vivo rarely fire above 40 − 50Hz, when maximum tetanic

tension is generated by artificially stimulating the same fibres at a frequency

closer to 100Hz [30]. Speculation exists as to whether the discharge pattern

itself might have an effect on total force output or not [30].

The synchronisation of motor unit firing is also an area of active investi-

gation. Motor unit synchronisation refers to the approximately simultaneous

activation of motor units, more so than would be expected if each was a com-

pletely random event. The cause of motor unit synchronisation is though to

be the fact that the excitatory input driving the motor pool comes from re-

lated sources, increasing the likelihood of motor neurons firing synchronously

[117]. There is evidence that there is a synchronisation effect in some muscles

[20, 117], although the level of synchronisation seems to be dependant on the

individual muscle and the type of training that it has undergone [26, 28, 117].

In general motor units fire in a conserved order as defined by Henneman

[53], with a maximum firing rate of approximately 30− 50Hz [10, 30]. Newly

recruited motor neurons fire at around 5 − 10Hz [10, 15, 26, 62, 42, 77]. The

firing rate is dependant on the level of input to the motor neuron, and increases

monotonically with force output [15, 21]. Firing rates of active motor units

appear to be independent of whether a new motor unit has become active or
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not [62] although there is evidence to the contrary [15].

Interesting effects are seen as muscles fatigue. As the units sustaining a

submaximal force begin to fatigue the force output drops, and to compensate

excitatory drive to the motor pool is increased [97]. Thus the muscle is able to

maintain the force until there are no longer enough remaining motor units able

to generate that force. There is likely to be a change in the force profile as the

muscle fatigue as larger, stronger, motor units are recruited at low frequencies.

2.11 Functional Electrical Stimulation

Functional Electrical Stimulation (FES) is a technique which, as its name

suggests, involves stimulating nerve and/or muscle tissue with electrical signals

in order to elicit a functional response. It is used to rehabilitate, or augment,

the motor function of individuals who have suffered a disease or injury of the

neuromuscular system [93].

Strokes, or cerebro-vascular accidents, can cause a localised loss of motor

function by causing the death of an area of cerebral tissue. The mechanism

of neurological damage is a reduction in blood flow, or ischemia, causing a

lack of oxygen and nutrients and a buildup of toxic compounds. Ischemia

can result from vessel occlusion or from haemorrhage and the result can be an

infarct [93]. If the infarct is located in the motor cortex, motor function will be

inhibited, although rehabilitation is possible as other, functioning, areas of the

brain are able to replace the lost functionality [94]. A more permanent from of

sensory-motor injury is mechanical damage to central or peripheral neurons,

for example spinal cord injury. In the case of a spinal cord or peripheral nerve

injury, the connection between the motor cortex (the control centre) and the

muscles is severed. The first noninvasive (transcutaneous) system was reported

in 1960 and was used to treat foot drop during the swing phase of gait in stroke

patients [72]. Stimulation systems to help with the ambulation of thoracic-level

spinal cord injury patients were first reported in the 1980’s, and one system

(Parastep [40]) was FDA approved as a FES ambulation system in 1994 [40].

Functional Electrical Stimulation can be used as a tool in the case of both

stroke and spinal cord injury. FES involves stimulating predominantly neural

tissue with either cutaneously mounted, or sub-cutaneous electrodes [93], al-
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though stimulation of muscle fibres directly is also possible. Electrical impulses

are delivered in order to depolarise the target tissue past threshold and thus

induce an Action Potential. The electrodes used in a specific functional elec-

trical system can be either mono-polar or bi-polar in configuration and can be

designed as constant-current or constant-voltage devices. The electrical pulse

delivered to the tissue is usually rectangular and bi-phasic to maximise the

activation of the tissue and minimise possible tissue damage [93]. Selection

of recruitment level can be achieved by adjusting the charge delivered to the

tissue [93].

Functional Electrical Stimulation holds promise as a strategy to assist hu-

mans in performing functional movement after central nervous system injuries

[65, 93, 40], and has been shown to increase the rate of recovery of function in

stroke victims [94]. Electrical stimulation is also effective in reducing or pre-

venting muscle atrophy, or building up the muscle from the atrophied state.

It is also possible to use this method to increase carbohydrate oxidation and

whole body glucose uptake which may help with glycemic control and insulin

sensitivity in patients with Type II diabetes [45].

Given the benefits of using FES as a rehabilitation technique a detailed un-

derstanding of the multi-scale effects of this type of intervention is desirable.

Further, a full functional characterisation of the limitations inherent to this

method would increase the possibility of their elimination or mitigation. One

of the limitations of FES is the fact that the recruitment of motor neurons is

modified from normal physiological recruitment. Predominantly, the recruit-

ment order of the motor neurons is reversed with the larger diameter motor

neurons being activated preferentially [93, 35]. In myelinated axons, the ratio

of internodal distance to axon diameter is conserved (internodal distance =

100x diameter [11]). As a result, larger diameter neurons have a greater dis-

tance between the nodes of Ranvier and thus, given a constant electric field,

there is a greater potential difference between the nodes. As a result, electric

fields preferentially activate larger diameter neurons and thus, larger motor

units [11].

The inversion of the normal recruitment order causes a loss in fine control

and increased muscle fatigue at lower output levels [65]. Some progress has

been made into rectifying the inverse recruitment order in implanted electrode
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arrays [69], however these techniques are still experimental. In addition to

the modification of recruitment order, the level of rate coding for all activated

motor units is fixed at the stimulation frequency of the FES system. The effect

of this consistent level of rate coding is less well understood than the effect of

recruitment inversion, although there is some evidence that synchronous firing

of motor units decreases smoothness of the force output and may even reduce

the average level of force [117]. The preceding issues are examples of areas

where a multi-scale skeletal muscle model can be utilised to investigate the

effect that changing muscle activation parameters has on functional output.

For further reading on FES refer to [93].

2.12 Electromyography

The surface electromyogram (EMG) uses skin mounted electrodes to record

the electrical output of muscles. The EMG represents the sum of all of the

electrical outputs of the active motor units, and thus is often considered a

global measure of muscle activity [31]. The EMG is therefore a useful tool

to evaluate the function of muscles as a whole, but to use EMG to infer the

functional properties of muscle, the relationship between the two must be well

understood [31].

The output of the EMG depends on a large number of factors, from anatom-

ical features; such as the shape, number, size, conductivity of subcutaneous

layers, the distribution and size of the motor unit territories, the number of

fibres in the motor units and the length of the fibres, to physiological features;

such as the average fibre conduction velocity, the distribution of conduction ve-

locities, the shape of the Action Potential, the number of recruited motor units

and the rate coding of the motor units. The EMG output also depends on the

electrode configuration used, the relative distance between the electrode and

the muscle, and the relative movement between the electrode and the muscle

[31]. The use of mathematical models has been very useful in characterising

the sensitivity of the EMG output to these parameters [31] and even more

diagnostic power could be conferred to the EMG with more detailed models.
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2.13 Models of Skeletal Muscle Mechanics

Mathematical models of skeletal muscle functional output vary in form and

complexity depending on the aims of the modeller, the limitations on the

available body of knowledge, and the resources and time available to solve

the model. As a result a large literature base has been created in the area of

skeletal muscle modelling. This section will focus on a review of a few of the

most influential models and also more recent mechanical modelling frameworks

which relate closely to this thesis (a brief introduction into skeletal muscle

cellular models can be found in Section 3.1.1).

Models of skeletal muscle mechanics can be divided into two very broad

categories, biophysically-based models and phenomenologically-based mod-

els. Biophysically-based models aim to represent the output of skeletal mus-

cle as a result of an analysis of intrinsic physiological properties, whereas

the phenomenologically-based models use mathematical representations of the

input-output properties of muscle without reference to the internal workings of

muscle tissue [114]. Thus the parameters in a phenomenologically-based model

do not necessarily bare any physical relevance to internal muscle processes.

One of the first, and the most influential, phenomenological-models of the

force output of skeletal muscle is the model developed by A.V. Hill in 1938 [56].

Although [56] is primarily concerned with the energetics of muscle contraction,

a relationship between the muscle force and the velocity of contraction was

found.

(a + P )V = b (Po − P ) , (2.1)

where a and b are constants obtained from data fitting, P is the muscle

force at contraction velocity V and Po is the maximum isometric force of the

muscle. This equation is plotted in Figure 2.19. A schematic of the muscle

representation used in [56] can be seen in Figure 2.20.

The experiments used to derive Equation 2.1 were restrictive in their scope.

The muscle was only shortened (not lengthened), only maximum muscle acti-

vation was used, and the experiments were only conducted over a limited range

of muscle lengths near the optimum muscle length. Successive investigations

into the behaviour brought more generality to the model by adding the parallel
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Fig. 2.19: Muscle force verses shortening velocity (from Equation 2.1). The maxi-
mum force occurs at zero velocity and the maximum velocity occurs at zero force
(reproduced from [115]).

Fig. 2.20: Schematic of the classic 1938 Hill representation of a skeletal muscle. The
contractile element (CE) is responsible for the active force and the passive series
element (SE) provides the passive force (reproduced from [115]).
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elastic element to the Hill 1938 model (Figure 2.21).

Fig. 2.21: Schematic of the Hill model. A parallel elastic element (PE) has been
added to the classic 1938 Hill model (Figure 2.20) (reproduced from [115]).

An example of the implementation of the Hill model can be found in the

LifeMOD/BodySIM biomechanics modeller2. In this software package, the

series elastic element is neglected as it assumes an in-series tendon in the sim-

ulations. Thus the total force is composed of a passive and active component,

FMUSCLE = FCE + FPE, where FCE is the force due to the contractile element

and FPE is the force due to the parallel elastic element. The passive force is

calculated by, FPE = σ ∗ pCSA, where σ is the passive stress of the muscle

and pCSA is the muscle’s physiological cross-sectional area. The active stress

is calculated as follows,

FCE = A(t) ∗ FMAX .fH(vr).fL(lr), (2.2)

where FMAX is the maximum muscle force, A(t) is the activation state of

the muscle (normalised to FMAX), fH(vr) is the Hill force-velocity relationship

(Equation 2.1), and fL(lr) is the muscle force length relationship. It had been

noted for many years that the force output of skeletal muscle was dependant

on the length of the muscle. The length-tension was elegantly explained by

the sliding filament hypothesis, and the effect on force can be seen in Figure

2.22.

The sliding filament hypothesis (and thus myosin crossbridges attaching

to the actin filament) was the basis of the biophysically-based Huxley model

[60]. This model assumes that each crossbridge can only exist in one of two

2www.lifemodeler.com
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Fig. 2.22: The length-tension relationship of skeletal muscle. At optimum fibre
lengths (2.0µm to 2.4µm) the maximum overlap between the thick and thin fil-
aments occur, allowing the maximum interaction between the myosin heads and
actin, therefore maximum force. As the sarcomere length is lengthened, the number
of crossbridges that can form is reduced as the overlap between actin and myosin
is reduced. As the sarcomere length is shortened, the thick filament hits the Z-disk
and crumples, and this restricts the interaction of actin and myosin. Reproduced
from [111]
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biochemical states, either attached or detached (see Figure 2.23).

Fig. 2.23: The thick filament can be seen within the sarcomere (S) surrounded by
the thin filaments. The crossbridges are represented as balls and are attached to the
thick filament via an elastic element. The deformation of this elastic element (X)
produces force. The sum of all of the crossbridge forces give the muscle force. Note
that l is the distance between actin attachment sites and V is the velocity of the
muscle (reproduced from [115]).

In more recent work, the Huxley model has been extended so that the cross-

bridges are able to exist in more distinct states. For example, the Shorten et.al.

model [105] uses an eight-state model (six attached states and two detached

states). Functionality is conferred to the Huxley type model by relating the

transfer of the crossbridges between states by rate variables. These rate vari-

ables vary between individual models.

Many mechanical or kinematic models have been developed to represent

skeletal muscle contraction. Most of those models are based on the principles

of the Huxley or Hill-type models, most of which represent individual muscles

as one-dimensional strings. In general, a small number of physiological param-

eters are used to describe the muscle; these usually include the point of origin,

the direction, the average muscle length, and the physiological cross-sectional

area. These parameters are often gleaned by investigation via magnetic reso-

nance imaging (MRI) or the examination of cadaver specimens [61, 64]. Muscle

forces are then calculated from the physiological cross-sectional area [6, 113] or

Hill-type models [2, 66, 86]. Examples of this methodology can be seen in the

work of de Zee et.al. [23, 24] which takes advantage of the Anybody modelling

system3, as well as LifeMOD/BodySIM, and OpenSim4 among others. These

3www.anybodytech.com
4www.simbiome.org
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simulations [23] use the known anatomical properties of the muscles and bones

of the jaw and use inverse dynamics to calculate the muscle and joint forces

as a result of the movement of the jaw (from motion capture). The advantage

of using inverse dynamics and lumped-parameter models such as [23] are that

the simulations can be run with little computational expense (compared to

forward dynamics simulations) and produce accurate predictions of the mus-

cle activation [23]. The limitations to the use of inverse modelling are that

musculo-skeletal simulations are generally ill-conditioned, giving a large num-

ber of muscle activation solutions to a given movement, and also very little

information can be inferred about functional activation of the muscles being

simulated.

Recently, full three-dimensional models of muscles have been created by a

number of authors [12, 68, 85, 100], and these have led to a fuller understanding

of muscle force distributions [100]. The three-dimensional nature of the models

allows modifications to the line of muscle action and possible causes of non-

linear strains to be investigated [12]. These models are all however based on the

principles of continuum mechanics and result in macroscopic models that do

not explicitly include any information from finer scales, e.g., the cellular level.

The continuum representation also prohibits the use of functional information

such as motor unit distributions, fibre firing rates, and different locations of

fibre types to name a few.

The Fernandez et.al. [33] model of rectus femoris muscle in humans links

the mechanical deformation of the muscle to calcium transients. A full three-

dimensional description of the muscle fibre angles (bipennate) and the location

of the motor end plates were included. Contraction was initiated via the

simulation of Action Potential propagation through the nerves to the muscle

fibres. The muscle Action Potential triggered the calculation of the calcium

transient using,

Caactn(t) = Ca0 + (Camax − Ca0) ·
t

τCa
· e(1−t)/τCa , (2.3)

where Caactn(t) was the level of calcium at time t, Ca0 was the resting cal-

cium concentration, Camax was the maximum calcium concentration which

was achieved at time t = τCa. The calcium concentration Caactn(t) was then
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used to modify the force output of the muscle. However, the Fernandez model

does not treat muscle fibres as functionally separate units. Each fibre within

the muscle produced the same force output, with a delay calculated from the

propagation of an Action Potential through the continuous muscle geometry.

There are a number of muscle models that aim to explicitly represent the

recruitment and rate coding of skeletal muscles. Many of these types of models

are based on the work of Heckman and Binder [48, 49, 50, 47]. Heckman and

Binder [48] details experimental work performed to determine the mechanism

of the orderly recruitment of motor units. From Ohm’s law, the steady-state

synaptic potential, Pss, is equal to,

Pss = IN · RN , [48] (2.4)

where IN is the effective synaptic current entering the cell and RN is the to-

tal resistance of the cell [48]. The value of RN is due to the surface area of

the neuron, as well as other geometric properties, and has been found to vary

approximately 10-fold over motor unit populations [48]. A method for deter-

mining IN directly was presented and this was found to co-vary with RN with

a 2-fold variation in magnitude [48]. In [49], Heckman et.al. used a model of

100 simulated motor units to model the input-output function of cat medial

gastrocnemius, where the input was IN and the output was muscle force. The

effective synaptic current IN was used as a parameter that is unrelated to mo-

tor neuron geometry to determine the recruitment and firing rates of the motor

units [49]. It was assumed that the motor neuron pool received the same IN ,

and the recruitment and rate coding of individual motor units were functions

of IN . Recruitment and rate coding were also dependant on intrinsic motor

unit properties that varied across the pool. These variations were based on

experimental data [49]. They found that, by using this approach, sigmoidal

force input-output curves were produced. These curves were believed to be as

a result of the inclusion of frequency modulation (rate coding) which was not

present in other models [49]. Other researchers have looked at more mathe-

matical descriptions of the input to the motor pool. The work of Nussbaumer

et.al. [84] looked at ways of simulating the input to the motor pool using phys-

iological information concerning the input currents to the motor neuron cell
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body and the recruitment and rate coding that would occur as a result of this

input. Gabriel et.al. [37] considered the link between the motor pool input and

the force output as a novel form of integral equation, and thus theorised that,

given a known muscle output, the input characteristics of the system could be

deduced.

Fuglevand et.al. [36] proposed a model that incorporated descriptions of

the recruitment and rate coding of 120 motor neurons in order to represent

the force output of a muscle as well as the EMG. The investigation aimed to

determine if differences in EMG output in various human muscles were a result

of different recruitment strategies. Recruitment thresholds for the motor units

were assigned in an exponential fashion with respect to the size of the motor

unit, so that there were many small motor units with low activation thresholds,

and few large motor units with high activation thresholds. The firing rate of

recruited motor units was assumed to linearly increase with excitation [36] (as

opposed to Heckman et.al. [49] who used a piecewise linear increase in firing

rate). The form of recruitment and rate coding used by Fuglevand 1993 is

used later in the thesis in a modified form (see Chapter 5). Fuglevand then

used a critically damped second order system to represent the force output

of individual motor units. The twitch amplitude of the motor units was set

depending on the rank of the motor unit. The EMG was calculated from the

sum of all motor unit Action Potential trains using assumptions about muscle

fibre distributions, conduction velocities, and fibre locations through the area

of a muscle [36].

The Livshitz et.al. model [73] calculates the current distribution through a

muscle stimulated by a specific FES protocol. The current distribution is then

used to calculate the level of activation of the muscle, as the area of muscle

over the threshold electric field strength value is assumed to be active. The

force output was assumed to be proportional to the active number of fibres

with respect to the total number of fibres [73]. As a model of muscle activation

due to FES, the Livshitz et.al. models the method of recruitment in a different

manner to the framework proposed in this thesis, but still provides a useful

gauge as to the applicability of the proposed framework.

Yao et.al. [117] used a modified Fuglevand et.al. [36] model to analyse

the effect that the synchronisation of motor unit firing had on the force and
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EMG of muscle. In order to represent the synchronisation effect, randomly

selected motor units were defined to receive an Action Potential at the same

time as a reference unit. It was found that increasing the synchronisation of

the motor pool had very little effect on the magnitude of the force produced

by the muscle, although it did increase the force variability. Synchronisation

also increases the magnitude of the EMG [117].

The framework proposed in this thesis makes use of many of the method-

ologies of the aforementioned models. A subcellular model of the biophysical

properties of skeletal muscle allows detail physiological data to drive muscle

simulations. A three-dimensional, finite element, representation of the mus-

cle structure means that complex fibre directions, fibre type locations, and

functional groupings of fibres can be explicitly represented. Recruitment and

rate coding information derived from principles developed by Heckman et.al.

and Fuglevand et.al. allow the framework to exhibit physiological functional

activation. The three-dimensional force and deformation of the muscle can be

derived as a result of these inputs. The work presented represents one of the

most complete modelling frameworks currently available for skeletal muscle

research.



Chapter 3

The Formulation of the

Modelling Framework

The framework presented in this thesis will be developed in four semi-distinct

steps. These steps are;

1. Representing the physiology of a skeletal muscle at a point in space. The

solution of the system of Ordinary Differential Equations (ODEs) from

the Shorten et.al. model [105] will be used.

2. Representing the physiology of a single skeletal muscle fibre. To do this,

the Bidomain equations will be combined with the Shorten et.al. model.

3. Predicting the mechanical deformation of a three-dimensional muscle

geometry given the physiological output of a number of muscle fibres

(from Step 2).

4. Representing the unique activation patterns of individual muscle fibres

using (a) physiological parameters and (b) parameters describing func-

tional stimulation of the fibre to predict the force output as a result of

the activation patterns.

In this chapter the representation of the cellular properties of skeletal mus-

cle as a coupled system of ordinary differential equations is detailed, subse-

quently the Bidomain equations which are used to model single muscle fibres

are derived, and then the governing equations of Finite Elasticity are presented.

47
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The numerical methods used to solve the cellular Ordinary Differential Equa-

tions, the Bidomain equations, and the equations of Finite Elasticity are then

described. Finally, the software package CMISS is introduced.

3.1 Mathematical Representation of Skeletal

Muscle

In this section the set of cellular Ordinary Differential Equations used to rep-

resent the physiology of skeletal muscle is described. The derivation of the

Bidomain equations and the equations of Finite Elasticity is also outlined.

These three sets of equations are used to describe the functionality of skeletal

muscle in this thesis.

3.1.1 Cellular Transmembrane Model

As a result of the ever increasing ability to probe the depths of cellular function;

mathematical models of the observed processes have become more and more

common over the past century. These models have often taken the form of cel-

lular transmembrane models which aim to replicate the observed properties of

specific cell types such as cardiac myocytes [9, 83], smooth muscle [32], skeletal

muscle [18, 8, 27, 98, 109, 112, 105], and nerve tissue [75], to name a few. These

models can be phenomenological, i.e. representing the cell behaviour without

any reference to intra-cellular processes, or biophysically-based, i.e. build-

ing up the total cell behaviour from representations of sub-cellular processes.

Biophysically-based models aim to represent features such as ion fluxes and

concentrations of cell species and tend to use ordinary differential equations in

time for this purpose.

The Shorten et.al. Transmembrane Model

The model that is used in this framework to represent the sub-cellular phys-

iological function of skeletal muscle is the Shorten et.al. model [105]. This

model was developed to investigate the mechanisms of skeletal muscle fatigue.

Further, the differences in fatigue properties between fast and slow type mus-

cle were an area of interest, and so this model is parameterised to represent
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the functioning of both fast and slow type muscle. For the purposes of the

cell model ’fast type’ muscle can be considered to have glycolytic, fatigable

metabolic properties and consist of fast type myosin isoform, while ’slow type’

muscle is oxidative, fatigue resistant and composed of a slow myosin isoform.

The parameters used to represent the fast and slow type muscle came from

analysis of the mouse EDL (extensor digitorum longus, which is predominantly

fast) and soleus (predominantly slow) muscle, and so the output of the model

represents the average function of these two muscles. The EDL and soleus

experiments were conducted by electrically stimulating both muscles while

holding them at their optimal fibre lengths (the length that resulted in the

greatest force output).

The differences between fast and slow twitch muscle types are captured

by varying certain model parameters which represent the physical and phys-

iological difference between the two muscle types. For example, fast twitch

fibres have greater concentrations of Sarcoplasmic calcium pumps, Ryanodine

receptors, Dihydropyrimadine receptors, and membrane ionic channels than

slow twitch fibres. The two fibre types also differ in the rate of many cellular

processes, for example, calcium release from the Sarcoplasmic reticulum and

the cycling of the actomyosin crossbridges occur at higher rates in fast twitch

than slow twitch muscle [105].

Two major types of fatigue process are believed to be involved in the change

of skeletal muscle function during prolonged activity; membrane and metabolic

fatigue. Membrane fatigue is thought to be a result of a break-down in trans-

membrane ionic fluxes brought about by potassium ion accumulation in the

T-tubular network. Metabolic fatigue is believed to come about as a result

of inorganic phosphate (Pi) accumulation, which results in slower crossbridge

cycling and a reduction in calcium cycling from the sarcoplasmic reticulum to

the cytosol.

In order to model these phenomena, the Shorten et.al. model uses ordinary

differential equations in time to represent the ionic fluxes across the sarcolem-

mal and T-tubular membranes as well as their respective potentials. The

membrane potentials of the sarcolemma, vS, and the T-tubule, vT , membranes
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are calculated from the following equations,

dvS

dt
=

− ((I ionic
S + Istim) + IT )

Cm
, (3.1)

and,
dvT

dt
=

− (I ionic
T + IT /γ)

Cm
, (3.2)

where t is time (in ms), I ionic
S and I ionic

T are the total ionic currents across the

respective membranes, Istim is the stimulus current applied to the model, Cm is

the membrane capacitance (1µF/cm2 in fast, and 0.58µF/cm2 in slow twitch

muscle), γ is the ratio of T-tubule membrane area to sarcolemma membrane

area, and IT is the access current. The access current is the current that flows

from the T-tubular network to the extracellular space. The ionic currents of

both membranes are composed of the individual currents due to the chloride,

inward rectifier, delayed rectifier, and sodium channels as well as the current

due to the sodium potassium exchanger. Each of these currents is dependant

on both time and membrane voltage. In this way, the complex interaction of

the two membrane potentials is represented. An example of the sarcolemmal

membrane potential can be seen in Figure 3.1.

Excitation-Contraction Coupling is achieved in Shorten et.al. by linking the

gating of the Sarcoplasmic Ryanodine receptors to the T-tubular membrane

voltage. The Ryanodine receptors are represented by ten coupled ordinary

differential equations (refer to Appendix A). These Ryanodine receptor equa-

tions specify a number of open channel states. The calcium concentration in

the sarcoplasm of the cell is then calculated as a result of the opening and clos-

ing of the Ryanodine receptors (see Section A). The calcium concentrations,

along with magnesium and ATP concentrations, form another set of linked

ordinary differential equations which also represent the interaction of these

species with mobile and immobile buffers such as Calsequestrin, Parvalbumin

and Troponin (see Appendix A). Examples of the calcium concentration in

the sarcoplasm in fast and slow type muscle as a result of a 40Hz stimulation

can be seen in Figure 3.2.

The interaction of the actin-myosin complex is modelled as an eight state

crossbridge model (similar to Huxley [60]). Three detached states (myosin not
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(a)

(b)

Fig. 3.1: Output of the sarcolemmal membrane potential of the Fast and Slow
muscle types of the Shorten et.al. cellular model stimulated at 40Hz. The membrane
potential of the fast and slow type, respectively, are shown in (a) and (b). The fast
type muscle shows faster membrane kinetics (this shorter repolarisation time can be
seen as the difference in width at the base of the action potentials) but also a faster
drop off in peak membrane potential (a result of membrane fatigue).
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(a)

(b)

Fig. 3.2: The Shorten et.al. model output for fast and slow muscle type calcium
concentration given a 40Hz stimulation. The difference in the calcium dynamics
can clearly be seen between the fast (a) and slow (b) type muscle.
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bound to actin) where the Troponin-Tropomyosin complex blocks binding of

actin to myosin are modelled as well as three detached states where no block

exits. The two attached states represent crossbridges attached pre-powerstroke

and post-powerstroke. Each of the eight equations represents a concentration

(e.g. the concentration of detached binding sites unblocked, or the concen-

tration of crossbridges post-powerstroke). The equations of the two attached

states are,
dA1

dt
= fo · D2 − fp · A1 + hp · A2 − ho · A1, (3.3)

and,
dA2

dt
= −hp · A2 + ho · A1 − go · A2, (3.4)

where A1 and A2 are the concentrations of attached crossbridges pre and post-

powerstroke respectively (in µM), D2 is the detached state with two calcium

ions bound and no Troponin-Tropomyosin block, and fo, fp, hp, ho, and go are

constants governing the rate of transition between the different crossbridge

states. These rate constants are different for fast and slow type muscle (see

Section A). The attached crossbridge concentration pre and post-powerstroke

at 40Hz stimulation frequency are plotted in Figure 3.3.

The concentration of buffered and unbuffered inorganic phosphate is also

modelled which then feeds back to affect the calcium release from the sar-

coplasmic reticulum (see Appendix A). In all, 51 coupled ordinary differential

equations are used to model the activation and contraction processes of skeletal

muscle on the cellular level.

The different parameterisation of the fast and slow twitch cellular models

leads to a difference in the output values of A1 and A2 between the two sub-

types. Fibre force is primarily related to the diameter of the muscle fibre [71],

and as both fast and slow type muscle fibres in humans are approximately the

same diameter [54] it is necessary to modify the output A1 and A2 values so

that both muscle types produce the same maximum force. To achieve this, the

maximum A1 and A2 values for both slow and fast type muscle were calculated

at 40Hz (the maximum frequency that would be used during simulations) and

each respective parameter was normalised to its respective maximum. The

maximum values of each parameter can be seen in Table 3.1. The normalisa-

tion of A1 and A2 to their respective maximum values in fast and slow type
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(a)

(b)

Fig. 3.3: Pre (A1) and post (A2) powerstroke crossbridge concentrations for fast (a)
and slow (b) type muscle. The relatively fast increase in crossbridge concentration is
evident in the fast type muscle compared to the slow type, as is the more prominent
effect of metabolic fatigue. Note that the scale for slow type muscle ranges between
0 − 9, while for fast twitch the scale is from 0 − 2.
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Table 3.1: The maximum A1 and A2 values for fast and slow twitch muscle stimu-
lated at 40Hz

Concentrations in µM Fast Type Slow Type
A1 1.95 8.8
A2 1.5 7

muscle increased the difference in the initial values of the parameters. The

difference in initial values of A1 and A2 between muscle types results in vari-

ations in the resting force values of the two muscle types (this difference can

be seen in Figure 5.8 of Section 5).

3.1.2 The Bidomain Formulation

Electrophysical models have been used for more than half a century to elicit

a deeper understanding of the properties and function of active tissue. The

most influential model has been the Hodgkin-Huxley model of the squid giant

axon [58], which explicitly represented the effect of specific membrane channels

on the passage of ions across the impermeable cellular membrane, and the

resulting change in membrane potential. Hodgkin and Huxley also described

the squid axon as a leaky cable and used this analogy to derive a model for

the propagation of an action potential along its length. This is known as the

cable equation [58, 96].

The cable equation can be extended into higher dimensions, which allows

for a greater range of electrophysiological problems including those that involve

spatially dependent material properties [5] and are termed the Bidomain equa-

tions. The Bidomain equations are a continuum approximation of the tissue

properties and were first proposed by Schmitt [103]. The Bidomain equations

have become increasingly popular in the cardiac modelling field where the three

dimensional structure of the tissue has a major effect on its functional response

[5, 96]. The Bidomain equations describe the tissue as two inter-penetrating

domains, representing the intracellular and extracellular spaces. These two

domains are defined as having potential fields φi and φe, and conductivity ten-

sors σi and σe representing the intra and extra-cellular spaces respectively. The

derivation of the Bidomain used in this work results in two equations, the first

describes the extracellular potential while the second is a reaction diffusion
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equation in terms of the cellular transmembrane potential, which is obtained

from the sum of the ionic currents in the cellular transmembrane model.

This thesis uses the Bidomain formulation to model the physiology of skele-

tal muscle fibres (refer to Chapter 4). The Shorten et.al. transmembrane model

is linked with the Bidomain equations (specifically (3.20)), and thus the cur-

rent flow is influenced by the reaction of the Shorten et.al. cell model, and vice

versa.

The initial step in the derivation of the Bidomain equations is the definition

of the transmembrane potential, Vm, which, by convention, is,

Vm = φi − φe. (3.5)

The only path that current can take between the two domains is through the

cellular membrane. From Ohm’s law

J =
1

R
∗ E, (3.6)

where E is the electrical field strength, J is the current density and R is the

resistivity. If the quasi-static assumption is used the electric field can be ex-

pressed as the gradient of a scalar potential field, i.e. E = −∇φ. Substituting

E into (3.6), and expressing the resistivity as a conductivity (σ = 1/R), leads

to

Ji = −σi∇φi, (3.7)

Je = −σe∇φe. (3.8)

Any current that leaves one domain must enter the other, hence the change in

current density in each of the domains must be equal and opposite i.e.

−∇ · Ji = ∇ · Je = AmIm, (3.9)

where Am is the surface to volume ratio of the cell membrane and Im is the

transmembrane current density per unit area, as calculated from the cellular

equations. Combining (3.7) and (3.8) with (3.9) gives two equations that
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represent the conservation of current densities

∇ · (σi∇φi) = AmIm, (3.10)

∇ · (σe∇φe) = −AmIm. (3.11)

This implies that

∇ · (σi∇φi) = −∇ · (σe∇φe) . (3.12)

Subtracting ∇ · (σi∇φe) from both sides gives

∇ · (σi∇φi) −∇ · (σi∇φe) = −∇ · (σe∇φe) −∇ · (σi∇φe) . (3.13)

Then (3.5) can then be used to rewrite (3.13) as,

∇ · (σi∇Vm) = −∇ · ((σi + σe)∇φe) . (3.14)

Equation 3.14 is the first of the two Bidomain equations and is used to calculate

the extracellular potential field given a transmembrane potential distribution.

The current flowing across the cellular membrane can be represented by the

sum of a time dependant capacitive current and the current due to ionic flow.

Im = Cm
∂Vm

∂t
+ Iion, (3.15)

where Cm is the membrane capacitance per unit area and Iion is the sum of all

of the currents calculated from the cellular transmembrane models. Combining

(3.10) and (3.15) yields,

∇ · (σi∇φi) = Am

(

Cm
∂Vm

∂t
+ Iion

)

. (3.16)

In order to convert (3.16) into an equation with Vm as a dependant variable,

∇ · (σi∇φe) is subtracted from both sides resulting in,

∇ · (σi∇(φi − φe)) + ∇ · (σi∇φe) = Am

(

Cm
∂Vm

∂t
+ Iion

)

. (3.17)
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Substituting φi − φe = Vm into (3.17), one obtains,

∇ · (σi∇Vm) + ∇ · (σi∇φe) = Am

(

Cm
∂Vm

∂t
+ Iion

)

. (3.18)

Equation (3.18) is known as the second Bidomain equation and is used to

calculate the transmembrane potential. Note that it is possible for a stimulus

current to be added to either of the two domains which gives,

∇ · (σi∇Vm) = −∇ · ((σi + σe)∇φe) + Is1, (3.19)

and

∇ · (σi∇Vm) + ∇ · (σi∇φe) = Am

(

Cm
∂Vm

∂t
+ Iion

)

− Is2, (3.20)

where Is1 and Is2 are the applied stimulus currents.

3.1.3 Finite Elasticity - Linking Cellular Models to Force

A representation of the resultant muscle force, as a result of muscle activation,

is produced by the cellular model. This takes the form of the concentration

of actomyosin crossbridges pre- and post-powerstroke. However, in order to

calculate the force of a whole muscle containing large numbers of motor units

composed of many fibres and different fibre types, a solution method is required

that is able to integrate the total muscle force from the individual contributions

of each fibre. In order to calculate the force and deformation of a whole muscle,

the governing equations of finite elasticity were chosen. The solution of muscle

mechanics via this route has been used previously and has been shown to be

highly effective and efficient [99].

The Derivation of the Equations of Finite Elasticity

Let us consider a body in a reference (undeformed or initial) configuration.

This body can be thought of as being made up of an infinite number of par-

ticles. Under an applied load the body deforms to the deformed, or final,

configuration. The motion of the body from one configuration to another can

be defined mathematically by,
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1. Kinematic relationships - define the strain, or deformation, of the body

in terms of displacement gradients.

2. Stress equilibrium - equations that are derived from the principles of

conservation of linear and angular momentum.

3. Constitutive relations - relate the body strains to the body stresses. The

constitutive relationships are dependant on the specific material being

represented.

4. Boundary conditions - define the specific loading condition of the prob-

lem.

Kinematic Relationships

The motion of any body can be related to two different coordinate systems.

The spatial or Eulerian coordinate system refers to a coordinate system that

is fixed in space. A material or Lagrangian coordinate system is one where

the coordinates move and deform with the material being analysed. As an

analogy, if one was to be sitting on the side of a river watching a raft move

though the rapids, the watcher would be consider to be viewing the raft using

a spatial reference system, whereas, if the viewer was on the raft, moving with

it through the rapids, a material frame of reference would be used.

Consider a line segment ∆X in the undeformed configuration being de-

formed to ∆x. The deformation of the line segment can be expressed using the

deformation gradient tensor F which maps the two segments by ∆x = F∆X,

or ∆X = F−1x, where,

F =
[

F j
M

]

=

[

∂xj

∂XM

]

=

[

∂(Xj + uj)

∂XM

]

, with j, M = 1, 2, 3. (3.21)

Here u is the displacement from X to x. The deformation gradient F describes

the mapping between two points. The change in length of two line segments

can be described by the Cauchy-Green deformation tensor (C) which is derived

as follows. Consider two line segments X1 and X2 being deformed to x1 and



60 Chapter 3. The Formulation of the Modelling Framework

x2 respectively. This can be written,

x1 · x2 =
(

F∆X1
)

·
(

F∆X2
)

= ∆X1
(

FT F
)

∆X2

= ∆X1C∆X2,

where C = FTF. The Cauchy-Green deformation tensor is a symmetric, pos-

itive definite matrix and is expressed in terms of material coordinates. In

three-dimensions it is a 3x3 tensor, and has three scalar combinations of its

components known as the principle invariants, which are unchanged by coor-

dinate rotations. The invariants are,

I1 = trC (3.22)

I2 =
1

2

[

(trC)2 − trC2
]

(3.23)

I3 = detC, (3.24)

where trC is the trace of C (the sum of the diagonal components), and detC

is the determinant of C. Another measure of the change in length of line

segments from the undeformed to the deformed configuration is the Green-

Lagrange strain tensor E. This tensor provides information about the change

in the squared length of elements and is defined as,

E =
1

2
(C − I), (3.25)

where I is the Lagrangian identity tensor.

Stress Equilibrium

Stress is, by definition, the force acting over an area. Given the deformed and

the undeformed geometries, we are able to define a number of stress relation-

ships. The true stress acting on a body can be defined by the Cauchy stress

tensor σij, where index i denotes the direction normal to the surface on which

the stress acts and j indicates the direction of the stress component. It is a

symmetric 3x3 tensor composed of the three normal forces, σ11, σ22 and σ33,

and three unique shear forces, σ12, σ13 and σ23. The Cauchy force represents
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the force per unit area in the deformed configuration.

The 1st Piola-Kirchhoff stress tensor, P Mj, represents the force acting on a

surface in the deformed configuration measured with respect to the undeformed

surface. Index M indicates the normal to the undeformed surface and j is

the force direction in the deformed configuration. The 1st Piola-Kirchhoff

stress tensor is used when the force is measured in the deformed configuration

while the area over which the force acts is measured from the undeformed

configuration. The 1st Piola-Kirchhoff stress tensor can be obtained from the

Cauchy stress as follows,

P Mj = J
∂XM

∂xi
σij , (3.26)

where J is the Jacobian matrix of the transformation for undeformed to de-

formed coordinates,

J = detF =
√

I3. (3.27)

The 2nd Piola-Kirchhoff stress tensor, TMN , represents the force per unit

area in the undeformed configuration (in the direction normal to the unde-

formed surface M) acting on the undeformed surface. This tensor is used

to represent material behaviour at a point, independent on rigid body ro-

tation. The 2nd Piola-Kirchhoff stress tensor must be transformed into 1st

Piola-Kirchhoff stresses to be used in equilibrium equations, as the 2nd Piola-

Kirchhoff tensor requires a spatial frame of reference. The 2nd Piola-Kirchhoff

stress tensor is derived from the Cauchy tensor as follows,

TMN = J
∂XM

∂xi

σij ∂XN

∂xj

, (3.28)

and can be found from the 1st Piola-Kirchhoff stress tensor by,

TMN = P Mj ∂XN

∂xj

(3.29)

Consider a body acted on by body forces b per unit volume (V ) and traction

forces t per unit area (S). Using the conservation of linear momentum, the

time rate of change of the total linear momentum for a set of body particles is

equal to the vector sum of all the external forces acting on the particles. Thus,
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∫

S

t dS +

∫

V

ρb dV =
d

dt

∫

V

ρv dV, (3.30)

where v is the velocity vector and ρ is the mass density in the deformed

body. In this thesis the inertial effects are assumed to be negligible, therefore

from (3.30),
∫

S

t dS +

∫

V

ρb dV = 0. (3.31)

The traction vector (t) can be written in terms of the Cauchy stresses,

tdS = σijn̂iijdS, (3.32)

where n̂ = n̂jij is the unit normal which is projected on the orthogonal Carte-

sian reference coordinate system. The body force b can also be written in

component form as b = bjij , which, when substituted into (3.31) along with

(3.32), gives,
∫

S

σijn̂i dS +

∫

V

ρbj dV = 0. (3.33)

The divergence theorem can then be used to rewrite (3.33) as,

∫

V

[

∂σij

∂xi

+ ρbj

]

dV = 0. (3.34)

If it is assumed that the integral in (3.34) is continuous within an arbitrary

volume, the equation can be simplified to,

∂σij

∂xi
+ ρbj = 0. (3.35)

Equation (3.35) is Cauchy’s first law of motion, and can be written in terms

of the 2nd Piola-Kirchhoff tensor using (3.28),

∂

∂XM

(

TMN ∂xj

∂XN

)

+ ρob
j = 0. (3.36)

The mass density, ρo, of the undeformed volume, Vo, is related to the deformed

bodies mass density, ρ, by ρo = Jρ (conservation of mass).

The principle of virtual work is used to solve (3.36). If a body is in static
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equilibrium, then the sum of all of the forces acting on the body is 0. If we

consider adding an arbitrary displacement, δu, to each particle in the body,

then the total work done also must be 0. As a result, the sum of the internal

(s) and external (t) traction forces must be 0, giving,

∫

S2

s · δu dS =

∫

S

t · δu dS, (3.37)

where S2 is the surface which is not subject to displacement boundary condi-

tions. The virtual displacements may be decomposed into δu = δuij . Equation

3.32 can be used to rewrite the surface traction,

∫

S2

s · δu dS =

∫

S

σijn̂iδuj dS. (3.38)

The right hand side of (3.38) can be expanded using Gauss’s theorem to,

∫

S2

s · δu dS =

∫

V

[

∂σij

∂xi
δuj + σij ∂δuj

∂xi

]

dV. (3.39)

Substituting (3.35) into (3.39) and re-arranging terms results in,

∫

V

σij ∂δuj

∂xi

dV =

∫

V

ρbjδuj dV +

∫

S2

s · δu dS, (3.40)

which can be written in terms of the 2nd Piola-Kirchhoff stresses as,

∫

V

TMN 1

j

∂xj

∂XM

∂δuj

∂XN
dV =

∫

V

ρbjδuj dV +

∫

S2

s · δu dS. (3.41)

When considering non-homogeneous, anisotropic materials, it is often more

useful to describe the aforementioned quantities in terms of a local material

coordinate system. This allows tensor entries to be easily associated with

structural features of the body in question. For example, when considering

skeletal muscle, it is convenient to associate stress tensors with the muscle

fibre direction at every point throughout the muscle, allowing for a constant

definition of the material properties. This results in the Green strain tensor

becoming [Eαβ] and the 2nd Piola-Kirchhoff stress tensor becoming
[

T αβ
]

,

which gives the weak form of stress equilibrium in terms of the local coordinate
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system, να, as

∫

Ve

T αβF j
βδuj,α dVe =

∫

Ve

ρ0(b
j − f j)δuj dVe +

∫

Se

tjδuj dSe. (3.42)

where F j
β are the components of the deformation gradient with respect to

the να-coordinate system, δuj,α are the virtual displacement expressed relative

to the reference coordinate system and differentiated with respect to the να-

coordinate system, ρ0 is the material density in the reference configuration, bj

and f j are the body force and acceleration vector and tj is the traction force

on the surface Se, of the volume Ve.

Constitutive Relations

The constitutive relationship of a material defines the deformation of the ma-

terial under loading conditions. That is, the constitutive law relates stress (σ,

P or T) to strain (F, C or E) in a body. These laws are based on the results

of experimentation with the material in question and are independent of the

coordinate system. The constitutive law can be expressed using a strain energy

function, Ψ, which is a scalar value dependant on either C or E. For example,

the Mooney-Rivlin material law is expressed as,

Ψ(I1, I2, I3) = c1(I1 − 3) + C2(I2 − 3) + (I3 − 1), (3.43)

where c1 and c2 are experimentally determined parameters. For an incom-

pressible material, which skeletal muscle is assumed to be [118, 85, 99], the

third invariant is set to be 1 i.e. I3 = 1, which means that the third term on

the right hand side of (3.43) is 0.

Stresses can then be calculated by differentiating the strain energy function

with respect to a measure of strain, in this case E.

∂Ψ

∂EMN
=

∂Ψ

∂I1

∂I1

∂EMN
+

∂Ψ

∂I2

∂I2

∂EMN
. (3.44)

Equation 3.44 provides the components of the 2nd Piola-Kirchhoff stress ten-
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sor,

TMN =
1

2

(

∂Ψ

∂EMN

+
∂Ψ

∂ENM

)

. (3.45)

Again M refers to the normal of the surface and N denotes the direction of

the force acting on the material in the undeformed state.

As skeletal muscle can be modelled as a transversely isotropic material

[12, 85, 118], meaning that at any material point there is one material direction

with different stiffness properties to the other two directions, an appropriate

constitutive law must be used. In recent work [85] this is achieved by using

an isotropic stress tensor, to which additional stress components are added in

the fibre direction, to describe the transversely isotropic material behaviour of

skeletal muscle.

It should be noted that, when using this method, the isotropic material

law is intended to represent the basic structural material components of muscle

tissue, that is, the connective tissue (primarily collagen) and passive structural

components of the fibres (titin etc.). The additional components that are added

to the stress tensor arise from purely active considerations of muscle activity.

However, the assumption that the basic passive structural components can

be represented by an isotropic material law is fundamentally flawed, as it

is well known that passive muscle is transversely isotropic. The use of the

isotropic law is an unfortunate necessity, as more accurate skeletal muscle

passive (and active) constitutive laws do not currently exist. In this work,

the active component that is added to the stress tensor in the fibre direction

is composed of two components, Tpassive and Tactive. Here Tpassive is added to

try and counteract the inherent problem of using the isotropic material law.

Tpassive should not be thought of as an inherent passive material structural

property, but as an active addition to the passive material stiffness to increase

the accuracy of the model.

As can be seen in (3.28), the 2nd Piola-Kirchhoff stress tensor is dependant

on the Cauchy stress tensor which is in turn defined through the constitutive

behaviour of the material. The additional stress in the fibre direction is of

Cauchy type and can be transformed by (3.28) into a 2nd Piola-Kirchhoff

tensor, which in turn will be fully populated. Henceforth, the fully populated

2nd Piola-Kirchhoff stress tensor will be considered.
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A Novel Muscle Constitutive Law

In the work presented in this thesis, the muscle fibre cellular solution was

linked to the finite elasticity solution via a new skeletal muscle fibre constitu-

tive law. This new formulation is based on a simple isometric Mooney-Rivlin

constitutive law (a generalisation of the neo-Hookean law), with stiffness com-

ponents added to the fibre direction, turning it into a more accurate trans-

versely isotropic law. The components added to the fibre direction represent

the passive and active stiffness of skeletal muscle at different muscle lengths

and also depend on the level of muscle activity, which is specified by cellular

output parameters. The new relationship is formulated as follows.

The passive stiffness of skeletal muscle in the fibre direction is known to be

a result of the stiffness of various structural proteins such as collagen and titin

[111]. Within the normal range of motion, most of these structural fibres are

not fully extended and therefore non load bearing in much the same way that a

crumpled piece of string cannot resist a tensile load without being straightened

out. The passive tension is represented mathematically by a piecewise func-

tion composed of an exponential function that represents the rapid, non-linear

change in passive force as the muscle extends through the upper limit of its

normal working range, and a linear function which models the steep increase

in force above this point (refer to (3.48) and Figure 3.4). The passive force is

included in the constitutive law by being added to the Cauchy stress in the

fibres direction. There is zero passive force specified when the muscle is in

compression. The resistance to compressive force is attributed to the inter-

nal hydrostatic pressure of the muscle. Using (3.28), the 2nd Piola-Kirchhoff

tensor can be modified as follows

Tpassive = Tiso + JF−1

([

σ
ff

passive
f

fibre

passive
(λ) 01×2

01×2 02×2

])

(

FT
)

−1
(3.46)

where σ
ff

passive is a constant Cauchy stress, with respect to the material coor-

dinate system, representing the maximal passive stress in the fibre direction,

and is the only non zero value of the Cauchy stress tensor. The Jacobian, J ,

is the determinant of the deformation gradient tensor, F.

The active component of force is represented as follows
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Tactive = Tpassive + JF−1

(

α

[

σ
ff

active f
fibre

active(λ) 01×2

01×2 02×2

])

(

FT
)

−1
(3.47)

The maximum passive stress, σ
ff

passive
, and maximum active stress, σ

ff

active
, are

both set to 0.3MPa [12]. The functions f
fibre

passive
(λ) and f

fibre

active
(λ) are defined as

follows,

f
fibre

passive
(λ) =















0, λ ≤ 1,

0.05
(

e6.6(λ−1) − 1)
)

, 1 < λ ≤ λofl,

4.6244λ − 5.8234, λ > λofl,

(3.48)

and

f
fibre

active
(λ) =











− 25

4λ2
ofl

λ2 +
25

2λofl

λ − 5.25 0.6λofl ≤ λ ≤ 1.4λofl,

0 otherwise,

(3.49)

where λofl = 1.4 is a factor used to scale the resting fibre length, to the

optimum fibre length [12]. Equation (3.49) is a mathematical simplification of

the length tension relationship outlined in the introduction (see Figure 2.22).

The plots of these graphs are depicted in Figure 3.4.

The addition of extra stiffness values to the fibre direction of isotropic

material laws has been used previously by Oomens et.al. [85] to model the

mechanics of skeletal muscle. The method specified in (3.46) and (3.47) differ

from Oomens et.al. as the stiffness components added in the fibre direction

are dependant on the output a biophysically-based cellular model, currently

the Shorten et.al. model. The cellular model is included using the following

assumptions. Firstly, the passive stress is assumed to be dependant on the total

number of crossbridges that are attached and this is then normalised by the

total concentration of crossbridges states (140µM) which is derived from the

Shorten et.al. model. As A1 and A2 are calculated at optimal fibre length this

normalised value is then scaled by the passive force-length relationship (given

the fibre stretch), f
fibre

passive(λ) and finally multiplied by the maximum possible



68 Chapter 3. The Formulation of the Modelling Framework

Fig. 3.4: The active and passive normalised force plots based on the normalised
resting muscle fibre length
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passive force of the muscle σ
ff

passive
. This relationship is given by

A1 + A2

140
σ

ff

passive
f

fibre

passive
(λ). (3.50)

The active tension is assumed to be totally dependant on the value of A2, as

these are the crossbridges that have gone through the powerstroke to generate

force. The A2 value is normalised by the maximum possible value of A2 and

then, similarly to the passive relationship, is scaled by the active force-length

relationship (given the fibre stretch), f
fibre

active(λ), and the maximum active force

σ
ff

active
giving,

A2

Amax
2

σ
ff

active
f

fibre

active
(λ). (3.51)

Finally, combining (3.46), (3.47), (3.50), and (3.51), a relationship that

can be used to link the output of the cellular model to the equations of finite

elasticity is given by,

T
αβ

= T
αβ

iso + JF−1

(

A1 + A2

140
σ

ff

passivef
fibre

passive(λ) +
A2

Amax
2

σ
ff

activef
fibre

active(λ)

)

(

F T
)

−1
.

(3.52)

The A1 and A2 values at each gauss point of the Finite Element mesh

are calculated by taking a volume average of the A1 and A2 values of the

surrounding area. These volume averaged values are the parameter values

used in (3.52).

Boundary Conditions

The external surface pressures applied to the boundary (
∫

S2
s · δu dS) can be

represented using a physically applied pressure, pappl, applied at a surface with

normal vector, n̂ = n̂jij , as follows,

∫

S2

s · δu dS =

∫

S2

pappln̂jδuj dS. (3.53)

Substituting back into (3.41) gives,

∫

V

TMN 1

J

∂xj

∂XM

∂δuj

∂XN

dV =

∫

V

ρbjδuj dV +

∫

S2

pappln̂jδuj dS, (3.54)
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which is the finite deformation elasticity equation with respect to Cartesian

coordinates.

Modelling skeletal muscle using the above equations of finite elasticity and

the constitutive law requires that at rest there is an intrinsic force within

the muscle. This resting force can be considered a preload applied by the

tendons. As the A1 and A2 values are modulated by the cellular model, the

intrinsic stiffness of the muscle is changed, and this change in stiffness results

in a change of the intra-muscular force, measured as a change in the boundary

force. The boundary force is measured to be the total unbalanced reaction force

at the specified boundary of the muscle. The simulations described in Chapter

5 measure this boundary force as the total force acting on the spatially fixed

nodes at the distal end of the muscle. The fixed nodes represent the anatomical

location where the muscle would be connected to the distal tendon.

3.2 Numerical Solution of Governing Equations

In this section the numerical solutions of the cellular transmembrane model,

the Bidomain equations, and the equations of Finite Elasticity are described.

A brief description of the Finite Element Method is presented, including the

description of linear and quadratic basis functions. The Finite Element Method

is used to solve the Bidomain equations and the equations of Finite Elasticity.

3.2.1 Numerical Solution of the Transmembrane Model

The cellular equations of the Shorten et.al. transmembrane model are im-

plemented using the CellML1 mark-up language. This mark-up language is

specifically designed to represent cellular models, cellular processes, and other

biological equations and is built on the XML specification. This language

has the advantage of representing the equations in a format that can be au-

tomatically converted between formats that are used to solve the equations

computationally, and view the equations in standard notation. Automatic

conversion for publishing, eliminates any typographical errors which can occur

with other methods. Current software used for editing and solving CellML

1www.cellml.org
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models include JSIM2, COR3, PCEnv4 and CMISS5.

The Shorten et.al. system of ordinary differential equations can be solved

using a variety of methods. There exist numerous algorithms to solve this

system of ODEs. In general one can separate the algorithms into implicit and

explicit schemes. An explicit integration scheme is one where the state of the

next time instant is calculated as a function of the state at the previous time

[107]. An example of the derivation of an explicit Euler scheme is presented

from first principles.

From any point on a curve, an approximation to a nearby point on the

curve can be found by moving along the tangent. From first principles, the

tangent to the curve can be found,

lim
h→0

dy

dt
=

y(t + h) − y(t)

h
, (3.55)

where y(t) is a function in time and h is the time step. Rearranging (3.55)

gives,

y(t + h) ≈ y(t) + h · dy

dt
. (3.56)

Evaluating dy
dt

at time point t then gives the approximation,

yn+1 = yn + h ∗ f(tn, yn), (3.57)

where yn+1 is the state at the time step tn+1, yn is the state at tn, and f(tn, yn)

is the derivative of y(t) evaluated at tn. This integration scheme is called

the Euler method (or forward Euler method) and is explicit as yn+1 is calcu-

lated from the previous time step values. If, instead of (3.55), the following

approximation was used,

lim
h→0

dy

dt
=

y(t) − y(t− h)

h
, (3.58)

then by following a similar process to the derivation of the explicit Euler

2http://nsr.bioeng.washington.edu/jsim/
3http://cor.physiol.ox.ac.uk/
4www.cellml.org
5www.cmiss.org
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scheme,

yn+1 = yn + h ∗ f(tn+1, yn+1). (3.59)

Equation 3.59 is the backwards Euler method, an implicit integration scheme

as it depends on the value of y(tn+1). As can be seen, (3.59) is an equation

in the unknown yn+1 and therefore can not be solved as simply as the forward

Euler scheme.

A root finding algorithm such as the Newton-Raphson method can be em-

ployed to find the solution for yn+1. The derivation of the Newton-Raphson

method is as follows. Consider a function e.g. f(x). An initial guess as to the

root (f(x) = 0) is taken, xn, then the function is approximated by its tangent,

and the intercept of the tangent with the x axis is assumed to be a better

approximation of the actual root of f(x). The tangent of a function is given

by,

f ′(xn) =
f(xn) − 0

xn − xn+1

. (3.60)

Rearranging gives an update to the root,

xn+1 = xn − f(xn)

f ′(xn)
, (3.61)

which can then be iterated until desired convergence criteria are met. The

process of root finding using the Newton-Raphson method is shown graphically

in Figure 3.5.

The fact that a root finding method such as the Newton-Raphson method

is required to find subsequent values in an implicit scheme increases the nu-

merical complexity of the solution process. However, implicit schemes have the

advantage that they are stable over a larger range of step sizes (h values) than

explicit integration schemes. Even with the increased computational effort,

implicit schemes can be less computationally expensive than explicit schemes

[107]. A further type of integrator is the predictor-corrector method. These

methods use an explicit step to predict the approximate value at tn+1, and

then use an implicit step (the corrector step) which improves the accuracy of

the solution.

One of the major requirements in selecting an integrator to solve cellular

models is its ability to handle stiff systems of equations. The stiffness is
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Fig. 3.5: The function of interest is shown in blue (f(x)). The initial guess at the
root is selected (xn) and the tangent to the curve is found (f(xn) in pink). The
intercept of f ′(xn) with the x axis is then assumed to be the new estimate of the
root of f(x) (xn+1 light blue). The tangent at the xn+1 is then constructed f ′(xn+1),
and the intercept of this curve is taken to be the new estimate of the root of f(x).
This process is continued until convergence criteria are met.
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a measure of how difficult it is to solve a system of equations numerically

and is characterised by a large difference in time scales between equations.

Stiffer systems of cellular equations are becoming more and more common as

modellers include more and more multi-scale information into the equations

representing the underlying properties of cells [96]. For example, a system

that has a variable modelled in the order of µs and another in ms will require

time steps 1000 times smaller than is necessary for the ms order variable. The

unnecessary solutions of the variable in ms will lead to an accumulation of

round off errors and possible numerical instability. As a result, specialised

solvers have been developed to handle such problems. The solver used in this

work is the LSODA integrator package [57, 92]. This package automatically

detects the stiffness of the system and switches between the Adams-Moulton

method (an explicit integrator) for non-stiff systems and Gear methods [38] (a

predictor-corrector method) for stiff systems.

3.2.2 The Finite Element Method

The Finite Element Method (FEM) is used to numerically approximate so-

lutions to equations which do not necessarily have an analytic solution. The

domain over which the equations are to be solved is divided into discrete el-

ements, and approximations to the equations are solved over these elements.

The FE method used in this thesis involves creating non-overlapping elements

which are defined by a node point mesh. An example of a finite element repre-

sentation of the geometry of the human femur can be seen in Figure 3.6. This

is termed a Finite Element mesh.

Each element can be mapped from rectangular Cartesian coordinates (x,

y, z), into a normalised orthogonal system (ξ1, ξ2, ξ3). Each ξ-direction in

each element is normalised to be of unit length [0, 1]. Values such as geo-

metric coordinates and, as will be used later, membrane potential or material

deformation can be interpolated over an element using the nodal values and

interpolation functions, termed basis functions. Linear, and quadratic basis

functions will be described in the following section.
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(a) (b)

Fig. 3.6: Subfigure (a) shows the surface of a finite element mesh of the human
femur, b) shows the element boundaries. Nodes are located at each of the vertices

Linear Basis Functions

As the name suggests, linear basis functions provide a linear interpolation

between nodal values in an element. In one dimension, they can be written as,

φ1 (ξ) = 1 − ξ, (3.62)

φ2 (ξ) = ξ, (3.63)

where the subscript refers to the local node number. These basis functions

can also be thought of as weighting functions as they sum to 1 at every point

along the element and each prescribes a unit weight at one node while being

zero at the other as shown in Figure 3.7.

Thus values can be approximated over this element by multiplying the

nodal field values with the basis functions giving,

u (ξ) = (1 − ξ)u1 + ξu2 = φ(ξ)un, (3.64)

where un is a nodal based quantity at local node number n. The basis

functions can also be extended into higher dimensions by taking the tensor

product of the one-dimensional functions. For a two-dimensional bi-linear
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Fig. 3.7: The two independent linear basis functions for one element in one dimension

approximation, let,

u (ξ1, ξ2) = φ1 (ξ1, ξ2)u1 + φ2 (ξ1, ξ2) u2 + φ3 (ξ1, ξ2) u3 + φ4 (ξ1, ξ2) u4, (3.65)

where,

φ1 (ξ1, ξ2) = (1 − ξ1) (1 − ξ2) (3.66)

φ2 (ξ1, ξ2) = ξ1 (1 − ξ2) (3.67)

φ3 (ξ1, ξ2) = (1 − ξ1) ξ2 (3.68)

φ4 (ξ1, ξ2) = ξ1ξ2 (3.69)

A three-dimensional scheme could then be created by taking the tensor

product of the two-dimensional scheme and the one-dimensional scheme.

Higher-order basis functions can be generated in a similar way to linear

functions and used to approximate fields. For example a quadratic scheme can

be devised,

u (ξ) = φ1 (ξ)u1 + φ2 (ξ)u2 + φ3 (ξ)u3, (3.70)

where,

φ1 (ξ) = 2 (ξ − 1) (ξ − 0.5) , (3.71)

φ2 (ξ) = 4ξ (1 − ξ) , (3.72)

φ3 (ξ) = 2ξ (ξ − 0.5) . (3.73)

As can be seen the quadratic scheme has three nodes in the ξ direction
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as opposed to two in the linear approximation. The quadratic interpolation

scheme can be extended into higher dimensions using the same methodology

as shown in the linear elements. Thus the three-dimensional scheme is,

u(ξ1, ξ2, ξ3) =

27
∑

n=1

Φn(ξ1, ξ2, ξ3)un, (3.74)
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and thus,

Φ1(ξ1, ξ2, ξ3) = φ1(ξ1)φ1(ξ2)φ1(ξ3)

Φ2(ξ1, ξ2, ξ3) = φ2(ξ1)φ1(ξ2)φ1(ξ3)

Φ3(ξ1, ξ2, ξ3) = φ3(ξ1)φ1(ξ2)φ1(ξ3)

Φ4(ξ1, ξ2, ξ3) = φ1(ξ1)φ2(ξ2)φ1(ξ3)

Φ5(ξ1, ξ2, ξ3) = φ2(ξ1)φ2(ξ2)φ1(ξ3)

Φ6(ξ1, ξ2, ξ3) = φ3(ξ1)φ2(ξ2)φ1(ξ3)

Φ7(ξ1, ξ2, ξ3) = φ1(ξ1)φ3(ξ2)φ1(ξ3)

Φ8(ξ1, ξ2, ξ3) = φ2(ξ1)φ3(ξ2)φ1(ξ3)

Φ9(ξ1, ξ2, ξ3) = φ3(ξ1)φ3(ξ2)φ1(ξ3)

Φ10(ξ1, ξ2, ξ3) = φ1(ξ1)φ1(ξ2)φ2(ξ3)

Φ11(ξ1, ξ2, ξ3) = φ2(ξ1)φ1(ξ2)φ2(ξ3)

Φ12(ξ1, ξ2, ξ3) = φ3(ξ1)φ1(ξ2)φ2(ξ3)

Φ13(ξ1, ξ2, ξ3) = φ1(ξ1)φ2(ξ2)φ2(ξ3)

Φ14(ξ1, ξ2, ξ3) = φ2(ξ1)φ2(ξ2)φ2(ξ3)

Φ15(ξ1, ξ2, ξ3) = φ3(ξ1)φ2(ξ2)φ2(ξ3)

Φ16(ξ1, ξ2, ξ3) = φ1(ξ1)φ3(ξ2)φ2(ξ3)

Φ17(ξ1, ξ2, ξ3) = φ2(ξ1)φ3(ξ2)φ2(ξ3)

Φ18(ξ1, ξ2, ξ3) = φ3(ξ1)φ3(ξ2)φ2(ξ3)

Φ19(ξ1, ξ2, ξ3) = φ1(ξ1)φ1(ξ2)φ3(ξ3)

Φ20(ξ1, ξ2, ξ3) = φ2(ξ1)φ1(ξ2)φ3(ξ3)

Φ21(ξ1, ξ2, ξ3) = φ3(ξ1)φ1(ξ2)φ3(ξ3)

Φ22(ξ1, ξ2, ξ3) = φ1(ξ1)φ2(ξ2)φ3(ξ3)

Φ23(ξ1, ξ2, ξ3) = φ2(ξ1)φ2(ξ2)φ3(ξ3)

Φ24(ξ1, ξ2, ξ3) = φ3(ξ1)φ2(ξ2)φ3(ξ3)

Φ25(ξ1, ξ2, ξ3) = φ1(ξ1)φ3(ξ2)φ3(ξ3)

Φ26(ξ1, ξ2, ξ3) = φ2(ξ1)φ3(ξ2)φ3(ξ3)

Φ27(ξ1, ξ2, ξ3) = φ3(ξ1)φ3(ξ2)φ3(ξ3)
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The Finite Element discretisation and interpolation described above can be

used to solve systems of equations numerically. Instead of describing a known

field, such as geometry, approximations to equations describing a field over the

region can be represented.

3.2.3 The Finite Element Method Applied to the Bido-

main Equations

The Bidomain equations are used, along with the Shorten et.al. transmem-

brane model, to mathematically represent the physiology of a skeletal muscle

fibre. The modelled muscle fibre is represented using one-dimensional, lin-

ear finite elements, over which the Bidomain equations and the Shorten et.al.

model are solved. The one-dimensional fibre model must be able to replicate

the intrinsic physiological properties of a muscle fibre as outlined in Chap-

ter 2. Such properties include depolarisation and Action Potential formation

in response to an applied intracellular current (activation), Action Potential

propagation from the point of activation, replication of the Action Potential

wave form, and a physiologically realistic Action Potential velocity.

Parameters and Formulation

The Bidomain equations are a set of coupled reaction diffusion equations (refer

to Section 3.1.2). In order to solve the coupled partial differential equations,

3.19 and 3.20, the Finite Element Method was used. We assume that the trans-

membrane voltage, Vm, and the extracellular potential, φe can be approximated

by solutions, Ṽ and φ̃, respectively. Thus the two Bidomain equations become

∇ ·
(

(σe + σi)∇φ̃
)

+ ∇ ·
(

σi∇Ṽ
)

+ iapp = R2, (3.75)

and,

AmCm
∂Ṽ

∂t
−∇

(

σi∇Ṽ
)

−∇
(

σi∇φ̃
)

− AmIion = R1, (3.76)

where R1 and R2 are the residuals as a result of the transmembrane potential

and extracellular potential approximations and iapp is any externally applied

current. We want to minimise R1 and R2, and can achieve this minimisation in

a weighted sense by taking the volume integral of them, over the tissue volume
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(Ω), and setting the integral to zero, i.e.

∫

Ω

R1W dΩ = 0, (3.77)

and,
∫

Ω

R2W dΩ = 0, (3.78)

where W are weighting functions used to interpolate Ṽ and φ̃. Substituting

(3.77) and (3.78) into (3.75) and (3.76) gives,

∫

Ω

∇ ·
(

(σe + σi)∇φ̃
)

W dΩ = −
∫

Ω

∇ ·
(

σi∇Ṽ
)

W dΩ−
∫

Ω

iappW dΩ, (3.79)

and,

∫

Ω

AmCm
∂Ṽ

∂t
W dΩ−

∫

Ω

∇ ·
(

σi∇Ṽ
)

W dΩ =
∫

Ω

∇ ·
(

σi∇φ̃
)

W dΩ −
∫

Ω

AmIionW dΩ.

(3.80)

Using Green’s theorem, (3.79) and (3.80) can be re-written as,

∫

Ω

(

(σe + σi)∇φ̃
)

·(∇W ) dΩ =

∫

Ω

(

σi∇Ṽ
)

·(∇W ) dΩ−
∫

Ω

iappW dΩ, (3.81)

and,

∫

Ω

AmCm
∂Ṽ

∂t
W dΩ+

∫

Ω

(

σi∇Ṽ
)

· (∇W ) dΩ =

−
∫

Ω

(

σi∇φ̃
)

· (∇W ) dΩ −
∫

Ω

AmIionW dΩ.

(3.82)

Now, assume Ṽ is able to be represented by finite element interpolation func-

tions and nodal transmembrane values,

Ṽ (x̃, t) = ϕM(x̃)VM(t), (3.83)

where VM is the value of the transmembrane potential at node point M , and x̃

is the spatial coordinate, and ϕM(x̃) is an element based interpolation function.
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Similarly, we can write the extracellular potential as,

φ̃(x̃, t) = ϕM(x̃)φM(t), (3.84)

where φM is the value of the extracellular potential at node point M . If we then

select the weighting function W to be the same as the interpolations functions

for transmembrane potential and extracellular potential (i.e. W = ϕN), we

get,

φM

∫

Ω

((σe + σi)∇ϕM) · (∇ϕN) dΩ = VM(t)

∫

Ω

(σi∇ϕM) · (∇ϕN) dΩ

− iapp
1

AmCm

∫

Ω

AmCmϕMϕN dΩ,

(3.85)

(the reason for the expansion of the far right term will become apparent in the

next step) and,

dVM(t)

dt

∫

Ω

AmCmϕMϕN dΩ + VM(t)

∫

Ω

(σi∇ϕM) · (∇ϕN) dΩ =

− φM

∫

Ω

(σi∇ϕM) · (∇ϕN) dΩ − Iion
1

Cm

∫

Ω

AmCmϕMϕN dΩ.

(3.86)

If we then let,

M̄MN =

∫

Ω

AmCmϕMϕN dΩ, (3.87)

K̄MN =

∫

Ω

(σi∇ϕM) · (∇ϕN) dΩ, (3.88)

and,

L̄MN =

∫

Ω

((σe + σi)∇ϕM) · (∇ϕN) dΩ, (3.89)

then (3.85) and (3.86) can be written as,

L̄MNφM(t) = K̄MNVM(t) − 1

AmCm
M̄MN iapp, (3.90)

and,

M̄MN
dVM(t)

dt
− K̄MNVM(t) = K̄MNφM(t) − 1

Cm
M̄MNIion. (3.91)
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The variables VM(t) and φM(t) are both functions of time and to solve for

them we need to approximate time into discrete steps. For an arbitrary time

interval, tn → tn+1 the above equations can be rewritten as,

L̄MN

∫ tn+1

tn
φM(t) dt = K̄MN

∫ tn+1

tn
VM(t) dt− 1

AmCm

M̄MN

∫ tn+1

tn
iapp(t) dt,

(3.92)

and,

M̄MN

∫ tn+1

tn

dVM(t)

dt
dt−K̄MN

∫ tn+1

tn
VM(t) dt =

K̄MN

∫ tn+1

tn
φM(t) dt − M̄MN

∫ tn+1

tn

Iion

Cm
dt.

(3.93)

We can then assumed that VM(t) and φM(t) can be approximated by,

φM(t) ' (1 − θ)φM(tn) + θφM(tn+1) = (1 − θ)Ṽ n + θṼ n+1, (3.94)

and,

VM(t) ' (1 − θ)VM(tn) + θVM(tn+1) = (1 − θ)φ̃n + θφ̃n+1. (3.95)

In the above equations, θ represents an arbitrary weighting between the

present and future values of the time dependant variables, and is chosen to be

θ = 1 (refer to (3.97) and (3.99)). The solution then proceeds in three separate

steps. Firstly, the far right term in (3.93) is evaluated. This term is referred to

as the reaction term, as it defines the change in membrane voltage as a result

of the transmembrane currents, thus we can substitute,

∫ tn+1

tn
−
[

Iion − Istim

Cm

]

dt = V̂ n+1. (3.96)

The term V̂ n+1 will provide the initial guess at the transmembrane voltage. If

we compare (3.96) with (3.1) we see that the both equations provide represen-

tations of the transmembrane potential. We use the transmembrane potential

calculated from the Shorten et.al. cellular model as the initial predicted value

for the transmembrane voltage, thus linking the Shorten et.al. model with the
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Bidomain equations.

The second step in the solution process then involves solving for the diffu-

sion of the membrane potential through the medium,

M̄MN

(

Ṽ n+1 − Ṽ n

∆t

)

− K̄MN Ṽ n+1 = K̄MN φ̃n + M̄MN V̂ n+1, (3.97)

which can be rearranged to,

(

M̄MN − ∆tK̄MN

)

Ṽ n+1 = b, (3.98)

or Ax = b which can be solved using LU factorisation. Thus (3.97) gives an

updated value of Ṽ n+1, which is then used in the third step of the solution

procedure, solving for the extracellular potential,

L̄MN φ̃n+1 = K̄MN Ṽ n+1 − 1

AmCm
M̄MN iapp(t

n+1). (3.99)

The values of the surface to volume ratio (Am), membrane capacitance (Cm)

and intra and extracellular conductivity of skeletal muscle were obtained from

the literature. As muscle fibres in humans are of a relatively consistent diame-

ter of approximately 80−100µm [70, 78, 106], the surface to volume ratio was

set at 50mm−1 (assuming a diameter of 80µm). The capacitance of the mem-

brane was set at 0.01µFmm−2 for the fast twitch fibres and 0.0058µFmm−2

for the slow twitch fibres [105]. As one dimensional fibre models were being

solved, the only conductivities that were required were the intracellular and

extracellular conductivities in the fibre direction (σf
e and σf

i ). This is because

there is no mathematical link between the electrophysiology of adjacent fi-

bres in the framework, and as such conductivities in any direction other than

the fibre direction are not required. The intracellular conductivity was set at

0.893mSmm−1 [16] and the extracellular conductivity was set at 0.67mSmm−1

[102, 104].

3.2.4 The Finite Element Method for Finite Elasticity

The Finite Element Method is used to numerically solve the equations of Finite

Elasticity. The numerical solution will then be used to calculate the deforma-
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tion of the whole muscle as a result of the physiological data conveyed through

the constitutive law (refer to Section 3.1.3). Transforming (3.54) in normalised,

orthogonal ξ space, we get,

∫ 1

0

∫ 1

0

∫ 1

0

TMNF j
M

∂δuj

∂XN

√

G(ξ) dξ3 dξ2 dξ1 =

∫ 1

0

∫ 1

0

∫ 1

0

ρob
jδuj

√

G(ξ) dξ3 dξ2 dξ1

+

∫ 1

0

∫ 1

0

sjδuj

√

g(ξ)dξ2 dξ1,

(3.100)

where G and g are Jacobian matrices which are used to map between the real

space and ξ space.

GMN(ξ) =
∂X(ξ)

∂ξM

· ∂X(ξ)

∂ξN

, M, N = 1, . . . , 3, (3.101)

gij(ξ) =
∂x(ξ)

∂ξi
· ∂x(ξ)

∂ξj
, i, j = 1, . . . , 3. (3.102)

The virtual displacements δuj can be interpolated using the same basis func-

tions that are used to represent the geometric mesh (see Chapter 4), giving,

δuj =
∑

n

φn(ξ)δun
j , (3.103)

where the subscript n represents the node number. Equation (3.103) can then

be substituted into (3.100) which can be rearranged to give,

∫ 1

0

∫ 1

0

∫ 1

0

ρob
jφnδu

n
j

√

G(ξ) dξ3 dξ2 dξ1 +

∫ 1

0

∫ 1

0

sjφnδun
j

√

g(ξ)dξ2 dξ1

−
∫ 1

0

∫ 1

0

∫ 1

0

TMNF j
M

∂φnδun
j

∂XN

√

G(ξ) dξ3 dξ2 dξ1 = 0.

(3.104)

The stresses calculated in (3.104) are calculated with respect to the fibre direc-

tions which are defined along with the geometry of the triquadratic mesh (refer

Section 4). The fibre directions are also explicitly related to the constitutive

law, as mentioned in Section 3.1.3.

Equation (3.104) can be represented in the form of Residuals, and is thus
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reduced to,

Rn
j δun

j = 0, n = 1, . . . , number of nodes,

j = 1, . . . , 3,
(3.105)

In (3.105) the virtual displacements δuj are taken out as a common factor

from (3.104). Equation (3.105) can be represented as a system of equations,

δv ·R(x) = 0. As the displacements are by definition arbitrary, the system of

equations can be reduced to,

R(x) = 0, (3.106)

where, for an element of degree of freedom xe, the residual vector is,

Re(xe) =













R1

...

Ri

Rp













, (3.107)

where Rp is residual which specifies the incompressibility constraint arising

from the requirement that the third invariant of the Cauchy-Green tensor, I3,

is equal to 1, which is enforced by,

∫ 1

0

∫ 1

0

∫ 1

0

√

I3 − 1ϕp
n

√

G(ξ) dξ3 dξ2 dξ1 = 0, (3.108)

where ϕp
n are the basis functions approximating the internal hydrostatic pres-

sure in the FE mesh. Tri-linear basis functions are used to approximate the

hydrostatic pressure.

The residual vector is highly nonlinear. In order to solve this system of

equations, a root finding algorithm is used. In this thesis the Newton-Raphson

method was used (refer to Section 3.2.1). The initial guess at the value of the

root is the undeformed state. Using this, we arrive at,

R +
∂R

∂x
δ = 0, (3.109)

where δ are the solution increments between the known solution x and the

unknown solution.
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3.2.5 The Grid Based Finite Element Method

The grid based Finite Element Method is a technique that has been integrated

into the CMISS computer package (refer to Section 3.3) for the solution of

the Bidomain equations. A high resolution computational grid is embedded

in a Finite Element geometric model and the Finite Element discretisation of

the Bidomain equations is used to integrate the equations over linear Finite

Elements defined by the high resolution grid. The use of the grid based Fi-

nite Element Method allows a very small spatial resolution (which is required

for numerical convergence, as seen in Chapter 4) to be defined between com-

putational points very easily. The grid points used to solve the Bidomain

equations (i.e. grid based Finite Element solution points) will hereafter be de-

fined as Bidomain grid points. Bidomain grid points are not to be confused

with the grid points that are used to define individual fibres within three-

dimensional muscle mesh (refer to Chapter 4). This distinction will be made

clear in Chapter 4.

3.3 CMISS

CMISS6 is an in-house computer program originally developed in the Depart-

ment of Engineering Science and currently developed at the Bioengineering

Institute for Continuum Mechanics, Image analysis, Signal processing and

System identification. Unless stated otherwise, all simulations within this the-

sis have been run using this software problem. The ODE integrators that were

used to solve the transmembrane model, the grid based FEM and Bidomain

solvers, and the finite elasticity solvers have all been programmed into the

framework by other researchers. To this substantial base of code, routines

specific to the solution of skeletal muscle problems have been added as will be

detailed in Chapter 4.

6www.cmiss.org



Chapter 4

Creation of a Whole Muscle

Model

In this chapter the physiology of a single muscle fibre initially represented, fol-

lowed by an extension of the framework into the representation of a selection,

or all, of the fibres within a muscle. The framework will also include anatomi-

cal partitioning, fibre angles, motor unit grouping, fibre type distribution, and

the geometry of the motor unit territory. For the purposes of this work, the

human Tibialis Anterior muscle is used as an example of the framework im-

plementation (the geometric data of the Tibialis Anterior was obtained from

the visible human data set [108]).

The Tibialis Anterior muscle is located on the lateral side of the tibia and

is thick and fleshy proximally and tendonous distally. It arises from the lateral

condyle and upper region of the lateral surface of the tibia and inserts into

the medial, lower surface of the first cuneiform bone and the base of the first

metatarsal bone [41] (Figure 4.1). It is composed of a superficial and a deep

compartment separated by a tendonous aponeurosis, with the fibres of each

compartment having a different pennation angle [67]. The Tibialis Anterior

muscle was selected to be the muscle subject for the development and testing of

these techniques because it is a common target of investigation in the literature

and as such, a wealth of information could be gathered on its structure and

function.

Within this section, multiple references to ’fibres’ and ’grid points’ are used.

To avoid confusion the following conventions will be used where appropriate.

87
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Fig. 4.1: The location of the Tibialis Anterior, shown in blue, in the human lower
limb.

When referring to a physiological model of a muscle fibre (see Section 4.1, i.e.

where the Bidomain equations are used to replicate the physiology of a muscle

fibre using the Shorten et.al. model), the term Bidomain fibre will be used.

Bidomain grid points will refer to the grid based FEM solution points that

make up a Bidomain fibre. Within this chapter the creation of muscle fibres

within a three-dimensional muscle geometry is described, and these fibres will

be referred to as mechanical fibres. The mechanical fibres are also made up

from grid points which shall be referred to as mechanical grid points. It is

the mechanical grid points onto which the physiological values calculated from

the Bidomain grid points are mapped. Finally, when referring to the actual

muscle fibres that compose real muscle tissue, the term physiological muscle

fibres will be used.

In Section 4.2 the methods used to reproduce the structure of the Tibialis

Anterior are introduced. The structural representation of the Tibialis Ante-

rior includes the large scale characteristics of the muscle, i.e. the geometry and

separate muscle compartments, and also the physiological fibre level geome-

try, i.e. the physiological fibre directions and fibre geometric properties. The

functional representation of the Tibialis Anterior is then presented in Section

4.3. The grouping of mechanical fibres into motor units and then the distri-

bution of mechanical fibres within the muscle geometry is described. Finally,
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a discussion on the validity of the approaches used is presented.

4.1 Modelling the Electrophysiology of a Skele-

tal Muscle Fibre

The following section describes the creation and validation of an electrophysi-

ological, and a one-dimensional model of a skeletal muscle fibre. Subsequently

in this chapter, a number of these one-dimensional models are used to represent

muscle fibres within a three-dimensional muscle geometry. The combination

of the one-dimensional physiological model, and the three-dimensional muscle

model produces the multi-scale model that is used in the remainder of this

thesis. One-dimensional fibres are chosen such that the electrical isolation

of skeletal muscle fibres can be replicated. Embedding such one-dimensional

models within a three-dimensional geometry allows mechanical coupling while

maintaining the electrical insulation.

The first step to creating the fibre model is the solution of the Shorten

et.al. transmembrane model, which represents skeletal muscle physiology at

a single point. The procedure used to do this is outlined in Chapter 3. The

numerical implementation of the Bidomain equations, along with the Shorten

et.al. model, will be used to model a one-dimensional fibre, and validate the

parameter set.

4.1.1 Solution of the Shorten et.al. Model

The system of ordinary differential equations that comprise the Shorten et.al.

cell model (see Appendix A) are solved using the LSODA integrator package

as outlined in Section 3.2.1. The parameter set that would give an accurate so-

lution to the set of equations was investigated. The input parameters required

for LSODA are listed below,

• The time increment.

• The maximum number of iterations that can be taken without reaching

a converged solution before sending an error message.
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• The type of error control. Error control options were, pure absolute,

relative, or Mixed relative/absolute.

• The error tolerance.

Absolute error control uses the general formula,

∣

∣yn
s+1 − yn

s

∣

∣ ≤ ErrTol, (4.1)

where the difference between the solution for state variable n at iteration s +

1 and the previous solution iteration value is compared with the specified

error tolerance ErrTol. The solution is deemed to have converged when the

difference between all the iterated state values is less than ErrTol. Relative

error control uses the formula,

∣

∣

∣

∣

yn
s+1 − yn

s

yn
s+1

∣

∣

∣

∣

≤ ErrTol. (4.2)

In this case the difference between the successive iteration values is in effect

normalised by the current value of the state variable. This form of error con-

trol is useful when the values of state variables differ by a number of orders

of magnitude, as the error tolerance is always being compared to a normalised

value. However, the downside of using relative error control is that, if a state

variable is tending towards 0 and starts getting near the floating point error

of the machine, then the method can break down. As rounding errors become

dominant, the error introduced can effect the implementation of the conver-

gence criteria. Mixed error control, as the name suggests, uses both forms

of error control. This form is useful when wanting to employ relative error

control, but having some state values that are tending to 0.

For the Shorten et.al. model, the time increment and the error tolerance

were the variables that were investigated. The maximum number of iterations

was set at 999 (the maximum allowable in CMISS), and pure absolute error

control was selected. This type of error control was chosen as, even though

there was a large difference in the magnitude of some state variables, there

were a number of state variables that would tend to get very close to 0, i.e.

gaiting variables. As this investigation was to test the convergence of the cell

model as a function of time step and error tolerance changes, it was decided
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that pure absolute error control would be more appropriate than relative or

mixed error control.

The fast type muscle parameterisation of the cellular equations was selected

for the time discretisation study as the stiffness of the system of ODEs was,

if different to the slow parameterisation, slightly greater due to the faster

kinetics of it’s ODEs (i.e. rise time of the action potential). The protocol for

the numerical experiments was as follows:

1. A 5ms simulation of activation of the system of ODE’s was run.

2. The membrane potential was outputted at 0.2ms intervals.

3. The time discritisation (Time Step) was changed.

4. Steps 1-3 were repeated for the following time discretisations ∆t =

0.1ms, 0.01ms, 0.001ms and 0.0001ms.

5. The difference between each of the output values with respect to the

0.0001ms output value was calculated and squared.

6. For each time discritisation, the square root of the average of the values

was calculated (RMS).

7. Steps 1-6 were repeated for the following Absolute Error values 0.1, 0.1−4,

and 0.1−8.

Examples of the output from the test protocol can be seen in Figure 4.2. Thus

the difference that the input values of Absolute Error and the Time Step had

on the Action Potential wave forms could be calculated. The metric used

to determine the difference between the Action Potential waveforms resulting

from the different input values was the RMS error. The RMS error was cal-

culated by finding the average of the squared difference between the output

values, with respect to the output at ∆t = 0.001 (assumed to be the most

accurate solution). For example, for the LSODA time step investigation, the

difference between the output of each step was compared with the finest step

(0.0001ms). The results of these simulations can be seen in Table 4.1.

From Table 4.1 it can be seen that there was a negligible increase in ac-

curacy between Absolute Error values of 0.1−4 and 0.1−8. Also for Absolute
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Fig. 4.2: The Action Potential traces for a 5ms duration simulation. The membrane
potential is plotted at 0.2ms intervals. The time step used in the LSODA solver was
varied as specified in the legend. As can be seen the trace with a time step on 0.1ms
displayed much greater variation than the traces of time steps 0.01ms and 0.001ms.
The absolute difference between these plots was used to gauge the convergence.

Table 4.1: The RMS error of the Action Potential wave form calculated with respect
to the Action Potential of minimum time discretisation. The two parameters that
are varying are Absolute Error and the Time Step (both LSODA input parameters).

Time Step Absolute Error
(ms) 0.1 0.1−4 0.1−8

0.1 3.471 3.405 3.405
0.01 0.524 0.526 0.526
0.001 0.062 0.570 0.580
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Error values of 0.1−4 and 0.1−8 we see little change in the RMS error with

respect to a decrease in time discritisation from 0.01ms to 0.001ms. From this

study it was decided that an Absolute Error value of 0.1−4 and a Time Step of

∆t = 0.01ms were adequate parameter values to use for the LSODA solution

of the Shorten et.al. transmembrane model.

4.1.2 Fibre Solution Validation

This section demonstrates the use of the Shorten et.al. model and the Bidomain

equations, solved using the Finite Element Method, to represent the physiol-

ogy of skeletal muscle fibres. The behaviour of the solution to the change

in Bidomain grid point spacing is investigated so that a converged numerical

solution is achieved. The metric used to demonstrate convergence of the Bido-

main solution on the one-dimensional fibre is the convergence of the Action

Potential velocity.

Within the human body, muscle fibres are activated through the inward

sodium current at the neuromuscular junction as a result of an Action Potential

from a motor neuron. Since no appropriate mathematical description of a

neuromuscular junction is available, the activation of a single muscle fibre is

simulated by injecting an intracellular current to a single Bidomain grid point.

At each desired stimulation time, tstim, an intracellular current is added to

the fibre model, via the Istim variable in (3.96). The Istim that is added is

spatially varying in that it is only non-zero at the central point of the muscle

fibre (the location of the neuromuscular junction). A current of 8000µA/mm3

is used as this is large enough to cause a depolarisation large enough for the

system of ODEs to reach Threshold Potential. Figure 4.3 shows an activated

fibre at three different time points. The Action Potential can clearly be seen

propagating down the length of the fibre (left to right). As we will see later,

the Istim current injection allows the timing of the activation to be controlled

to give the desired fibre stimulation frequency.

The grid based Finite Element Method as described in Section 3.2.2 was

used to represent the muscle fibre. For these experiments a linear interpolation

scheme was used. A single 32mm long element was used to represent a muscle

fibre.

The metric used to determine the convergence of the Bidomain fibre model
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Fig. 4.3: A 32mm finite element representation of muscle fibre membrane potential
with a Bidomain grid spacing of 0.5mm at time 3ms, 8ms and 12ms after simulation
at the left end. The Action Potential can clearly be seen propagating from left to
right with a peak amplitude of approximately 35mV . Note that for this experiment
the Action Potential was initiated at the left end of the fibre, where as in real
muscle fibres the Action Potential occurs in the middle of the Bidomain fibre (at
the neuromuscular junction) and propagates in both directions along the fibre.

was the convergence of the Action Potential velocity (conduction velocity).

The conduction velocity was determined by calculating the time of the maxi-

mum positive gradient in membrane potential (activation time) at a Bidomain

grid point some distance from the site of activation.

CV =
GPno · GPspacing

tMaxRise
, (4.3)

where GPno is the Bidomain grid point number were the time of maximum

rate of membrane potential rise (tMaxRise) was measured, and GPspacing is the

spacing between the Bidomain grid points in the finite element mesh. During

the convergence experiments GPno was changed for each successive GPspacing

so that the total distance between the point of activation, and the sight of

maximum membrane potential rise, was the same distance. Simulations were

run with progressively smaller Bidomain grid point spacing and the conduction

velocities calculated. The results of this study for both fast and slow type

muscle fibres can be seen in Figure 4.4. Plots of the Action Potential wave

form at a location 25mm from the point of stimulation can be seen in Figure

4.5.
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Fig. 4.4: Plot of Action Potential velocity for fast and slow fibre types at different
Bidomain grid point spacings. The conduction velocities reduce as the number of
Bidomain grid points per millimetre is increased until there is no further change in
conduction velocity. The point at which there is no further change in conduction
velocity occurs at a Bidomain grid point spacing of 0.0625mm. Note the difference
in conduction velocities between the two muscle types.



96 Chapter 4. Creation of a Whole Muscle Model

Fig. 4.5: Plot of the Action Potential in the fast fibre at a point 25mm from the
site of stimulation. Notice as the Bidomain grid point spacing (legend) reduces the
Action Potential converges in both form and temporal location.
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The converged Action Potential velocities are, for slow type muscle, 1.466m/s,

and for fast type muscle, 2.033m/s. The action potential peak, duration and

velocity are consistent with values from the literature [105].

4.1.3 The Motor Unit Representative Fibre

The one-dimensional Bidomain fibre model described above allows for the sim-

ulation of the cellular physiology of individual muscle fibres. The next step of

the framework is to be able to represent all, or a section, of the fibres within the

three-dimensional geometry of a muscle. As all the fibres within a motor unit

receive the same activation from the α-motor neurons, a single one-dimensional

Bidomain fibre model is sufficient to represent the physiology of all muscle fi-

bres within a motor unit. Thus we coin the term Motor Unit Representative

Fibre (MURF), which is the single Bidomain fibre whose physiological output

can be mapped to every mechanical fibre within a motor unit. As a result, for

a muscle with 100 motor units, only 100 MURF’s are required to be solved.

Given that a real muscle made up of 100 motor units could contain hundreds

of thousands of individual muscle fibres, this simplification represents a huge

saving in computational power.

4.2 Representing the Structure of Skeletal Mus-

cle

4.2.1 Creating Three-Dimensional Muscle Geometry

To produce an anatomically based three-dimensional representation of the Tib-

ialis Anterior muscle, two-dimensional photographic slices of known spacing of

the muscle were digitised using CMISS. These images were obtained from the

visible human data set [108]. The digitisation produced a three-dimensional

data cloud to which an initial mesh consisting of triquadratic lagrange Finite

Elements was fitted. The fitting process involved minimising the difference be-

tween the surface of the Finite Element volume and the reference points using

a least-squares minimisation technique. The mesh that was fitted to the data

cloud was a tri-quadratic Finite Element mesh which was generated so that it



98 Chapter 4. Creation of a Whole Muscle Model

could be used to represent the internal structure of the Tibialis Anterior. The

method for generating a Finite Element mesh from a cloud of data is presented

in detail in Fernandez et.al. [34] for tri-cubic Hermite elements. The process

is the same for tri-quadratic elements.

The Tibialis Anterior muscle consists of two anatomical compartments di-

vided by an internal tendon. The superficial and deep compartments were

digitised and individually fitted with Finite Element meshes. Each of the two

meshes was generated and fitted in such a way that the physiological fibre

directions described in Lansdown et.al. [67] were followed explicitly by one of

the primary element directions (ξ1). The two meshes were then fused at the

boundary of the internal tendon which produced the Finite Element mesh,

consisting of twelve elements, four representing the superficial compartment

and eight representing the deep compartment of the Tibialis Anterior. The

Finite Element mesh generated by this procedure can be seen in Figure 4.6.

Tri-quadratic Finite Elements were selected as they were able to provide

a more accurate approximation to the geometry than linear basis functions,

and the discontinuity in physiological fibre angle at the internal boundary

between the two muscle compartments could be represented. The fibre angle

discontinuity could not be achieved using tri-cubic Hermite elements without

using special meshing techniques that were deemed over complicated for this

application.

4.2.2 Generation of Fibres Within the Tibialis Anterior

Mesh

Each mechanical fibre within the three-dimensional Tibialis Anterior mesh

was to be represented by a string of mechanical grid points. Each string of

mechanical fibre grid points was required to conform to a set of constraints so

that the anatomical properties of the muscle would be represented accurately,

and also, so that the physiological properties, as calculated from the one-

dimensional Bidomain fibres models, would be able to be mapped accurately

to the embedded mechanical fibre grid points.

1. Each mechanical muscle fibre should have approximately the same cross-

sectional area and an approximately uniform diameter, to replicate phys-
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Fig. 4.6: The tri-quadratic mesh of the Tibialis Anterior is shown with the ele-
ment boundaries represented by wires. The shaded section represents the element
boundaries that are aligned with the aponeurosis, separating the superficial and deep
compartments of the muscle. Note the skewed angle of the elements as a result of
creating the elements so that ξ1 of every element follows the physiological fibre direc-
tion of the real Tibialis Anterior. The approximate directions of the ξ-coordinates of
both the superficial and deep muscle compartments can be seen as the two deformed
axes. The mechanical fibre direction in both compartments is defined to follow the
ξ1 direction of all of the elements.
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iological muscle fibres.

2. Mechanical muscle fibres should follow the physiological fibre direction

of the muscle as closely as possible.

3. The spacing of the mechanical grid points representing a fibre must be

even in Cartesian coordinates.

An even spacing of mechanical fibres (i.e. similar cross-sectional area and di-

ameter) is necessary as deformations in the mechanical fibre cross-sectional

density will cause unwanted deformations in the local stress field. Require-

ment 3 arises as the mechanical fibres in the muscle mesh are not the solution

points for the Bidomain equations, but rather serve as points at which the

Bidomain output can be mapped to. As a result the spacing of the mechanical

grid points must be even, so that when they are updated with cellular param-

eters from the uniformly spaced Bidomain fibre simulation (the Bidomain grid

points are uniformly spaced), no distortions in the propagation wave occur.

The generation of muscle mechanical fibres within the muscle mesh is highly

dependant on the geometry of the elements in the finite element mesh of the

three-dimensional muscle geometry. This dependency arises for the following

two reasons. Firstly, mechanical fibres are ’grown’ through the tri-quadratic

Finite Elements (the mechanical fibre growth is described in Section 4.2.2)

from predefined ’seed points’ (the generation of these seed points is described

in Section 4.2.2) and the direction of mechanical fibre growth is constrained

to be parallel with one of the ξ directions of the elements. Growth of the

mechanical fibres along a ξ axis has the advantage that it is relatively easy to

generate mechanical grid points in the intrinsic element direction. In order to

generate the mechanical fibres so that they might follow some other arbitrary

path, another field describing this path would have to be generated. Another

advantage to the mechanical fibres following a ξ direction is that the consti-

tutive law (refer to Section 3.1.3) used requires a description of the material

axes so that the 2nd Piola-Kirchhoff stress tensor can be updated, and linking

the mechanical fibre direction with an intrinsic element direction simplifies the

calculations.

Secondly, when defining the mechanical muscle fibres, a physiologically

derived starting point and end location are required, so that the properties
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of the physiological muscle fibres can be replicated. The start points of each

mechanical muscle fibre will hereafter be referred to as the ’seed point’ of the

fibre, as it is the point from which the mechanical fibre is ’grown’ through the

mesh. For simplicity, the seed and end points are defined to lie on the boundary

of the elements making up the three-dimensional muscle mesh. Given that the

mechanical muscle fibres follow an element ξ-direction, the element boundaries

are the logical start and end points for the mechanical fibres. The use of

element boundaries as the boundaries for mechanical fibres is that the elements

defining the superficial and deep compartments of the Tibialis Anterior were

constrained to join at the internal tendon, so that individual mechanical fibres

could begin and end at this boundary, as they do in the Tibialis Anterior.

In order to generate mechanical fibres within a muscle mesh given the

specifications and constraints outlined above, the following specific parameters

are required to be input into CMISS. This is done via an input file, designed to

convey the grid point parameters for a particular simulation, called the .ipgrid

file. For the purposes of skeletal muscle simulations, the .ipgrid format has been

altered in CMISS to allow the following skeletal muscle specific parameters to

be input. This format is called using the ’skeletal’ tag at the end of the

command line. The input parameters are:

• The number of muscle compartments (subdivisions of the muscle with

different anatomical properties).

• The numbers of the elements that make up individual muscle compart-

ments.

• The numbers of the elements in each compartment in which the mechan-

ical fibre seed points will be generated.

• The mechanical fibre direction in each compartment (ξ direction).

• The value of ξ specifying the seed element face on which the mechanical

fibre seed points will be generated (i.e. ξ = 0 or 1).

• The mechanical fibre diameter (Dfibre).

Specification of more than one muscle compartment allows for the generation

of discontinuous mechanical muscle fibres within a single muscle. This is im-
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portant when trying to model muscles which have areas with physiological

fibres of different pennation angles, e.g., the Tibialis Anterior, or muscles with

anatomically separate compartments, e.g., the Semitendinosus [80]. The ele-

ments on whose faces the mechanical fibre points are to be seeded (the seed

elements) are subgroups of the individual muscle compartments. The face on

which the mechanical fibres are to be seeded is calculated from the ξ-direction

which the mechanical muscle fibres are constrained to follow, and the input

value of ξ for the seed face (See Figure 4.7).

Fig. 4.7: This figure shows an individual element that has been defined to be a seed
element, the fibre direction is following ξ1, and the seed face has been set at 0, thus
the seed face for the element is ξ1 = 0.

Generation of the Seed Points

Once the seed elements and the seed faces have been specified as input, the

seed points for each mechanical muscle fibre need to be calculated. As the

cross-sectional area of the mechanical fibres must be the same, and the diame-

ters have to be uniform in Cartesian coordinates, a subroutine that generates

the seed points using these constraints has been implemented. To achieve uni-

form mechanical fibre spacing at a specified diameter, the following must be

taken into account; In an element where the mechanical fibre direction is per-

pendicular to the face on which the mechanical fibres are to be seeded, evenly

spaced seed points will result in evenly spaced mechanical fibres. However, if
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the element is skewed, this is not the case. An adjustment to the seed point

spacing, dependant on the angle of the mechanical fibre direction with respect

to the seed face, can be made to allow equally-spaced mechanical fibres to

be generated. As mechanical fibres are being seeded on a two-dimensional

surface, the angle of the mechanical fibre direction with respect to both di-

rections must be evaluated and accounted for before seeding the mechanical

fibres. This adjustment to the mechanical fibre spacing is defined by,

∆D^ =
Dfibre

sinθ^

, where ^ = α, β, (4.4)

where θ^ is the angle of the mechanical fibre direction with respect to the seed

face in direction α or β, Dfibre is the mechanical fibre diameter, and ∆D^

is the seed point spacing with respect to the α or β direction. The angle

needs to be calculated for both orthogonal directions to the mechanical fibre

direction. With reference to Figure 4.8, the two angles can be calculated using

the following relationship,

θ^ =

n
∑

i=1

θi
^

n
, where ^ = α, β, (4.5)

where i = 1..n are nodes of the elements, contained in the muscle compartment,

in the mechanical fibre direction from the seed face. An example of an element

seed face can be seen in Figure 4.9.

At each of the node points on the seed face, the angle of the mechanical

fibre direction (specified by the ξ direction, so in the case of Figure 4.9, ξ1)

is evaluated with respect to the other two ξ directions (θα and θβ in Figures

4.9 and 4.8). This process is repeated on the adjacent face of the seed element

(in the case of Figure 4.8). If there are any elements contained in the muscle

compartment that are adjacent to the seed element in the mechanical fibre

direction, then the angles of the mechanical fibre direction are evaluated at

the four node points on the face of these elements as well (i.e. all twelve nodes

in Figure 4.8). The average length of the element in each non-fibre direction

is found in a similar way to the average angle (refer to `α and `β in Figure

4.8). Using the average length of the element boundaries and the seed point
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Fig. 4.8: Showing the locations of θα and θβ, and `α and `β for nodes 1 − 12. Note
that the element defined by node points 5 . . . 12 is in the same muscle compartment
as the seed element and so the mechanical muscle fibres will be grown from the
1 . . . 4 face (Seeding Face) to the 9 . . . 12 face (End Face).

Fig. 4.9: The seed face of a seed element is shown with the four corner node points.
The angles θα and θβ are the angles of the ξ1 unit vector at each corner node point
with respect to the directions α and β. The lengths of the element edges `α and `β

are shown for two of the four element edges. In the top left corner of the element,
5 seed points are shown. The two seed point spacings in both directions, ∆Dα and
∆Dβ, are shown.
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spacing (calculated from (4.4)) the number of seed points in each direction

is calculated. Seed points are then spaced in even ξ increments on the seed

face. Equal ξ spacing does not necessarily give the seed points equal spacing

in Cartesian coordinates, and so, the shape of the muscle geometry elements is

very important in maintaining consistent seed point spacing, and thus mechan-

ical fibre diameter. The seeding technique described requires not only that the

mechanical fibres follow an element ξ direction, but also that the perpendicu-

lar element faces be as close to rectangular as possible, and approximately the

same dimensions along the mechanical fibre direction.

Growth of Mechanical Fibres From the Seed Points

After the seed points are calculated, mechanical grid points of even spacing

(GPspacing) need to be generated along the mechanical fibre direction to rep-

resent the mechanical muscle fibres. To achieve this, firstly the geometric

coordinates of the seed point being extended are calculated. Then a test point

is generated with the same ξ coordinates as the seed point, with the excep-

tion of the ξi value, where i is the mechanical fibre direction. The ξi value is

modified by ∆ξ. Being able to step in just one ξ direction is a direct benefit

of creating the elements which follow the physiological fibre direction. The

geometric coordinates of this test point are then calculated, and the distance

between the test point and the seed point is calculated (∆X), as in (4.6) and

Figure 4.10.

∆X = 2
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 (4.6)

If |GPspacing−∆X| > ErrTol then the ∆ξ value is modified using the following

equation,

∆ξnew =
∆ξold

GPspacing−∆X

GPspacing

. (4.7)

The distance between the two points (∆X) is then recalculated. The ∆ξ value

is iterated using (4.6) and (4.7) until the calculated ∆X value satisfies,

|GPspacing − ∆X| ≤ ErrTol. (4.8)

The test point then becomes a mechanical fibre grid point and the next test

point is determined to be ∆ξnew away in the mechanical fibre direction. So in
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Fig. 4.10: This figure shows the location of the ξ, and the geometric coordinates, of
the seed point on the element face and new test grid point. The distance between
the two points is calculated in Cartesian space as ∆X.
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general (using the example of a ξ1 fibre direction) the local ξ coordinates of

mechanical grid point n + 1 are described as,

(ξn+1
1 , ξ2, ξ3) = (ξn

1 + ∆ξnew, ξ2, ξ3). (4.9)

The updated ∆ξ is used as the initial guess for the displacement of the next

mechanical grid point. The ErrTol used in this work is set to be 0.01·GPspacing.

The mechanical fibre growth routine is implemented so that if the ξ co-

ordinate in the mechanical fibre direction is greater or less than 1 (i.e. the

test point is outside the current element), then if, as in Figure 4.8, there is

an element in the mechanical fibre direction that is within the same muscle

compartment (i.e. Element 2 in Figure 4.8), the mechanical fibre grows into

the adjacent element. The growth through element boundaries is achieved by

keeping two of mechanical fibre direction ξ values constant, and either adding

or taking away 1 from the ξ value in the mechanical fibre direction (depending

on whether the mechanical fibres are being grown positively or negatively in ξ

space). Thus ∆X can be calculated across element boundaries and GPspacing

can be maintained as the mechanical fibres move through element boundaries.

4.3 Representing Functional Organisation of

Skeletal Muscle

The details of the functional grouping of mechanical muscle fibres are presented

in this Section. The required properties of the functional grouping, as derived

from Section 2, are first outlined (Section 4.3.1). Following this, the grouping

of the mechanical fibres generated within the three-dimensional mesh into the

calculated motor units is described (Section 4.3.3).

4.3.1 Functional Properties

In order to be able to perform physiologically realistic electromechanical sim-

ulations it is necessary to add further functionality to the model. Each indi-

vidual mechanical muscle fibre needs to be assigned a physiological fibre type

(fast or slow) and needs to be grouped into a motor unit. This process is again
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automated within the CMISS framework, and required further input via the

.ipgrid file. The following extension to the skeletal muscle model has been

included in the proposed framework:

• The total number of motor units (MU).

• The ideal motor unit fibre ratio between the last (biggest) motor unit

and the first (smallest) motor unit (MUratio).

• The percentage of mechanical fibres that are to be slow twitch.

• The desired density of mechanical fibres within a motor unit territory

(ρMUT fibres per mm2).

• The percentage of the slow mechanical fibres to have their location non-

randomly selected (location weighting 0 − 100%).

• The centre of the weighting function.

• The value of the weighting function WTFN (the larger this value, the

more likely the fibres are to be located near the specified weighting point).

• The same weighting input for fast twitch mechanical muscle fibres.

4.3.2 Calculating the Motor Unit Distribution

First, the motor unit distribution within the muscle is determined. The dis-

tribution is defined to be an exponential function and is based on the work of

Enoka et.al. [30]. The general equation for calculating the number of fibres in

each motor unit is given by

Mui = Mu1 + exp

(

ln Mun

Mu1

(MU − 1) · i

)

(4.10)

where Mui, i = 1..n, is the number of fibres in motor unit i, Mun is the

number of fibres in the last (largest) motor unit and MU is the number of

motor units. Mu1 and Mun can be calculated in an iterative process by using
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the ratio of Mun to Mu1 (MUratio) and the formula

Mu1 =
Ttot · ln (MUratio)

MU ·
(

MUratio − exp
(

lnMUratio

MU

)) (4.11)

where Ttot is the total number of fibres generated in the three-dimensional

muscle geometry. Note, rearranging (4.10) leads to (4.11). Based on (4.11)

and MUratio, one can compute the MUn for the current iteration of MU1.

Using the new values of MU1 and MUn, (4.10) is used to calculate the motor

unit distribution. The value for each motor unit is rounded to an integer

and summed to give the total number of fibres in the motor unit distribution,

MUFtot, which is then compared to the total number of mechanical fibres that

has been generated in the muscle mesh, Ttot. The values of Mun and Mu1 are

then iterated using (4.11) and (4.10) using the following steps:

1. MUn is calculated from MU1 (using (4.11) and the input MUratio).

2. The motor unit distribution and MUtot are calculated using (4.10).

3. If Ttot − MUFtot < 0 then MU1 = MU1 − 1, else if Ttot − MUFtot > 0

then MU1 = MU1 + 1.

4. The previous three steps are repeated until the value of MU1 giving the

lowest | Ttot − MUFtot | value is determined.

5. MUn is then iterated in a similar way (keeping MU1 constant) until the

lowest | Ttot − MUFtot | value is determined.

6. If Ttot−MUFtot 6= 0 then the difference is subtracted from MUn (without

recalculating the MU distribution).

Thus the following two criteria are met. The number of fibres in the calculated

motor unit distribution are the same as the number of mechanical fibres gen-

erated in the muscle mesh, and the ratio of the actual Mun/Mu1 is as close as

possible to the ideal MUratio. Motor units are defined to contain slow fibres

starting from Mu1 until the total number of fibres in these slow motor units

is as close as possible to the input percentage of slow muscle fibres defined in

the .ipgrid file, the balance of the motor units are defined as containing fast

type fibres.
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4.3.3 Assigning Fibres to Motor Units

After the motor unit distribution has been calculated, each of the generated

mechanical fibres in the muscle mesh needs to be associated to one of the

motor units. This assignment is achieved by defining motor unit territories

within the muscle mesh and then assigning random mechanical fibres within

the territories to a motor unit. The location of each motor unit territory

centre point is either randomly selected from all of the mechanical fibre centre

points, or if a weighting is specified, it is selected randomly using a Gaussian

function and the specified weighting value. Gaussian weighting of the motor

unit territories is achieved as follows.

The distances of the centres of all of the mechanical muscle fibres (potential

motor unit territory midpoints) from the weighting centre are calculated using,

MPRj =
√

(xj − XW )2 + (yj − Y W )2 + (zj − ZW )2, (4.12)

where MPRj is the distance of mechanical fibre midpoint j, (xj , yj, zj), from

the weighting centre, (XW , Y W , ZW ). The range specified by the minimum

and maximum distance from the weight centre (MPRmax − MPRmin) is di-

vided into 100 equally spaced groups (or bins, Bind, where d = 1 . . . 100). Each

mechanical fibre midpoint is assigned to a bin depending on the midpoint’s dis-

tance from the weighting centre. This process results in each mechanical fibre

midpoint being grouped into bins with other midpoints of approximately the

same radius from the weight centre, and thus Bind is in fact an array of mid-

points, Bind[1 . . . noMidpointsd], where noMidpointsd is the number of fibre

midpoints in Bind. The centre point of motor unit i can then be selected using

the following set of equations.

d = RGauss ∗
100

3
∗ WTFN, (4.13)

CentreMUi = Bind[|Rand ∗ noMidpointsd|], (4.14)

where RGauss is a random number with a Gaussian (normal) distribution, a

centre of 0 and a standard deviation of 1, WTFN is the value of the weighting

function used (input), 100/3 is a factor that scales the Gaussian distribution

so that the first standard deviation contains a third of the possible bins, Rand
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is a random number between 0 . . . 1, and CenterMUi is the centre point of

motor unit i.

The value of WTFN alters the probability of the selected bin being close

to the weighting centre. As can be seen in (4.13), the factor of 100/3 scales

the random Gaussian number so that its standard deviation is 100/3. Thus

specifying a WTFN value of < 1 will increase the range of bins contained

within 1 standard deviation, and decrease the probability of a motor unit centre

being close to the weighting centre. The weighting protocol is demonstrated

in Figure 4.11. A WTFN value of 1 is used, giving a 68.26% probability

that the bin selected will be within the closest third of possible bins to the

weighting point. The above mechanism of weighting the motor unit territory

locations is not derived from a biophysical mechanism. Instead it represents

an attempt to reproduce the areas of the motor unit territories as described

by [17, 35, 80, 101].

Once the centre of the motor unit territory has been calculated, the distance

between the motor unit centre and the centre of all mechanical fibres that are

available to be grouped into motor units (those that have not already been

selected for a motor unit) is calculated (same procedure as (4.12)). Mechanical

fibres whose centre points lie within the radius of the motor unit territory are

grouped as the pool of possible mechanical fibres for the motor unit. The

radius of the motor unit territory is dependant on the number of mechanical

fibres within the motor unit and is selected as follows:

Ri =

√

Mui

ρMUT · π , (4.15)

where Ri is the radius of motor unit territory i, and ρMUT is the input density

of the motor unit territories. The mechanical fibres for motor unit i are then

selected randomly from the pool of mechanical fibres defined by motor unit

territory i and can no longer be selected for any other motor unit. Examples

of mechanical fibres grouped into motor units using this method can be seen

in Figure 4.12.

If there are insufficient mechanical fibres available in the motor unit ter-

ritory pool to meet the requirements of the motor unit being specified, the

radius of the territory is increased by 5% (Ri = Ri ∗ 1.05 until the number
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Fig. 4.11: The probability of a bin being selected given a weighting function value
of one. The point on the far left denotes the weighting centre. The two points
denoting the closest, and most distant mechanical muscle fibre centres are shown on
the horizontal line. The distance between the closest and most distant mechanical
fibre centres is divided into equally spaced subdivisions (in the case of this figure, 30
divisions, in the framework, 100 divisions). The centre of each mechanical muscle
fibre is by definition located between the closest and farthest point, and the centre
points are assigned to one of the subdivisions (bins). The half bell curve denotes the
probability that a bin is selected to be a motor unit centre. The bell curve associated
with a weighting function (WTFN) of 1 is depicted. The vertical line depicts the
location of 1 standard deviation, thus the probability of a mechanical fibre from one
of the closest third of the bins being selected to be a motor unit weighting factor is
68.26% (refer to (4.13)). A WTFN value greater than one would shift the location
of the 1 standard deviation line to the right, decreasing the likelihood of motor units
being located near the weighting centre. If no weighting is used, the probability of
any one bin being selected is equal.
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of mechanical fibres in the pool is greater than or equal to the number of

mechanical fibres required for MUi. Increasing Ri can lead to a large fluctu-

ation in the actual densities of the motor unit territories. For example, if the

value of the specified weighting function is very high then the mechanical fi-

bres surrounding the weight point will be assigned very quickly, meaning that

subsequent motor unit territories (which will also have their centre located

close to the weight point) will have to extend their radius to capture enough

mechanical fibres to fill their motor unit. Also as a result of increasing Ri, the

last (largest) motor unit can have a territory that covers the entire muscle, as

all remaining mechanical fibres in the three-dimensional geometry need to be

selected. While this is physiologically realistic, it can cause a variation in the

density of this motor unit compared to the preceding motor units.

Generating accurate motor unit territories in the model is further compli-

cated by the fact that a rigorous description of all the parameters that define

the distribution of physiological fibres in a motor unit is not available from

the literature [80]. The motor unit territory is defined by Bodine-Fowler et.al.

to be the smallest possible convex area that contains all of physiological fibres

of the motor unit [14]. Roy et.al. [101] define it as the outer perimeter of the

motor unit (physiological) fibres. These descriptions and their associated den-

sities predominantly describe the motor unit territory in two dimensions, and

even though Roy et.al. do characterise motor units in three-dimensions, den-

sities can only be meaningful in two dimensions if the number of physiological

fibres is to be used as the dependant variable. This presents problems given

that any measurement of density is only valid at a specific cross-section of the

muscle, and is further complicated if the muscle has (physiological) fibres of

more than one pennation angle, with motor unit (physiological) fibres being

distributed across the muscle (as any plane through the muscle is by definition

oblique to at least some of the (physiological) fibres).

4.4 Validation

The validation of the distribution of motor units throughout the Tibialis Ante-

rior is very difficult as not much data describing the distribution of the motor

unit territory in detail exists [80]. Motor unit territories have generally been
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(a) (b) (c) (d)

Fig. 4.12: A depiction of the Tibialis Anterior. In this case the mechanical fibres
within the muscle have been divided into 10 motor units. Subfigures (a), (c) and
(d) show the mechanical fibres contained in motor units 1, 5 and 10 respectively.
Subfigure (b) shows motor unit 1 along with the centre point of the motor unit
territory and the radius that was used to select the mechanical fibres for that motor
unit. Of interest is the large change in the number of mechanical fibres between
motor unit 1 and 10. Also of note is that the slow type mechanical fibres (thus the
small motor units) were weighted to be near the proximal end of the muscle, and as
can be seen, motor units 1 and 5 are made up of mechanical fibres that are closer
to the proximal end of the muscle.
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viewed in two dimensional slices [14, 80]. This has been done in the cat by

selecting a single motor neuron and stimulating it to deplete the physiological

muscle fibre glycogen stores [80]. The muscle was then sectioned and stained

for glycogen content. In this way, the physiological fibres of the motor unit

that was being stimulated could be distinguished from the other fibres of the

muscle. The metric used to describe the size of the motor unit is the motor

unit density fibres/mm2 [101, 14, 117], with reported values ranging between

10− 30fibres/mm2 [101, 14, 117]. The above method has also been extended

into three dimensions by sectioning the muscle in to 10 − 20µm thick seg-

ments, repeating the straining procedure and associating physiological fibre

points using three-dimensional visualisation tools [101]. Motor units occupy

three-dimensional space. A two-dimensional metric (i.e. muscle slices) is un-

able to capture a full description of geometry, which is needed in the modelling

context presented. Physiological muscle fibres can terminate, enter the two-

dimensional slice at different angles, and furthermore, a density value gives no

information on the shape of the motor unit.

In conclusion the structural and functional modelling framework presented

is able to replicate many feature of skeletal muscle, given the limitations of the

current body of knowledge. The mechanical fibres generated by the modelling

framework are evenly spaced, their origin and insertion are anatomically re-

alistic and their orientation agrees with published data [67]. The motor unit

distribution is consistent with published physiological data [80] and is also

similar to the method used by other numerical studies [30, 117]. The motor

unit territories are located realistically through the muscle volume so that the

spatial distribution of fibre types is able to be conserved, and the motor unit

territory size is consistent with published physiological data [101] as well as the

methods of other numerical work [117]. The motor endplate band, as defined

by the centre points of all the mechanical muscle fibres, forms a parabola with

its apex at the proximal end as described in Aquilonius et.al. [4].
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4.5 Modelling the Activation of Skeletal Mus-

cle

In Chapters 4.1 and 4, representations of the physical structure and functional

organisation of the Tibialis Anterior were implemented within the modelling

framework. Chapters 3 and 4 also described how the physiological output is

used to create mechanical output. In this section, the methods used to activate

the modelling framework are presented. Firstly, the protocols and equations

used to replicate normal physiological muscle function are described, followed

by the approach used to model muscle activation during Functional Electrical

Stimulation.

Muscle is a finely tuned and highly responsive actuator. The force that is

produced from muscular contraction is controlled via two main mechanisms,

recruitment level and rate coding. The recruitment level is the number of

motor units that are active at any one time, the more motor units recruited, the

greater the force generated. Rate coding refers to the modulation of motor unit

discharge rates [62], in general increasing the stimulation frequency of a motor

unit increases the amount of force produced, although this does not hold true

over certain physiological maxima, or in cases of fatigue. In order for a motor

unit to be activated, the sum of all of the excitatory and inhibitory signals

reaching the motor neuron cell body (soma) must be enough to depolarise the

membrane of the constituent muscle fibres past the Threshold Voltage [111].

Each of these signals modifies the potential of the soma by

PSPss = IN · RN , (4.16)

where PSPss is the steady-state synaptic potential recorded at the soma, IN

is the effective synaptic current as seen by the soma, and RN is the impedance

of the cell. It has been shown that cellular impedance can vary 8 − 10 fold,

depending on the cell surface area and the membrane resistivity [48]. Effec-

tive synaptic current has been shown to co-vary with cellular impedance [48].

Motor units are recruited, and de-recruited, in a highly conserved order. The

cellular impedance and effective synaptic current are theorised to be the source

of this variation in recruitment levels [48].

In order to include the effect of synaptic current on recruitment into a
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model of the motor neuron pool, it is possible to consider the level of effective

current required to induce repetitive activation of the motor neuron over the

entire motor neuron pool. This was first done by Heckman and Binder [49]

and later followed up by Fuglevand et.al. [36] where this was referred to as the

’excitatory drive’. Thus, using known relationships from experimental data,

it is possible to specify both recruitment level and rate coding for the entire

motor pool with a single variable. The implementation of this concept in this

work is described below.

4.5.1 Physiological Recruitment

In order to model the activation of muscle under normal physiological con-

ditions, a modified version of the Fuglevand et.al. 1993 model [36] was im-

plemented in CMISS. This model consists of a prediction of recruitment level

and rate coding with respect to excitatory drive. The recruitment threshold

of excitation (RTE) is defined to be the level of excitatory drive that will

cause a motor unit to fire at its minimum frequency, and is assumed to be

exponentially distributed over the motor unit pool. This is in accordance with

the distribution of motor neuron sizes, and is represented with the following

equation,

RTEi = e(ln(RR)/n)·i, (4.17)

where RTEi is the recruitment threshold excitation for motor neuron i, RR

is the range of the recruitment threshold values, and n is the total number of

motor units. A motor unit is defined as being active if the excitatory drive to

its motor neuron is greater than or equal to its recruitment threshold excitation

(i.e. E(t) ≥ RTEi).

The determination of the rate coding for each motor neuron with respect

to the excitatory drive was broken down into four steps.

• Calculation of the minimum firing rates of the motor neuron.

The Fuglevand et.al. model assumes a uniform minimum firing rate over

the motor neuron pool [36]. This is supported by findings that during

voluntary contraction in human muscles, minimum firing rates are sim-

ilar for all motor neurons [21, 79]. However, other studies using current
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injection have found a relationship between the minimum firing rate and

the recruitment threshold of a motor neuron [36]. For the purpose of gen-

erality, the model implemented here allows a linearly varying minimum

firing rate for the motor neurons.

• Determining the excitatory drive to firing rate relationship for the motor

neurons.

The average firing rate is assumed to vary linearly with the excitatory

drive supplied to the motor neuron. This is represented in the equation

below.

ISIi =

{

Ge · (E(t) − RTEi) + MFR if E(t) >= RTEi,

0 otherwise,
(4.18)

where ISIi is the average Inter-Spike Interval for the motor neuron at

excitatory drive level E(t), Ge is the gain of the motor neuron as E(t)

increases and MFR is the minimum firing rate of the motor unit. This

equation is valid for all E(t) values equal to, or greater than, the recruit-

ment threshold excitation for the motor unit.

• Calculation of the peak firing rates of the motor neurons.

The peak rate of firing of the motor neurons in a human motor pool

is believed to vary depending on the recruitment threshold of the mo-

tor neuron, however the exact relationship has yet to be resolved [36].

Studies have shown the peak firing rates of motor units can vary with

contraction intensity, the direction of contraction and motor unit fibre

type [25, 21, 97, 42]. It is possible to investigate the result of changing

the peak force across the motor unit pool by representing the distribution

linearly with the following equation.

PFRi = PRF1 − PFRD · RTEi

RTEn

, (4.19)

where PFRi is the peak firing rate of motor neuron i, PFR1 is the peak

firing rate of the motor neuron with the lowest recruitment threshold

and RTEn is the peak firing rate of the motor neuron with the highest
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recruitment threshold.

• Calculation of the timing of each activation signal, for each motor neuron,

using a Gaussian distribution to determine variability.

Motor neuron firing is determined by the excitatory drive to the cell body,

and in vivo this value fluctuates over time, which causes motor neurons

to fire at intervals randomly distributed about the mean firing rate (ISI)

[36]. To represent this phenomenon the time of the first activation is

calculated by

Stimulationi,0 = ISIi · 0.5 + ISIi · CV · Z, (4.20)

where Z is a random number with a Gaussian distribution of mean 0 and

standard deviation 1, and CV is the coefficient of variation of the stim-

ulation times. This provides a starting point for the following algorithm

which calculates the time of the j + 1st activation.

Stimulationi,j+1 = ISIi + ISIi · CV · Z + Stimulationi,j , (4.21)

The coefficient of variation, CV , can be modified to determine the effects

of activation variability on the whole muscle force response.

In order to be able to compare the relative performance of muscles with dif-

ferent ranges of recruitment thresholds, different gains, and different maximum

and minimum firing rates, the RTEi values were normalised. The normalisa-

tion of RTEi also simplified the implementation of inverse recruitment (see

Section 4.5.2). The normalisation factor that was selected was the E(t) value

that would cause the last motor unit, MUn, to reach its peak firing rate (Emax),

and is calculated as follows,

Emax =
PFR − MFR

Ge

+ RR. (4.22)

Visualisation of the firing rate verses E(t) for the largest motor unit, and the

basis for (4.22), can be seen in Figure 4.13. In the case of MUn, RTEn by
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definition (Equation 4.17) is RR. From this point, on RTEi will refer to the

normalised value.

Fig. 4.13: Firing rate as a function of E(t) for MUn. At E(t) = RTEn the firing
rate of MUn is MFR. The peak E(t) value occurs when PFR is reached and is
denoted Emax. The Emax is used to normalise all RTEi values as increasing E(T )
above Emax no longer changes the rate coding of the motor units (all motor units
already at PFR).

4.5.2 Inverse Recruitment

Inverse recruitment is a phenomenon that occurs during Functional Electrical

Stimulation and results in a reversal of the normal recruitment order of motor

units (refer Section 2). Inverse recruitment can thus be modelled using the

following equation,

RTEinv
i = 1 − RTEi. (4.23)

Thus, (4.23) gives an accurate representation of the order of recruitment.

Moreover, (4.23) qualitatively represents the size of the applied electric field

required to activate the motor neurons, as the diameter of the α-motor neurons

is exponentially distributed across the motor pool (from Henneman et.al. , the

diameter of motor neurons is correlated with the motor unit size [53, 52]), and
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the excitability of a motor neuron to external stimulation is correlated to the

inverse of its diameter [29]. When modelling inverse recruitment, the timing

of each motor unit depolarisation is set at the driving frequency of the applied

electric field (Hzinverse), and thus there is no need for calculations of ISI or

firing times.

It should be noted that the E(t) value does not quantitatively represent

any specific applied current or voltage but rather, in combination with the

RTEinv values, replicates the order and ’intensity’ required to activate motor

units, via the α-motor neurons using an external stimulus. As the actual

motor neurons and the external stimulus, that are activating them, are not

explicitly modelled, there is very little justification for assigning a specific

numerical voltage or current value to the inverse recruitment process. Instead

the generalised recruitment pattern is being replicated independent of any

absolute measure of applied electrical stimulus.





Chapter 5

Results of Whole Muscle

Activation Simulations

In this chapter simulation protocols are outlined and the results of the activa-

tion of the full muscle are presented. Section 5.2 details the initial numerical

experiments and explores a number of downscaling techniques used to reduce

the computational load. In Section 5.3, simulations are run to demonstrate

the ability of the numerical framework to model changes in a number of in-

trinsic muscle properties, and to assess the effect, if any, of these changes. The

output of inverse recruitment simulations are also presented in Section 5.3,

showing marked changes in the force output of the muscle. Finally, in Section

5.4, the possibility of designing an inverse recruitment protocol that matches

normal physiological function is investigated. In addition a similar protocol is

constructed for a Tibialis Anterior muscle with a different fibre composition

(representing the physiological changes due to FES) to determine if and how

the response of muscle to FES changes over time.

In all cases, the Tibialis Anterior was simulated as being in isometric condi-

tions. To achieve the isometric representation of the muscle, the Finite Element

nodes composing the proximal and distal faces of the muscle are constrained

to be fixed in space. Fixing the nodes in effect represents fixing the ankle joint

so that it cannot rotate. The total muscle force is then calculated from the

reaction force at the fixed muscle boundary as the vector sum of all of the fixed

boundary node forces.

123



124 Chapter 5. Results of Whole Muscle Activation Simulations

5.1 Numerical Experiment Protocols

Each simulation was run for a time of length T imesim, which was broken down

into equally spaced time intervals of Tphys. Each numerical stimulation then

consisted of the following two basic steps. First, the Bidomain simulations for

each MURF were run for input time Tphys. Then the physiological output for

Tphys was used as an input into the mechanics simulation, by copying the A1

and A2 values calculated in the MURFs to the mechanical grid points, and

then using the constitutive law (Section 3.1.3) to calculate the whole muscle

reaction. The mechanics solution necessarily lasted for the same time period as

the Bidomain solution (Tphys). The Biodomain and corresponding mechanics

simulations were repeated, in intervals of Tphys, for the duration of T imesim.

The experiments were able to be run using distinct Bidomain and mechanics

steps for the following reasons.

• There was no force or length feedback to the Shorten et.al. transmem-

brane model, and so the only data needed for each Bidomain simulation

was the activation timing (from rate coding).

• The kinetics of A1 and A2 were of the order of 10 − 100 times slower

than the kinetics of the Action Potential, and so the time scale of the

mechanics step (also Tphys) could be of the order of 100ms, allowing a

huge computational speed-up, without sacrificing accuracy.

The experimental protocol that was used was as follows. A linearly increasing

E(t) function was applied to the muscle, the motor response to the function

was calculated, and the resulting muscle force as a result of the motor activity

was determined. A break down of the steps involved in the simulation protocol

is:

1. Activation times, as calculated from (4.20) and (4.21), were applied to

each MURF and the simulations were run for Tphys (A1 and A2 values

were stored at time intervals of 1ms).

2. The output, A1 and A2 values, from each MURF was mapped to the

associated mechanical grid points of mechanical fibres within the Tibialis

Anterior geometry.
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3. The volume average of the mechanical grid points A1 and A2 values was

taken around each Gauss point, and these values were used to calculate

the active and passive stress components of the macroscopic constitutive

law.

4. The muscle deformation was calculated for each 1ms time step (2-4 were

repeated for every 1ms time step in Tphys).

5. At the end of the mechanics simulation E(t) was calculated, either as a

linear function or as a result of comparison with Fin.

6. The new E(t) was used to calculate new activation times for the MURFs.

7. These steps were repeated for the total time of the muscle simulation.

The specific protocol used in the simulations involved a total stimulation

time (T imesim) of 500ms with the mechanics solutions being computed, and

thus the physiological stimulation being updated, every 100ms (Tphys). The

linearly increasing E(t) function was necessarily modelled using a step func-

tion (refer to Figure 5.1), although the linear function is the desired input to

the motor pool (similar to the work of [36, 49]). A step function was used

because the design of the simulations required that the input to the Bidomain

simulations was calculated at the end of the mechanics simulation (so that

mechanical feed back could be included at a later stage), and thus the E(t)

was unable to be modified during the Bidomain simulation (i.e. E(t) was con-

stant for each individual Tphys). As a result a step function was used as it is

the closest approximation to a linear function using discrete constant values.

As can be deduced from Figure 5.1, as Tphys → 0, the step function tends

towards a linear function. However, if Tphys were to be reduced below 100ms,

the ability to represent the firing frequency of slow motor units would begin

to accumulate errors and eventually fail. A motor unit firing at 10Hz has a

period of 100ms and so to it would be impossible to maintain a 10Hz stim-

ulation frequency over the duration of multiple Tphys steps without the use

of some history component. A history component was not implemented, and

Tphys was set at 100ms for all simulations as the error caused by using a step

approximation was not believed to warrant further attention.
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Fig. 5.1: The linear function shown is the desired E(t) input function for the subse-
quent test simulations. The ramp increase in E(t) allows a full range of recruitment
and rate coding of all motor units. As the simulations are run in discrete steps, of
duration Tphys, the approximation that is used to the linear function is shown as the
step function.
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The force produced as a result of the activation of the motor units is cal-

culated as the sum of all of the reaction forces at the fixed boundary of the

muscle. For all experiment the reaction forces at the distal face of the Tibialis

Anterior were calculated, however, for equilibrium, these had to be identi-

cal to the reaction forces at the proximal end. It should be noted that the

magnitude of the calculated force is not directly related to the actual force

magnitude of a real Tibialis Anterior for the following reasons. The A1 and

A2 values are normalised to their respective maximum values, the constitutive

law is not accurate enough to give realistic force values, and the magnitude

of the A1 and A2 need to be further scaled to prevent numerical instabilities

in the mechanics solution step. Thus the force produced by the simulations

in the following chapters is a qualitative representation of the force behaviour

of the Tibialis Anterior under different conditions, and does not represent the

absolute magnitude of force produced by the real Tibialis Anterior.

5.2 Whole Muscle Simplifications

This section details numerical experiments designed to decrease the computa-

tional expense of full muscle Tibialis Anterior simulations. Although it would

be theoretically possible to model every single physiological muscle fibre and

motor unit with the Tibialis Anterior, the time and computational power re-

quired would be restrictive, with millions of grid point being required. It

was therefore of interest to determine what effect scaling of muscle properties

would have on the simulation output. A number of potential simplifications

were identified.

1. A reduction in the mechanical grid point discritisation level of mechanical

fibres within the simulation.

2. Representing a smaller number of fibres in the mechanics mesh.

3. A reduced number of motor units within the muscle.

Simulations to test the validity and limitations of the above simplifications

were run and the outcomes are displayed in the following sections. The muscle

force plots generated by modifying each of the above simplification criteria

were compared using the methods specified in Secion 5.2.
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Data Analysis

In order to provide a quantitative measure of muscle force smoothness, and also

to compare the output of different muscle simulations, a polynomial function

was fitted to the data. The deviation of the muscle force data from the best

fit gives an indication of the smoothness of the data, and best fit curves can

be compared between simulations. The force output from the full muscle

simulations is fitted to a 6th order polynomial using the method of least squares

to determine the coefficients of,

y = c0 + c1x + c2x
2 + c3x

3 + c4x
4 + c5x

5 + c6x
6, (5.1)

where c0 . . . c6 are constants. A 6th order polynomical was used as it provided

a visually accurate fit to the data and was easy to implement in a Microsoft

Excel spreadsheet. The deviation of the force output from the best fit curve

is then given by the R2 value, which is defined as,

R2 = 1 −
∑

(

Yi − Ŷi

)2

(
∑

Y 2
i ) − (

∑

Yi)
2

n

, (5.2)

where Yi are the force output values, i is the range of discrete x values where

Y exists, and Ŷi are the fitted values coming from (5.1). The R2 value gives

an indication of the closeness of the sixth order polynomial approximation to

the data, with a value of 1 indicating a perfect fit.

5.2.1 Fibre Discritisation Level

For an accurate solution of the Shorten et.al. cellular model using the Bidomain

equations, a Bidiomain grid point spacing of 0.0625mm is ideal (see Section

4.1). As the output of each simulated MURF is being mapped to the associ-

ated mechanical grid points within the Tibialis Anterior mesh, and not being

calculated directly on the mechanical grid points, there exists the possibility of

sampling the output of the MURF (the Bidomain grid points) at a different

grid point spacing. The effect, if any, of the change in mechanical grid point

discritisation was the subject of the following simulations.

To test whether a change in mechanical grid point spacing would affect
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the output of the mechanics simulation, two different full muscle mechanics

simulations were run, each with the same physiological input. The following

input was used:

• Mechanical grid point spacing: 0.625mm, 6.25mm

• Mechanical fibre diameter: 2000µm

• Number of motor units: 10

• Motor unit fibre ratio (MUratio): 10

• Percentage of slow type mechanical fibres: 70%

• Motor unit territory density: 0.01fibres/mm2

Both simulations were run for 500ms with a linearly increasing E(t) value

(updated every 100ms). Note that these input values were not selected to

replicate physiological data, or the data of other numerical models, but rather

so that comparison experiments could be run. The force versus time plots can

be seen in Figure 5.2 and the same force plot along with the corresponding ac-

tivation times of the motor units can be seen in Figure 5.3. A simulation with

a mechanical grid point spacing of 0.0625mm was not run as it was computa-

tionally expensive. The effect of increasing the coarseness of the mechanical

grid scheme can be seen using spacing of 0.625mm and 6.25mm.

As depicted in Figure 5.2, the force output plots for a mechanical grid

point spacing of 0.625mm and 6.25mm did not vary substantially. The max-

imum difference between the plots was 2.4% and the average difference was

< 1%). The relative independence of the force plots to the mechanical grid

point spacing meant that future simulations can be run with coarser grid point

spacing, saving computational resource. The output of the simulation with a

mechanical fibre grid point spacing of 6.25mm can be seen in detail in Figures

5.4. This figure also shows the A2 concentration at the mechanical grid points

as well as the muscle force vector.

It was expected that the force output would not vary substantially with

an increase in the spacing of the mechanical grid points, as increasing the

mechanical grid point spacing amounted to decreasing the sampling resolution

of the physiological output of the MURF s. There were two possible ways
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Fig. 5.2: The force output of linearly increasing E(t) simulations of the Tibialis
Anterior. In each case the distance between the Bidomain grid points was 0.0625mm.
Mechanical grid point spacing were either 0.625mm or 6.25mm. Qualitatively the
plots match each other identically and quantitatively, the average difference between
the plots is < 1%. The plots demonstrate that there is not a significant error added
to the force output by increasing the mechanical grid point spacing. The polynomical
best fit curve to the 0.625mm force output can be seen as the black curve.
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Fig. 5.3: The activation times of each motor unit in the 10 motor unit simulation is
shown. Each vertical strike indicates the time when an Action Potential activated
each MURF fibre in the corresponding motor unit. The resulting force can be seen
in the force trace with a sixth order polynomial curve fitted to it. Note the delayed
onset of activation of the larger motor units, and the increase in average firing rate
of all motor units as E(t) → 1 (refer to Figure 5.1 for E(t) plot).
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that error could be introduced by decreasing the sampling resolution of A1

and A2. Firstly, the A1 and A2 waveforms (refer to Figures 3.3(a) and 3.3(b))

might not be able to be represented accurately at lower resolution levels, and

secondly a decrease in the number of mechanical grid points surrounding the

Gauss points could cause local fluctuations in the volume averages of A1 and

A2. Neither of these two forms of error were thought to be substantial, as it

was known from the output of the Bidomain fibre model (Section 4.1) that A1

and A2 could be represented with a much coarser grid and time discretisation

than was required for the Action Potential, and the number of mechanical grid

points was still much greater than the number of Gauss points.

5.2.2 Fibre Diameter

The mechanical fibre diameter (specified in the input file) determines the per-

pendicular distance between the mechanical fibres (refer to Section 4.2). Hu-

man skeletal muscle fibres have a diameter of approximately 80µm [70, 78, 106].

It was of interest to see the effect of increasing the input mechanical fibre diam-

eter, and thus in effect representing a number of physiological fibres with one

mechanical fibre. For example, an input mechanical fibre diameter of 1000µm

would produce mechanical fibres which represented approximately 156 physi-

ological fibres using the following relation,

RF =
D2

mod

D2
phys

, (5.3)

where RF is the number physiological fibres of diameter Dphys, represented by

the mechanical fibres of diameter, Dmod. This form of simplification greatly

decreases the number of mechanical fibres, and thus mechanical grid points.

As a result the computational effort is reduced, but this occurs at the expense

of accuracy when defining the diffusive spread of fibre activation. However,

the representation of a number of physiological fibres as one mechanical fibre

should be valid as long as the total number of mechanical fibres is able to

represent the smallest motor unit in a given motor unit distribution. This

criterion was deemed to have been met if the number of mechanical fibres

in the smallest motor unit was greater than 10. Ensuring that the smallest

motor unit fibre number is 10 or more depends on the number of motor units,



5.2. Whole Muscle Simplifications 133

(a) (b) (c) (d)

(e)

Fig. 5.4: The output of the simulated Tibialis Anterior with mechanical grid point
spacing of 6.25mm and mechanical fibre diameter 2000µm. The muscle is shown
in its anatomical location next to the tibia and fibula. The vector representing the
negative of the sum of the reaction forces on the distal face of the muscle can be seen
at the base of the muscle. Figures (a) - (d) show the normalised A2 value at each
mechanical grid point and the force vector at simulation time points 200, 300, 400,
and 490ms respectively. The inhomogeneous A2 values are a result of the different
motor unit activation states and level of force can be seen to be correlated with the
A2 values. The force values shown are the same as those plotted as trace 6.25mm
in Figure 5.2.
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the motor unit fibre ratio, and the total number of mechanical fibres, all of

which can be adjusted during model creation. The number of mechanical fibres

compared to the mechanics Gauss points would also affect the force output,

but given the relative size of the tri-quadratic elements and the minimum

number of mechanical fibres required to accurately represent the fibre pool,

the mechanical fibre to Gauss point ratio was not thought to be significant.

In order to determine the effect of changing the mechanical fibre diameter,

three experiments were run using the following parameters:

• Mechanical grid point spacing: 6.25mm

• Mechanical fibre diameter: 2000µm, 1000µm and 500µm

• Number of motor units: 10

• Motor unit fibre ratio: 10

• Percentage of slow type fibres: 70%

• Motor unit territory density: 0.01fibres/mm2

All other input variables remained constant with the exception of the motor

unit territory density. It was determined that the density was required to

vary as a function of mechanical fibre diameter if the relative territory size

between subsequent experiments was to remain constant. For this the following

conversion equation was used.

ρnew =

(

√
ρold ·

Df
old

Df
new

)2

, (5.4)

where ρnew and ρold are the motor unit territory densities of the new mechanical

fibre spacing (Df
new) and old mechanical fibre spacing (Df

old) respectively. Thus

for the three simulations the mechanical fibre diameters and motor unit terri-

tory spacing were as shown in Table 5.1. The output of these three simulations

can be seen in Figure 5.5.

From Table 5.2 it can be seen that the total force increased with decreasing

mechanical fibre diameter, i.e. force increase with an increase in the number

of mechanical fibres. The increase in force magnitude with a reduction in
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Table 5.1: The different values of mechanical fibre diameter and MUT density used
in the mechanical fibre diameter calculations. The MUT densities were calculated
using Equation 5.4.

Mechanical fibre diameter Df(µm) MUT density ρ(fibres/mm2)
2000 0.01
1000 0.04
500 0.16

Fig. 5.5: The force output of a Tibialis Anterior muscle simulation with mechanical
fibre spacings of 2000µm, 1000µm, and 500µm. The 6th order polynomial best fit
curves for each trace can be seen as dashed lines. The different initial force values
are a result of the different location of fibre types throughout the three different
muscles. The fast type fibres, as a result of the normalisation of A1 and A2, produce
a higher resting tension. If there are more fast type mechanical fibres in areas with
lower pennation angles, then a higher resting force will occur.

Table 5.2: The force output and total number of mechanical fibres for simulations
with varying mechanical fibre diameter.

Fibre diameter Df(µm) Number of Fibres Force Magnitude
2000 903 0.553
1000 3565 0.609
500 14577 0.618
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mechanical fibre diameter is most likely due an increased likelihood of active

fibres being located near the distal end of the muscle. From Figure 4.6 it can

be seen that the distal end of the Tibialis Anterior mesh is of a smaller cross-

section, and from Figure 4.12 it can be seen that the pennation angle of the

fibres at the distal end of the muscle is lower than in other areas. As a result of

these geometrical features, a decrease in mechanical fibre diameter will result

in a larger relative increase in the number of mechanical fibres in the distal

section of the muscle, which means that the probability of mechanical fibres

in the distal area of the muscle becoming active earlier in the simulation will

also increase. As muscle force, especially in slow twitch muscle fibres, does not

sum linearly over time, the earlier a muscle fibre is activated, the higher its

force will be at the end of the simulation (given current simulation times). The

distally located fibres have a lower pennation angle and thus contribute more

to the overall force output of the muscle (their force vectors more closely align

with the total muscle force vector) and so a decrease in overall mechanical

fibre diameter will lead to a higher total muscle force. As mechanical fibre

diameters become even lower the increase in force becomes less pronounced as

the relative change in distally located mechanical fibre numbers decreases.

From Figure 5.5 we can also see that the force profile became smoother as

the number of mechanical fibres was increased. The measure of smoothness

used was the R2 value of the best fit 6th order polynomial, which is a measure

of goodness of fit. For mechanical fibre spacings 2000µm, 1000µm, and 500µm,

the R2 values were, 0.9884, 0.9950, and 0.9958 respectively. The smoothing

of the force profile is expected with a decrease in mechanical fibre diameter,

because the resulting increase in the number of mechanical fibres results in a

more uniform muscle force distribution.

5.2.3 Number of Motor Units

The Tibialis Anterior in humans is thought to have 150 ± 43 motor units

[76]. Representing the Tibialis Anterior with fewer than the actual number

of motor units has similar benefits and drawbacks as reducing the number of

represented fibres. Fewer motor units means that fewer MURF s need to be

solved, and consequently fewer input files are required to be read in as input

to the mechanics simulations. However, it is possible that the force output of
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the muscle with fewer motor units is less smooth than it would otherwise be.

To test the effect of a variation in motor unit numbers, simulations with the

following parameters were run.

• Mechanical grid point spacing: 6.25mm

• Mechanical fibre diameter: 2000µm

• Number of motor units: 10, 30, 50

• Motor unit fibre ratio: 10

• Percentage of slow type fibres: 70%

• Motor unit territory density: 0.01fibres/mm2

Fig. 5.6: The force output profiles of the Tibialis Anterior with 30 motor units. The
stimulation times of every second motor unit are shown with vertical strikes. Simi-
larly to Figure 5.3 it can be seen that the larger motor units become active later in
the simulation and the average frequency of all motor units increases throughout the
simulation. The sigmoidal shape of the force curve can be seen, with a slow average
change in curvature at the beginning and end of the simulation and a relatively
linear section in the middle.
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Fig. 5.7: The force output profiles of the Tibialis Anterior with 10, 30 and 50 motor
units. The sigmoidal shapes of the force profile can be clearly seen in the best fit
curves of the plots of 30 motor units and 50 motor units (dashed lines). The change
in curvature of the 10 motor unit simulation is more subtle. The variations in the
base line force of the simulations are due to the changing location of the slow and
fast fibre types. Increasing the number of motor units increases the maximum value
of the force, which is also a result of fibre type location.



5.2. Whole Muscle Simplifications 139

The output of these simulations can be seen in Figures 5.6, and 5.7. The

excitatory input to the motor unit pool was the same in each case (refer Figure

5.1). The force output becomes smoother as more motor units are added and

the maximum force increases. The number of fibres in the muscle remained

constant over the different simulations. As the number of motor units was

increased from 10, to 30, to 50, the total muscle force output increased. The

reason for this force increase is that with a greater number of motor units, the

likelihood of distally located fibres being activated earlier in the simulation

increases. Early activation allows the fibres to obtain a higher total force by

the end of the simulation, and their distal location means that their pennation

angle is less and thus their effect on total force is greater.

The smoothness of the force profile also increased as the number of motor

units was increased. The measure of smoothness used was the R2 value of the

best fit 6th order polynomial, which is a measure of goodness of fit. For the 10,

30, and 50 motor unit muscles the R2 values were, 0.9884, 0.9967, and 0.9972

respectively. From the R2 values it can be seen that all three simulations were

very accurately represented by the sigmoidal shaped 6th order polynomial, as

an R2 value of 1 would be a perfect fit, with the deviation from the best fit

curve decreasing as the number of motor units was increased. An increase in

the number of motor units, given the same number of total mechanical fibres,

leads to a reduction in the average number of mechanical fibres per motor unit

and a more independent activation pattern of mechanical fibres. The force

fluctuation due to the addition of another motor unit to the active pool is

therefore reduced and the smoothness of the force profile is increased.

The reason for the different starting force values of the three simulations

is due to the relative location of slow and fast fibres within the muscle. The

difference in initial conditions caused by the normalisation of A1 and A2 means

that the local stiffness of the muscle can be altered depending on the location of

fast and slow twitch fibres. The differences in the A1 and A2 values can cause

local distortions in the stress field, and these distortions may be amplified

depending on the location of the distortions. For example if a localisation

of low stress occurred in the smaller diameter distal section of the muscle,

compared to a more homogenous mix of stress, the total force output might

be reduced as the fibre angles in this area have a smaller pennation angle and
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thus have a greater relative contribution to the overall muscle force.

5.3 Whole Muscle Simulations

In this section a number of simulations are run which aim to demonstrate

the ability of the modelling framework to replicate the effect of changing a

number of muscle properties. The simulations use a mechanical fibre diame-

ter of 2000µm, a mechanical grid point spacing of 6.25mm, and a Bidomain

grid point spacing of 0.0625µm. The simulations performed include models

of changes in fibre type proportion, alterations to the location of fibre types,

changes in Motor Unit Territory density, the effect of a constant excitatory

drive, and the effect of different FES protocols on normal muscle and muscle

that has undergone chronic FES.

5.3.1 The Tibialis Anterior Composed of a Single Fibre

Type

The average proportion of fast and slow type fibres in the human Tibialis An-

terior is 30% and 70% respectively. These proportions result in force output

profiles as seen in the previous experiments. The effect of modifying the pro-

portions was investigated by generating a Tibialis Anterior composed of 100%

fast type fibres and another composed of 100% slow type fibres. The output

of these three muscle types can be seen in Figure 5.8.

The difference in the initial forces of the muscles is a result of the nor-

malisation of the fast and slow A1 and A2 values. The differences in the final

forces of the muscles is due to the fatiguing of the fast fibres, meaning that as

a whole the muscle is unable to produce as much force given this stimulation

protocol. The fast muscle also produces a much more variable force plot for

two reasons. Firstly, the faster fibres react more quickly than the slow fibres

and so the discreteness of the Action Potential stimulations is more preserved.

Secondly, because the fast fibres react so quickly, the step shape of the E(t)

function can be seen in the fast output. The output of the normal composition

Tibialis Anterior can be seen to be the weighted sum of the fast and slow type

components, with an initial value located between the two extremes, a profile
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that more closely follows the 100% slow type muscle (as it is 70% slow) and

a drop of in force a the end of the simulation as the late recruited fast type

motor units fatigue.

Fig. 5.8: The force profiles of a Tibialis Anterior muscle which is composed of 100%
fast type fibres, 100% slow type fibres, and normal composition ratios. The greater
final force output of the slow type muscle is a result of fatigue of the fast fibres,
while the different force starting points arise from the normalisation of the A1 and
A2 values for fast and slow type muscle fibres. The faster kinetics of the fast twitch
muscle fibres can be seen by the increased variability of the fast twitch plot compared
to the slow twitch plot. It can be seen that the normal Tibialis Anterior force profile
arises as a weighted combination of the fast and slow twitch plots.

5.3.2 Different Fibre Type Weighting

It has been shown that the distribution of fibre types throughout the volume

of the human Tibialis Anterior is not uniform [54]. The following experiments

investigated the effects of modifying the location of muscle fibre types through

the muscle. Three difference cases were selected, slow fibres weighted proxi-

mally, slow fibres weighted distally, and no weighting on fibre location. The

results can be seen in Figure 5.9.

Very little difference can be seen between the muscle with slow type fibres
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weighted to be proximal and the muscle with no weighting specified. The

muscle with the slow type fibres weighted distally does show some increased

force output compared to the other two. The increase in force of the distally

weighted muscle is a result of the slow fibres being predominantly located in

the area of low pennation angle. The fibres with a low pennation angle will

have a disproportional effect on muscle force as they are generating force in

an axis closer to that of the whole muscle axis. The slow type fibres generate

more force than the fast fibres as they do not fatigue as fast, as evidenced by

Figure 5.8. Further evidence for this being the reason for the difference in force

comes from the fact that in Figure 5.9, the Distal line does not significantly

diverge from the other to force outputs until halfway through the simulation,

as the fast motor units in the other two plots are beginning to fatigue.

5.3.3 Motor Unit Density

Within human skeletal muscle the average physiological fibre diameter is ap-

proximately 80µm [70, 78, 106], and the Motor Unit Territory density ranges

between 10 ↔ 30fibres/mm2 [101, 117]. It was of interest to determine what

effect, if any, the changing of Motor Unit Territory densities on muscle force

output. The generated muscles used for these simulations all had mechanical

fibre diameters of 2000µm, thus each mechanical fibre represented 625 physi-

ological fibres. Input densities of 0.1, 0.01, and 0.001fibres/mm2 were used,

representing real densities of 62.5, 6.25, and 0.625fibres/mm respectively. The

force profiles for each of these muscles can be seen in Figure 5.10.

There is no definite trend in the force profiles, the total force does not in-

crease or decrease with decreasing density. The very small differences between

the force profiles is a result of the variable location of muscle fibres. This is

an interesting result because it was expected that by increasing the density

of the motor unit territories a decrease in the total force would be observed

along with a more variable force plot, as more discrete areas of the muscle

would become active compared to a low density muscle, where it would tend

to contract in a more homogenous manner. This points to a limitation in the

mechanical implementation of the model. It is likely that the volume averaging

of the A1 and A2 values causes a more homogeneous stress field than would

be expected if the densities of the motor unit territories were increased in real
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Fig. 5.9: Force output of the Tibialis Anterior with different weightings on the slow
type fibres. Output is presented for three weighting cases, firstly, a weighting of
100% of the slow fibres to be at the distal end of the muscle, secondly, 100% of
the slow fibres weighted to be at the proximal end of the muscle. In both of these
cases, a weighting function of WTFN = 1 is used. The final case is no weighting
on any of the fibres, so the location of all motor units is random. The differences
in force output between the distal weighted muscle and the other two simulations
is due to the slow type fibres, which ultimately produce more force (as a result of
fatigue resistance, refer Figure 5.8), being located in the section of muscle where the
fibres have lower pennation angles, resulting in a greater contribution to the force
output of the muscle.
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Fig. 5.10: The force output of Tibialis Anterior muscles with different Mo-
tor Unit Territory densities are shown. The densities range between 0.1 and
0.001fibres/mm2 with mechanical muscle fibre diameters of 2000µm. As can be
seen there is no visible trend related to changing the density of the Motor Unit Ter-
ritories, and the difference between the three plots is due to random fibre location
differences in the three different muscles.
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muscle tissue. This is one of the limitations of the constitutive law being used.

For further discussion refer to Chapter 6.

5.3.4 Constant Excitatory Drive

The following experiment involved taking the Tibialis Anterior composed of 50

motor units, a normal fibre composition and activating it with a recruitment

threshold of excitation (RTE) of 0.8 (i.e. for this experiment, the linearly

increasing E(t) function was not used). The output of this can be seen in

Figure 5.11. This experiment partially simulates a force hold experiment,

except no mechanical feedback is present, and so the input cannot be adjusted

as force begins to drop off as the activated muscle fibres fatigue.

The very fast rise in the force profile can be seen at the onset of activation.

The peak is followed by a gradual drop in the force of the muscle as some of

the motor units begin to fatigue. The reduction of the fluctuations in the force

trace over time are indicative of fatiguing of the larger fast type motor units.

If this simulation was continued, a further gradual drop in muscle force would

be observed.

5.3.5 Inverse Recruitment

Functional Electrical Stimulation causes an inversion of the normal recruit-

ment order as larger diameter motor neurons are actived prefferentially to

smaller ones (refer to Section 2.11). Function Electrical Stimulation imposes

the applied stimulation train onto the activated motor units. The results of

the stimulation of the Tibialis Anterior with different frequencies of stimula-

tion can be seen in Figure 5.12. For this, the E(t) input is the same as the

physiologically recruited simulations. The delay in onset of muscle activation

at the beginning of the simulation is due to the fact that all motor units in this

particular muscle are active below E = 0.75 from (4.17). Thus during inverse

recruitment, E(t) must drop below 0.75, which occurs at 0.2s, for motor units

to fire. The synchronisation of stimulation causes regular pulses in the force

profiles, which decrease the smoothness of the force output. The smoothness

of the force profile increases as the stimulation frequency increases, i.e. as the

muscle moves more toward a tetanus. Increasing the simulation frequency not
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Fig. 5.11: The force output of the Tibialis Anterior with 50 motor units with an
RTE value of 0.8. The rapid rise in force can be seen as the motor units are recruited
and the force drop off can be seen as the fast twitch motor units begin to fatigue.
The reduced magnitude of the fluctuations in the force trace after 1s further indicate
the fatiguing of the larger motor units. The activation times of every fifth motor
unit can be seen as vertical strikes. It can be seen that the randomness generated
to replicate physiological firing conditions is less evident at this time resolution, and
repetitiveness can be seen in the action potential trains.
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only increases the smoothness of the force profiles but also increases the rate

of force production as the force summation effects become more prominent. In

the 20 to 40Hz simulations a distinct change in gradient can be seen at about

0.3s. The change in gradient results from predominantly fast type fibres being

activated and fatiguing slightly, before slow type motor units are added to the

active pool which do not fatigue as easily.

Stimulating a muscle using FES over a long period of time induces compo-

sitional changes in the muscle [91]. The muscle tends to move toward a slower

[74] and a more fatigue resistant [1] overall muscle composition. Figure 5.13

shows exactly the same protocol as Figure 5.12, however the composition of

the muscle has changed from 70% slow type fibres to 95% slow type fibres,

representing the change in fibre type composition that could be expected in a

muscle that has undergone chronic FES. The force profile for each frequency

is smoothed somewhat as a result of the slower kinetics of the predominantly

slow type fibres.

Fig. 5.12: The force profiles of a Tibialis Anterior of normal fibre type composi-
tion undergoing Functional Electrical Stimulation at different driving frequencies.
The synchronisation of the stimulation results in a pulsitile force response. The
smoothness of the force output increases as the stimulation frequency increases as
the muscle is moving closer to tetanus.
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Fig. 5.13: The force profiles of a Tibialis Anterior of a predominantly slow fibre
type composition (95%) undergoing Functional Electrical Stimulation at different
driving frequencies. The force output profiles are similar to those of the normal
Tibialis Anterior except the smoothness of the plots is increased and the curvature
is slightly increased.
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Table 5.3: The inverse protocol used to replicate normal physiological behaviour

Time step (s) E(t) value Frequency (Hz)
0 − 0.1 0 0

0.1 − 0.2 0.5 50
0.2 − 0.3 0.75 50
0.3 − 0.4 1 40
0.4 − 0.5 1 40

5.4 Design of an Inverse Recruitment Proto-

col to Match Physiological Recruitment

The usefulness of Functional Electrical Stimulation may be enhanced if the

protocol used is able to match normal physiological behaviour as closely as

possible. A more natural force profile means that the upper and lower limits

and rates of change of force are implicitly the same as normally recruited

muscle. As muscle composition changes over time with chronic use of FES,

it was of interest to determine the robustness of protocols to the change in

muscle fibre composition. To achieve this, a protocol was designed to replicate

as closely as possible the physiological output of a Tibialis Anterior muscle of

normal fibre composition. Following this a second muscle was created with a

fibre composition of 95% slow type fibres and the previous FES protocol was

used to activate it.

Figure 5.14 shows the best fit curves of the force profile plot of the phys-

iologically recruited muscle (PR) and the best fit curves for the force plots

resulting from the inverse recruitment of the same muscle at frequencies be-

tween 10Hz and 50Hz. Horizontal lines have been added to the figure to

indicate the force levels obtained by the normal muscle at 0.1s intervals.

Using these force levels it is theoretically possible to build this normal force

profile out of the inversely recruited profiles. Figure 5.15 gives the same infor-

mation for the slower composition muscle. Using Figure 5.14 the stimulation

protocol displayed in Table 5.3 was devised. This inverse stimulation protocol

primarily uses high frequency stimulation as a close fit to the physiological

profile was desired and it was thought that high frequency stimulation would

mean a smoother force output and thus a better fit. The output from this
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Fig. 5.14: The plots on this graph are all 6th order best fit approximations of
the original functions. Each simulation was run with 50 motor units. The normal
physiological recruitment (PR) curve can be seen as well as the curves for the inverse
recruitment of the same muscle at five different driving frequencies.

inverse simulation with a normal fibre composition can be seen as trace Inv.

Norm. in Figure 5.16 and compared to the normal physiological force profile

in a muscle of normal composition which is trace Phys. Norm. in the same

Figure. The same simulation protocol was then applied to the slower mus-

cle (95% slow type) to see if the change in muscle composition as a result of

chronic FES would alter the force profile of the muscle (trace Inv. Slow in

Figure 5.16).

From Figures 5.12 and 5.13 it is apparent that there are many ways in

which the physiological force profile could be reconstructed from the inverse

protocols. To demonstrate this, another inverse protocol was created. This

protocol can be seen in Table 5.4. This inverse stimulation protocol uses

lower frequency stimulations, and higher E(t) values at the beginning of the

simulation. The force output of a normal composition Tibialis Anterior using

this new profile can be seen as trace Inv. New in Figure 5.16. It can be seen

that the force profile is less smooth at the beginning of the simulation however

the force profile still matches the shape of the physiologically recruited muscle
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Fig. 5.15: The best fit curve for the force of the physiologically recruited (PR) muscle
is shown along with the best fit curves for the inverse stimulation of the same muscle.
The muscle in question is composed of 95% slow type muscle fibres but is otherwise
the same as the muscle depicted in Figure 5.14.

Table 5.4: An inverse protocol to replicate normal physiological behavior using lower
frequency stimulation

Time step (s) E(t) value Frequency (Hz)
0 − 0.1 0 0

0.1 − 0.2 0.75 20
0.2 − 0.3 0.1 30
0.3 − 0.4 1 40
0.4 − 0.5 1 40
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well. The best fit curves using sixth order polynomials for the three inverse

simulations and the physiological force profile can be seen in Figure 5.17.

Fig. 5.16: The normal physiological force output of a Tibialis anterior (Phys. Norm.)
is shown along with force profiles of Tibialis Anteriors of different fibre compositions
(normal or slow) under the influence of different FES protocols. The inverse protocol
used in both cases is given in Table 5.3. The first force plot shows the output
of a Tibialis Anterior of normal fibre composition (i.e. 70% slow 30% fast) (Inv.
Norm.). The second is the output of a Tibialis Anterior composed of 95% slow
type muscle fibres (Inv. Slow). As can be seen the inverse protocols qualitatively
match the physiological force profile well in that the changes in curvature are similar
in magnitude and location and the absolute force values are also the same (more
clearly seen in Figure 5.17). The root mean square of the difference between the
physiological trace and the inverse traces are as follows, 0.027, 0.029, and 0.056 for
Inv. Norm., Inv. Slow, and Inv. New respectively.

The three inverse protocols were able to qualitatively match the normal

physiological output of the Tibialis Anterior well. To try and quantify the

difference between the force traces the RMS difference was used.

RMSdiff =
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Fig. 5.17: The sixth order polynomial best fit curves of the force profiles in Figure
5.16. The inverse protocols match the shape of the physiological data well, with the
Inv. Norm. fit giving the closest representation (RMS error 0.023, followed by the
Inv. Slow fit (RMS error of 0.027) and then Inv. New (RMS error of 0.053).

where Y t
1 and Y t

2 are the force values of the two traces being compared at

time t. The RMS difference can give an indication of which of the three

inverse protocols most closely matched the physiological force trace. The RMS

difference values for the force traces from the physiological data were 0.027,

0.029, and 0.056 for Inv. Norm., Inv. Slow, and Inv. New respectively. These

RMS values show that the high frequency protocols were able to best match

the physiological output, and that there was very little difference between

the output of the normal composition, and the slower Tibialis Anterior. The

lower frequency inverse protocol matched the physiological output least well

because of the large fluctuations in the force as a result of the low frequency,

synchronous stimulation. While this protocol did not match the physiological

force as well as the other protocols, it may provide an advantage in reducing

the over all fatigue of the muscle.





Chapter 6

Discussion and Conclusions

6.1 Discussion

In this thesis a biophysically-based model of skeletal muscle function has been

developed. The model aims to incorporate a high level of anatomical and

physiological data so that the effects of any changes to the muscle on disparate

spatial and temporal scales can be modelled. The framework that has been

created has demonstrated the ability to represent the physiological activity of

both fast and slow type skeletal muscle fibres, both at points in space and along

the length of a muscle fibre. The model is also able to use this physiological

data, along with information concerning the functional organisation of the

muscle, to contract the muscle, giving qualitatively accurate force profiles.

The physiology of skeletal muscle is modelled in this framework using the

Bidomain equations. The Bidomain equations are a continuum approximation

to the current flow in a section of tissue, thus using these equations to repre-

sent the spread of electrical activity through the muscle fibre treats the fibre

as a continuum, which may not be accurate. It is possible that the membrane

channel densities or the ionic concentrations may vary systematically through

the tissue in some way, although detailed information is not available to the

best of the author’s knowledge. It is therefore reasonable to use the Bidomain

equation for the purpose of representing the electrical flow through the muscle

fibre. The Bidomain equations have previously been applied in a similar man-

ner on the motor nerves [63]. Given the use of the modelled fibre to represent

more than one real muscle fibre (i.e. fibre diameters greater than physiological

155
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diameters), then applicability of the continuum approximation increases.

The constitutive law that is used to couple the physiological output of the

skeletal muscle fibre model to the mechanical contraction of the whole muscle

represents a novel method of electromechanical coupling. While this method is

theoretically sound, it has not yet been validated against specific experimental

results, instead a qualitative validation process is implicit in the work outlined

in Section 5. The framework does qualitatively replicate the output of other

numerical and physiological studies. A full validation of the coupling method

is in fact currently almost impossible as the data required to generate a fully

accurate constitutive law does not exist. A large amount of experimental and

modelling work needs to be undertaken to fill the gap in the literature regarding

the three-dimensional mechanical properties of skeletal muscle tissue in both

passive and active states. This work will almost definitely have to begin by

looking at the microstructural linkages between muscle fibres and the rolle

that the epimysium, perimysium, and endomysium plays in modifying both

the force output of muscle fibres, and the path of the generated force through

the muscle.

The effects of muscle fibre length changes were neglected in this work, and

as a result all of the results presented were of skeletal muscle under isometric

conditions. Although this simplification did allow for a more straight forward

modelling process, a major reason that muscle length interactions was not

included is because to the best of the author’s knowledge, no cell models exist

which include the length dependant response of intracellular or extracellular

physiological species.

The activation of the muscle, via recruitment and rate coding, is an adap-

tation from previous work by Fuglevand et.al. [36] in the area of skeletal

muscle modelling. This method has been shown in other studies to produce

physiologically-realistic activation data. As a result, realistic force output was

produced by incorporating the Fuglevand et.al. method of activation in this

modelling framework. Further additions to the muscle control system are pos-

sible. A methodology for changing the recruitment and rate coding of different

motor units as motor units start to fatigue is an area where more work is re-

quired. The framework presented in this thesis provides a platform for this sort

of research as it includes the muscle control system and physiological represen-
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tations of muscle output and fibre fatigue. Simulations aimed at investigating

the changes in motor unit activity as a result of motor unit fatigue would need

to be done in conjunction with experimental study.

The method used to couple the physiological output of the fibre models

(A1 and A2) to the mechanics requires that the mechanical and physiological

solutions were performed independently of each other. As there was no feed-

back from the mechanical solution to the physiological model itself, this did

not pose a problem to the numerical accuracy of the solution. However, as the

recruitment and rate coding information that was applied to the physiological

simulations was calculated at the end of the previous mechanics step, each set

of recruitment and rate coding information was constant for the duration of

that particular solution step. In the simulations presented in Section 5 this

time step was 100ms, which is a reasonable step length if the physiological

input is to be modulated over a simulation in the order of seconds. Also, as

the duration of the A1 and A2 transients is of the order of 100ms [105], a

time step of 100ms, within which the control of the muscle can be modulated,

seems appropriate. However, as higher stimulation frequencies can cause rapid

force summation over time scales less than the 100ms used, an improvement

in the implementation of the control of the muscle may be appropriate. This

would especially true if the response of a muscle, where the input was being

very quickly modulated between high and low excitation, was to be modelled.

The method used to represent the Functional Electrical Stimulation of the

Tibialis Anterior in Section 5 is a simple, generalised, approximation to what

would actually be occurring during the electrical activation of a real muscle.

The quantitative value of electrical current or voltage that would be required

to activate the Tibialis Anterior depends on the location of the electrode on

the body surface, however the principles of the inverse recruitment resulting

from this stimulation would be the same. In the future it may be beneficial

to model the α-motor neurons and the applied electrical stimulus explicitly so

that the Functional Electrical Stimulation protocol could be optimised along

with electrode placement and stimulus intensity. Modelling these structures

would also give a better insight into the factors that add variability to the

inverse recruitment order and the results of the variability on force output,

fatigue, and activation sequences.



158 Chapter 6. Discussion and Conclusions

The force output produced in Section 5, as a result of the modification

of a number of intrinsic anatomical and physiological parameters, highlighted

the importance of the structure of the muscle in determining the final force

output. Throughout the simulations in Chapter 5 it was found that one of

the primary determinants on the overall force response of the muscle was the

location of the different fibre type through the muscle and the pennation angles

associated with these muscle locations. The fact that the Shorten et.al. model

required the A1 and A2 parameters to be normalised between the fast and slow

types, and this normalisation resulted in fluctuations of the overall force of the

muscle, the distinct differences between the fibre type representations served

to highlight the effect of structure. The effect that the internal structure of the

muscle plays on the overall behaviour of the muscle is likely to be increased as

more information is incorporated concerning the force transduction pathways

and the constitutive relations within the muscle.

The Functional Electrical Stimulation protocols designed in Section 5.4 are

examples of the sort of output that this modelling framework can produce. In

future, protocols could be matched to functional movements instead of a simple

linear activation profile. The effect of muscle fatigue on repeated processes

could also be taken into consideration, both to minimise fatigue, and to look

for optimal changes to protocols once muscle fatigue occurs.

6.2 Conclusions

The skeletal muscle modelling framework detailed in this thesis uses detailed

physiological and anatomical information to replicate the overall function of

skeletal muscle. The models are built up from the Shorten et.al. cellular model

which is able to represent the physiological functioning of both fast and slow

type muscle. These cellular models are then applied to one-dimensional finite

elements and solved using the Bidomain equations to replicate the physiological

function of a muscle fibre. Using this method, the Action Potential waveform

and velocity can be reproduced, and as a result of the information contained

within the cell model, information on the state of the actin-myosin crossbridges

can be extracted. The crossbridge information can then be used as input

to a three-dimensional finite elasticity model of a skeletal muscle via novel
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constitutive laws presented in [99]. The resulting finite elasticity model is

solved over a three-dimensional finite element representation of the skeletal

muscle in question. The three-dimensional mechanical simulation can produce

the whole muscle force output as a result of a defined activation protocol.

The activation protocol can represent the normal physiological recruitment

pattern of skeletal muscle, or the inverse recruitment of muscle under the

influence of Functional Electrical Stimulation. Intrinsic muscle parameters,

such as motor unit density, motor unit number, fibre type proportion, fibre

type location etc can be altered to determine the effect that these parameters

have on total muscle output. The framework can be used to design inverse

recruitment protocols that are able to follow the behaviour of skeletal muscle

under normal physiological activation, as well as the ability to investigate the

total muscle fatigue response to the protocols.

6.3 Future Work

The primary area where future work needs to be directed is the improve-

ment of the skeletal muscle constitutive laws. Without a greater knowledge

of the coupling of stress and strain in the complex transversly isotropic, or

even orthotropic, material of skeletal muscle, all models will struggle to make

quantitative predictions on muscle force output. The creation of these new

constitutive laws will require a large amount of experimental research, as well

as modelling work, to understand the nonlinear force summation and lateral

force transduction seen in skeletal muscle. The mechanical studies will also

need to determine the local and whole muscle effects that muscle fascicles

produce. Without a more detailed mechanical description of the structure of

skeletal muscle, future modelling work will be greatly restricted in its accuracy

and predictive ability.

The modelling framework presented may be extended to incorporate a more

rigorous description of the skeletal muscle control process. The changes in

recruitment and rate coding behaviour as the muscle performs different types of

contractions, or as individual motor units begin to fatigue poses an interesting

and very complex control problem. Simulations involving multiple muscles and

their articulation of a joint would be the next logical step in the skeletal muscle
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modelling process. Modelling multiple muscles around a joint would also allow

the investigation of another muscle control problem; how compartmentalised

muscle control affects the force output vector of the muscle when performing

different joint movements.

The use of the Bidomain equations to model the flow of electrical potential

through the muscle fibre leads to the calculation of the extracellular potential

of the fibre at all solution points. Using the extracellular potential of every

fibre in the muscle along with a description of the electrical properties of the

muscle and surrounding tissue, such as fat and skin, EMG simulations could be

performed. The linking of this framework with an EMG output would have the

following benefits. It could provide researchers with a better understanding of

how to interpret EMG signals, or filter them so they are able to get the desired

information from them, as the specific muscle structural, and control system

influences on the EMG could be investigated. The physiological state of a

patient’s muscle, healthy or diseased, could be inferred with more accuracy,

allowing the possible diagnosis of disorders such as muscular dystrophy earlier.

A more detailed investigation into the area of Functional Electrical Stimu-

lation would also be possible with the integration of the nerve modelling work

detailed in Kim et.al. [63]. Using similar methods to the EMG simulations, the

electrical field provided by an electrode on the α-motor neurons of the muscle

could be evaluated. This could lead to better electrode placements, in terms

of efficacy of treatment and also design of the FES system itself. The FES

activation modelling would also be linked in with the design of stimulation

protocols that would illicit specific movement or force from the target mus-

cle. The protocols could be optimised to minimise fatigue while replicating as

closely as possible normal muscle movement.

There is also the potential for modifying the Shorten et.al. model so that

the effect of different physiological agents, e.g. drugs, on both electrical and

mechanical muscle performance could be assessed. The effect of a specific

drug could by modelled by modulating the concentration or permeability of

an ion or ion transporters, and the resulting effect on the whole muscle could

be evaluated.
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Appendix A

The Shorten et.al. 2007 Cellular

Model

The following equations are obtained from the CellML representation of the

Shorten et.al. 2007 Skeletal Muscle model [105]. The CellML code can be

found on the CellML website 1. For a full description of all parameters please

refer to [105].

The Sarcolemmal and T-tubular Membrane

IT =
1000

1
∗ (vS − vT )

Ra
µA/cm2 (A.1)

∂(vS)

∂(time)
= −(I ionic

s + IT )

Cm
mV/ms (A.2)

∂(vT )

∂(time)
= −

(

I ionic
t − IT

γ

)

Cm
mV/ms (A.3)

I ionic
s =

(

ICl + IIR + IDR + INa + INaK − IHH
)

µA/cm2 (A.4)

I ionic
t =

(

ICl
t + IIR

t + IDR
t + INa

t + INaK
t

)

µA/cm2 (A.5)

∂(Ki)

∂(time)
= −fT ∗

(

IIR
t + IDR

t + IK
rest − 2 ∗ INaK

t

)

1000
1

∗ FF ∗ tsi

−
(

IIR + IDR + IK
rest − 2 ∗ INaK

)

1000
1

∗ FF ∗ tsi2
mM/ms

(A.6)

1www.cellml.org

175



176 Chapter A. The Shorten et.al. 2007 Cellular Model

Table A.1: Parameters Associated with the Sarcolemmal and T-tubular Membranes.

Parameter Unit Value (fast/slow)
Cm µF/cm2 1/0.05
γ − 4.8/2.79
Ra Ωcm2 150
F C/mol 96485

τK , τNa ms 350/559
fT − 0.0032/0.00174

τK2 , τNa2 ms 350 ∗ 0.2
fT

IK
rest µA/cm2 1.02/0.34

INa
rest µA/cm2 −1.29/ − 0.43
τ − 0.23/0.14
ᾱh ms−1 0.0081
ᾱm ms−1mV −1 0.288
ᾱn ms−1mV −1 0.0131
β̄h ms−1 4.38
β̄m ms−1 1.38
β̄n ms−1 0.067
Vm mV −46
Vn mV −40
Vh mV −45
Va mV 70
V ∞

S mV −78/ − 68
V ∞

hK
S

mV −40

Aa mV 150
A∞

S mV 5.8/7.1
A∞

hK
S

mV 7.5

Kαh
mV 14.7

Kβh
mV 9

Kαm
mV 10

Kβm
mV 18

Kαn
mV 7

Kβn
mV 40

R mJ/K/mol 8314.41
T K 293
ḡCl mS/cm2 19.65/3.275
ḡK mS/cm2 64.8/10.8
ḡNa mS/cm2 804/134
KK mM2 950
KS mM2 1

KmK mM 1
KmNa mM 13
J̄NaK µmol/cm2/s 0.000621/0.0001656
Vτ mV 90/70
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∂(Kt)

∂(time)
=

(

IIR
t + IDR

t + IK
rest − 2 ∗ INaK

t

)

1000
1

∗ FF ∗ tsi

−(Kt − Ke)

τK

mM/ms

(A.7)

∂(Ke)

∂(time)
=

(

IIR + IDR + IK
rest − 2 ∗ INaK

)

1000
1

∗ FF ∗ tsi3

+
(Kt − Ke)

τK2
mM/ms

(A.8)

∂(Nai)

∂(time)
= −fT ∗

(

INa
t + INa

r est + 3 ∗ INaK
t

)

1000
1

∗ FF ∗ tsi
−

(

INa + INa
rest + 3 ∗ INaK

)

1000
1

∗ FF ∗ tsi2
mM/ms

(A.9)

∂(Nat)

∂(time)
=

(

INa
t + INa

rest + 3 ∗ INaK
t

)

1000
1

∗ FF ∗ tsi
−

(Nat − Nae)

τNa
mM/ms

(A.10)

∂(Nae)

∂(time)
=

(

INa + INa
rest + 3 ∗ INaK

)

1000
1

∗ FF ∗ tsi3
+

(Nat − Nae)

τNa2
mM/ms (A.11)

EK =
RR ∗ TT

FF
∗ ln

Ke

Ki
mV (A.12)

EK
t =

RR ∗ TT

FF
∗ ln

Kt

Ki
mV (A.13)

Cli =
156.5

(

5 + e
−F F∗EK
RR∗TT

) mM (A.14)

Clo = (156.5 − 5 ∗ Cli) mM (A.15)

Clit =
156.5

(

5 + e
−F F∗EKt

RR∗TT

) mM (A.16)

Clot
= (156.5 − 5 ∗ Clit) mM (A.17)

JK = vS ∗

(

Ki − Ke ∗ e
−1∗F F∗vS

RR∗TT

)

(

1 − e
−1∗F F∗vS

RR∗TT

) mV mM (A.18)
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JKt
= vT ∗

(

Ki − Kt ∗ e
−1∗F F∗vT

RR∗TT

)

(

1 − e
−1∗F F∗vT

RR∗TT

) mV mM (A.19)

Sarcoplasmic Chloride Channel

a =
1

(

1 + e
(vS−Va)

Aa

) (A.20)

JCl = vS ∗

(

Cli − Clo ∗ e
F F∗vS
RR∗TT

)

(

1 − e
F F∗vS
RR∗TT

) mV mM (A.21)

gCl = ḡCl ∗ (a)4 mS/cm2 (A.22)

ICl = gCl ∗
JCl

45
µA/cm2 (A.23)

Sarcoplasmic Inward Rectifier Potassium Channel

KR = Ke ∗ e−del∗EK∗
F F

RR∗TT mM (A.24)

ḡIR = GK ∗ (KR)2

(

KK + (KR)2) mS/cm2 (A.25)

y = 1 −



1 +
KS ∗

(

1 + (KR)2

KK

)

(Si)
2 ∗ e

2∗(1−del)∗vS∗F F

RR∗TT





−1

(A.26)

gIR = ḡIR ∗ y mS/cm2 (A.27)

IIR = gIR ∗







1; if JK > 0,

0 otherwise.
∗ JK

50
µA/cm2 (A.28)

Sarcoplasmic Delayed Rectifier Potassium Channel

αn = ᾱn ∗ (vS − Vn)
(

1 − e
−

(vS−Vn)
Kαn

) ms−1 (A.29)

βn = β̄n ∗ e
−

(vS−Vn)
Kβn ms−1 (A.30)
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hK∞
=

1
(

1 + e
(vS−VhK∞

)
AhK∞

) (A.31)

τhK = 1000 ∗ e−
(vS+40)

25.75 ms (A.32)

∂(n)

∂(time)
= (αn ∗ (1 − n) − βn ∗ n) (A.33)

∂(hK)

∂(time)
=

(hK∞ − hK)

τhK
(A.34)

gDR = ḡK ∗ (n)4 ∗ hK mS/cm2 (A.35)

IDR = gDR ∗ JK

50
µA/cm2 (A.36)

Sarcoplasmic Sodium Channel

αh = ᾱh ∗ e
−

(vS−Vh)
Kαh ms−1 (A.37)

βh =
β̄h

(

1 + e
−

(vS−Vh)
Kβh

) ms−1 (A.38)

αm = ᾱm ∗ (vS − Vm)
(

1 − e
−

(vS−Vm)
Kαm

) ms−1 (A.39)

βm = β̄m ∗ e
−

(vS−Vm)
Kβm ms−1 (A.40)

S∞ =
1

(

1 + e
(vS−VS∞

)
AS∞

) (A.41)

τS =
8571

(

0.2 + 5.65 ∗
(

(vS+Vτ )
100

)2
) ms (A.42)

JNa = vS ∗

(

Nai − Nae ∗ e
−1∗F F∗vS

RR∗TT

)

(

1 − e
−1∗F F∗vS

RR∗TT

) mV mM (A.43)

∂(m)

∂(time)
= (αm ∗ (1 − m) − βm ∗ m) (A.44)
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∂(h)

∂(time)
= (αh ∗ (1 − h) − βh ∗ h) (A.45)

∂(S)

∂(time)
=

(S∞ − S)

τS
(A.46)

gNa = ḡNa ∗ (m)3 ∗ h ∗ S mS/cm2 (A.47)

INa = gNa ∗
JNa

75
µA/cm2 (A.48)

Sarcoplasmic Sodium Potassium Exchanger

σ =
1

7
∗
(

e
Nae
67.3 − 1

)

(A.49)

f1 =
(

1 + 0.12 ∗ e−0.1∗vS∗ F F
RR∗TT + 0.04 ∗ σ ∗ e−vS∗ F F

RR∗TT

)

−1

(A.50)

ĪNaK = FF ∗ J̄NaK
(

1 +
KmK

K e

)2

∗
(

1 +
KmNa

Nai

)3 µA/cm2 (A.51)

INaK = ĪNaK ∗ f1 µA/cm2 (A.52)

T-tubular Chloride Channel

at =
1

(

1 + e
(vT−Va)

Aa

) (A.53)

JClt = vT ∗

(

Clit − Clot
∗ e

F F∗vT
RR∗TT

)

(

1 − e
F F∗vT
RR∗TT

) mV mM (A.54)

gClt = ḡCl ∗ (at)
4 mS/cm2 (A.55)

ICl
t = etaCl ∗ gClt ∗

JClt

45
µA/cm2 (A.56)

T-tubular Inward Rectifier Potassium Channel

KRt
= Kt ∗ e−del∗EKt

∗
F F

RR∗TT mM (A.57)

ḡIRt
= GK ∗ (KRt

)2

(

KK + (KRt
)2) mS/cm2 (A.58)
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yt = 1 −









1 +

KS ∗
(

1 +
(KRt)

2

KK

)

(Si)
2 ∗ e

2∗(1−del)∗vT∗F F

RR∗TT









−1

(A.59)

gIRt
= ḡIRt

∗ yt mS/cm2 (A.60)

IIR
t = etaIR ∗ gIRt

∗ JKt

50
µA/cm2 (A.61)

T-tubular Delayed Rectifier Potassium Channel

αnt
= ᾱn ∗ (vT − Vn)

(

1 − e
−

(vT−Vn)
Kαn

) ms−1 (A.62)

βnt
= β̄n ∗ e

−
(vT−Vn)

Kβn ms−1 (A.63)

hK∞t
=

1
(

1 + e
(vT−VhK∞

)
AhK∞

) (A.64)

τhKt
= 1 ∗ e−

(vT+40)
25.75 ms (A.65)

∂(nt)

∂(time)
= (αnt

∗ (1 − nt) − βnt
∗ nt) (A.66)

∂(hKt)

∂(time)
=

(hK∞t
− hKt)

τhKt

(A.67)

gDRt
= ḡK ∗ (nt)

4 ∗ hKt mS/cm2 (A.68)

IDRt
= etaDR ∗ gDRt

∗ JKt

50
µA/cm2 (A.69)

T-tubular Sodium Channel

αht
= ᾱh ∗ e

−
(vT−Vh)

Kαh ms−1 (A.70)

βht
=

β̄h
(

1 + e
−

(vT−Vh)
Kβh

) ms−1 (A.71)

αmt
= ᾱm ∗ (vT − Vm)

(

1 − e
−

(vT−Vm)
Kαm

) ms−1 (A.72)
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βmt
= β̄m ∗ e

−
(vT−Vm)

Kβm ms−1 (A.73)

S∞t
=

1
(

1 + e
(vT−VS∞

)
AS∞

) (A.74)

τSt
=

8571
(

0.2 + 5.65 ∗
(

(vT+Vτ )
100

)2
) ms (A.75)

JNat
= vT ∗

(

Nai − Nat ∗ e
−1∗F F∗vT

RR∗TT

)

(

1 − e
−1∗F F∗vT

RR∗TT

) mV mM (A.76)

∂(mt)

∂(time)
= (αmt

∗ (1 − mt) − βmt
∗ mt) (A.77)

∂(ht)

∂(time)
= (αht

∗ (1 − ht) − βht
∗ ht) (A.78)

∂(St)

∂(time)
=

(S∞t
− St)

τSt

(A.79)

gNat
= ḡNa ∗ (mt)

3 ∗ ht ∗ St mS/cm2 (A.80)

INa
t = etaNa ∗ gNat

∗ JNat

75
µA/cm2 (A.81)

T-tubular Sodium Potassium Exchanger

σt =
1

7
∗
(

e
Nat
67.3 − 1

)

(A.82)

f1t =
(

1 + 0.12 ∗ e−0.1∗vT∗
F F

RR∗TT + 0.04 ∗ σt ∗ e−vT∗
F F

RR∗TT

)

−1

(A.83)

ĪNaKt
= FF ∗ J̄NaK

(

1 +
KmK

Kt

)2

∗
(

1 +
KmNa

Nai

)3 µA/cm2 (A.84)

INaKt
= etaNaK ∗ ĪNaKt

∗ f1t µA/cm2 (A.85)
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Table A.2: Model Parameters of the Sarcoplasmic Reticulum Calcium Release Model

Parameter Unit Value (fast/slow)
kL ms−1 0.002
kLm ms−1 1000
f − 0.2
α1 ms−1 0.2
K mV 4.5
V̄ mV −20
i2 µm3ms−1 300/60

The Release of Calcium from the Sarcoplasmic

Reticulum

kC = 0.5 ∗ α1 ∗ e
(vT−V̄ )

8∗K (A.86)

kCm = 0.5 ∗ α1 ∗ e
(V̄ −vT)

8∗K (A.87)

∂(C0)

∂(time)
= −kL ∗ C0 + kLm ∗ O0 − 4 ∗ kC ∗ C0

+kCm ∗ C1

(A.88)

∂(O0)

∂(time)
= kL ∗ C0 − kLm ∗ O0 +

−4 ∗ KC ∗ O0

f

+f ∗ kCm ∗ O1

(A.89)

∂(C1)

∂(time)
= 4 ∗ kC ∗ C0 − kCm ∗ C1 +

−kL ∗ C1

f

+f ∗ kLm ∗ O1 − 3 ∗ kC ∗ C1 + 2 ∗ kCm ∗ C2

(A.90)

∂(O1)

∂(time)
=

kL ∗ C1

f
− kLm ∗ f ∗ O1 +

4 ∗ kC ∗ O0

f

−f ∗ kCm ∗ O1 +
−3 ∗ kC ∗ O1

f
+ 2 ∗ f ∗ kCm ∗ O2

(A.91)

∂(C2)

∂(time)
= 3 ∗ kC ∗ C1 − 2 ∗ kCm ∗ C2 +

−kL ∗ C2

(f)2

+ (f)2 ∗ kLm ∗ O2 − 2 ∗ kC ∗ C2 + 3 ∗ kCm ∗ C3

(A.92)
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∂(O2)

∂(time)
=

3 ∗ kC ∗ O1

f
− 2 ∗ f ∗ kCm ∗ O2 +

kL ∗ C2

(f)2

−kLm ∗ (f)2 ∗ O2 +
−2 ∗ kC ∗ O2

f
+ 3 ∗ f ∗ kCm ∗ O3

(A.93)

∂(C3)

∂(time)
= 2 ∗ kC ∗ C2 − 3 ∗ kCm ∗ C3 +

−kL ∗ C3

(f)3

+kLm ∗ (f)3 ∗ O3 − kC ∗ C3 + 4 ∗ kCm ∗ C4

(A.94)

∂(O3)

∂(time)
=

kL ∗ C3

(f)3 − kLm ∗ (f)3 ∗ O3 +
2 ∗ kC ∗ O2

f

−3 ∗ kCm ∗ f ∗ O3 +
−kC ∗ O3

f
+ 4 ∗ f ∗ kCm ∗ O4

(A.95)

∂(C4)

∂(time)
= kC ∗ C3 − 4 ∗ kCm ∗ C4 +

−kL ∗ C4

(f)4

+kLm ∗ (f)4 ∗ O4

(A.96)

∂(O4)

∂(time)
=

kC ∗ O3

f
− 4 ∗ f ∗ kCm ∗ O4 +

kL ∗ C4

(f)4

−kLm ∗ (f)4 ∗ O4

(A.97)

Intracellular Species

This section defines the concentrations of a number of intracellular species

concerned with the contraction of the cell. The units are those of the dependant

variable.

Vo = 0.95 ∗ Lx ∗ π ∗ (RR)2 π µm3 (A.98)

V1 = 0.01 ∗ Vo µm3 (A.99)

V2 = 0.99 ∗ Vo µm3 (A.100)

VSR1 = 0.01 ∗ VSR µm3 (A.101)

VSR2 = 0.99 ∗ VSR µm3 (A.102)

T0 = Ttot − CaT2 − CaCaT2 − D0 − D1 − D2 − A1 − A2 µM (A.103)
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Table A.3: Model Parameters of Skeletal Muscle Contraction

Parameter Unit Value (fast/slow)
νSR µMms−1µm−3 4.875/2.4375
KSR µM 1
Le µm3ms−1 0.00002/0.00004

τR, τSR
R µm3ms−1 0.75

Lx µm 1.1
RR µm 0.5
VSR µm3 0.05 ∗ (LxπR2

R)
kon

T µM−1ms−1 0.04425/0.0885

koff
T ms−1 0.115

Ttot µM 140
kon

P µM−1ms−1 0.0417/0

koff
P ms−1 0.0005/0

Ptot µM 1500
kon

Mg µM−1ms−1 0.000033/0

koff
Mg ms−1 0.003/0

kon
Cs µM−1ms−1 0.000004

koff
Cs ms−1 0.005

Cstot µM 31000
kon

CATP µM−1ms−1 0.15

koff
CATP ms−1 30

kon
MATP µM−1ms−1 0.0015

koff
MATP ms−1 0.15
τATP µm3ms−1 0.375
τMg µm3ms−1 1.5
kon

0 ms−1 0

koff
0 ms−1 0.15

kon
Ca ms−1 0.15

koff
Ca ms−1 0.05
fo ms−1 1.5/0.5
fp ms−1 15/5
ho ms−1 0.24/0.08
hp ms−1 0.18/0.06
go ms−1 0.12/0.04
bp ms−1 0.00002867/0.00000394
kp µm3ms−1 3.62 ∗ 10−6

Ap mM2ms−1 1
Bp mMms−1 0.0001
PP mM2 6
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∂(Ca1)

∂(time)
= i2 ∗ (O0 + O1 + O2 + O3 + O4) ∗

(CaSR1 − Ca1)

V1

− nuSR ∗
Ca1

(Ca1+KSR)

V1
+ Le ∗

(CaSR1 − Ca1)

V1
− τR ∗ (Ca1 − Ca2)

V1

−
(

kPon
∗ Ca1 ∗ (Ptot − CaP1 − MgP1) − kPoff

∗ CaP1

)

−
(

kCATPon
∗ Ca1 ∗ ATP1 − kCATPoff

∗ CaATP1

)

µM

(A.104)

∂(CaSR1)

∂(time)
= −i2 ∗ (O0 + O1 + O2 + O3 + O4) ∗

(CaSR1 − Ca1)

VSR1

+ nuSR ∗
Ca1

(Ca1+KSR)

VSR1

− Le ∗
(CaSR1 − Ca1)

VSR1

− τSRR
∗ (CaSR1 − CaSR2)

VSR1

−
(

kCson
∗ CaSR1 ∗ (Cstot − CaCs1) + −kCsoff

∗ CaCs1

)

µM

(A.105)

∂(Ca2)

∂(time)
= −nuSR ∗

Ca2

(Ca2+KSR)

V2

+ Le ∗
(CaSR2 − Ca2)

V2

+ τR ∗ (Ca1 − Ca2)

V2

−
(

kTon
∗ Ca2 ∗ T0 − kToff

∗ CaT2 + kTon
∗ Ca2 ∗ CaT2 − kToff

∗ CaCaT2

)

−
(

kTon
∗ Ca2 ∗ D0 − kToff

∗ D1 + kTon
∗ Ca2 ∗ D1 − kToff

∗ D2

)

−
(

kPon
∗ Ca2 ∗ (Ptot − CaP2 − MgP2) − kPoff

∗ CaP2

)

−
(

kCATPon
∗ Ca2 ∗ ATP2 − kCATPoff

∗ CaATP2

)

µM

(A.106)

∂(CaSR2)

∂(time)
= nuSR ∗

Ca2

(Ca2+KSR)

VSR2

− Le ∗
(CaSR2 − Ca2)

VSR2

+ τSRR
∗ (CaSR1 − CaSR2)

VSR2
−
(

kCson
∗ CaSR2 ∗ (Cstot − CaCs2) − kCsoff

∗ CaCs2

)

− 1000

1
∗



Ap ∗
(

PSR ∗ 0.001

1
∗ CaSR2 − PP

)

∗







1; if
(

PSR ∗ 0.001
1

∗ CaSR2 − PP
)

> 0,

0 otherwise.





∗ PSR ∗ CaSR2 −
1000

1
Bp ∗ PCSR ∗

(

PP − PSR ∗ 0.001

1
∗ CaSR2

)

∗







1; if
(

PP − PSR ∗ 0.001
1

∗ CaSR2

)

> 0,

0 otherwise.
µM

(A.107)
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∂(CaT2)

∂(time)
= kTon

∗ Ca2 ∗ T0 − kToff
∗ CaT2 − kTon

∗ Ca2 ∗ CaT2

+kToff
∗ CaCaT2 − k0on

∗ CaT2 + k0off
∗ D1 µM

(A.108)

∂(CaP1)

∂(time)
= kPon

∗ Ca1 ∗ (Ptot − CaP1 − MgP1) − kPoff
∗ CaP1 µM (A.109)

∂(CaP2)

∂(time)
= kPon

∗ Ca2 ∗ (Ptot − CaP2 − MgP2) − kPoff
∗ CaP2 µM (A.110)

∂(MgP1)

∂(time)
= kMgon

∗(Ptot − CaP1 − MgP1)∗Mg1−kMgoff
∗MgP1 µM (A.111)

∂(MgP2)

∂(time)
= kMgon

∗(Ptot − CaP2 − MgP2)∗Mg2−kMgoff
∗MgP2 µM (A.112)

∂(CaCs1)

∂(time)
= kCson

∗ CaSR1 ∗ (Cstot − CaCs1) − kCsoff
∗ CaCs1 µM (A.113)

∂(CaCs2)

∂(time)
= kCson

∗ CaSR2 ∗ (Cstot − CaCs2) − kCsoff
∗ CaCs2 µM (A.114)

∂(CaATP1)

∂(time)
= kCATPon

∗ Ca1 ∗ ATP1 − kCATPoff
∗ CaATP1

−τATP ∗ (CaATP1 − CaATP2)

V1
µM

(A.115)

∂(CaATP2)

∂(time)
= kCATPon

∗ Ca2 ∗ ATP2 − kCATPoff
∗ CaATP2

+τATP ∗ (CaATP1 − CaATP2)

V2
µM

(A.116)

∂(MgATP1)

∂(time)
= kMATPon

∗ Mg1 ∗ ATP1 − kMATPoff
∗ MgATP1

−τATP ∗ (MgATP1 − MgATP2)

V1

µM

(A.117)

∂(MgATP2)

∂(time)
= kMATPon

∗ Mg2 ∗ ATP2 − kMATPoff
∗ MgATP2

+τATP ∗ (MgATP1 − MgATP2)

V2
µM

(A.118)
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∂(ATP1)

∂(time)
= −

(

kCATPon
∗ Ca1 ∗ ATP1 − kCATPoff

∗ CaATP1

)

−
(

kMATPon
∗ Mg1 ∗ ATP1 − kMATPoff

∗ MgATP1

)

−τATP ∗ (ATP1 − ATP2)

V1

µM

(A.119)

∂(ATP2)

∂(time)
= −

(

kCATPon
∗ Ca2 ∗ ATP2 − kCATPoff

∗ CaATP2

)

−
(

kMATPon
∗ Mg2 ∗ ATP2 − kMATPoff

∗ MgATP2

)

+τATP ∗ (ATP1 − ATP2)

V2

µM

(A.120)

∂(Mg1)

∂(time)
= −

(

kMgon
∗ (Ptot − CaP1 − MgP1) ∗ Mg1 − kMgoff

∗ MgP1

)

−
(

kMATPon
∗ Mg1 ∗ ATP1 − kMATPoff

∗ MgATP1

)

−τMg ∗
(Mg1 − Mg2)

V1
µM

(A.121)

∂(Mg2)

∂(time)
= −

(

kMgon
∗ (Ptot − CaP2 − MgP2) ∗ Mg2 − kMgoff

∗ MgP2

)

−
(

kMATPon
∗ Mg2 ∗ ATP2 − kMATPoff

∗ MgATP2

)

+τMg ∗
(Mg1 − Mg2)

V2
µM

(A.122)

∂(CaCaT2)

∂(time)
= kTon

∗ Ca2 ∗ CaT2 − kToff
∗ CaCaT2

−kCaon
∗ CaCaT2 + kCaoff

∗ D2 µM

(A.123)

∂(D0)

∂(time)
= −kTon

∗Ca2 ∗D0 + kToff
∗D1 + k0on

∗T0 − k0off
∗D0 µM (A.124)

∂(D1)

∂(time)
= kTon

∗ Ca2 ∗ D0 − kToff
∗ D1 + k0on

∗ CaT2

−k0off
∗ D1 − kTon

∗ Ca2 ∗ D1 + kToff
∗ D2 µM

(A.125)

∂(D2)

∂(time)
= kTon

∗ Ca2 ∗ D1 − kToff
∗ D2 + kCaon

∗ CaCaT2

−kCaoff
∗ D2 − fo ∗ D2 + fp ∗ A1 + go ∗ A2 µM

(A.126)
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∂(A1)

∂(time)
= fo ∗ D2 − fp ∗ A1 + hp ∗ A2 − ho ∗ A1 µM (A.127)

∂(A2)

∂(time)
= −hp ∗ A2 + ho ∗ A1 − go ∗ A2 µM (A.128)

∂(P )

∂(time)
=

0.001

1
∗ (ho ∗ A1 − hp ∗ A2) − 1 ∗ bp ∗ P − 1 ∗ kp ∗

(P − PSR)

V2

µM

(A.129)
∂(PSR)

∂(time)
= kp ∗

(P − PSR)

VSR2

− Ap ∗
(

PSR ∗ 0.001

1
∗ CaSR2 − PP

)

∗






1; if
(

PSR ∗ 0.001
1

∗ CaSR2 − PP
)

> 0,

0 otherwise.
∗ 0.001

1
∗ PSR ∗ CaSR2

+Bp ∗ PCSR
∗
(

PP − PSR ∗ 0.001

1
∗ CaSR2

)

∗






1; if
(

PP − PSR ∗ 0.001
1

∗ CaSR2

)

> 0,

0 otherwise.
µM

(A.130)

∂(PCSR
)

∂(time)
= Ap ∗

(

PSR ∗ 0.001

1
∗ CaSR2 − PP

)

∗






1; if
(

PSR ∗ 0.001
1

∗ CaSR2 − PP
)

> 0,

0 otherwise.
∗ 0.001

1
∗ PSR ∗ CaSR2

−Bp ∗ PCSR
∗
(

PP − PSR ∗ 0.001

1
∗ CaSR2

)

∗






1; if
(

PP − PSR ∗ 0.001
1

∗ CaSR2

)

> 0,

0 otherwise.
µM

(A.131)


